[image:]仅限阅读 请勿传播

当您阅读本方案时，即表示您同意不传播本方案的所有内容

Ecology系统相关安全防护运维指导手册
Introduction to Weaver e-cology
本文件基于e-cology9.0

资料来源：培训服务中心

上海泛微网络科技股份有限公司

[image: weaver]物业报修管理应用场景搭建指导手册Weaver Network Co., LTD.

Weaver Network Co., Ltd.

[bookmark: _Toc40987576][bookmark: _Toc40893692][bookmark: _Toc40908099][bookmark: _Toc40828506][bookmark: _Toc40990678][bookmark: _Toc23825][bookmark: _Toc120530164][bookmark: _Toc88576139]目 录
目 录	1
前言	1
Ecology系统相关安全防护运维指导手册	2
第一部分：相关授权检测及提交	2
1、E9相关授权检测及提交	2
2、E8相关授权检测及提交	3
第二部分：相关安全检测	6
1、E9相关安全检测	6
2、E8相关安全检测	9
3、【重要】安全建议	16
第三部分：异地备份处理	17
1、异地备份概述	17
2、关于数据文件的存放位置	18
3、关于文件存储设置的说明	20
4、关于数据文件的存放位置	20
5、备份策略建议	21
6、异地备份操作实例	21
第四部分：放假日期调整	21
1、E9放假日期调整	21
2、E8放假日期调整	24

[image: weaver] 培训服务中心

上海泛微网络科技股份有限公司 www.weaver.com.cn
 1
[bookmark: _Toc9801]前言
本手册为Ecology系统相关安全防护运维指导手册，主要面向泛微客户相关系统的安全防护问题，主要分为4个部分：
第一部分：相关授权检测及提交；（主要检测）
第二部分：相关安全检测（含PC、手机、即时通讯、云桥、运维平台、微搜等）；
第三部分：程序、文件及数据库异地备份处理；
第四部分：放假日期调整的考勤	相关问题；
佳节将至，祝愿您阖家幸福！若有更多问题，可联系您的专属顾问或者登录云平台提交工单进行处理。

EBU培训服务部
2023.1.17

[bookmark: _Toc10700]Ecology系统相关安全防护运维指导手册
[bookmark: _Toc21422]第一部分：相关授权检测及提交
[bookmark: _Toc755]1、E9相关授权检测及提交
1.1、ecology端
1、管理员账号登录后，右上角点授权设置，然后提交license即可
2、默认验证码为1或者wEAver2018
3、如果两个验证码都不对需要在服务器WEAVER/ecology/WEB-INF/code.key文件查看
[image:]

[image:]

1.2、EM端授权提交
1、登录手机端后台（默认登录地址OA地址:8999）
2、系统管理，授权管理，提交授权
[image:]
[bookmark: _Toc20440]2、E8相关授权检测及提交
2.1、ecology端
1、管理员账号登录后，右上角点授权设置，然后提交license即可
2、验证码为1或者wEAver2014
3、如果两个验证码都不对需要在服务器WEAVER/ecology/WEB-INF/code.key文件查看
[image:]
[image:]

2.2、EM端授权提交
1、登录手机端后台（默认登录地址OA地址:89/manager）
2、服务器管理，授权信息，浏览文件提交
[image:]

2.3、emessage即时通讯工具授权提交
1、sysadmin登录OA后台
2、进入后台，应用中心，emessage，授权信息，提交相应授权文件
[image:]

2.4、云桥授权提交
1、登录云桥后台（默认登录地址 OA地址:8088）
2、系统管理，授权信息管理，提交授权
[image:]

[bookmark: _Toc29888]第二部分：相关安全检测
[bookmark: _Toc20531]1、E9相关安全检测
1.1、Ecology9-PC端
1、用sysadmin登录系统
2、再访问http://oa地址/security/monitor/Monitor.jsp，查看【环境信息】，查看【客户端安全包软件版本】显示版本是否为V10.55。
【注：oa地址需替换为各自的实际地址；若oa地址为ip地址则需要加端口（ip：端口号）；若oa地址为外网地址直接输入地址即可】
[image:]
3、更多安全细则，可首先登录系统管理员账号，再直接访问http://oa地址/wui/secCheck.jsp访问客户当前安全包版本巡检页面，进行巡检即可;
【注：oa地址需替换为各自的实际地址；若oa地址为ip地址则需要加端口（ip：端口号）；若oa地址为外网地址直接输入地址即可】
4、 初次访问安全巡检页面需等待加载，如下图所示，全部通过为正常；若存在不通过的情况，可参考右侧的“详情及处置意见”，若有不确定的，可以提交云工单进行咨询。
[image:]

5、如果存在检测不通过的情况，请下载最新版安全包更新
下载地址：https://www.weaver.com.cn/cs/securityDownload.html
[image:]
6、更新步骤同其他补丁步骤一致，解压密码：Weaver@Ecology201205

1.2、Emobile7端
1、登录手机端后台，确认版本信息
2、手机端后台默认登录地址为 OA地址:8999
3、确认底部版本信息，版本较低建议更新，截止2023年春节节前，最新的补丁包为20230105。
4、补丁包下载地址为：https://emobile.weaver.com.cn/emp/patch/emp_patch_20230105.zip [image:]

1.3、运维平台
1、运维平台地址：https://www.weaver.com.cn/cs/monitorDownload.html
[image:]

参考以下文档：

2、涉及到的log4j组件

1.4、微搜
1、登录微搜管理后台，访问ip:8099/getSecurityInfo.jsp，返回中有"securityVersion"的字样，后面显示的就是版本。
[image:]
2、 截止2023年春节，最新的官方版本(微搜1.0为V1.03；微搜2.0为V1.08)见下图，建议升级最新版微搜安全包
[image:]
3、注意下载时的版本（是微搜2.0还是1.0），可登录微搜后台查看，默认登录地址OA地址:8099
4、下载地址：https://www.weaver.com.cn/cs/esearchDownload.html?v=20211221

[bookmark: _Toc22661]2、E8相关安全检测
2.1、Ecology8-PC端
1、用sysadmin登录系统
2、再访问http://oa地址/security/monitor/Monitor.jsp，查看【环境信息】，查看【客户端安全包软件版本】显示版本是否为V10.55。
【注：oa地址需替换为各自的实际地址；若oa地址为ip地址则需要加端口（ip：端口号）；若oa地址为外网地址直接输入地址即可】
[image:]
3、更多安全细则，可首先登录系统管理员账号，再直接访问http://oa地址/wui/secCheck.jsp访问客户当前安全包版本巡检页面，进行巡检即可;
【注：oa地址需替换为各自的实际地址；若oa地址为ip地址则需要加端口（ip：端口号）；若oa地址为外网地址直接输入地址即可】
5、 如下图所示，全部通过为正常；若存在不通过的情况，可参考右侧的“详情及处置意见”，若有不确定的，可以提交云工单进行咨询。
[image:]

5、如果存在检测不通过的情况，请下载最新版安全包更新
下载地址：https://www.weaver.com.cn/cs/securityDownload.html
[image:]
6、更新步骤同其他补丁步骤一致，解压密码：Weaver@Ecology201205

2.2、Emobile6端
1、登录手机端后台，确认版本信息
2、手机端后台默认登录地址为 ：OA地址:89/manager
3、确认中间的版本信息是否为6.6，6.5及以下需要更新
4、补丁包下载地址为：https://www.weaver.com.cn/cs/mobileDownload.html
[image:]
5、6.6版本客户忽略（6.5及以下建议联系客服/项目人员获取更新包更新至6.6）
[image:]
2.3、微搜
1、登录微搜管理后台，访问ip:8099/getSecurityInfo.jsp，返回中有"securityVersion"的字样，后面显示的就是版本。
[image:]
3、 截止2023年春节，最新的官方版本(微搜1.0为V1.03；微搜2.0为V1.08)见下图，建议升级最新版微搜安全包
[image:]
3、注意下载时的版本（是微搜2.0还是1.0），可登录微搜后台查看，默认登录地址OA地址:8099
4、下载地址：https://www.weaver.com.cn/cs/esearchDownload.html?v=20211221

2.4、运维平台
1、运维平台地址：https://www.weaver.com.cn/cs/monitorDownload.html

[image:]参考以下文档：

2、涉及到的log4j组件

2.5、云桥（用于集成钉钉，企业微信等）
1、登录后台，默认地址为OA地址：8088，可在登录页确认版本信息。
[image:]
[bookmark: _GoBack]2、确认版本后，若版本过低建议升级至最新版。截至2023年春节，最新版本为20221013
[image:]

3、下载地址：http://wx.weaver.com.cn/download
[image:]
4、云桥如果有做过相关开发请和所属项目/客服确认后再进行更新

2.6、私有云emessage消息服务
1、涉及fastjson，已在2020-08-13版本修复，如不确认版本信息建议直接更新至最新版
2、下载地址：https://emobile.weaver.com.cn/emessage/?_timestamp=1643167656362
[bookmark: _Toc17406]3、【重要】安全建议
3.1、如果使用远程桌面协助客户处理OA问题，使用完毕后应告知客户一声，建议客户关闭远程桌面（内网开放远程桌面，也建议修改端口号，并且将administrator重命名）。可以的话，最好还是使用安全的远程软件，当然，使用完毕后，还是建议关闭。
3.2、关闭不必要的外网访问服务，比如数据库的1433、1521端口，一定不要开放外网。
3.3、建议关闭135、136、137、138、139和445等高风险端口。
3.4、linux系统也建议不要开放22端口等远程服务器的外网访问。
3.5、建议对重要数据（如附件、数据库等）进行定期脱机备份。
3.6、定时更新操作系统安全补丁；
3.7、应用系统层面，账户中心安全必须做好，建议按照下图进行配置：[image:]
3.8、仅开放必须开放外网的端口，如果需开放外网服务，默认端口情况下，建议只开启以下端口（如果端口有变更，请根据实际情况调整）：
	产品
	开放端口（默认端口）
	备注

	Ecology
	80
	PC端访问端口

	EMobile7
	8999、5222、7070
	8999：emobile通讯端口
5222：移动端及时消息通讯端口
7070：pc端及时消息通讯端口

	EMobile6（E8产品）
	89
	EMobile移动端访问端口

	E-bridge（E8产品）
	8088
	云桥开放端口

	E-message（E8产品）
	5222,7070
	Emessage需开放端口
5222：移动端及时消息通讯端口
7070：pc端及时消息通讯端口
9090属于后台管理，不建议开放外网访问。

3.9、务必重视泛微官方推送的关于系统安全的邮件提醒，尽力做到事前预防，做好安全加固措施。

[bookmark: _Toc14065]第三部分：异地备份处理
[bookmark: _Toc13809]1、异地备份概述
需要对e-cology日常运行的数据和程序周期进行备份，以便系统或服务器出现异样时可快速还原正常状态。
e-cology需要备份内容有：
[image: 01cc0f2be1716d8c8fe11a7c932c305]

[bookmark: _Toc2455]2、关于数据文件的存放位置
数据文件不是存放在数据库，而是通过OA的程序编译后存放在OA的服务器上，数据库存放的是对应的路径。
系统设置页面的文件系统设置进行指定，如未指定，默认保存在\ecology\filesystem文件夹下面。
[image:]
[image:]
[image:]
[bookmark: _Toc21536]3、关于文件存储设置的说明
[image: 521ef39bd4ce4c4d3bf42250ba0f575]
注意：
必需填写服务器的绝对地址，如果是Windows服务器必需带盘符填写，且路径中不能有中文字符，如d:\filesystem，如果是Linux服务器必需是/root/usr/filesystem这样的填写方式。
[bookmark: _Toc15813]4、关于数据文件的存放位置
如何找到服务器上保存或备份的实际文件呢？
数据库查询ImageFile表，根据文档对应filerealpath字段中的路径进行查找：
[image:]

[bookmark: _Toc6150]5、备份策略建议
[image:]
[bookmark: _Toc10980]6、异地备份操作实例

参考以下文档：
[bookmark: _Toc6108]第四部分：放假日期调整
[bookmark: _Toc242]1、E9放假日期调整
1、初始化节假日：ec后端进入人事模块-考勤管理，点击初始化按钮，可进行考勤组节假日的初始化，此处默认初始化操作后，将按照国家法定节假日，生成公众假日、调配休息日等；
[image:]
2、 手动修改默认法定节假日，例如出现企业所放春节假期与法定假期不同的情况，可进行手动调整。操作方法：
后端考勤管理-节假日设置界面，点击需要调配的指定日期，进行新建工作日期调整操作 ；
[image:]
[image:]
3、 通过导入的方式维护节假日：点击节假日设置界面的“导入”按钮，可通过下载模板的方式维护对应考勤组的放假日期，操作方法详见下图：
[image:][image:][image:]

[bookmark: _Toc5027]2、E8放假日期调整
1、ec后端进入应用中心-人事模块-考勤管理-工作日期调整，点击指定日期的单元格，将工作日期进行调整；
[image:]

[image:]

2、 若使用排班管理进行进行考勤日期的管理，可进入班次管理界面，手动调整班次日期为休息或其他状态。
[image:]

image2.png
UD WOD"IBABIM MMM

image3.png

image4.png

image5.png
estesT

s 167943

202,002 ©

maam e s

EMobiessz 28 : TR

£-MobiPCR EEE 20220

sus/cumE 8 20220126

image6.png
| sz Q

« s
@ 8=

aFeu

]

LN

26 < 2mz0ig >

o
»
(-]
=

5@ ~@Q o
00: -0
00: -0
00: -0

2

image7.png
e p—

018 >

26

2 , .
s 1 1

(] o (-]
» » »
0

image8.png
e-mobile

s
[}) swe=e () tcensermms:
smam womew o camns -;
B TCHITEDRMF0TOTEISETEET =amnn "
mem o0
memm oma2i0
EARED iphoneipadandroidwebcient
smmm 20102

licenseszts

image9.png
—

=nam

]
meman
semen

i

==

emesssge mit Wi

£4272F05B00C8B00136183760DRFCAS
=

R | REREATS

=8

=& mm pEE

=

image10.png
A > HEE > EE

B L B 2

BEZHERHRMEELS TS hm:
=HRGHA AT

RREEE
{A5IE3: 955F0BCOBCO7F741ADEFB54DC8181E7D
rremze | mammaes
IS ETEST
E=FID: 588141
AraE TRE
ErmmsAT 2R
R 2022-01-31
wEcUSRE 1
cumEEE 1
mEaTsEE 1
=D wrEn @0
ETTHRSE Ta= 1
ST EtRLicenselita

A PHE, REEPF L ER SR RRENEE .
HWERRGE SN A R H AN

MRW=FERORSG (BEZ MRS R ERAPHIEH . AXNERAERRSHNE PR -
P S E e - cology = REIMIE W HLINAL : MRe-cologyrh RH 3001 S+
BLREZHES LA PH, HBER-cology HRFHNMMNES DR Z300 1 HS -

2. MEEHSHE: ABEHEANMERLSH &
3 MELKSHE: ATBEZREANMELRSHH

A MEBHTEHE: AFREZFHEAMMETIT S H

image11.png
ERIEE]

TR

RS

EH5WE

REFIEHE

BREEEIHE

HEER

FE&uRA: Windows Server 2008 R2 amd64 6.1
ecologyfisi:

=0 EBTEST

BAS: E8

websh[E}#4EA: resin3

JVMIEE: 1.8.0_151 64

EFRZSORIERE: v10.55

EFRZSOMNERE: v10.10

ERENZSERERS: v10.55

ERENZSEANERE: v10.10

image12.png
C A F=2| /wui/secCheck jsp 2 % 0O &
HRER REER BRLER
HATOARRA: E9 v
RUBTHN T EARAR: v10.54 BHFEMNANT &ARA: v10.5
RIS T IRACESHT
REERTART wEEY ESETHINEERRAS: v10.10 SSrERFINERRA: v10.10
RIS ERACEBMRA
[EMZE N T 8k https://www.weaver.com.cn/cs/securityDownload.html
EFELNEReN T BEERHNREM T BENFEESIRNEINER, BERFIEREMNZSNTE
LK wEEY EFERE a0
- A0 DKHRA: 1.8.0_151
JOKIRAKT e 5 DK A VBT A
. - PRSI EF{lwebshelIIBIA SN TR
HERESSwebshell &I WERBIY [d:\WEAVER\ecology\join\monitorXOperation.jsp.tmp
HRMEEEFDS [Py SEI ARG PIFE261 5RO, B AT AME. 58]/ wui/weak jsp SRERBBAHES.
synccache jsp EEELEIAE mEEY A% £Msynccache jsphRas
iebshih T ETEEFHR wEEY bsh#h T ELZFHH
s T EECEF K EET sqQEEABEFR
WNRFIWAT EECEHR wEEY IREFFIANT BEFER
Evang s s] WEREY BHFRSATTS, BRI RIaThAE
TR EARER N WEREY Ay A=}
E&EFFaccesslog mEEY [EFF/Saccesslog
FRFFE HSOT Bt ISR /S
pRINEkEERecology/WEB-INF/weaver _security_config.xml
Ithg<skip-host>Jfalse
<skip-host>false </skip-host>
3?%75 ZIRYIRESS B EEERS B ATIAENIN N SERSSBANIAL, sMitht, 858, (IBRSSIEIRIEE Y,
IBARTTEI T
PRINIPREBSEFIZRATH AN T 8% ecology/WEB-INF/securityXML/weaver_security_custom_rules_1.xmIX {4 /NG TR0 T
(-
<host-list>
<host>test.genomics.cn</host>
<host>test.genomics.cn:80</host>
MESEFFEHostEH RENEY <host>18.15.16.13</host>

<host>18.15.16.13:80</host>

image13.png
-om.cn/cs/securityDownload.html#

gﬁ E-COLOGYZ&#T

e ECT ORI TRARSHT

EIRRA: 650 J&{TIAEE: Windows/Linux
BB 20220525
MD5: bec970774ba441ac137b9974716ec995

e 10450 LRSS T

EJIRRA: 10.55 JEfTHREE: Windows/Linux
R 2022-10-14
MD5: 24ABEDA277732CFE950D04B316B73373

e RASPRiiF R4,

BMA: 205 j={73AE: Windows/Linux
i) 2022-11.07
MD5: 5ed111a3da49a83i5ec6bsar29bad951

e RASPHSIPHEHTI L

y = e i

e EC8.0RIA LIRASL 24T

BAMA: 1055 &f7EAEE: Windows/Linux
B 2022-10-14
MD5: 36EC14967BAD14B61F23768E34DD4100

e RASPSIPHEFET

BAA: 205
SR 20220822
MD5: c65ba5d7dee18a564a2802334ed538fe

e RASPHSIPRHTE R

=hKNA: 205

image14.png

image15.png
1 Windows3R3% F 3 &3
~a. €8 Llogd i WP
b RENF 62 AL HE, EEHR

@ EHEPE3.038E A - Windowhiz.docx

BeA: WindowlBSSREAURF, RSGAIIESTImSIRE,
Egwaial: 20220731

2 Linux3R3EF 2%
-a. 24 4 logdi
b REMEE2 ORALF L, KFHE

: LinuxBRSSERAIAIF, WSCITRILESISTEIRF
R 2022-07-31

* E-COLOGY it¥&

© =vesormsain- wisows
)

A
EFEE: 20220731

e85: iERFABEEecology RSHLL, MIMEME, A1
PARPEHEETRLE,

A 20220731

e EHEPE3. UL - WindowkR

BR: AREHEEMSF AR 2 MOMPIRSS L.
EEE: 20220731

;ST AREERNT A TR 2 MR IR
45
EHRE): 2022-07-31

��άƽ̨����log4j©������.zip

运维平台关于log4j漏洞处理.docx

运维平台Log4j漏洞处理方案

若运维平台版本为3.0以下版本：

1、 禁用老版本运维平台

Linux环境：

1. 杀掉运维平台2.0的monitor进程

 查看进程命令： ps -ef | grep monitor

 杀进程命令： kill -9 pid //pid为上面查询到的进程号

备注： 杀进程的时候，注意查看monitor进程对应的路径，确认是运维平台2.0版本的再杀。确认方式为： 2.0版本都是挂在Resin路径下的。

2. 禁用老版本运维平台

 禁用方式： 杀掉老版本的monitor进程后，进入Resin/目录下有个monitorX.conf文件，编辑这个文件，将第一个参数disable值修改为1

--

Windows环境

1. Services.msc（服务）中停止MONITOR_CLIENT进程，并设置为禁用，如下图：

[image:]

2. 禁用老版本运维平台

完成第一步后，修改Resin/下的monitorX.conf文件，将disable修改为1 如下图

[image:]

二、部署新版本运维平台3.0

访问链接 https://www.weaver.com.cn/cs/monitorDownload.html

并自行选择对应部署操作。

若运维平台版本为3.0版本：

1． 停止运维平台主节点，停止运维平台代理子节点

Windows：停止MONITOR3服务及MONITOR_ROBOT服务

Linux：在weaver/monitor3(或monitor_robot)/ 目录下执行sh stop.sh 即可

2． 主节点删除log4j开头的jar包

windows环境:

	删除monitor3_win/app/WEB-INF/lib/下所有关于log4j开头的jar包

	删除monitor3_win/securityFile/下所有文件

	删除weaver/ecology/WEB-INF/monitorX/resin/app/WEB-INF/lib/下所有关于	log4j开头的jar包

linux环境:

	删除monitor3/app/WEB-INF/lib下所有关于log4j开头的jar包

	删除monitor3/securityFile/下所有文件

	删除weaver/ecology/WEB-INF/monitorX/resin/app/WEB-INF/lib/下所有关于	log4j开头的jar包

3． 代理节点删除monitor-robot/monitor-robot/app/WEB-INF/lib 下所有log4j开头的jar包，同时删除weaver/ecology/WEB-INF/monitorX/resin/app/WEB-INF/lib/下所有关于	log4j开头的jar包。

注：2.15、2.16、2.17.0版本也被爆出漏洞，log4j官网现在最新是2.17版本。

 第二步和第三步请务必删除以log4j开头的所有jar包，包括2.15、2.16、2.17.0版本的。

4． 将下面2个jar包，分别拷贝到

主节点：

(windows环境路径monitor3_win/app/WEB-INF/lib)

(linux 环境路径monitor3/app/WEB-INF/lib)

代理节点：

monitor-robot/monitor-robot/app/WEB-INF/lib下

5. 重启运维平台主节点，重启运维平台代理服务

Windows：启动MONITOR3服务及MONITOR_ROBOT服务

Linux：在weaver/monitor3(或monitor_robot)/ 目录下执行sh start.sh 即可

image3.emf

log4j-api-2.17.1.j ar

log4j-api-2.17.1.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Bundle-License: https://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-SymbolicName: org.apache.logging.log4j.api

Log4jSigningUserName: mattsicker@apache.org

Built-By: matt

Bnd-LastModified: 1640647808261

Implementation-Vendor-Id: org.apache.logging.log4j

Specification-Title: Apache Log4j API

Log4jReleaseManager: Matt Sicker

Bundle-DocURL: https://www.apache.org/

Import-Package: org.apache.logging.log4j,org.apache.logging.log4j.inte

 rnal,org.apache.logging.log4j.message,org.apache.logging.log4j.simple

 ,org.apache.logging.log4j.spi,org.apache.logging.log4j.status,org.apa

 che.logging.log4j.util,org.osgi.framework;version="[1.6,2)",org.osgi.

 framework.wiring;version="[1.0,2)",sun.reflect;resolution:=optional

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

Export-Package: org.apache.logging.log4j;uses:="org.apache.logging.log

 4j.message,org.apache.logging.log4j.spi,org.apache.logging.log4j.util

 ";version="2.17.1",org.apache.logging.log4j.internal;uses:="org.apach

 e.logging.log4j,org.apache.logging.log4j.message,org.apache.logging.l

 og4j.util";version="2.17.1",org.apache.logging.log4j.message;uses:="o

 rg.apache.logging.log4j.util";version="2.17.1",org.apache.logging.log

 4j.simple;uses:="org.apache.logging.log4j,org.apache.logging.log4j.me

 ssage,org.apache.logging.log4j.spi,org.apache.logging.log4j.util";ver

 sion="2.17.1",org.apache.logging.log4j.spi;uses:="org.apache.logging.

 log4j,org.apache.logging.log4j.internal,org.apache.logging.log4j.mess

 age,org.apache.logging.log4j.util";version="2.17.1",org.apache.loggin

 g.log4j.status;uses:="org.apache.logging.log4j,org.apache.logging.log

 4j.message,org.apache.logging.log4j.spi";version="2.17.1",org.apache.

 logging.log4j.util;uses:="org.apache.logging.log4j.message,org.apache

 .logging.log4j.spi,org.osgi.framework";version="2.17.1"

Bundle-Name: Apache Log4j API

Log4jReleaseVersionJava6: 2.3.1

Multi-Release: true

Bundle-Activator: org.apache.logging.log4j.util.Activator

Log4jReleaseVersionJava7: 2.12.3

Log4jReleaseVersion: 2.17.1

Implementation-Title: Apache Log4j API

Bundle-Description: The Apache Log4j API

Implementation-Version: 2.17.1

Specification-Vendor: The Apache Software Foundation

Bundle-ManifestVersion: 2

Bundle-Vendor: The Apache Software Foundation

Tool: Bnd-3.5.0.201709291849

Implementation-Vendor: The Apache Software Foundation

Bundle-Version: 2.17.1

X-Compile-Target-JDK: 1.8

X-Compile-Source-JDK: 1.8

Created-By: Apache Maven Bundle Plugin

Build-Jdk: 1.8.0_312

Specification-Version: 2.17.1

Implementation-URL: https://logging.apache.org/log4j/2.x/log4j-api/

Log4jReleaseKey: D7C92B70FA1C814D

Log4j-charsets.properties

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.

Mapping based on https://msdn.microsoft.com/en-us/en-en/library/windows/desktop/dd317756(v=vs.85).aspx
Reference for supported Java encodings: https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
cp65001 = UTF-8
cp20127 = US-ASCII
cp54936 = gb18030
cp28592 = iso-8859-2
cp28593 = iso-8859-3
cp28594 = iso-8859-4
cp28595 = iso-8859-5
cp28596 = iso-8859-6
cp28597 = iso-8859-7
cp28598 = iso-8859-8
cp28599 = iso-8859-9
cp28603 = iso-8859-13
cp28605 = iso-8859-15
cp51949 = euc-kr
cp20866 = koi8-r
cp21866 = koi8-u
cp10000 = x-MacRoman
cp10006 = x-MacGreek
cp10007 = x-MacCyrillic
cp10029 = x-MacCentralEurope
cp10081 = x-MacTurkish
cp57002 = x-ISCII91
cp57003 = x-ISCII91
cp57011 = x-ISCII91
cp57010 = x-ISCII91
cp57007 = x-ISCII91
cp57004 = x-ISCII91
cp57005 = x-ISCII91
cp57008 = x-ISCII91
cp57009 = x-ISCII91
cp708 = ISO-8859-6

org/apache/logging/log4j/util/PropertiesUtil$TimeUnit.class

package org.apache.logging.log4j.util;
final synchronized enum PropertiesUtil$TimeUnit {
 public static final PropertiesUtil$TimeUnit NANOS;
 public static final PropertiesUtil$TimeUnit MICROS;
 public static final PropertiesUtil$TimeUnit MILLIS;
 public static final PropertiesUtil$TimeUnit SECONDS;
 public static final PropertiesUtil$TimeUnit MINUTES;
 public static final PropertiesUtil$TimeUnit HOURS;
 public static final PropertiesUtil$TimeUnit DAYS;
 private final String[] descriptions;
 private final java.time.temporal.ChronoUnit timeUnit;
 public static PropertiesUtil$TimeUnit[] values();
 public static PropertiesUtil$TimeUnit valueOf(String);
 private void PropertiesUtil$TimeUnit(String, int, String, java.time.temporal.ChronoUnit);
 java.time.temporal.ChronoUnit getTimeUnit();
 static java.time.Duration getDuration(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/SortedArrayStringMap.class

package org.apache.logging.log4j.util;
public synchronized class SortedArrayStringMap implements IndexedStringMap {
 private static final int DEFAULT_INITIAL_CAPACITY = 4;
 private static final long serialVersionUID = -5748905872274478116;
 private static final int HASHVAL = 31;
 private static final TriConsumer PUT_ALL;
 private static final String[] EMPTY;
 private static final String FROZEN = Frozen collection cannot be modified;
 private transient String[] keys;
 private transient Object[] values;
 private transient int size;
 private static final reflect.Method setObjectInputFilter;
 private static final reflect.Method getObjectInputFilter;
 private static final reflect.Method newObjectInputFilter;
 private int threshold;
 private boolean immutable;
 private transient boolean iterating;
 public void SortedArrayStringMap();
 public void SortedArrayStringMap(int);
 public void SortedArrayStringMap(ReadOnlyStringMap);
 public void SortedArrayStringMap(java.util.Map);
 private void assertNotFrozen();
 private void assertNoConcurrentModification();
 public void clear();
 public boolean containsKey(String);
 public java.util.Map toMap();
 public void freeze();
 public boolean isFrozen();
 public Object getValue(String);
 public boolean isEmpty();
 public int indexOfKey(String);
 private int nullKeyIndex();
 public void putValue(String, Object);
 private void insertAt(int, String, Object);
 public void putAll(ReadOnlyStringMap);
 private void initFrom0(SortedArrayStringMap);
 private void merge(SortedArrayStringMap);
 private void ensureCapacity();
 private void resize(int);
 private void inflateTable(int);
 public void remove(String);
 public String getKeyAt(int);
 public Object getValueAt(int);
 public int size();
 public void forEach(BiConsumer);
 public void forEach(TriConsumer, Object);
 public boolean equals(Object);
 public int hashCode();
 private static int hashCode(Object[], int);
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private static byte[] marshall(Object) throws java.io.IOException;
 private static Object unmarshall(byte[], java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private static int ceilingNextPowerOfTwo(int);
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private void handleSerializationException(Throwable, int, String);
 static void <clinit>();
}

org/apache/logging/log4j/util/Unbox$1.class

package org.apache.logging.log4j.util;
synchronized class Unbox$1 {
}

org/apache/logging/log4j/LogBuilder$1.class

package org.apache.logging.log4j;
final synchronized class LogBuilder$1 implements LogBuilder {
 void LogBuilder$1();
}

org/apache/logging/log4j/internal/LogManagerStatus.class

package org.apache.logging.log4j.internal;
public synchronized class LogManagerStatus {
 private static boolean initialized;
 public void LogManagerStatus();
 public static void setInitialized(boolean);
 public static boolean isInitialized();
 static void <clinit>();
}

org/apache/logging/log4j/message/StructuredDataMessage.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataMessage extends MapMessage {
 private static final long serialVersionUID = 1703221292892071920;
 private static final int MAX_LENGTH = 32;
 private static final int HASHVAL = 31;
 private StructuredDataId id;
 private String message;
 private String type;
 private final int maxLength;
 public void StructuredDataMessage(String, String, String);
 public void StructuredDataMessage(String, String, String, int);
 public void StructuredDataMessage(String, String, String, java.util.Map);
 public void StructuredDataMessage(String, String, String, java.util.Map, int);
 public void StructuredDataMessage(StructuredDataId, String, String);
 public void StructuredDataMessage(StructuredDataId, String, String, int);
 public void StructuredDataMessage(StructuredDataId, String, String, java.util.Map);
 public void StructuredDataMessage(StructuredDataId, String, String, java.util.Map, int);
 private void StructuredDataMessage(StructuredDataMessage, java.util.Map);
 protected void StructuredDataMessage();
 public String[] getFormats();
 public StructuredDataId getId();
 protected void setId(String);
 protected void setId(StructuredDataId);
 public String getType();
 protected void setType(String);
 public void formatTo(StringBuilder);
 public void formatTo(String[], StringBuilder);
 public String getFormat();
 protected void setMessageFormat(String);
 public String asString();
 public String asString(String);
 public final String asString(StructuredDataMessage$Format, StructuredDataId);
 public final void asString(StructuredDataMessage$Format, StructuredDataId, StringBuilder);
 private void asXml(StructuredDataId, StringBuilder);
 public String getFormattedMessage();
 public String getFormattedMessage(String[]);
 private StructuredDataMessage$Format getFormat(String[]);
 public String toString();
 public StructuredDataMessage newInstance(java.util.Map);
 public boolean equals(Object);
 public int hashCode();
 protected void validate(String, boolean);
 protected void validate(String, byte);
 protected void validate(String, char);
 protected void validate(String, double);
 protected void validate(String, float);
 protected void validate(String, int);
 protected void validate(String, long);
 protected void validate(String, Object);
 protected void validate(String, short);
 protected void validate(String, String);
 protected void validateKey(String);
}

org/apache/logging/log4j/message/MessageFormatMessage.class

package org.apache.logging.log4j.message;
public synchronized class MessageFormatMessage implements Message {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long serialVersionUID = 1;
 private static final int HASHVAL = 31;
 private String messagePattern;
 private transient Object[] parameters;
 private String[] serializedParameters;
 private transient String formattedMessage;
 private transient Throwable throwable;
 private final java.util.Locale locale;
 public transient void MessageFormatMessage(java.util.Locale, String, Object[]);
 public transient void MessageFormatMessage(String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 protected transient String formatMessage(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException;
 public Throwable getThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterizedMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ParameterizedMessageFactory extends AbstractMessageFactory {
 public static final ParameterizedMessageFactory INSTANCE;
 private static final long serialVersionUID = -8970940216592525651;
 public void ParameterizedMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/ReusableSimpleMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableSimpleMessage implements ReusableMessage, CharSequence, ParameterVisitable, Clearable {
 private static final long serialVersionUID = -9199974506498249809;
 private CharSequence charSequence;
 public void ReusableSimpleMessage();
 public void set(String);
 public void set(CharSequence);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 public void clear();
}

org/apache/logging/log4j/message/ParameterConsumer.class

package org.apache.logging.log4j.message;
public abstract interface ParameterConsumer {
 public abstract void accept(Object, int, Object);
}

org/apache/logging/log4j/message/ExitMessage.class

package org.apache.logging.log4j.message;
public abstract interface ExitMessage extends FlowMessage {
}

org/apache/logging/log4j/message/ThreadInformation.class

package org.apache.logging.log4j.message;
public abstract interface ThreadInformation {
 public abstract void printThreadInfo(StringBuilder);
 public abstract void printStack(StringBuilder, StackTraceElement[]);
}

org/apache/logging/log4j/message/ReusableObjectMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableObjectMessage implements ReusableMessage, ParameterVisitable, Clearable {
 private static final long serialVersionUID = 6922476812535519960;
 private transient Object obj;
 public void ReusableObjectMessage();
 public void set(Object);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object getParameter();
 public Object[] getParameters();
 public String toString();
 public Throwable getThrowable();
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 public void clear();
}

org/apache/logging/log4j/message/Clearable.class

package org.apache.logging.log4j.message;
abstract interface Clearable {
 public abstract void clear();
}

org/apache/logging/log4j/message/MessageFormatMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class MessageFormatMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 3584821740584192453;
 public void MessageFormatMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/ThreadDumpMessage.class

package org.apache.logging.log4j.message;
public synchronized class ThreadDumpMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = -1103400781608841088;
 private static ThreadDumpMessage$ThreadInfoFactory FACTORY;
 private volatile java.util.Map threads;
 private final String title;
 private String formattedMessage;
 public void ThreadDumpMessage(String);
 private void ThreadDumpMessage(String, String);
 private static ThreadDumpMessage$ThreadInfoFactory getFactory();
 private static ThreadDumpMessage$ThreadInfoFactory initFactory(ClassLoader);
 public String toString();
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object[] getParameters();
 protected Object writeReplace();
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/LocalizedMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class LocalizedMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = -1996295808703146741;
 private final transient java.util.ResourceBundle resourceBundle;
 private final String baseName;
 public void LocalizedMessageFactory(java.util.ResourceBundle);
 public void LocalizedMessageFactory(String);
 public String getBaseName();
 public java.util.ResourceBundle getResourceBundle();
 public Message newMessage(String);
 public transient Message newMessage(String, Object[]);
}

org/apache/logging/log4j/status/StatusLogger.class

package org.apache.logging.log4j.status;
public final synchronized class StatusLogger extends org.apache.logging.log4j.spi.AbstractLogger {
 public static final String MAX_STATUS_ENTRIES = log4j2.status.entries;
 public static final String DEFAULT_STATUS_LISTENER_LEVEL = log4j2.StatusLogger.level;
 public static final String STATUS_DATE_FORMAT = log4j2.StatusLogger.DateFormat;
 private static final long serialVersionUID = 2;
 private static final String NOT_AVAIL = ?;
 private static final org.apache.logging.log4j.util.PropertiesUtil PROPS;
 private static final int MAX_ENTRIES;
 private static final String DEFAULT_STATUS_LEVEL;
 private static final StatusLogger STATUS_LOGGER;
 private final org.apache.logging.log4j.simple.SimpleLogger logger;
 private final java.util.Collection listeners;
 private final java.util.concurrent.locks.ReadWriteLock listenersLock;
 private final java.util.Queue messages;
 private final java.util.concurrent.locks.Lock msgLock;
 private int listenersLevel;
 private void StatusLogger(String, org.apache.logging.log4j.message.MessageFactory);
 private boolean isDebugPropertyEnabled();
 public static StatusLogger getLogger();
 public void setLevel(org.apache.logging.log4j.Level);
 public void registerListener(StatusListener);
 public void removeListener(StatusListener);
 public void updateListenerLevel(org.apache.logging.log4j.Level);
 public Iterable getListeners();
 public void reset();
 private static void closeSilently(java.io.Closeable);
 public java.util.List getStatusData();
 public void clear();
 public org.apache.logging.log4j.Level getLevel();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement getStackTraceElement(String, StackTraceElement[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker);
 static void <clinit>();
}

org/apache/logging/log4j/spi/LocationAwareLogger.class

package org.apache.logging.log4j.spi;
public abstract interface LocationAwareLogger {
 public abstract void logMessage(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/CloseableThreadContext.class

package org.apache.logging.log4j;
public synchronized class CloseableThreadContext {
 private void CloseableThreadContext();
 public static CloseableThreadContext$Instance push(String);
 public static transient CloseableThreadContext$Instance push(String, Object[]);
 public static CloseableThreadContext$Instance put(String, String);
 public static CloseableThreadContext$Instance pushAll(java.util.List);
 public static CloseableThreadContext$Instance putAll(java.util.Map);
}

org/apache/logging/log4j/util/LoaderUtil$ThreadContextClassLoaderGetter.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$ThreadContextClassLoaderGetter implements java.security.PrivilegedAction {
 private void LoaderUtil$ThreadContextClassLoaderGetter();
 public ClassLoader run();
}

org/apache/logging/log4j/util/PerformanceSensitive.class

package org.apache.logging.log4j.util;
public abstract interface PerformanceSensitive extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/util/StackLocatorUtil.class

package org.apache.logging.log4j.util;
public final synchronized class StackLocatorUtil {
 private static StackLocator stackLocator;
 private static volatile boolean errorLogged;
 private void StackLocatorUtil();
 public static Class getCallerClass(int);
 public static StackTraceElement getStackTraceElement(int);
 public static Class getCallerClass(String);
 public static Class getCallerClass(String, String);
 public static Class getCallerClass(Class, java.util.function.Predicate);
 public static Class getCallerClass(Class);
 public static java.util.Stack getCurrentStackTrace();
 public static StackTraceElement calcLocation(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/LoaderUtil.class

package org.apache.logging.log4j.util;
public final synchronized class LoaderUtil {
 public static final String IGNORE_TCCL_PROPERTY = log4j.ignoreTCL;
 private static final SecurityManager SECURITY_MANAGER;
 private static Boolean ignoreTCCL;
 private static final boolean GET_CLASS_LOADER_DISABLED;
 private static final java.security.PrivilegedAction TCCL_GETTER;
 private void LoaderUtil();
 public static ClassLoader getThreadContextClassLoader();
 public static ClassLoader[] getClassLoaders();
 private static void accumulateClassLoaders(ClassLoader, java.util.Collection);
 public static boolean isClassAvailable(String);
 public static Class loadClass(String) throws ClassNotFoundException;
 public static Object newInstanceOf(Class) throws InstantiationException, IllegalAccessException, reflect.InvocationTargetException;
 public static Object newInstanceOf(String) throws ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, reflect.InvocationTargetException;
 public static Object newCheckedInstanceOf(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 public static Object newCheckedInstanceOfProperty(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 private static boolean isIgnoreTccl();
 public static java.util.Collection findResources(String);
 static java.util.Collection findUrlResources(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/MessageSupplier.class

package org.apache.logging.log4j.util;
public abstract interface MessageSupplier {
 public abstract org.apache.logging.log4j.message.Message get();
}

org/apache/logging/log4j/util/Timer$2.class

package org.apache.logging.log4j.util;
synchronized class Timer$2 {
 static void <clinit>();
}

org/apache/logging/log4j/util/LambdaUtil.class

package org.apache.logging.log4j.util;
public final synchronized class LambdaUtil {
 private void LambdaUtil();
 public static transient Object[] getAll(Supplier[]);
 public static Object get(Supplier);
 public static org.apache.logging.log4j.message.Message get(MessageSupplier);
 public static org.apache.logging.log4j.message.Message getMessage(Supplier, org.apache.logging.log4j.message.MessageFactory);
}

org/apache/logging/log4j/internal/DefaultLogBuilder.class

package org.apache.logging.log4j.internal;
public synchronized class DefaultLogBuilder implements org.apache.logging.log4j.LogBuilder {
 private static org.apache.logging.log4j.message.Message EMPTY_MESSAGE;
 private static final String FQCN;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.Logger logger;
 private org.apache.logging.log4j.Level level;
 private org.apache.logging.log4j.Marker marker;
 private Throwable throwable;
 private StackTraceElement location;
 private volatile boolean inUse;
 private long threadId;
 public void DefaultLogBuilder(org.apache.logging.log4j.Logger, org.apache.logging.log4j.Level);
 public void DefaultLogBuilder(org.apache.logging.log4j.Logger);
 public org.apache.logging.log4j.LogBuilder reset(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.LogBuilder withMarker(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.LogBuilder withThrowable(Throwable);
 public org.apache.logging.log4j.LogBuilder withLocation();
 public org.apache.logging.log4j.LogBuilder withLocation(StackTraceElement);
 public boolean isInUse();
 public void log(org.apache.logging.log4j.message.Message);
 public void log(CharSequence);
 public void log(String);
 public transient void log(String, Object[]);
 public transient void log(String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.util.Supplier);
 public void log(Object);
 public void log(String, Object);
 public void log(String, Object, Object);
 public void log(String, Object, Object, Object);
 public void log(String, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log();
 private void logMessage(org.apache.logging.log4j.message.Message);
 private boolean isValid();
 static void <clinit>();
}

org/apache/logging/log4j/message/ReusableParameterizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableParameterizedMessage implements ReusableMessage, ParameterVisitable, Clearable {
 private static final int MIN_BUILDER_SIZE = 512;
 private static final int MAX_PARMS = 10;
 private static final long serialVersionUID = 7800075879295123856;
 private transient ThreadLocal buffer;
 private String messagePattern;
 private int argCount;
 private int usedCount;
 private final int[] indices;
 private transient Object[] varargs;
 private transient Object[] params;
 private transient Throwable throwable;
 transient boolean reserved;
 public void ReusableParameterizedMessage();
 private Object[] getTrimmedParams();
 private Object[] getParams();
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 private void init(String, int, Object[]);
 private static int count(String, int[]);
 private void initThrowable(Object[], int, int);
 transient ReusableParameterizedMessage set(String, Object[]);
 ReusableParameterizedMessage set(String, Object);
 ReusableParameterizedMessage set(String, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public String getFormattedMessage();
 private StringBuilder getBuffer();
 public void formatTo(StringBuilder);
 ReusableParameterizedMessage reserve();
 public String toString();
 public void clear();
}

org/apache/logging/log4j/message/ParameterVisitable.class

package org.apache.logging.log4j.message;
public abstract interface ParameterVisitable {
 public abstract void forEachParameter(ParameterConsumer, Object);
}

org/apache/logging/log4j/message/SimpleMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class SimpleMessageFactory extends AbstractMessageFactory {
 public static final SimpleMessageFactory INSTANCE;
 private static final long serialVersionUID = 4418995198790088516;
 public void SimpleMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/FlowMessage.class

package org.apache.logging.log4j.message;
public abstract interface FlowMessage extends Message {
 public abstract String getText();
 public abstract Message getMessage();
}

org/apache/logging/log4j/message/MapMessage$MapFormat.class

package org.apache.logging.log4j.message;
public final synchronized enum MapMessage$MapFormat {
 public static final MapMessage$MapFormat XML;
 public static final MapMessage$MapFormat JSON;
 public static final MapMessage$MapFormat JAVA;
 public static final MapMessage$MapFormat JAVA_UNQUOTED;
 public static MapMessage$MapFormat[] values();
 public static MapMessage$MapFormat valueOf(String);
 private void MapMessage$MapFormat(String, int);
 public static MapMessage$MapFormat lookupIgnoreCase(String);
 public static String[] names();
 static void <clinit>();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class DefaultFlowMessageFactory implements FlowMessageFactory, java.io.Serializable {
 private static final String EXIT_DEFAULT_PREFIX = Exit;
 private static final String ENTRY_DEFAULT_PREFIX = Enter;
 private static final long serialVersionUID = 8578655591131397576;
 private final String entryText;
 private final String exitText;
 public void DefaultFlowMessageFactory();
 public void DefaultFlowMessageFactory(String, String);
 public String getEntryText();
 public String getExitText();
 public EntryMessage newEntryMessage(Message);
 private Message makeImmutable(Message);
 public ExitMessage newExitMessage(EntryMessage);
 public ExitMessage newExitMessage(Object, EntryMessage);
 public ExitMessage newExitMessage(Object, Message);
}

org/apache/logging/log4j/message/MapMessage.class

package org.apache.logging.log4j.message;
public synchronized class MapMessage implements org.apache.logging.log4j.util.MultiFormatStringBuilderFormattable {
 private static final long serialVersionUID = -5031471831131487120;
 private final org.apache.logging.log4j.util.IndexedStringMap data;
 public void MapMessage();
 public void MapMessage(int);
 public void MapMessage(java.util.Map);
 public String[] getFormats();
 public Object[] getParameters();
 public String getFormat();
 public java.util.Map getData();
 public org.apache.logging.log4j.util.IndexedReadOnlyStringMap getIndexedReadOnlyStringMap();
 public void clear();
 public boolean containsKey(String);
 public void put(String, String);
 public void putAll(java.util.Map);
 public String get(String);
 public String remove(String);
 public String asString();
 public String asString(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 private StringBuilder format(MapMessage$MapFormat, StringBuilder);
 public void asXml(StringBuilder);
 public String getFormattedMessage();
 public String getFormattedMessage(String[]);
 private MapMessage$MapFormat getFormat(String[]);
 protected void appendMap(StringBuilder);
 protected void asJson(StringBuilder);
 protected void asJavaUnquoted(StringBuilder);
 protected void asJava(StringBuilder);
 private void asJava(StringBuilder, boolean);
 public MapMessage newInstance(java.util.Map);
 public String toString();
 public void formatTo(StringBuilder);
 public void formatTo(String[], StringBuilder);
 public boolean equals(Object);
 public int hashCode();
 public Throwable getThrowable();
 protected void validate(String, boolean);
 protected void validate(String, byte);
 protected void validate(String, char);
 protected void validate(String, double);
 protected void validate(String, float);
 protected void validate(String, int);
 protected void validate(String, long);
 protected void validate(String, Object);
 protected void validate(String, short);
 protected void validate(String, String);
 protected String toKey(String);
 public MapMessage with(String, boolean);
 public MapMessage with(String, byte);
 public MapMessage with(String, char);
 public MapMessage with(String, double);
 public MapMessage with(String, float);
 public MapMessage with(String, int);
 public MapMessage with(String, long);
 public MapMessage with(String, Object);
 public MapMessage with(String, short);
 public MapMessage with(String, String);
}

org/apache/logging/log4j/message/ReusableMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ReusableMessageFactory implements MessageFactory2, java.io.Serializable {
 public static final ReusableMessageFactory INSTANCE;
 private static final long serialVersionUID = -8970940216592525651;
 private static ThreadLocal threadLocalParameterized;
 private static ThreadLocal threadLocalSimpleMessage;
 private static ThreadLocal threadLocalObjectMessage;
 public void ReusableMessageFactory();
 private static ReusableParameterizedMessage getParameterized();
 private static ReusableSimpleMessage getSimple();
 private static ReusableObjectMessage getObject();
 public static void release(Message);
 public Message newMessage(CharSequence);
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String);
 public Message newMessage(Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$AbstractFlowMessage.class

package org.apache.logging.log4j.message;
synchronized class DefaultFlowMessageFactory$AbstractFlowMessage implements FlowMessage {
 private static final long serialVersionUID = 1;
 private final Message message;
 private final String text;
 void DefaultFlowMessageFactory$AbstractFlowMessage(String, Message);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public Message getMessage();
 public String getText();
}

org/apache/logging/log4j/status/StatusData.class

package org.apache.logging.log4j.status;
public synchronized class StatusData implements java.io.Serializable {
 private static final long serialVersionUID = -4341916115118014017;
 private final long timestamp;
 private final StackTraceElement caller;
 private final org.apache.logging.log4j.Level level;
 private final org.apache.logging.log4j.message.Message msg;
 private String threadName;
 private final Throwable throwable;
 public void StatusData(StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, String);
 public long getTimestamp();
 public StackTraceElement getStackTraceElement();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.message.Message getMessage();
 public String getThreadName();
 public Throwable getThrowable();
 public String getFormattedStatus();
}

org/apache/logging/log4j/CloseableThreadContext$Instance.class

package org.apache.logging.log4j;
public synchronized class CloseableThreadContext$Instance implements AutoCloseable {
 private int pushCount;
 private final java.util.Map originalValues;
 private void CloseableThreadContext$Instance();
 public CloseableThreadContext$Instance push(String);
 public CloseableThreadContext$Instance push(String, Object[]);
 public CloseableThreadContext$Instance put(String, String);
 public CloseableThreadContext$Instance putAll(java.util.Map);
 public CloseableThreadContext$Instance pushAll(java.util.List);
 public void close();
 private void closeMap();
 private void closeStack();
}

org/apache/logging/log4j/spi/StandardLevel.class

package org.apache.logging.log4j.spi;
public final synchronized enum StandardLevel {
 public static final StandardLevel OFF;
 public static final StandardLevel FATAL;
 public static final StandardLevel ERROR;
 public static final StandardLevel WARN;
 public static final StandardLevel INFO;
 public static final StandardLevel DEBUG;
 public static final StandardLevel TRACE;
 public static final StandardLevel ALL;
 private static final java.util.EnumSet LEVELSET;
 private final int intLevel;
 public static StandardLevel[] values();
 public static StandardLevel valueOf(String);
 private void StandardLevel(String, int, int);
 public int intLevel();
 public static StandardLevel getStandardLevel(int);
 static void <clinit>();
}

org/apache/logging/log4j/spi/MutableThreadContextStack.class

package org.apache.logging.log4j.spi;
public synchronized class MutableThreadContextStack implements ThreadContextStack, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = 50505011;
 private final java.util.List list;
 private boolean frozen;
 public void MutableThreadContextStack();
 public void MutableThreadContextStack(java.util.List);
 private void MutableThreadContextStack(MutableThreadContextStack);
 private void checkInvariants();
 public String pop();
 public String peek();
 public void push(String);
 public int getDepth();
 public java.util.List asList();
 public void trim(int);
 public ThreadContextStack copy();
 public void clear();
 public int size();
 public boolean isEmpty();
 public boolean contains(Object);
 public java.util.Iterator iterator();
 public Object[] toArray();
 public Object[] toArray(Object[]);
 public boolean add(String);
 public boolean remove(Object);
 public boolean containsAll(java.util.Collection);
 public boolean addAll(java.util.Collection);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public String toString();
 public void formatTo(StringBuilder);
 public int hashCode();
 public boolean equals(Object);
 public org.apache.logging.log4j.ThreadContext$ContextStack getImmutableStackOrNull();
 public void freeze();
 public boolean isFrozen();
}

org/apache/logging/log4j/spi/Provider.class

package org.apache.logging.log4j.spi;
public synchronized class Provider {
 public static final String FACTORY_PRIORITY = FactoryPriority;
 public static final String THREAD_CONTEXT_MAP = ThreadContextMap;
 public static final String LOGGER_CONTEXT_FACTORY = LoggerContextFactory;
 private static final Integer DEFAULT_PRIORITY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final Integer priority;
 private final String className;
 private final Class loggerContextFactoryClass;
 private final String threadContextMap;
 private final Class threadContextMapClass;
 private final String versions;
 private final java.net.URL url;
 private final ref.WeakReference classLoader;
 public void Provider(java.util.Properties, java.net.URL, ClassLoader);
 public void Provider(Integer, String, Class);
 public void Provider(Integer, String, Class, Class);
 public String getVersions();
 public Integer getPriority();
 public String getClassName();
 public Class loadLoggerContextFactory();
 public String getThreadContextMap();
 public Class loadThreadContextMap();
 public java.net.URL getUrl();
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/spi/LoggerRegistry$WeakMapFactory.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry$WeakMapFactory implements LoggerRegistry$MapFactory {
 public void LoggerRegistry$WeakMapFactory();
 public java.util.Map createInnerMap();
 public java.util.Map createOuterMap();
 public void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/ThreadContextMap2.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextMap2 extends ThreadContextMap {
 public abstract void putAll(java.util.Map);
 public abstract org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
}

org/apache/logging/log4j/spi/Terminable.class

package org.apache.logging.log4j.spi;
public abstract interface Terminable {
 public abstract void terminate();
}

org/apache/logging/log4j/spi/LoggerContext.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContext {
 public abstract Object getExternalContext();
 public Object getObject(String);
 public Object putObject(String, Object);
 public Object putObjectIfAbsent(String, Object);
 public Object removeObject(String);
 public boolean removeObject(String, Object);
 public abstract ExtendedLogger getLogger(String);
 public ExtendedLogger getLogger(Class);
 public abstract ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public ExtendedLogger getLogger(Class, org.apache.logging.log4j.message.MessageFactory);
 public abstract boolean hasLogger(String);
 public abstract boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public abstract boolean hasLogger(String, Class);
}

org/apache/logging/log4j/spi/GarbageFreeSortedArrayThreadContextMap$1.class

package org.apache.logging.log4j.spi;
synchronized class GarbageFreeSortedArrayThreadContextMap$1 extends InheritableThreadLocal {
 void GarbageFreeSortedArrayThreadContextMap$1(GarbageFreeSortedArrayThreadContextMap);
 protected org.apache.logging.log4j.util.StringMap childValue(org.apache.logging.log4j.util.StringMap);
}

org/apache/logging/log4j/spi/ThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextMap {
 public abstract void clear();
 public abstract boolean containsKey(String);
 public abstract String get(String);
 public abstract java.util.Map getCopy();
 public abstract java.util.Map getImmutableMapOrNull();
 public abstract boolean isEmpty();
 public abstract void put(String, String);
 public abstract void remove(String);
}

org/apache/logging/log4j/spi/ThreadContextMapFactory.class

package org.apache.logging.log4j.spi;
public final synchronized class ThreadContextMapFactory {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String THREAD_CONTEXT_KEY = log4j2.threadContextMap;
 private static final String GC_FREE_THREAD_CONTEXT_KEY = log4j2.garbagefree.threadContextMap;
 private static boolean GcFreeThreadContextKey;
 private static String ThreadContextMapName;
 public static void init();
 private static void initPrivate();
 private void ThreadContextMapFactory();
 public static ThreadContextMap createThreadContextMap();
 private static ThreadContextMap createDefaultThreadContextMap();
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/Base64Util.class

package org.apache.logging.log4j.util;
public final synchronized class Base64Util {
 private static final java.util.Base64$Encoder encoder;
 private void Base64Util();
 public static String encode(String);
 static void <clinit>();
}

META-INF/NOTICE

Apache Log4j API
Copyright 1999-1969 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil.class

package org.apache.logging.log4j.util;
final synchronized class PrivateSecurityManagerStackTraceUtil {
 private static final PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager SECURITY_MANAGER;
 private void PrivateSecurityManagerStackTraceUtil();
 static boolean isEnabled();
 static java.util.Stack getCurrentStackTrace();
 static void <clinit>();
}

org/apache/logging/log4j/util/Base64Util.class

package org.apache.logging.log4j.util;
public final synchronized class Base64Util {
 private static reflect.Method encodeMethod;
 private static Object encoder;
 private void Base64Util();
 public static String encode(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/LoaderUtil$UrlResource.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$UrlResource {
 private final ClassLoader classLoader;
 private final java.net.URL url;
 void LoaderUtil$UrlResource(ClassLoader, java.net.URL);
 public ClassLoader getClassLoader();
 public java.net.URL getUrl();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/util/Unbox.class

package org.apache.logging.log4j.util;
public synchronized class Unbox {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int BITS_PER_INT = 32;
 private static final int RINGBUFFER_MIN_SIZE = 32;
 private static final int RINGBUFFER_SIZE;
 private static final int MASK;
 private static ThreadLocal threadLocalState;
 private static Unbox$WebSafeState webSafeState;
 private void Unbox();
 private static int calculateRingBufferSize(String);
 private static int ceilingNextPowerOfTwo(int);
 public static StringBuilder box(float);
 public static StringBuilder box(double);
 public static StringBuilder box(short);
 public static StringBuilder box(int);
 public static StringBuilder box(char);
 public static StringBuilder box(long);
 public static StringBuilder box(byte);
 public static StringBuilder box(boolean);
 private static Unbox$State getState();
 private static StringBuilder getSB();
 static int getRingbufferSize();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertiesUtil$Environment.class

package org.apache.logging.log4j.util;
synchronized class PropertiesUtil$Environment {
 private final java.util.Set sources;
 private final java.util.Map literal;
 private final java.util.Map normalized;
 private final java.util.Map tokenized;
 private void PropertiesUtil$Environment(PropertySource);
 private synchronized void reload();
 private static boolean hasSystemProperty(String);
 private String get(String);
 private boolean containsKey(String);
}

org/apache/logging/log4j/util/StringMap.class

package org.apache.logging.log4j.util;
public abstract interface StringMap extends ReadOnlyStringMap {
 public abstract void clear();
 public abstract boolean equals(Object);
 public abstract void freeze();
 public abstract int hashCode();
 public abstract boolean isFrozen();
 public abstract void putAll(ReadOnlyStringMap);
 public abstract void putValue(String, Object);
 public abstract void remove(String);
}

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil$1.class

package org.apache.logging.log4j.util;
synchronized class PrivateSecurityManagerStackTraceUtil$1 {
}

org/apache/logging/log4j/util/Chars.class

package org.apache.logging.log4j.util;
public final synchronized class Chars {
 public static final char CR = 13;
 public static final char DQUOTE = 34;
 public static final char EQ = 61;
 public static final char LF = 10;
 public static final char NUL = 0;
 public static final char QUOTE = 39;
 public static final char SPACE = 32;
 public static final char TAB = 9;
 public static char getUpperCaseHex(int);
 public static char getLowerCaseHex(int);
 private static char getNumericalDigit(int);
 private static char getUpperCaseAlphaDigit(int);
 private static char getLowerCaseAlphaDigit(int);
 private void Chars();
}

org/apache/logging/log4j/util/EnglishEnums.class

package org.apache.logging.log4j.util;
public final synchronized class EnglishEnums {
 private void EnglishEnums();
 public static Enum valueOf(Class, String);
 public static Enum valueOf(Class, String, Enum);
}

org/apache/logging/log4j/util/StringBuilders.class

package org.apache.logging.log4j.util;
public final synchronized class StringBuilders {
 private void StringBuilders();
 public static StringBuilder appendDqValue(StringBuilder, Object);
 public static StringBuilder appendKeyDqValue(StringBuilder, java.util.Map$Entry);
 public static StringBuilder appendKeyDqValue(StringBuilder, String, Object);
 public static void appendValue(StringBuilder, Object);
 public static boolean appendSpecificTypes(StringBuilder, Object);
 public static boolean equals(CharSequence, int, int, CharSequence, int, int);
 public static boolean equalsIgnoreCase(CharSequence, int, int, CharSequence, int, int);
 public static void trimToMaxSize(StringBuilder, int);
 public static void escapeJson(StringBuilder, int);
 private static int escapeAndDecrement(StringBuilder, int, char);
 public static void escapeXml(StringBuilder, int);
}

org/apache/logging/log4j/util/Supplier.class

package org.apache.logging.log4j.util;
public abstract interface Supplier {
 public abstract Object get();
}

org/apache/logging/log4j/MarkerManager.class

package org.apache.logging.log4j;
public final synchronized class MarkerManager {
 private static final java.util.concurrent.ConcurrentMap MARKERS;
 private void MarkerManager();
 public static void clear();
 public static boolean exists(String);
 public static Marker getMarker(String);
 public static Marker getMarker(String, String);
 public static Marker getMarker(String, Marker);
 private static void requireNonNull(Object, String);
 static void <clinit>();
}

org/apache/logging/log4j/ThreadContext$1.class

package org.apache.logging.log4j;
synchronized class ThreadContext$1 {
}

org/apache/logging/log4j/spi/ExtendedLogger.class

package org.apache.logging.log4j.spi;
public abstract interface ExtendedLogger extends org.apache.logging.log4j.Logger {
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public abstract transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public abstract transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public abstract transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
}

org/apache/logging/log4j/ThreadContext$ContextStack.class

package org.apache.logging.log4j;
public abstract interface ThreadContext$ContextStack extends java.io.Serializable, java.util.Collection {
 public abstract String pop();
 public abstract String peek();
 public abstract void push(String);
 public abstract int getDepth();
 public abstract java.util.List asList();
 public abstract void trim(int);
 public abstract ThreadContext$ContextStack copy();
 public abstract ThreadContext$ContextStack getImmutableStackOrNull();
}

org/apache/logging/log4j/CloseableThreadContext$1.class

package org.apache.logging.log4j;
synchronized class CloseableThreadContext$1 {
}

META-INF/LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

org/apache/logging/log4j/util/Strings.class

package org.apache.logging.log4j.util;
public final synchronized class Strings {
 private static final ThreadLocal tempStr;
 public static final String EMPTY = ;
 public static final String[] EMPTY_ARRAY;
 public static final String LINE_SEPARATOR;
 public static String dquote(String);
 public static boolean isBlank(String);
 public static boolean isEmpty(CharSequence);
 public static boolean isNotBlank(String);
 public static boolean isNotEmpty(CharSequence);
 public static String join(Iterable, char);
 public static String join(java.util.Iterator, char);
 public static String left(String, int);
 public static String quote(String);
 public static String trimToNull(String);
 private void Strings();
 public static String toRootUpperCase(String);
 public static String concat(String, String);
 public static String repeat(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertiesUtil$1.class

package org.apache.logging.log4j.util;
synchronized class PropertiesUtil$1 {
}

org/apache/logging/log4j/util/IndexedStringMap.class

package org.apache.logging.log4j.util;
public abstract interface IndexedStringMap extends IndexedReadOnlyStringMap, StringMap {
}

org/apache/logging/log4j/status/StatusConsoleListener.class

package org.apache.logging.log4j.status;
public synchronized class StatusConsoleListener implements StatusListener {
 private org.apache.logging.log4j.Level level;
 private String[] filters;
 private final java.io.PrintStream stream;
 public void StatusConsoleListener(org.apache.logging.log4j.Level);
 public void StatusConsoleListener(org.apache.logging.log4j.Level, java.io.PrintStream);
 public void setLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.Level getStatusLevel();
 public void log(StatusData);
 public transient void setFilters(String[]);
 private boolean filtered(StatusData);
 public void close() throws java.io.IOException;
}

org/apache/logging/log4j/spi/CleanableThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface CleanableThreadContextMap extends ThreadContextMap2 {
 public abstract void removeAll(Iterable);
}

org/apache/logging/log4j/spi/AbstractLogger$LocalLogBuilder.class

package org.apache.logging.log4j.spi;
synchronized class AbstractLogger$LocalLogBuilder extends ThreadLocal {
 private AbstractLogger logger;
 void AbstractLogger$LocalLogBuilder(AbstractLogger, AbstractLogger);
 protected org.apache.logging.log4j.internal.DefaultLogBuilder initialValue();
}

org/apache/logging/log4j/spi/CopyOnWriteSortedArrayThreadContextMap.class

package org.apache.logging.log4j.spi;
synchronized class CopyOnWriteSortedArrayThreadContextMap implements ReadOnlyThreadContextMap, ObjectThreadContextMap, CopyOnWrite {
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 protected static final int DEFAULT_INITIAL_CAPACITY = 16;
 protected static final String PROPERTY_NAME_INITIAL_CAPACITY = log4j2.ThreadContext.initial.capacity;
 private static final org.apache.logging.log4j.util.StringMap EMPTY_CONTEXT_DATA;
 private static volatile int initialCapacity;
 private static volatile boolean inheritableMap;
 private final ThreadLocal localMap;
 static void init();
 public void CopyOnWriteSortedArrayThreadContextMap();
 private ThreadLocal createThreadLocalMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public void put(String, String);
 public void putValue(String, Object);
 public void putAll(java.util.Map);
 public void putAllValues(java.util.Map);
 public String get(String);
 public Object getValue(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public boolean containsKey(String);
 public java.util.Map getCopy();
 public org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/LogBuilder.class

package org.apache.logging.log4j;
public abstract interface LogBuilder {
 public static final LogBuilder NOOP;
 public LogBuilder withMarker(Marker);
 public LogBuilder withThrowable(Throwable);
 public LogBuilder withLocation();
 public LogBuilder withLocation(StackTraceElement);
 public void log(CharSequence);
 public void log(String);
 public transient void log(String, Object[]);
 public transient void log(String, util.Supplier[]);
 public void log(message.Message);
 public void log(util.Supplier);
 public void log(Object);
 public void log(String, Object);
 public void log(String, Object, Object);
 public void log(String, Object, Object, Object);
 public void log(String, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log();
 static void <clinit>();
}

org/apache/logging/log4j/LogManager.class

package org.apache.logging.log4j;
public synchronized class LogManager {
 public static final String FACTORY_PROPERTY_NAME = log4j2.loggerContextFactory;
 public static final String ROOT_LOGGER_NAME = ;
 private static final Logger LOGGER;
 private static final String FQCN;
 private static volatile spi.LoggerContextFactory factory;
 protected void LogManager();
 public static boolean exists(String);
 public static spi.LoggerContext getContext();
 public static spi.LoggerContext getContext(boolean);
 public static spi.LoggerContext getContext(ClassLoader, boolean);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object);
 public static spi.LoggerContext getContext(ClassLoader, boolean, java.net.URI);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object, java.net.URI);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object, java.net.URI, String);
 protected static spi.LoggerContext getContext(String, boolean);
 protected static spi.LoggerContext getContext(String, ClassLoader, boolean);
 protected static spi.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI, String);
 public static void shutdown();
 public static void shutdown(boolean);
 public static void shutdown(boolean, boolean);
 public static void shutdown(spi.LoggerContext);
 public static spi.LoggerContextFactory getFactory();
 public static void setFactory(spi.LoggerContextFactory);
 public static Logger getFormatterLogger();
 public static Logger getFormatterLogger(Class);
 public static Logger getFormatterLogger(Object);
 public static Logger getFormatterLogger(String);
 private static Class callerClass(Class);
 public static Logger getLogger();
 public static Logger getLogger(Class);
 public static Logger getLogger(Class, message.MessageFactory);
 public static Logger getLogger(message.MessageFactory);
 public static Logger getLogger(Object);
 public static Logger getLogger(Object, message.MessageFactory);
 public static Logger getLogger(String);
 public static Logger getLogger(String, message.MessageFactory);
 protected static Logger getLogger(String, String);
 public static Logger getRootLogger();
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/ProcessIdUtil.class

package org.apache.logging.log4j.util;
public synchronized class ProcessIdUtil {
 public static final String DEFAULT_PROCESSID = -;
 public void ProcessIdUtil();
 public static String getProcessId();
}

META-INF/versions/9/org/apache/logging/log4j/util/StackLocator.class

package org.apache.logging.log4j.util;
public synchronized class StackLocator {
 private static final StackWalker walker;
 private static final StackWalker stackWalker;
 private static final StackLocator INSTANCE;
 public static StackLocator getInstance();
 private void StackLocator();
 public Class getCallerClass(Class, java.util.function.Predicate);
 public Class getCallerClass(String);
 public Class getCallerClass(String, String);
 public Class getCallerClass(Class);
 public Class getCallerClass(int);
 public java.util.Stack getCurrentStackTrace();
 public StackTraceElement calcLocation(String);
 public StackTraceElement getStackTraceElement(int);
 static void <clinit>();
}

org/apache/logging/log4j/util/Constants.class

package org.apache.logging.log4j.util;
public final synchronized class Constants {
 public static final boolean IS_WEB_APP;
 public static final boolean ENABLE_THREADLOCALS;
 public static final int JAVA_MAJOR_VERSION;
 public static final int MAX_REUSABLE_MESSAGE_SIZE;
 public static final String LOG4J2_DEBUG = log4j2.debug;
 public static final Object[] EMPTY_OBJECT_ARRAY;
 public static final byte[] EMPTY_BYTE_ARRAY;
 private static int size(String, int);
 private static boolean isClassAvailable(String);
 private void Constants();
 private static int getMajorVersion();
 static int getMajorVersion(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/StringBuilderFormattable.class

package org.apache.logging.log4j.util;
public abstract interface StringBuilderFormattable {
 public abstract void formatTo(StringBuilder);
}

org/apache/logging/log4j/util/PropertiesUtil.class

package org.apache.logging.log4j.util;
public final synchronized class PropertiesUtil {
 private static final String LOG4J_PROPERTIES_FILE_NAME = log4j2.component.properties;
 private static final String LOG4J_SYSTEM_PROPERTIES_FILE_NAME = log4j2.system.properties;
 private static final String SYSTEM = system:;
 private static final PropertiesUtil LOG4J_PROPERTIES;
 private final PropertiesUtil$Environment environment;
 public void PropertiesUtil(java.util.Properties);
 public void PropertiesUtil(String);
 static java.util.Properties loadClose(java.io.InputStream, Object);
 public static PropertiesUtil getProperties();
 public boolean hasProperty(String);
 public boolean getBooleanProperty(String);
 public boolean getBooleanProperty(String, boolean);
 public boolean getBooleanProperty(String, boolean, boolean);
 public Boolean getBooleanProperty(String[], String, Supplier);
 public java.nio.charset.Charset getCharsetProperty(String);
 public java.nio.charset.Charset getCharsetProperty(String, java.nio.charset.Charset);
 public double getDoubleProperty(String, double);
 public int getIntegerProperty(String, int);
 public Integer getIntegerProperty(String[], String, Supplier);
 public long getLongProperty(String, long);
 public Long getLongProperty(String[], String, Supplier);
 public java.time.Duration getDurationProperty(String, java.time.Duration);
 public java.time.Duration getDurationProperty(String[], String, Supplier);
 public String getStringProperty(String[], String, Supplier);
 public String getStringProperty(String);
 public String getStringProperty(String, String);
 public static java.util.Properties getSystemProperties();
 public void reload();
 public static java.util.Properties extractSubset(java.util.Properties, String);
 static java.util.ResourceBundle getCharsetsResourceBundle();
 public static java.util.Map partitionOnCommonPrefixes(java.util.Properties);
 public boolean isOsWindows();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertySource$Util.class

package org.apache.logging.log4j.util;
public final synchronized class PropertySource$Util {
 private static final String PREFIXES = (?i:^log4j2?[-._/]?|^org\.apache\.logging\.log4j\.)?;
 private static final java.util.regex.Pattern PROPERTY_TOKENIZER;
 private static final java.util.Map CACHE;
 public static java.util.List tokenize(CharSequence);
 public static CharSequence joinAsCamelCase(Iterable);
 private void PropertySource$Util();
 static void <clinit>();
}

org/apache/logging/log4j/util/Unbox$WebSafeState.class

package org.apache.logging.log4j.util;
synchronized class Unbox$WebSafeState {
 private final ThreadLocal ringBuffer;
 private final ThreadLocal current;
 private void Unbox$WebSafeState();
 public StringBuilder getStringBuilder();
 public boolean isBoxedPrimitive(StringBuilder);
}

org/apache/logging/log4j/message/MultiformatMessage.class

package org.apache.logging.log4j.message;
public abstract interface MultiformatMessage extends Message {
 public abstract String getFormattedMessage(String[]);
 public abstract String[] getFormats();
}

org/apache/logging/log4j/message/ThreadDumpMessage$BasicThreadInfoFactory.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$BasicThreadInfoFactory implements ThreadDumpMessage$ThreadInfoFactory {
 private void ThreadDumpMessage$BasicThreadInfoFactory();
 public java.util.Map createThreadInfo();
}

org/apache/logging/log4j/message/MapMessage$1.class

package org.apache.logging.log4j.message;
synchronized class MapMessage$1 {
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class ParameterizedMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final int DEFAULT_STRING_BUILDER_SIZE = 255;
 public static final String RECURSION_PREFIX = [...;
 public static final String RECURSION_SUFFIX = ...];
 public static final String ERROR_PREFIX = [!!!;
 public static final String ERROR_SEPARATOR = =>;
 public static final String ERROR_MSG_SEPARATOR = :;
 public static final String ERROR_SUFFIX = !!!];
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private static ThreadLocal threadLocalStringBuilder;
 private String messagePattern;
 private transient Object[] argArray;
 private String formattedMessage;
 private transient Throwable throwable;
 private int[] indices;
 private int usedCount;
 public void ParameterizedMessage(String, String[], Throwable);
 public void ParameterizedMessage(String, Object[], Throwable);
 public transient void ParameterizedMessage(String, Object[]);
 public void ParameterizedMessage(String, Object);
 public void ParameterizedMessage(String, Object, Object);
 private void init(String);
 private void initThrowable(Object[], int);
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public String getFormattedMessage();
 private static StringBuilder getThreadLocalStringBuilder();
 public void formatTo(StringBuilder);
 public static String format(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public static int countArgumentPlaceholders(String);
 public static String deepToString(Object);
 public static String identityToString(Object);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/status/StatusLogger$BoundedQueue.class

package org.apache.logging.log4j.status;
synchronized class StatusLogger$BoundedQueue extends java.util.concurrent.ConcurrentLinkedQueue {
 private static final long serialVersionUID = -3945953719763255337;
 private final int size;
 void StatusLogger$BoundedQueue(StatusLogger, int);
 public boolean add(Object);
}

org/apache/logging/log4j/simple/SimpleLoggerContextFactory.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLoggerContextFactory implements org.apache.logging.log4j.spi.LoggerContextFactory {
 private static org.apache.logging.log4j.spi.LoggerContext context;
 public void SimpleLoggerContextFactory();
 public org.apache.logging.log4j.spi.LoggerContext getContext(String, ClassLoader, Object, boolean);
 public org.apache.logging.log4j.spi.LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public void removeContext(org.apache.logging.log4j.spi.LoggerContext);
 public boolean isClassLoaderDependent();
 static void <clinit>();
}

org/apache/logging/log4j/spi/ThreadContextStack.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextStack extends org.apache.logging.log4j.ThreadContext$ContextStack {
}

org/apache/logging/log4j/spi/LoggerRegistry$MapFactory.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerRegistry$MapFactory {
 public abstract java.util.Map createInnerMap();
 public abstract java.util.Map createOuterMap();
 public abstract void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/LoggerAdapter.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerAdapter extends java.io.Closeable {
 public abstract Object getLogger(String);
}

org/apache/logging/log4j/Marker.class

package org.apache.logging.log4j;
public abstract interface Marker extends java.io.Serializable {
 public abstract transient Marker addParents(Marker[]);
 public abstract boolean equals(Object);
 public abstract String getName();
 public abstract Marker[] getParents();
 public abstract int hashCode();
 public abstract boolean hasParents();
 public abstract boolean isInstanceOf(Marker);
 public abstract boolean isInstanceOf(String);
 public abstract boolean remove(Marker);
 public abstract transient Marker setParents(Marker[]);
}

org/apache/logging/log4j/Level.class

package org.apache.logging.log4j;
public final synchronized class Level implements Comparable, java.io.Serializable {
 public static final Level OFF;
 public static final Level FATAL;
 public static final Level ERROR;
 public static final Level WARN;
 public static final Level INFO;
 public static final Level DEBUG;
 public static final Level TRACE;
 public static final Level ALL;
 public static final String CATEGORY = Level;
 private static final java.util.concurrent.ConcurrentMap LEVELS;
 private static final long serialVersionUID = 1581082;
 private final String name;
 private final int intLevel;
 private final spi.StandardLevel standardLevel;
 private void Level(String, int);
 public int intLevel();
 public spi.StandardLevel getStandardLevel();
 public boolean isInRange(Level, Level);
 public boolean isLessSpecificThan(Level);
 public boolean isMoreSpecificThan(Level);
 public Level clone() throws CloneNotSupportedException;
 public int compareTo(Level);
 public boolean equals(Object);
 public Class getDeclaringClass();
 public int hashCode();
 public String name();
 public String toString();
 public static Level forName(String, int);
 public static Level getLevel(String);
 public static Level toLevel(String);
 public static Level toLevel(String, Level);
 private static String toUpperCase(String);
 public static Level[] values();
 public static Level valueOf(String);
 public static Enum valueOf(Class, String);
 protected Object readResolve();
 static void <clinit>();
}

META-INF/versions/9/module-info.class

class module-info {
}

META-INF/maven/org.apache.logging.log4j/log4j-api/pom.xml

 4.0.0

 org.apache.logging.log4j
 log4j
 2.17.1
 ../

 log4j-api
 jar
 Apache Log4j API
 The Apache Log4j API

 ${basedir}/..
 API Documentation
 /api
 true

 org.apache.felix
 org.apache.felix.framework
 test

 org.osgi
 org.osgi.core
 provided

 org.junit.vintage
 junit-vintage-engine

 org.junit.jupiter
 junit-jupiter-migrationsupport

 org.junit.jupiter
 junit-jupiter-params

 org.junit.jupiter
 junit-jupiter-engine

 org.assertj
 assertj-core

 org.eclipse.tycho
 org.eclipse.osgi
 test

 org.apache.maven
 maven-core
 test

 org.apache.commons
 commons-lang3
 test

 com.fasterxml.jackson.core
 jackson-core
 test

 com.fasterxml.jackson.core
 jackson-databind
 test

 org.apache.maven.plugins
 maven-dependency-plugin
 3.0.2

 unpack-classes
 prepare-package

 unpack

 org.apache.logging.log4j
 log4j-api-java9
 ${project.version}
 zip
 false

 **/*.class
 **/*.java
 ${project.build.directory}
 false
 true

 org.codehaus.mojo
 build-helper-maven-plugin
 1.7

 add-source
 generate-sources

 add-source

 ${project.build.directory}/log4j-api-java9

 org.apache.maven.plugins
 maven-compiler-plugin

 default-compile

 1.8
 1.8

 org.apache.maven.plugins
 maven-surefire-plugin

 junit.jupiter.execution.parallel.enabled = true
 junit.jupiter.execution.parallel.mode.default = concurrent

 true
 true
 performance,smoke

 org.apache.maven.plugins
 maven-jar-plugin

 default-jar

 jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}
 true

 default

 test-jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}

 org.apache.maven.plugins
 maven-remote-resources-plugin

 process

 false

 org.apache.felix
 maven-bundle-plugin

 org.apache.logging.log4j.*

 sun.reflect;resolution:=optional,
 *

 org.apache.logging.log4j.util.Activator
 "Classes found in the wrong directory";is:=warning

 org.apache.maven.plugins
 maven-deploy-plugin
 ${deploy.plugin.version}

 org.apache.maven.plugins
 maven-changes-plugin
 ${changes.plugin.version}

 changes-report

 %URL%/show_bug.cgi?id=%ISSUE%
 true

 org.apache.maven.plugins
 maven-checkstyle-plugin
 ${checkstyle.plugin.version}

 ${log4jParentDir}/checkstyle.xml
 ${log4jParentDir}/checkstyle-suppressions.xml
 false
 basedir=${basedir}
 licensedir=${log4jParentDir}/checkstyle-header.txt

 org.apache.maven.plugins
 maven-javadoc-plugin
 ${javadoc.plugin.version}

 <p align="center">Copyright © {inceptionYear}-{currentYear} {organizationName}. All Rights Reserved.

 Apache Logging, Apache Log4j, Log4j, Apache, the Apache feather logo, the Apache Logging project logo,
 and the Apache Log4j logo are trademarks of The Apache Software Foundation.</p>

 none
 false
 true

 http://www.osgi.org/javadoc/r4v43/core/

 non-aggregate

 javadoc

 com.github.spotbugs
 spotbugs-maven-plugin

 org.apache.maven.plugins
 maven-jxr-plugin
 ${jxr.plugin.version}

 non-aggregate

 jxr

 aggregate

 aggregate

 org.apache.maven.plugins
 maven-pmd-plugin
 ${pmd.plugin.version}

 ${maven.compiler.target}

org/apache/logging/log4j/util/PropertiesPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class PropertiesPropertySource implements PropertySource {
 private static final String PREFIX = log4j2.;
 private final java.util.Properties properties;
 public void PropertiesPropertySource(java.util.Properties);
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/LoaderUtil$1.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$1 {
}

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager.class

package org.apache.logging.log4j.util;
final synchronized class PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager extends SecurityManager {
 private void PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager();
 protected Class[] getClassContext();
}

org/apache/logging/log4j/util/Timer.class

package org.apache.logging.log4j.util;
public synchronized class Timer implements java.io.Serializable, StringBuilderFormattable {
 private static final long serialVersionUID = 9175191792439630013;
 private final String name;
 private Timer$Status status;
 private long elapsedTime;
 private final int iterations;
 private static long NANO_PER_SECOND;
 private static long NANO_PER_MINUTE;
 private static long NANO_PER_HOUR;
 private ThreadLocal startTime;
 public void Timer(String);
 public void Timer(String, int);
 public synchronized void start();
 public synchronized void startOrResume();
 public synchronized String stop();
 public synchronized void pause();
 public synchronized void resume();
 public String getName();
 public long getElapsedTime();
 public long getElapsedNanoTime();
 public Timer$Status getStatus();
 public String toString();
 public void formatTo(StringBuilder);
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertySource.class

package org.apache.logging.log4j.util;
public abstract interface PropertySource {
 public abstract int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
 public String getProperty(String);
 public boolean containsProperty(String);
}

org/apache/logging/log4j/message/FormattedMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class FormattedMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 1;
 public void FormattedMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/LocalizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class LocalizedMessage implements Message, LoggerNameAwareMessage {
 private static final long serialVersionUID = 3893703791567290742;
 private String baseName;
 private transient java.util.ResourceBundle resourceBundle;
 private final java.util.Locale locale;
 private transient org.apache.logging.log4j.status.StatusLogger logger;
 private String loggerName;
 private String key;
 private String[] stringArgs;
 private transient Object[] argArray;
 private String formattedMessage;
 private transient Throwable throwable;
 public void LocalizedMessage(String, Object[]);
 public void LocalizedMessage(String, String, Object[]);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object[]);
 public void LocalizedMessage(String, java.util.Locale, String, Object[]);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object[]);
 public void LocalizedMessage(java.util.Locale, String, Object[]);
 public void LocalizedMessage(String, Object);
 public void LocalizedMessage(String, String, Object);
 public void LocalizedMessage(java.util.ResourceBundle, String);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object);
 public void LocalizedMessage(String, java.util.Locale, String, Object);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object);
 public void LocalizedMessage(java.util.Locale, String, Object);
 public void LocalizedMessage(String, Object, Object);
 public void LocalizedMessage(String, String, Object, Object);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object, Object);
 public void LocalizedMessage(String, java.util.Locale, String, Object, Object);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object, Object);
 public void LocalizedMessage(java.util.Locale, String, Object, Object);
 public void setLoggerName(String);
 public String getLoggerName();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 protected java.util.ResourceBundle getResourceBundle(String, java.util.Locale, boolean);
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
}

org/apache/logging/log4j/util/PropertySource$Comparator.class

package org.apache.logging.log4j.util;
public synchronized class PropertySource$Comparator implements java.util.Comparator, java.io.Serializable {
 private static final long serialVersionUID = 1;
 public void PropertySource$Comparator();
 public int compare(PropertySource, PropertySource);
}

org/apache/logging/log4j/util/FilteredObjectInputStream.class

package org.apache.logging.log4j.util;
public synchronized class FilteredObjectInputStream extends java.io.ObjectInputStream {
 private static final java.util.Set REQUIRED_JAVA_CLASSES;
 private static final java.util.Set REQUIRED_JAVA_PACKAGES;
 private final java.util.Collection allowedExtraClasses;
 public void FilteredObjectInputStream() throws java.io.IOException, SecurityException;
 public void FilteredObjectInputStream(java.io.InputStream) throws java.io.IOException;
 public void FilteredObjectInputStream(java.util.Collection) throws java.io.IOException, SecurityException;
 public void FilteredObjectInputStream(java.io.InputStream, java.util.Collection) throws java.io.IOException;
 public java.util.Collection getAllowedClasses();
 protected Class resolveClass(java.io.ObjectStreamClass) throws java.io.IOException, ClassNotFoundException;
 private static boolean isAllowedByDefault(String);
 private static boolean isRequiredPackage(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/Timer$1.class

package org.apache.logging.log4j.util;
synchronized class Timer$1 extends ThreadLocal {
 void Timer$1(Timer);
 protected Long initialValue();
}

org/apache/logging/log4j/util/ProviderUtil.class

package org.apache.logging.log4j.util;
public final synchronized class ProviderUtil {
 protected static final String PROVIDER_RESOURCE = META-INF/log4j-provider.properties;
 protected static final java.util.Collection PROVIDERS;
 protected static final java.util.concurrent.locks.Lock STARTUP_LOCK;
 private static final String API_VERSION = Log4jAPIVersion;
 private static final String[] COMPATIBLE_API_VERSIONS;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile ProviderUtil instance;
 private void ProviderUtil();
 protected static void addProvider(org.apache.logging.log4j.spi.Provider);
 protected static void loadProvider(java.net.URL, ClassLoader);
 protected static void loadProviders(ClassLoader);
 protected static void loadProviders(java.util.Enumeration, ClassLoader);
 public static Iterable getProviders();
 public static boolean hasProviders();
 protected static void lazyInit();
 public static ClassLoader findClassLoader();
 private static boolean validVersion(String);
 static void <clinit>();
}

org/apache/logging/log4j/message/MapMessageJsonFormatter.class

package org.apache.logging.log4j.message;
final synchronized enum MapMessageJsonFormatter {
 public static final int MAX_DEPTH;
 private static final char DQUOTE = 34;
 private static final char RBRACE = 93;
 private static final char LBRACE = 91;
 private static final char COMMA = 44;
 private static final char RCURLY = 125;
 private static final char LCURLY = 123;
 private static final char COLON = 58;
 public static MapMessageJsonFormatter[] values();
 public static MapMessageJsonFormatter valueOf(String);
 private void MapMessageJsonFormatter(String, int);
 private static int readMaxDepth();
 static void format(StringBuilder, Object);
 private static void format(StringBuilder, Object, int);
 private static void formatIndexedStringMap(StringBuilder, org.apache.logging.log4j.util.IndexedStringMap, int);
 private static void formatMap(StringBuilder, java.util.Map, int);
 private static void formatList(StringBuilder, java.util.List, int);
 private static void formatCollection(StringBuilder, java.util.Collection, int);
 private static void formatNumber(StringBuilder, Number);
 private static void formatBoolean(StringBuilder, boolean);
 private static void formatFormattable(StringBuilder, org.apache.logging.log4j.util.StringBuilderFormattable);
 private static void formatCharArray(StringBuilder, char[]);
 private static void formatBooleanArray(StringBuilder, boolean[]);
 private static void formatByteArray(StringBuilder, byte[]);
 private static void formatShortArray(StringBuilder, short[]);
 private static void formatIntArray(StringBuilder, int[]);
 private static void formatLongArray(StringBuilder, long[]);
 private static void formatFloatArray(StringBuilder, float[]);
 private static void formatDoubleArray(StringBuilder, double[]);
 private static void formatObjectArray(StringBuilder, Object[], int);
 private static void formatString(StringBuilder, Object);
 static void <clinit>();
}

org/apache/logging/log4j/status/StatusListener.class

package org.apache.logging.log4j.status;
public abstract interface StatusListener extends java.io.Closeable, java.util.EventListener {
 public abstract void log(StatusData);
 public abstract org.apache.logging.log4j.Level getStatusLevel();
}

org/apache/logging/log4j/simple/SimpleLoggerContext.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLoggerContext implements org.apache.logging.log4j.spi.LoggerContext {
 private static final String SYSTEM_OUT = system.out;
 private static final String SYSTEM_ERR = system.err;
 protected static final String DEFAULT_DATE_TIME_FORMAT = yyyy/MM/dd HH:mm:ss:SSS zzz;
 protected static final String SYSTEM_PREFIX = org.apache.logging.log4j.simplelog.;
 private final org.apache.logging.log4j.util.PropertiesUtil props;
 private final boolean showLogName;
 private final boolean showShortName;
 private final boolean showDateTime;
 private final boolean showContextMap;
 private final String dateTimeFormat;
 private final org.apache.logging.log4j.Level defaultLevel;
 private final java.io.PrintStream stream;
 private final org.apache.logging.log4j.spi.LoggerRegistry loggerRegistry;
 public void SimpleLoggerContext();
 public org.apache.logging.log4j.spi.ExtendedLogger getLogger(String);
 public org.apache.logging.log4j.spi.ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public Object getExternalContext();
}

org/apache/logging/log4j/spi/CopyOnWrite.class

package org.apache.logging.log4j.spi;
public abstract interface CopyOnWrite {
}

org/apache/logging/log4j/spi/ExtendedLoggerWrapper.class

package org.apache.logging.log4j.spi;
public synchronized class ExtendedLoggerWrapper extends AbstractLogger {
 private static final long serialVersionUID = 1;
 protected final ExtendedLogger logger;
 public void ExtendedLoggerWrapper(ExtendedLogger, String, org.apache.logging.log4j.message.MessageFactory);
 public org.apache.logging.log4j.Level getLevel();
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/spi/NoOpThreadContextMap.class

package org.apache.logging.log4j.spi;
public synchronized class NoOpThreadContextMap implements ThreadContextMap {
 public void NoOpThreadContextMap();
 public void clear();
 public boolean containsKey(String);
 public String get(String);
 public java.util.Map getCopy();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public void put(String, String);
 public void remove(String);
}

org/apache/logging/log4j/spi/DefaultThreadContextMap$1.class

package org.apache.logging.log4j.spi;
final synchronized class DefaultThreadContextMap$1 extends InheritableThreadLocal {
 void DefaultThreadContextMap$1(boolean);
 protected java.util.Map childValue(java.util.Map);
}

org/apache/logging/log4j/spi/GarbageFreeSortedArrayThreadContextMap.class

package org.apache.logging.log4j.spi;
synchronized class GarbageFreeSortedArrayThreadContextMap implements ReadOnlyThreadContextMap, ObjectThreadContextMap {
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 protected static final int DEFAULT_INITIAL_CAPACITY = 16;
 protected static final String PROPERTY_NAME_INITIAL_CAPACITY = log4j2.ThreadContext.initial.capacity;
 protected final ThreadLocal localMap;
 private static volatile int initialCapacity;
 private static volatile boolean inheritableMap;
 static void init();
 public void GarbageFreeSortedArrayThreadContextMap();
 private ThreadLocal createThreadLocalMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap(org.apache.logging.log4j.util.ReadOnlyStringMap);
 private org.apache.logging.log4j.util.StringMap getThreadLocalMap();
 public void put(String, String);
 public void putValue(String, Object);
 public void putAll(java.util.Map);
 public void putAllValues(java.util.Map);
 public String get(String);
 public Object getValue(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public boolean containsKey(String);
 public java.util.Map getCopy();
 public org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/spi/ObjectThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ObjectThreadContextMap extends CleanableThreadContextMap {
 public abstract Object getValue(String);
 public abstract void putValue(String, Object);
 public abstract void putAllValues(java.util.Map);
}

org/apache/logging/log4j/spi/AbstractLogger.class

package org.apache.logging.log4j.spi;
public abstract synchronized class AbstractLogger implements ExtendedLogger, LocationAwareLogger, java.io.Serializable {
 public static final org.apache.logging.log4j.Marker FLOW_MARKER;
 public static final org.apache.logging.log4j.Marker ENTRY_MARKER;
 public static final org.apache.logging.log4j.Marker EXIT_MARKER;
 public static final org.apache.logging.log4j.Marker EXCEPTION_MARKER;
 public static final org.apache.logging.log4j.Marker THROWING_MARKER;
 public static final org.apache.logging.log4j.Marker CATCHING_MARKER;
 public static final Class DEFAULT_MESSAGE_FACTORY_CLASS;
 public static final Class DEFAULT_FLOW_MESSAGE_FACTORY_CLASS;
 private static final long serialVersionUID = 2;
 private static final String FQCN;
 private static final String THROWING = Throwing;
 private static final String CATCHING = Catching;
 protected final String name;
 private final org.apache.logging.log4j.message.MessageFactory2 messageFactory;
 private final org.apache.logging.log4j.message.FlowMessageFactory flowMessageFactory;
 private static final ThreadLocal recursionDepthHolder;
 protected final transient ThreadLocal logBuilder;
 public void AbstractLogger();
 public void AbstractLogger(String);
 public void AbstractLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public static void checkMessageFactory(ExtendedLogger, org.apache.logging.log4j.message.MessageFactory);
 public void catching(org.apache.logging.log4j.Level, Throwable);
 protected void catching(String, org.apache.logging.log4j.Level, Throwable);
 public void catching(Throwable);
 protected org.apache.logging.log4j.message.Message catchingMsg(Throwable);
 private static Class createClassForProperty(String, Class, Class);
 private static Class createFlowClassForProperty(String, Class);
 private static org.apache.logging.log4j.message.MessageFactory2 createDefaultMessageFactory();
 private static org.apache.logging.log4j.message.MessageFactory2 narrow(org.apache.logging.log4j.message.MessageFactory);
 private static org.apache.logging.log4j.message.FlowMessageFactory createDefaultFlowMessageFactory();
 public void debug(org.apache.logging.log4j.Marker, CharSequence);
 public void debug(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void debug(org.apache.logging.log4j.Marker, Object);
 public void debug(org.apache.logging.log4j.Marker, Object, Throwable);
 public void debug(org.apache.logging.log4j.Marker, String);
 public transient void debug(org.apache.logging.log4j.Marker, String, Object[]);
 public void debug(org.apache.logging.log4j.Marker, String, Throwable);
 public void debug(org.apache.logging.log4j.message.Message);
 public void debug(org.apache.logging.log4j.message.Message, Throwable);
 public void debug(CharSequence);
 public void debug(CharSequence, Throwable);
 public void debug(Object);
 public void debug(Object, Throwable);
 public void debug(String);
 public transient void debug(String, Object[]);
 public void debug(String, Throwable);
 public void debug(org.apache.logging.log4j.util.Supplier);
 public void debug(org.apache.logging.log4j.util.Supplier, Throwable);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void debug(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void debug(String, org.apache.logging.log4j.util.Supplier[]);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void debug(org.apache.logging.log4j.util.MessageSupplier);
 public void debug(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void debug(org.apache.logging.log4j.Marker, String, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object);
 public void debug(String, Object, Object);
 public void debug(String, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, org.apache.logging.log4j.util.Supplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, org.apache.logging.log4j.util.MessageSupplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, Object[]);
 protected org.apache.logging.log4j.message.EntryMessage enter(String, org.apache.logging.log4j.util.MessageSupplier);
 protected org.apache.logging.log4j.message.EntryMessage enter(String, org.apache.logging.log4j.message.Message);
 public void entry();
 public transient void entry(Object[]);
 protected transient void entry(String, Object[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, Object[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, org.apache.logging.log4j.util.MessageSupplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void error(org.apache.logging.log4j.Marker, CharSequence);
 public void error(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void error(org.apache.logging.log4j.Marker, Object);
 public void error(org.apache.logging.log4j.Marker, Object, Throwable);
 public void error(org.apache.logging.log4j.Marker, String);
 public transient void error(org.apache.logging.log4j.Marker, String, Object[]);
 public void error(org.apache.logging.log4j.Marker, String, Throwable);
 public void error(org.apache.logging.log4j.message.Message);
 public void error(org.apache.logging.log4j.message.Message, Throwable);
 public void error(CharSequence);
 public void error(CharSequence, Throwable);
 public void error(Object);
 public void error(Object, Throwable);
 public void error(String);
 public transient void error(String, Object[]);
 public void error(String, Throwable);
 public void error(org.apache.logging.log4j.util.Supplier);
 public void error(org.apache.logging.log4j.util.Supplier, Throwable);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void error(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void error(String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void error(org.apache.logging.log4j.util.MessageSupplier);
 public void error(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void error(org.apache.logging.log4j.Marker, String, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object);
 public void error(String, Object, Object);
 public void error(String, Object, Object, Object);
 public void error(String, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void exit();
 public Object exit(Object);
 protected Object exit(String, Object);
 protected Object exit(String, String, Object);
 protected org.apache.logging.log4j.message.Message exitMsg(String, Object);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, CharSequence);
 public void fatal(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, Object);
 public void fatal(org.apache.logging.log4j.Marker, Object, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, String);
 public transient void fatal(org.apache.logging.log4j.Marker, String, Object[]);
 public void fatal(org.apache.logging.log4j.Marker, String, Throwable);
 public void fatal(org.apache.logging.log4j.message.Message);
 public void fatal(org.apache.logging.log4j.message.Message, Throwable);
 public void fatal(CharSequence);
 public void fatal(CharSequence, Throwable);
 public void fatal(Object);
 public void fatal(Object, Throwable);
 public void fatal(String);
 public transient void fatal(String, Object[]);
 public void fatal(String, Throwable);
 public void fatal(org.apache.logging.log4j.util.Supplier);
 public void fatal(org.apache.logging.log4j.util.Supplier, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void fatal(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void fatal(String, org.apache.logging.log4j.util.Supplier[]);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void fatal(org.apache.logging.log4j.util.MessageSupplier);
 public void fatal(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, String, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object);
 public void fatal(String, Object, Object);
 public void fatal(String, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.MessageFactory getMessageFactory();
 public String getName();
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void info(org.apache.logging.log4j.Marker, CharSequence);
 public void info(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void info(org.apache.logging.log4j.Marker, Object);
 public void info(org.apache.logging.log4j.Marker, Object, Throwable);
 public void info(org.apache.logging.log4j.Marker, String);
 public transient void info(org.apache.logging.log4j.Marker, String, Object[]);
 public void info(org.apache.logging.log4j.Marker, String, Throwable);
 public void info(org.apache.logging.log4j.message.Message);
 public void info(org.apache.logging.log4j.message.Message, Throwable);
 public void info(CharSequence);
 public void info(CharSequence, Throwable);
 public void info(Object);
 public void info(Object, Throwable);
 public void info(String);
 public transient void info(String, Object[]);
 public void info(String, Throwable);
 public void info(org.apache.logging.log4j.util.Supplier);
 public void info(org.apache.logging.log4j.util.Supplier, Throwable);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void info(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void info(String, org.apache.logging.log4j.util.Supplier[]);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void info(org.apache.logging.log4j.util.MessageSupplier);
 public void info(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void info(org.apache.logging.log4j.Marker, String, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object);
 public void info(String, Object, Object);
 public void info(String, Object, Object, Object);
 public void info(String, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isDebugEnabled();
 public boolean isDebugEnabled(org.apache.logging.log4j.Marker);
 public boolean isEnabled(org.apache.logging.log4j.Level);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker);
 public boolean isErrorEnabled();
 public boolean isErrorEnabled(org.apache.logging.log4j.Marker);
 public boolean isFatalEnabled();
 public boolean isFatalEnabled(org.apache.logging.log4j.Marker);
 public boolean isInfoEnabled();
 public boolean isInfoEnabled(org.apache.logging.log4j.Marker);
 public boolean isTraceEnabled();
 public boolean isTraceEnabled(org.apache.logging.log4j.Marker);
 public boolean isWarnEnabled();
 public boolean isWarnEnabled(org.apache.logging.log4j.Marker);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, CharSequence);
 public void log(org.apache.logging.log4j.Level, CharSequence, Throwable);
 public void log(org.apache.logging.log4j.Level, Object);
 public void log(org.apache.logging.log4j.Level, Object, Throwable);
 public void log(org.apache.logging.log4j.Level, String);
 public transient void log(org.apache.logging.log4j.Level, String, Object[]);
 public void log(org.apache.logging.log4j.Level, String, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.Supplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.Supplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void log(org.apache.logging.log4j.Level, String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.MessageSupplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 protected transient void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected transient void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void logMessage(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 protected void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 public transient void printf(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public transient void printf(org.apache.logging.log4j.Level, String, Object[]);
 private void logMessageSafely(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logMessageTrackRecursion(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private static int[] getRecursionDepthHolder();
 private static void incrementRecursionDepth();
 private static void decrementRecursionDepth();
 public static int getRecursionDepth();
 private void tryLogMessage(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement getLocation(String);
 private void handleLogMessageException(Throwable, String, org.apache.logging.log4j.message.Message);
 public Throwable throwing(Throwable);
 public Throwable throwing(org.apache.logging.log4j.Level, Throwable);
 protected Throwable throwing(String, org.apache.logging.log4j.Level, Throwable);
 protected org.apache.logging.log4j.message.Message throwingMsg(Throwable);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void trace(org.apache.logging.log4j.Marker, CharSequence);
 public void trace(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void trace(org.apache.logging.log4j.Marker, Object);
 public void trace(org.apache.logging.log4j.Marker, Object, Throwable);
 public void trace(org.apache.logging.log4j.Marker, String);
 public transient void trace(org.apache.logging.log4j.Marker, String, Object[]);
 public void trace(org.apache.logging.log4j.Marker, String, Throwable);
 public void trace(org.apache.logging.log4j.message.Message);
 public void trace(org.apache.logging.log4j.message.Message, Throwable);
 public void trace(CharSequence);
 public void trace(CharSequence, Throwable);
 public void trace(Object);
 public void trace(Object, Throwable);
 public void trace(String);
 public transient void trace(String, Object[]);
 public void trace(String, Throwable);
 public void trace(org.apache.logging.log4j.util.Supplier);
 public void trace(org.apache.logging.log4j.util.Supplier, Throwable);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void trace(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void trace(String, org.apache.logging.log4j.util.Supplier[]);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void trace(org.apache.logging.log4j.util.MessageSupplier);
 public void trace(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void trace(org.apache.logging.log4j.Marker, String, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object);
 public void trace(String, Object, Object);
 public void trace(String, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.EntryMessage traceEntry();
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(String, Object[]);
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(org.apache.logging.log4j.util.Supplier[]);
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(String, org.apache.logging.log4j.util.Supplier[]);
 public org.apache.logging.log4j.message.EntryMessage traceEntry(org.apache.logging.log4j.message.Message);
 public void traceExit();
 public Object traceExit(Object);
 public Object traceExit(String, Object);
 public void traceExit(org.apache.logging.log4j.message.EntryMessage);
 public Object traceExit(org.apache.logging.log4j.message.EntryMessage, Object);
 public Object traceExit(org.apache.logging.log4j.message.Message, Object);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void warn(org.apache.logging.log4j.Marker, CharSequence);
 public void warn(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void warn(org.apache.logging.log4j.Marker, Object);
 public void warn(org.apache.logging.log4j.Marker, Object, Throwable);
 public void warn(org.apache.logging.log4j.Marker, String);
 public transient void warn(org.apache.logging.log4j.Marker, String, Object[]);
 public void warn(org.apache.logging.log4j.Marker, String, Throwable);
 public void warn(org.apache.logging.log4j.message.Message);
 public void warn(org.apache.logging.log4j.message.Message, Throwable);
 public void warn(CharSequence);
 public void warn(CharSequence, Throwable);
 public void warn(Object);
 public void warn(Object, Throwable);
 public void warn(String);
 public transient void warn(String, Object[]);
 public void warn(String, Throwable);
 public void warn(org.apache.logging.log4j.util.Supplier);
 public void warn(org.apache.logging.log4j.util.Supplier, Throwable);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void warn(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void warn(String, org.apache.logging.log4j.util.Supplier[]);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void warn(org.apache.logging.log4j.util.MessageSupplier);
 public void warn(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void warn(org.apache.logging.log4j.Marker, String, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object);
 public void warn(String, Object, Object);
 public void warn(String, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected boolean requiresLocation();
 public org.apache.logging.log4j.LogBuilder atTrace();
 public org.apache.logging.log4j.LogBuilder atDebug();
 public org.apache.logging.log4j.LogBuilder atInfo();
 public org.apache.logging.log4j.LogBuilder atWarn();
 public org.apache.logging.log4j.LogBuilder atError();
 public org.apache.logging.log4j.LogBuilder atFatal();
 public org.apache.logging.log4j.LogBuilder always();
 public org.apache.logging.log4j.LogBuilder atLevel(org.apache.logging.log4j.Level);
 private org.apache.logging.log4j.internal.DefaultLogBuilder getLogBuilder(org.apache.logging.log4j.Level);
 private void readObject(java.io.ObjectInputStream) throws ClassNotFoundException, java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/util/MultiFormatStringBuilderFormattable.class

package org.apache.logging.log4j.util;
public abstract interface MultiFormatStringBuilderFormattable extends org.apache.logging.log4j.message.MultiformatMessage, StringBuilderFormattable {
 public abstract void formatTo(String[], StringBuilder);
}

org/apache/logging/log4j/util/Timer$Status.class

package org.apache.logging.log4j.util;
public final synchronized enum Timer$Status {
 public static final Timer$Status Started;
 public static final Timer$Status Stopped;
 public static final Timer$Status Paused;
 public static Timer$Status[] values();
 public static Timer$Status valueOf(String);
 private void Timer$Status(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertyFilePropertySource.class

package org.apache.logging.log4j.util;
public synchronized class PropertyFilePropertySource extends PropertiesPropertySource {
 public void PropertyFilePropertySource(String);
 private static java.util.Properties loadPropertiesFile(String);
 public int getPriority();
}

org/apache/logging/log4j/util/ProcessIdUtil.class

package org.apache.logging.log4j.util;
public synchronized class ProcessIdUtil {
 public static final String DEFAULT_PROCESSID = -;
 public void ProcessIdUtil();
 public static String getProcessId();
}

org/apache/logging/log4j/ThreadContext$EmptyThreadContextStack.class

package org.apache.logging.log4j;
synchronized class ThreadContext$EmptyThreadContextStack extends java.util.AbstractCollection implements spi.ThreadContextStack {
 private static final long serialVersionUID = 1;
 private static final java.util.Iterator EMPTY_ITERATOR;
 private void ThreadContext$EmptyThreadContextStack();
 public String pop();
 public String peek();
 public void push(String);
 public int getDepth();
 public java.util.List asList();
 public void trim(int);
 public boolean equals(Object);
 public int hashCode();
 public ThreadContext$ContextStack copy();
 public Object[] toArray(Object[]);
 public boolean add(String);
 public boolean containsAll(java.util.Collection);
 public boolean addAll(java.util.Collection);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public java.util.Iterator iterator();
 public int size();
 public ThreadContext$ContextStack getImmutableStackOrNull();
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterFormatter.class

package org.apache.logging.log4j.message;
final synchronized class ParameterFormatter {
 static final String RECURSION_PREFIX = [...;
 static final String RECURSION_SUFFIX = ...];
 static final String ERROR_PREFIX = [!!!;
 static final String ERROR_SEPARATOR = =>;
 static final String ERROR_MSG_SEPARATOR = :;
 static final String ERROR_SUFFIX = !!!];
 private static final char DELIM_START = 123;
 private static final char DELIM_STOP = 125;
 private static final char ESCAPE_CHAR = 92;
 private static final ThreadLocal SIMPLE_DATE_FORMAT_REF;
 private void ParameterFormatter();
 static int countArgumentPlaceholders(String);
 static int countArgumentPlaceholders2(String, int[]);
 static int countArgumentPlaceholders3(char[], int, int[]);
 static String format(String, Object[]);
 static void formatMessage2(StringBuilder, String, Object[], int, int[]);
 static void formatMessage3(StringBuilder, char[], int, Object[], int, int[]);
 static void formatMessage(StringBuilder, String, Object[], int);
 private static boolean isDelimPair(char, String, int);
 private static void handleRemainingCharIfAny(String, int, StringBuilder, int, int);
 private static void handleLastChar(StringBuilder, int, char);
 private static void handleLiteralChar(StringBuilder, int, char);
 private static void writeDelimPair(StringBuilder);
 private static boolean isOdd(int);
 private static void writeEscapedEscapeChars(int, StringBuilder);
 private static void writeUnescapedEscapeChars(int, StringBuilder);
 private static void writeArgOrDelimPair(Object[], int, int, StringBuilder);
 static String deepToString(Object);
 static void recursiveDeepToString(Object, StringBuilder);
 private static void recursiveDeepToString(Object, StringBuilder, java.util.Set);
 private static boolean appendSpecialTypes(Object, StringBuilder);
 private static boolean appendDate(Object, StringBuilder);
 private static boolean isMaybeRecursive(Object);
 private static void appendPotentiallyRecursiveValue(Object, StringBuilder, java.util.Set);
 private static void appendArray(Object, StringBuilder, java.util.Set, Class);
 private static void appendMap(Object, StringBuilder, java.util.Set);
 private static void appendCollection(Object, StringBuilder, java.util.Set);
 private static java.util.Set getOrCreateDejaVu(java.util.Set);
 private static java.util.Set createDejaVu();
 private static java.util.Set cloneDejaVu(java.util.Set);
 private static void tryObjectToString(Object, StringBuilder);
 private static void handleErrorInObjectToString(Object, StringBuilder, Throwable);
 static String identityToString(Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/ObjectMessage.class

package org.apache.logging.log4j.message;
public synchronized class ObjectMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = -5903272448334166185;
 private transient Object obj;
 private transient String objectString;
 public void ObjectMessage(Object);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object getParameter();
 public Object[] getParameters();
 public boolean equals(Object);
 private boolean equalObjectsOrStrings(Object, Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$SimpleEntryMessage.class

package org.apache.logging.log4j.message;
final synchronized class DefaultFlowMessageFactory$SimpleEntryMessage extends DefaultFlowMessageFactory$AbstractFlowMessage implements EntryMessage {
 private static final long serialVersionUID = 1;
 void DefaultFlowMessageFactory$SimpleEntryMessage(String, Message);
}

org/apache/logging/log4j/message/FormattedMessage.class

package org.apache.logging.log4j.message;
public synchronized class FormattedMessage implements Message {
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private static final String FORMAT_SPECIFIER = %(\d+\$)?([-#+ 0,(\<]*)?(\d+)?(\.\d+)?([tT])?([a-zA-Z%]);
 private static final java.util.regex.Pattern MSG_PATTERN;
 private String messagePattern;
 private transient Object[] argArray;
 private String[] stringArgs;
 private transient String formattedMessage;
 private final Throwable throwable;
 private Message message;
 private final java.util.Locale locale;
 public void FormattedMessage(java.util.Locale, String, Object);
 public void FormattedMessage(java.util.Locale, String, Object, Object);
 public transient void FormattedMessage(java.util.Locale, String, Object[]);
 public void FormattedMessage(java.util.Locale, String, Object[], Throwable);
 public void FormattedMessage(String, Object);
 public void FormattedMessage(String, Object, Object);
 public transient void FormattedMessage(String, Object[]);
 public void FormattedMessage(String, Object[], Throwable);
 public boolean equals(Object);
 public String getFormat();
 public String getFormattedMessage();
 protected Message getMessage(String, Object[], Throwable);
 public Object[] getParameters();
 public Throwable getThrowable();
 public int hashCode();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/simple/SimpleLogger.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLogger extends org.apache.logging.log4j.spi.AbstractLogger {
 private static final long serialVersionUID = 1;
 private static final char SPACE = 32;
 private final java.text.DateFormat dateFormatter;
 private org.apache.logging.log4j.Level level;
 private final boolean showDateTime;
 private final boolean showContextMap;
 private java.io.PrintStream stream;
 private final String logName;
 public void SimpleLogger(String, org.apache.logging.log4j.Level, boolean, boolean, boolean, boolean, String, org.apache.logging.log4j.message.MessageFactory, org.apache.logging.log4j.util.PropertiesUtil, java.io.PrintStream);
 public org.apache.logging.log4j.Level getLevel();
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void setLevel(org.apache.logging.log4j.Level);
 public void setStream(java.io.PrintStream);
}

org/apache/logging/log4j/ThreadContext$EmptyIterator.class

package org.apache.logging.log4j;
synchronized class ThreadContext$EmptyIterator implements java.util.Iterator {
 private void ThreadContext$EmptyIterator();
 public boolean hasNext();
 public Object next();
 public void remove();
}

org/apache/logging/log4j/MarkerManager$Log4jMarker.class

package org.apache.logging.log4j;
public synchronized class MarkerManager$Log4jMarker implements Marker, util.StringBuilderFormattable {
 private static final long serialVersionUID = 100;
 private final String name;
 private volatile Marker[] parents;
 private void MarkerManager$Log4jMarker();
 public void MarkerManager$Log4jMarker(String);
 public synchronized transient Marker addParents(Marker[]);
 public synchronized boolean remove(Marker);
 public transient Marker setParents(Marker[]);
 public String getName();
 public Marker[] getParents();
 public boolean hasParents();
 public boolean isInstanceOf(Marker);
 public boolean isInstanceOf(String);
 private static boolean checkParent(Marker, Marker);
 private static transient boolean contains(Marker, Marker[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public void formatTo(StringBuilder);
 private static transient void addParentInfo(StringBuilder, Marker[]);
}

org/apache/logging/log4j/LoggingException.class

package org.apache.logging.log4j;
public synchronized class LoggingException extends RuntimeException {
 private static final long serialVersionUID = 6366395965071580537;
 public void LoggingException(String);
 public void LoggingException(String, Throwable);
 public void LoggingException(Throwable);
}

org/apache/logging/log4j/ThreadContext.class

package org.apache.logging.log4j;
public final synchronized class ThreadContext {
 public static final java.util.Map EMPTY_MAP;
 public static final spi.ThreadContextStack EMPTY_STACK;
 private static final String DISABLE_MAP = disableThreadContextMap;
 private static final String DISABLE_STACK = disableThreadContextStack;
 private static final String DISABLE_ALL = disableThreadContext;
 private static boolean useStack;
 private static spi.ThreadContextMap contextMap;
 private static spi.ThreadContextStack contextStack;
 private static spi.ReadOnlyThreadContextMap readOnlyContextMap;
 private void ThreadContext();
 static void init();
 public static void put(String, String);
 public static void putIfNull(String, String);
 public static void putAll(java.util.Map);
 public static String get(String);
 public static void remove(String);
 public static void removeAll(Iterable);
 public static void clearMap();
 public static void clearAll();
 public static boolean containsKey(String);
 public static java.util.Map getContext();
 public static java.util.Map getImmutableContext();
 public static spi.ReadOnlyThreadContextMap getThreadContextMap();
 public static boolean isEmpty();
 public static void clearStack();
 public static ThreadContext$ContextStack cloneStack();
 public static ThreadContext$ContextStack getImmutableStack();
 public static void setStack(java.util.Collection);
 public static int getDepth();
 public static String pop();
 public static String peek();
 public static void push(String);
 public static transient void push(String, Object[]);
 public static void removeStack();
 public static void trim(int);
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/internal/DefaultObjectInputFilter.class

package org.apache.logging.log4j.util.internal;
public synchronized class DefaultObjectInputFilter implements java.io.ObjectInputFilter {
 private static final java.util.List REQUIRED_JAVA_CLASSES;
 private static final java.util.List REQUIRED_JAVA_PACKAGES;
 private final java.io.ObjectInputFilter delegate;
 public void DefaultObjectInputFilter();
 public void DefaultObjectInputFilter(java.io.ObjectInputFilter);
 public static DefaultObjectInputFilter newInstance(java.io.ObjectInputFilter);
 public java.io.ObjectInputFilter$Status checkInput(java.io.ObjectInputFilter$FilterInfo);
 private static boolean isAllowedByDefault(String);
 private static boolean isRequiredPackage(String);
 static void <clinit>();
}

META-INF/DEPENDENCIES

// --
// Transitive dependencies of this project determined from the
// maven pom organized by organization.
// --

Apache Log4j API

META-INF/services/org.apache.logging.log4j.util.PropertySource

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.
org.apache.logging.log4j.util.EnvironmentPropertySource
org.apache.logging.log4j.util.SystemPropertiesPropertySource

META-INF/maven/org.apache.logging.log4j/log4j-api/pom.properties

#Created by Apache Maven 3.8.4
version=2.17.1
groupId=org.apache.logging.log4j
artifactId=log4j-api

org/apache/logging/log4j/util/Unbox$State.class

package org.apache.logging.log4j.util;
synchronized class Unbox$State {
 private final StringBuilder[] ringBuffer;
 private int current;
 void Unbox$State();
 public StringBuilder getStringBuilder();
 public boolean isBoxedPrimitive(StringBuilder);
}

org/apache/logging/log4j/util/IndexedReadOnlyStringMap.class

package org.apache.logging.log4j.util;
public abstract interface IndexedReadOnlyStringMap extends ReadOnlyStringMap {
 public abstract String getKeyAt(int);
 public abstract Object getValueAt(int);
 public abstract int indexOfKey(String);
}

org/apache/logging/log4j/util/LowLevelLogUtil.class

package org.apache.logging.log4j.util;
final synchronized class LowLevelLogUtil {
 private static java.io.PrintWriter writer;
 public static void log(String);
 public static void logException(Throwable);
 public static void logException(String, Throwable);
 public static void setOutputStream(java.io.OutputStream);
 public static void setWriter(java.io.Writer);
 private void LowLevelLogUtil();
 static void <clinit>();
}

org/apache/logging/log4j/util/SystemPropertiesPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class SystemPropertiesPropertySource implements PropertySource {
 private static final int DEFAULT_PRIORITY = 100;
 private static final String PREFIX = log4j2.;
 public void SystemPropertiesPropertySource();
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/BiConsumer.class

package org.apache.logging.log4j.util;
public abstract interface BiConsumer {
 public abstract void accept(Object, Object);
}

org/apache/logging/log4j/util/StackLocator.class

package org.apache.logging.log4j.util;
public final synchronized class StackLocator {
 static final int JDK_7u25_OFFSET;
 private static final reflect.Method GET_CALLER_CLASS;
 private static final StackLocator INSTANCE;
 public static StackLocator getInstance();
 private void StackLocator();
 public Class getCallerClass(Class, java.util.function.Predicate);
 public Class getCallerClass(int);
 public Class getCallerClass(String, String);
 public Class getCallerClass(Class);
 public java.util.Stack getCurrentStackTrace();
 public StackTraceElement calcLocation(String);
 public StackTraceElement getStackTraceElement(int);
 private boolean isValid(StackTraceElement);
 static void <clinit>();
}

org/apache/logging/log4j/message/BasicThreadInformation.class

package org.apache.logging.log4j.message;
synchronized class BasicThreadInformation implements ThreadInformation {
 private static final int HASH_SHIFT = 32;
 private static final int HASH_MULTIPLIER = 31;
 private final long id;
 private final String name;
 private final String longName;
 private final Thread$State state;
 private final int priority;
 private final boolean isAlive;
 private final boolean isDaemon;
 private final String threadGroupName;
 void BasicThreadInformation(Thread);
 public boolean equals(Object);
 public int hashCode();
 public void printThreadInfo(StringBuilder);
 public void printStack(StringBuilder, StackTraceElement[]);
}

org/apache/logging/log4j/message/StringMapMessage.class

package org.apache.logging.log4j.message;
public synchronized class StringMapMessage extends MapMessage {
 private static final long serialVersionUID = 1;
 public void StringMapMessage();
 public void StringMapMessage(int);
 public void StringMapMessage(java.util.Map);
 public StringMapMessage newInstance(java.util.Map);
}

org/apache/logging/log4j/message/ThreadDumpMessage$ThreadDumpMessageProxy.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$ThreadDumpMessageProxy implements java.io.Serializable {
 private static final long serialVersionUID = -3476620450287648269;
 private final String formattedMsg;
 private final String title;
 void ThreadDumpMessage$ThreadDumpMessageProxy(ThreadDumpMessage);
 protected Object readResolve();
}

org/apache/logging/log4j/message/SimpleMessage.class

package org.apache.logging.log4j.message;
public synchronized class SimpleMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable, CharSequence {
 private static final long serialVersionUID = -8398002534962715992;
 private String message;
 private transient CharSequence charSequence;
 public void SimpleMessage();
 public void SimpleMessage(String);
 public void SimpleMessage(CharSequence);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object[] getParameters();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public Throwable getThrowable();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
}

org/apache/logging/log4j/message/StructuredDataCollectionMessage.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataCollectionMessage implements org.apache.logging.log4j.util.StringBuilderFormattable, MessageCollectionMessage {
 private static final long serialVersionUID = 5725337076388822924;
 private final java.util.List structuredDataMessageList;
 public void StructuredDataCollectionMessage(java.util.List);
 public java.util.Iterator iterator();
 public String getFormattedMessage();
 public String getFormat();
 public void formatTo(StringBuilder);
 public Object[] getParameters();
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/LoggerNameAwareMessage.class

package org.apache.logging.log4j.message;
public abstract interface LoggerNameAwareMessage {
 public abstract void setLoggerName(String);
 public abstract String getLoggerName();
}

org/apache/logging/log4j/message/MessageCollectionMessage.class

package org.apache.logging.log4j.message;
public abstract interface MessageCollectionMessage extends Message, Iterable {
}

org/apache/logging/log4j/message/MessageFactory2.class

package org.apache.logging.log4j.message;
public abstract interface MessageFactory2 extends MessageFactory {
 public abstract Message newMessage(CharSequence);
 public abstract Message newMessage(String, Object);
 public abstract Message newMessage(String, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/StructuredDataMessage$Format.class

package org.apache.logging.log4j.message;
public final synchronized enum StructuredDataMessage$Format {
 public static final StructuredDataMessage$Format XML;
 public static final StructuredDataMessage$Format FULL;
 public static StructuredDataMessage$Format[] values();
 public static StructuredDataMessage$Format valueOf(String);
 private void StructuredDataMessage$Format(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/message/ThreadDumpMessage$ThreadInfoFactory.class

package org.apache.logging.log4j.message;
public abstract interface ThreadDumpMessage$ThreadInfoFactory {
 public abstract java.util.Map createThreadInfo();
}

org/apache/logging/log4j/spi/DefaultThreadContextStack.class

package org.apache.logging.log4j.spi;
public synchronized class DefaultThreadContextStack implements ThreadContextStack, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = 5050501;
 private static final ThreadLocal STACK;
 private final boolean useStack;
 public void DefaultThreadContextStack(boolean);
 private MutableThreadContextStack getNonNullStackCopy();
 public boolean add(String);
 public boolean addAll(java.util.Collection);
 public java.util.List asList();
 public void clear();
 public boolean contains(Object);
 public boolean containsAll(java.util.Collection);
 public ThreadContextStack copy();
 public boolean equals(Object);
 public int getDepth();
 public int hashCode();
 public boolean isEmpty();
 public java.util.Iterator iterator();
 public String peek();
 public String pop();
 public void push(String);
 public boolean remove(Object);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public int size();
 public Object[] toArray();
 public Object[] toArray(Object[]);
 public String toString();
 public void formatTo(StringBuilder);
 public void trim(int);
 public org.apache.logging.log4j.ThreadContext$ContextStack getImmutableStackOrNull();
 static void <clinit>();
}

org/apache/logging/log4j/spi/DefaultThreadContextMap.class

package org.apache.logging.log4j.spi;
public synchronized class DefaultThreadContextMap implements ThreadContextMap, org.apache.logging.log4j.util.ReadOnlyStringMap {
 private static final long serialVersionUID = 8218007901108944053;
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 private final boolean useMap;
 private final ThreadLocal localMap;
 private static boolean inheritableMap;
 static ThreadLocal createThreadLocalMap(boolean);
 static void init();
 public void DefaultThreadContextMap();
 public void DefaultThreadContextMap(boolean);
 public void put(String, String);
 public void putAll(java.util.Map);
 public String get(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public java.util.Map toMap();
 public boolean containsKey(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 public Object getValue(String);
 public java.util.Map getCopy();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public int size();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/spi/AbstractLoggerAdapter.class

package org.apache.logging.log4j.spi;
public abstract synchronized class AbstractLoggerAdapter implements LoggerAdapter, LoggerContextShutdownAware {
 protected final java.util.Map registry;
 private final java.util.concurrent.locks.ReadWriteLock lock;
 public void AbstractLoggerAdapter();
 public Object getLogger(String);
 public void contextShutdown(LoggerContext);
 public java.util.concurrent.ConcurrentMap getLoggersInContext(LoggerContext);
 public java.util.Set getLoggerContexts();
 protected abstract Object newLogger(String, LoggerContext);
 protected abstract LoggerContext getContext();
 protected LoggerContext getContext(Class);
 public void close();
}

org/apache/logging/log4j/spi/LoggerContextFactory.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextFactory {
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public abstract LoggerContext getContext(String, ClassLoader, Object, boolean);
 public abstract LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public abstract void removeContext(LoggerContext);
 public boolean isClassLoaderDependent();
}

org/apache/logging/log4j/spi/LoggerContextKey.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerContextKey {
 public void LoggerContextKey();
 public static String create(String);
 public static String create(String, org.apache.logging.log4j.message.MessageFactory);
 public static String create(String, Class);
}

org/apache/logging/log4j/spi/LoggerRegistry.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry {
 private static final String DEFAULT_FACTORY_KEY;
 private final LoggerRegistry$MapFactory factory;
 private final java.util.Map map;
 public void LoggerRegistry();
 public void LoggerRegistry(LoggerRegistry$MapFactory);
 private static String factoryClassKey(Class);
 private static String factoryKey(org.apache.logging.log4j.message.MessageFactory);
 public ExtendedLogger getLogger(String);
 public ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public java.util.Collection getLoggers();
 public java.util.Collection getLoggers(java.util.Collection);
 private java.util.Map getOrCreateInnerMap(String);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public void putIfAbsent(String, org.apache.logging.log4j.message.MessageFactory, ExtendedLogger);
 static void <clinit>();
}

org/apache/logging/log4j/spi/CopyOnWriteSortedArrayThreadContextMap$1.class

package org.apache.logging.log4j.spi;
synchronized class CopyOnWriteSortedArrayThreadContextMap$1 extends InheritableThreadLocal {
 void CopyOnWriteSortedArrayThreadContextMap$1(CopyOnWriteSortedArrayThreadContextMap);
 protected org.apache.logging.log4j.util.StringMap childValue(org.apache.logging.log4j.util.StringMap);
}

org/apache/logging/log4j/spi/MessageFactory2Adapter.class

package org.apache.logging.log4j.spi;
public synchronized class MessageFactory2Adapter implements org.apache.logging.log4j.message.MessageFactory2 {
 private final org.apache.logging.log4j.message.MessageFactory wrapped;
 public void MessageFactory2Adapter(org.apache.logging.log4j.message.MessageFactory);
 public org.apache.logging.log4j.message.MessageFactory getOriginal();
 public org.apache.logging.log4j.message.Message newMessage(CharSequence);
 public org.apache.logging.log4j.message.Message newMessage(String, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(Object);
 public org.apache.logging.log4j.message.Message newMessage(String);
 public transient org.apache.logging.log4j.message.Message newMessage(String, Object[]);
}

org/apache/logging/log4j/spi/LoggerContextShutdownEnabled.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextShutdownEnabled {
 public abstract void addShutdownListener(LoggerContextShutdownAware);
 public abstract java.util.List getListeners();
}

org/apache/logging/log4j/util/ReadOnlyStringMap.class

package org.apache.logging.log4j.util;
public abstract interface ReadOnlyStringMap extends java.io.Serializable {
 public abstract java.util.Map toMap();
 public abstract boolean containsKey(String);
 public abstract void forEach(BiConsumer);
 public abstract void forEach(TriConsumer, Object);
 public abstract Object getValue(String);
 public abstract boolean isEmpty();
 public abstract int size();
}

org/apache/logging/log4j/util/TriConsumer.class

package org.apache.logging.log4j.util;
public abstract interface TriConsumer {
 public abstract void accept(Object, Object, Object);
}

org/apache/logging/log4j/util/EnvironmentPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class EnvironmentPropertySource implements PropertySource {
 private static final String PREFIX = LOG4J_;
 private static final int DEFAULT_PRIORITY = -100;
 public void EnvironmentPropertySource();
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/Activator.class

package org.apache.logging.log4j.util;
public synchronized class Activator implements org.osgi.framework.BundleActivator, org.osgi.framework.SynchronousBundleListener {
 private static final SecurityManager SECURITY_MANAGER;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private boolean lockingProviderUtil;
 public void Activator();
 private static void checkPermission(java.security.Permission);
 private void loadProvider(org.osgi.framework.Bundle);
 private String toStateString(int);
 private void loadProvider(org.osgi.framework.BundleContext, org.osgi.framework.wiring.BundleWiring);
 public void start(org.osgi.framework.BundleContext) throws Exception;
 private void unlockIfReady();
 public void stop(org.osgi.framework.BundleContext) throws Exception;
 public void bundleChanged(org.osgi.framework.BundleEvent);
 static void <clinit>();
}

org/apache/logging/log4j/EventLogger.class

package org.apache.logging.log4j;
public final synchronized class EventLogger {
 public static final Marker EVENT_MARKER;
 private static final String NAME = EventLogger;
 private static final String FQCN;
 private static final spi.ExtendedLogger LOGGER;
 private void EventLogger();
 public static void logEvent(message.StructuredDataMessage);
 public static void logEvent(message.StructuredDataMessage, Level);
 static void <clinit>();
}

org/apache/logging/log4j/Logger.class

package org.apache.logging.log4j;
public abstract interface Logger {
 public abstract void catching(Level, Throwable);
 public abstract void catching(Throwable);
 public abstract void debug(Marker, message.Message);
 public abstract void debug(Marker, message.Message, Throwable);
 public abstract void debug(Marker, util.MessageSupplier);
 public abstract void debug(Marker, util.MessageSupplier, Throwable);
 public abstract void debug(Marker, CharSequence);
 public abstract void debug(Marker, CharSequence, Throwable);
 public abstract void debug(Marker, Object);
 public abstract void debug(Marker, Object, Throwable);
 public abstract void debug(Marker, String);
 public abstract transient void debug(Marker, String, Object[]);
 public abstract transient void debug(Marker, String, util.Supplier[]);
 public abstract void debug(Marker, String, Throwable);
 public abstract void debug(Marker, util.Supplier);
 public abstract void debug(Marker, util.Supplier, Throwable);
 public abstract void debug(message.Message);
 public abstract void debug(message.Message, Throwable);
 public abstract void debug(util.MessageSupplier);
 public abstract void debug(util.MessageSupplier, Throwable);
 public abstract void debug(CharSequence);
 public abstract void debug(CharSequence, Throwable);
 public abstract void debug(Object);
 public abstract void debug(Object, Throwable);
 public abstract void debug(String);
 public abstract transient void debug(String, Object[]);
 public abstract transient void debug(String, util.Supplier[]);
 public abstract void debug(String, Throwable);
 public abstract void debug(util.Supplier);
 public abstract void debug(util.Supplier, Throwable);
 public abstract void debug(Marker, String, Object);
 public abstract void debug(Marker, String, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object);
 public abstract void debug(String, Object, Object);
 public abstract void debug(String, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void entry();
 public abstract transient void entry(Object[]);
 public abstract void error(Marker, message.Message);
 public abstract void error(Marker, message.Message, Throwable);
 public abstract void error(Marker, util.MessageSupplier);
 public abstract void error(Marker, util.MessageSupplier, Throwable);
 public abstract void error(Marker, CharSequence);
 public abstract void error(Marker, CharSequence, Throwable);
 public abstract void error(Marker, Object);
 public abstract void error(Marker, Object, Throwable);
 public abstract void error(Marker, String);
 public abstract transient void error(Marker, String, Object[]);
 public abstract transient void error(Marker, String, util.Supplier[]);
 public abstract void error(Marker, String, Throwable);
 public abstract void error(Marker, util.Supplier);
 public abstract void error(Marker, util.Supplier, Throwable);
 public abstract void error(message.Message);
 public abstract void error(message.Message, Throwable);
 public abstract void error(util.MessageSupplier);
 public abstract void error(util.MessageSupplier, Throwable);
 public abstract void error(CharSequence);
 public abstract void error(CharSequence, Throwable);
 public abstract void error(Object);
 public abstract void error(Object, Throwable);
 public abstract void error(String);
 public abstract transient void error(String, Object[]);
 public abstract transient void error(String, util.Supplier[]);
 public abstract void error(String, Throwable);
 public abstract void error(util.Supplier);
 public abstract void error(util.Supplier, Throwable);
 public abstract void error(Marker, String, Object);
 public abstract void error(Marker, String, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object);
 public abstract void error(String, Object, Object);
 public abstract void error(String, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void exit();
 public abstract Object exit(Object);
 public abstract void fatal(Marker, message.Message);
 public abstract void fatal(Marker, message.Message, Throwable);
 public abstract void fatal(Marker, util.MessageSupplier);
 public abstract void fatal(Marker, util.MessageSupplier, Throwable);
 public abstract void fatal(Marker, CharSequence);
 public abstract void fatal(Marker, CharSequence, Throwable);
 public abstract void fatal(Marker, Object);
 public abstract void fatal(Marker, Object, Throwable);
 public abstract void fatal(Marker, String);
 public abstract transient void fatal(Marker, String, Object[]);
 public abstract transient void fatal(Marker, String, util.Supplier[]);
 public abstract void fatal(Marker, String, Throwable);
 public abstract void fatal(Marker, util.Supplier);
 public abstract void fatal(Marker, util.Supplier, Throwable);
 public abstract void fatal(message.Message);
 public abstract void fatal(message.Message, Throwable);
 public abstract void fatal(util.MessageSupplier);
 public abstract void fatal(util.MessageSupplier, Throwable);
 public abstract void fatal(CharSequence);
 public abstract void fatal(CharSequence, Throwable);
 public abstract void fatal(Object);
 public abstract void fatal(Object, Throwable);
 public abstract void fatal(String);
 public abstract transient void fatal(String, Object[]);
 public abstract transient void fatal(String, util.Supplier[]);
 public abstract void fatal(String, Throwable);
 public abstract void fatal(util.Supplier);
 public abstract void fatal(util.Supplier, Throwable);
 public abstract void fatal(Marker, String, Object);
 public abstract void fatal(Marker, String, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object);
 public abstract void fatal(String, Object, Object);
 public abstract void fatal(String, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Level getLevel();
 public abstract message.MessageFactory getMessageFactory();
 public abstract String getName();
 public abstract void info(Marker, message.Message);
 public abstract void info(Marker, message.Message, Throwable);
 public abstract void info(Marker, util.MessageSupplier);
 public abstract void info(Marker, util.MessageSupplier, Throwable);
 public abstract void info(Marker, CharSequence);
 public abstract void info(Marker, CharSequence, Throwable);
 public abstract void info(Marker, Object);
 public abstract void info(Marker, Object, Throwable);
 public abstract void info(Marker, String);
 public abstract transient void info(Marker, String, Object[]);
 public abstract transient void info(Marker, String, util.Supplier[]);
 public abstract void info(Marker, String, Throwable);
 public abstract void info(Marker, util.Supplier);
 public abstract void info(Marker, util.Supplier, Throwable);
 public abstract void info(message.Message);
 public abstract void info(message.Message, Throwable);
 public abstract void info(util.MessageSupplier);
 public abstract void info(util.MessageSupplier, Throwable);
 public abstract void info(CharSequence);
 public abstract void info(CharSequence, Throwable);
 public abstract void info(Object);
 public abstract void info(Object, Throwable);
 public abstract void info(String);
 public abstract transient void info(String, Object[]);
 public abstract transient void info(String, util.Supplier[]);
 public abstract void info(String, Throwable);
 public abstract void info(util.Supplier);
 public abstract void info(util.Supplier, Throwable);
 public abstract void info(Marker, String, Object);
 public abstract void info(Marker, String, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object);
 public abstract void info(String, Object, Object);
 public abstract void info(String, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isDebugEnabled();
 public abstract boolean isDebugEnabled(Marker);
 public abstract boolean isEnabled(Level);
 public abstract boolean isEnabled(Level, Marker);
 public abstract boolean isErrorEnabled();
 public abstract boolean isErrorEnabled(Marker);
 public abstract boolean isFatalEnabled();
 public abstract boolean isFatalEnabled(Marker);
 public abstract boolean isInfoEnabled();
 public abstract boolean isInfoEnabled(Marker);
 public abstract boolean isTraceEnabled();
 public abstract boolean isTraceEnabled(Marker);
 public abstract boolean isWarnEnabled();
 public abstract boolean isWarnEnabled(Marker);
 public abstract void log(Level, Marker, message.Message);
 public abstract void log(Level, Marker, message.Message, Throwable);
 public abstract void log(Level, Marker, util.MessageSupplier);
 public abstract void log(Level, Marker, util.MessageSupplier, Throwable);
 public abstract void log(Level, Marker, CharSequence);
 public abstract void log(Level, Marker, CharSequence, Throwable);
 public abstract void log(Level, Marker, Object);
 public abstract void log(Level, Marker, Object, Throwable);
 public abstract void log(Level, Marker, String);
 public abstract transient void log(Level, Marker, String, Object[]);
 public abstract transient void log(Level, Marker, String, util.Supplier[]);
 public abstract void log(Level, Marker, String, Throwable);
 public abstract void log(Level, Marker, util.Supplier);
 public abstract void log(Level, Marker, util.Supplier, Throwable);
 public abstract void log(Level, message.Message);
 public abstract void log(Level, message.Message, Throwable);
 public abstract void log(Level, util.MessageSupplier);
 public abstract void log(Level, util.MessageSupplier, Throwable);
 public abstract void log(Level, CharSequence);
 public abstract void log(Level, CharSequence, Throwable);
 public abstract void log(Level, Object);
 public abstract void log(Level, Object, Throwable);
 public abstract void log(Level, String);
 public abstract transient void log(Level, String, Object[]);
 public abstract transient void log(Level, String, util.Supplier[]);
 public abstract void log(Level, String, Throwable);
 public abstract void log(Level, util.Supplier);
 public abstract void log(Level, util.Supplier, Throwable);
 public abstract void log(Level, Marker, String, Object);
 public abstract void log(Level, Marker, String, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object);
 public abstract void log(Level, String, Object, Object);
 public abstract void log(Level, String, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract transient void printf(Level, Marker, String, Object[]);
 public abstract transient void printf(Level, String, Object[]);
 public abstract Throwable throwing(Level, Throwable);
 public abstract Throwable throwing(Throwable);
 public abstract void trace(Marker, message.Message);
 public abstract void trace(Marker, message.Message, Throwable);
 public abstract void trace(Marker, util.MessageSupplier);
 public abstract void trace(Marker, util.MessageSupplier, Throwable);
 public abstract void trace(Marker, CharSequence);
 public abstract void trace(Marker, CharSequence, Throwable);
 public abstract void trace(Marker, Object);
 public abstract void trace(Marker, Object, Throwable);
 public abstract void trace(Marker, String);
 public abstract transient void trace(Marker, String, Object[]);
 public abstract transient void trace(Marker, String, util.Supplier[]);
 public abstract void trace(Marker, String, Throwable);
 public abstract void trace(Marker, util.Supplier);
 public abstract void trace(Marker, util.Supplier, Throwable);
 public abstract void trace(message.Message);
 public abstract void trace(message.Message, Throwable);
 public abstract void trace(util.MessageSupplier);
 public abstract void trace(util.MessageSupplier, Throwable);
 public abstract void trace(CharSequence);
 public abstract void trace(CharSequence, Throwable);
 public abstract void trace(Object);
 public abstract void trace(Object, Throwable);
 public abstract void trace(String);
 public abstract transient void trace(String, Object[]);
 public abstract transient void trace(String, util.Supplier[]);
 public abstract void trace(String, Throwable);
 public abstract void trace(util.Supplier);
 public abstract void trace(util.Supplier, Throwable);
 public abstract void trace(Marker, String, Object);
 public abstract void trace(Marker, String, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object);
 public abstract void trace(String, Object, Object);
 public abstract void trace(String, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract message.EntryMessage traceEntry();
 public abstract transient message.EntryMessage traceEntry(String, Object[]);
 public abstract transient message.EntryMessage traceEntry(util.Supplier[]);
 public abstract transient message.EntryMessage traceEntry(String, util.Supplier[]);
 public abstract message.EntryMessage traceEntry(message.Message);
 public abstract void traceExit();
 public abstract Object traceExit(Object);
 public abstract Object traceExit(String, Object);
 public abstract void traceExit(message.EntryMessage);
 public abstract Object traceExit(message.EntryMessage, Object);
 public abstract Object traceExit(message.Message, Object);
 public abstract void warn(Marker, message.Message);
 public abstract void warn(Marker, message.Message, Throwable);
 public abstract void warn(Marker, util.MessageSupplier);
 public abstract void warn(Marker, util.MessageSupplier, Throwable);
 public abstract void warn(Marker, CharSequence);
 public abstract void warn(Marker, CharSequence, Throwable);
 public abstract void warn(Marker, Object);
 public abstract void warn(Marker, Object, Throwable);
 public abstract void warn(Marker, String);
 public abstract transient void warn(Marker, String, Object[]);
 public abstract transient void warn(Marker, String, util.Supplier[]);
 public abstract void warn(Marker, String, Throwable);
 public abstract void warn(Marker, util.Supplier);
 public abstract void warn(Marker, util.Supplier, Throwable);
 public abstract void warn(message.Message);
 public abstract void warn(message.Message, Throwable);
 public abstract void warn(util.MessageSupplier);
 public abstract void warn(util.MessageSupplier, Throwable);
 public abstract void warn(CharSequence);
 public abstract void warn(CharSequence, Throwable);
 public abstract void warn(Object);
 public abstract void warn(Object, Throwable);
 public abstract void warn(String);
 public abstract transient void warn(String, Object[]);
 public abstract transient void warn(String, util.Supplier[]);
 public abstract void warn(String, Throwable);
 public abstract void warn(util.Supplier);
 public abstract void warn(util.Supplier, Throwable);
 public abstract void warn(Marker, String, Object);
 public abstract void warn(Marker, String, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object);
 public abstract void warn(String, Object, Object);
 public abstract void warn(String, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logMessage(Level, Marker, String, StackTraceElement, message.Message, Throwable);
 public LogBuilder atTrace();
 public LogBuilder atDebug();
 public LogBuilder atInfo();
 public LogBuilder atWarn();
 public LogBuilder atError();
 public LogBuilder atFatal();
 public LogBuilder always();
 public LogBuilder atLevel(Level);
}

org/apache/logging/log4j/message/TimestampMessage.class

package org.apache.logging.log4j.message;
public abstract interface TimestampMessage {
 public abstract long getTimestamp();
}

org/apache/logging/log4j/message/ThreadDumpMessage$1.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$1 {
}

org/apache/logging/log4j/message/AsynchronouslyFormattable.class

package org.apache.logging.log4j.message;
public abstract interface AsynchronouslyFormattable extends annotation.Annotation {
}

org/apache/logging/log4j/message/EntryMessage.class

package org.apache.logging.log4j.message;
public abstract interface EntryMessage extends FlowMessage {
}

org/apache/logging/log4j/message/ReusableMessage.class

package org.apache.logging.log4j.message;
public abstract interface ReusableMessage extends Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 public abstract Object[] swapParameters(Object[]);
 public abstract short getParameterCount();
 public abstract Message memento();
}

org/apache/logging/log4j/message/StructuredDataId.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataId implements java.io.Serializable, org.apache.logging.log4j.util.StringBuilderFormattable {
 public static final StructuredDataId TIME_QUALITY;
 public static final StructuredDataId ORIGIN;
 public static final StructuredDataId META;
 public static final int RESERVED = -1;
 private static final long serialVersionUID = 9031746276396249990;
 private static final int MAX_LENGTH = 32;
 private static final String AT_SIGN = @;
 private final String name;
 private final int enterpriseNumber;
 private final String[] required;
 private final String[] optional;
 public void StructuredDataId(String);
 public void StructuredDataId(String, int);
 public void StructuredDataId(String, String[], String[]);
 public void StructuredDataId(String, String[], String[], int);
 public void StructuredDataId(String, int, String[], String[]);
 public void StructuredDataId(String, int, String[], String[], int);
 public StructuredDataId makeId(StructuredDataId);
 public StructuredDataId makeId(String, int);
 public String[] getRequired();
 public String[] getOptional();
 public String getName();
 public int getEnterpriseNumber();
 public boolean isReserved();
 public String toString();
 public void formatTo(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/message/FlowMessageFactory.class

package org.apache.logging.log4j.message;
public abstract interface FlowMessageFactory {
 public abstract EntryMessage newEntryMessage(Message);
 public abstract ExitMessage newExitMessage(Object, Message);
 public abstract ExitMessage newExitMessage(EntryMessage);
 public abstract ExitMessage newExitMessage(Object, EntryMessage);
}

org/apache/logging/log4j/message/ObjectArrayMessage.class

package org.apache.logging.log4j.message;
public final synchronized class ObjectArrayMessage implements Message {
 private static final long serialVersionUID = -5903272448334166185;
 private transient Object[] array;
 private transient String arrayString;
 public transient void ObjectArrayMessage(Object[]);
 private boolean equalObjectsOrStrings(Object[], Object[]);
 public boolean equals(Object);
 public String getFormat();
 public String getFormattedMessage();
 public Object[] getParameters();
 public Throwable getThrowable();
 public int hashCode();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/message/StringFormatterMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class StringFormatterMessageFactory extends AbstractMessageFactory {
 public static final StringFormatterMessageFactory INSTANCE;
 private static final long serialVersionUID = -1626332412176965642;
 public void StringFormatterMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/Message.class

package org.apache.logging.log4j.message;
public abstract interface Message extends java.io.Serializable {
 public abstract String getFormattedMessage();
 public abstract String getFormat();
 public abstract Object[] getParameters();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/message/StringFormattedMessage.class

package org.apache.logging.log4j.message;
public synchronized class StringFormattedMessage implements Message {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private String messagePattern;
 private transient Object[] argArray;
 private String[] stringArgs;
 private transient String formattedMessage;
 private transient Throwable throwable;
 private final java.util.Locale locale;
 public transient void StringFormattedMessage(java.util.Locale, String, Object[]);
 public transient void StringFormattedMessage(String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 protected transient String formatMessage(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Throwable getThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/message/MessageFactory.class

package org.apache.logging.log4j.message;
public abstract interface MessageFactory {
 public abstract Message newMessage(Object);
 public abstract Message newMessage(String);
 public abstract transient Message newMessage(String, Object[]);
}

org/apache/logging/log4j/message/ParameterizedNoReferenceMessageFactory$StatusMessage.class

package org.apache.logging.log4j.message;
synchronized class ParameterizedNoReferenceMessageFactory$StatusMessage implements Message {
 private static final long serialVersionUID = 4199272162767841280;
 private final String formattedMessage;
 private final Throwable throwable;
 public void ParameterizedNoReferenceMessageFactory$StatusMessage(String, Throwable);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$SimpleExitMessage.class

package org.apache.logging.log4j.message;
final synchronized class DefaultFlowMessageFactory$SimpleExitMessage extends DefaultFlowMessageFactory$AbstractFlowMessage implements ExitMessage {
 private static final long serialVersionUID = 1;
 private final Object result;
 private final boolean isVoid;
 void DefaultFlowMessageFactory$SimpleExitMessage(String, EntryMessage);
 void DefaultFlowMessageFactory$SimpleExitMessage(String, Object, EntryMessage);
 void DefaultFlowMessageFactory$SimpleExitMessage(String, Object, Message);
 public String getFormattedMessage();
}

org/apache/logging/log4j/message/AbstractMessageFactory.class

package org.apache.logging.log4j.message;
public abstract synchronized class AbstractMessageFactory implements MessageFactory2, java.io.Serializable {
 private static final long serialVersionUID = -1307891137684031187;
 public void AbstractMessageFactory();
 public Message newMessage(CharSequence);
 public Message newMessage(Object);
 public Message newMessage(String);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/ParameterizedNoReferenceMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ParameterizedNoReferenceMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 5027639245636870500;
 public static final ParameterizedNoReferenceMessageFactory INSTANCE;
 public void ParameterizedNoReferenceMessageFactory();
 public transient Message newMessage(String, Object[]);
 static void <clinit>();
}

org/apache/logging/log4j/spi/LoggerContextShutdownAware.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextShutdownAware {
 public abstract void contextShutdown(LoggerContext);
}

org/apache/logging/log4j/spi/LoggerRegistry$ConcurrentMapFactory.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry$ConcurrentMapFactory implements LoggerRegistry$MapFactory {
 public void LoggerRegistry$ConcurrentMapFactory();
 public java.util.Map createInnerMap();
 public java.util.Map createOuterMap();
 public void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/ReadOnlyThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ReadOnlyThreadContextMap {
 public abstract void clear();
 public abstract boolean containsKey(String);
 public abstract String get(String);
 public abstract java.util.Map getCopy();
 public abstract java.util.Map getImmutableMapOrNull();
 public abstract org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public abstract boolean isEmpty();
}

image4.emf

log4j-core-2.17.1. jar

log4j-core-2.17.1.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Bundle-License: https://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-SymbolicName: org.apache.logging.log4j.core

Log4jSigningUserName: mattsicker@apache.org

Built-By: matt

Bnd-LastModified: 1640647839891

Implementation-Vendor-Id: org.apache.logging.log4j

Specification-Title: Apache Log4j Core

Log4jReleaseManager: Matt Sicker

Bundle-DocURL: https://www.apache.org/

Import-Package: com.conversantmedia.util.concurrent;resolution:=option

 al,com.fasterxml.jackson.annotation;version="[2.12,3)";resolution:=op

 tional,com.fasterxml.jackson.core;version="[2.12,3)";resolution:=opti

 onal,com.fasterxml.jackson.core.type;version="[2.12,3)";resolution:=o

 ptional,com.fasterxml.jackson.core.util;version="[2.12,3)";resolution

 :=optional,com.fasterxml.jackson.databind;version="[2.12,3)";resoluti

 on:=optional,com.fasterxml.jackson.databind.annotation;version="[2.12

 ,3)";resolution:=optional,com.fasterxml.jackson.databind.deser.std;ve

 rsion="[2.12,3)";resolution:=optional,com.fasterxml.jackson.databind.

 module;version="[2.12,3)";resolution:=optional,com.fasterxml.jackson.

 databind.node;version="[2.12,3)";resolution:=optional,com.fasterxml.j

 ackson.databind.ser;version="[2.12,3)";resolution:=optional,com.faste

 rxml.jackson.databind.ser.impl;version="[2.12,3)";resolution:=optiona

 l,com.fasterxml.jackson.databind.ser.std;version="[2.12,3)";resolutio

 n:=optional,com.fasterxml.jackson.dataformat.xml;version="[2.12,3)";r

 esolution:=optional,com.fasterxml.jackson.dataformat.xml.annotation;v

 ersion="[2.12,3)";resolution:=optional,com.fasterxml.jackson.dataform

 at.xml.util;version="[2.12,3)";resolution:=optional,com.fasterxml.jac

 kson.dataformat.yaml;version="[2.12,3)";resolution:=optional,com.lmax

 .disruptor;version="[3.4,4)";resolution:=optional,com.lmax.disruptor.

 dsl;version="[3.4,4)";resolution:=optional,javax.activation;version="

 [1.2,2)";resolution:=optional,javax.annotation.processing,javax.crypt

 o,javax.jms;version="[1.1,2)";resolution:=optional,javax.lang.model,j

 avax.lang.model.element,javax.lang.model.util,javax.mail;version="[1.

 6,2)";resolution:=optional,javax.mail.internet;version="[1.6,2)";reso

 lution:=optional,javax.mail.util;version="[1.6,2)";resolution:=option

 al,javax.management,javax.naming,javax.net,javax.net.ssl,javax.script

 ,javax.sql,javax.tools,javax.xml.parsers,javax.xml.stream,javax.xml.t

 ransform,javax.xml.transform.stream,javax.xml.validation,org.apache.c

 ommons.compress.compressors;version="[1.21,2)";resolution:=optional,o

 rg.apache.commons.compress.utils;version="[1.21,2)";resolution:=optio

 nal,org.apache.commons.csv;version="[1.9,2)";resolution:=optional,org

 .apache.kafka.clients.producer;resolution:=optional,org.apache.loggin

 g.log4j;version="[2.17,3)",org.apache.logging.log4j.core,org.apache.l

 ogging.log4j.core.appender,org.apache.logging.log4j.core.appender.db,

 org.apache.logging.log4j.core.appender.rewrite,org.apache.logging.log

 4j.core.appender.rolling,org.apache.logging.log4j.core.appender.rolli

 ng.action,org.apache.logging.log4j.core.async,org.apache.logging.log4

 j.core.config,org.apache.logging.log4j.core.config.arbiters,org.apach

 e.logging.log4j.core.config.builder.api,org.apache.logging.log4j.core

 .config.builder.impl,org.apache.logging.log4j.core.config.composite,o

 rg.apache.logging.log4j.core.config.json,org.apache.logging.log4j.cor

 e.config.plugins,org.apache.logging.log4j.core.config.plugins.convert

 ,org.apache.logging.log4j.core.config.plugins.processor,org.apache.lo

 gging.log4j.core.config.plugins.util,org.apache.logging.log4j.core.co

 nfig.plugins.validation,org.apache.logging.log4j.core.config.plugins.

 validation.constraints,org.apache.logging.log4j.core.config.plugins.v

 alidation.validators,org.apache.logging.log4j.core.config.plugins.vis

 itors,org.apache.logging.log4j.core.config.status,org.apache.logging.

 log4j.core.filter,org.apache.logging.log4j.core.impl,org.apache.loggi

 ng.log4j.core.jackson,org.apache.logging.log4j.core.jmx,org.apache.lo

 gging.log4j.core.layout,org.apache.logging.log4j.core.layout.internal

 ,org.apache.logging.log4j.core.lookup,org.apache.logging.log4j.core.n

 et,org.apache.logging.log4j.core.net.ssl,org.apache.logging.log4j.cor

 e.pattern,org.apache.logging.log4j.core.script,org.apache.logging.log

 4j.core.selector,org.apache.logging.log4j.core.time,org.apache.loggin

 g.log4j.core.tools.picocli,org.apache.logging.log4j.core.util,org.apa

 che.logging.log4j.core.util.datetime,org.apache.logging.log4j.message

 ;version="[2.17,3)",org.apache.logging.log4j.spi;version="[2.17,3)",o

 rg.apache.logging.log4j.status;version="[2.17,3)",org.apache.logging.

 log4j.util;version="[2.17,3)",org.codehaus.stax2;version="[4.2,5)";re

 solution:=optional,org.fusesource.jansi;version="[2.3,3)";resolution:

 =optional,org.jctools.queues;resolution:=optional,org.osgi.framework;

 version="[1.6,2)",org.osgi.framework.wiring;version="[1.0,2)",org.w3c

 .dom,org.xml.sax,org.zeromq;version="[0.4,1)";resolution:=optional,su

 n.reflect;resolution:=optional

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

Export-Package: org.apache.logging.log4j.core;uses:="org.apache.loggin

 g.log4j,org.apache.logging.log4j.core.config,org.apache.logging.log4j

 .core.impl,org.apache.logging.log4j.core.layout,org.apache.logging.lo

 g4j.core.time,org.apache.logging.log4j.message,org.apache.logging.log

 4j.spi,org.apache.logging.log4j.status,org.apache.logging.log4j.util"

 ;version="2.17.1",org.apache.logging.log4j.core.appender;uses:="org.a

 pache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.

 log4j.core.appender.rolling,org.apache.logging.log4j.core.async,org.a

 pache.logging.log4j.core.config,org.apache.logging.log4j.core.config.

 plugins,org.apache.logging.log4j.core.config.plugins.validation.const

 raints,org.apache.logging.log4j.core.filter,org.apache.logging.log4j.

 core.impl,org.apache.logging.log4j.core.layout,org.apache.logging.log

 4j.core.net,org.apache.logging.log4j.core.net.ssl,org.apache.logging.

 log4j.core.script,org.apache.logging.log4j.core.util,org.apache.loggi

 ng.log4j.status";version="2.17.1",org.apache.logging.log4j.core.appen

 der.db;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.

 core.appender,org.apache.logging.log4j.core.config,org.apache.logging

 .log4j.core.config.plugins,org.apache.logging.log4j.core.util";versio

 n="2.17.1",org.apache.logging.log4j.core.appender.db.jdbc;uses:="org.

 apache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging

 .log4j.core.appender.db,org.apache.logging.log4j.core.config,org.apac

 he.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.co

 nfig.plugins.validation.constraints,org.apache.logging.log4j.core.lay

 out,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.l

 ogging.log4j.core.appender.mom;uses:="javax.jms,org.apache.logging.lo

 g4j.core,org.apache.logging.log4j.core.appender,org.apache.logging.lo

 g4j.core.config,org.apache.logging.log4j.core.config.plugins,org.apac

 he.logging.log4j.core.net,org.apache.logging.log4j.core.util";version

 ="2.17.1",org.apache.logging.log4j.core.appender.mom.jeromq;uses:="or

 g.apache.logging.log4j.core,org.apache.logging.log4j.core.appender,or

 g.apache.logging.log4j.core.config,org.apache.logging.log4j.core.conf

 ig.plugins,org.apache.logging.log4j.core.config.plugins.validation.co

 nstraints,org.zeromq";version="2.17.1",org.apache.logging.log4j.core.

 appender.mom.kafka;uses:="org.apache.kafka.clients.producer,org.apach

 e.logging.log4j.core,org.apache.logging.log4j.core.appender,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.l

 ogging.log4j.core.appender.nosql;uses:="org.apache.logging.log4j.core

 ,org.apache.logging.log4j.core.appender,org.apache.logging.log4j.core

 .appender.db,org.apache.logging.log4j.core.config.plugins,org.apache.

 logging.log4j.core.util";version="2.17.1",org.apache.logging.log4j.co

 re.appender.rewrite;uses:="org.apache.logging.log4j,org.apache.loggin

 g.log4j.core,org.apache.logging.log4j.core.appender,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.config.plugins,org.

 apache.logging.log4j.core.util";version="2.17.1",org.apache.logging.l

 og4j.core.appender.rolling;uses:="org.apache.logging.log4j,org.apache

 .logging.log4j.core,org.apache.logging.log4j.core.appender,org.apache

 .logging.log4j.core.appender.rolling.action,org.apache.logging.log4j.

 core.config,org.apache.logging.log4j.core.config.plugins,org.apache.l

 ogging.log4j.core.lookup,org.apache.logging.log4j.core.util";version=

 "2.17.1",org.apache.logging.log4j.core.appender.rolling.action;uses:=

 "org.apache.logging.log4j,org.apache.logging.log4j.core.config,org.ap

 ache.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.

 lookup,org.apache.logging.log4j.core.script,org.apache.logging.log4j.

 core.util";version="2.17.1",org.apache.logging.log4j.core.appender.ro

 uting;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.c

 ore.appender,org.apache.logging.log4j.core.appender.rewrite,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins,org.apache.logging.log4j.core.script,org.apache.logging.log4j.cor

 e.util";version="2.17.1",org.apache.logging.log4j.core.async;uses:="c

 om.conversantmedia.util.concurrent,com.lmax.disruptor,org.apache.logg

 ing.log4j,org.apache.logging.log4j.core,org.apache.logging.log4j.core

 .appender,org.apache.logging.log4j.core.config,org.apache.logging.log

 4j.core.config.plugins,org.apache.logging.log4j.core.config.plugins.v

 alidation.constraints,org.apache.logging.log4j.core.impl,org.apache.l

 ogging.log4j.core.jmx,org.apache.logging.log4j.core.selector,org.apac

 he.logging.log4j.core.time,org.apache.logging.log4j.core.util,org.apa

 che.logging.log4j.message,org.apache.logging.log4j.util";version="2.1

 7.1",org.apache.logging.log4j.core.config;uses:="org.apache.logging.l

 og4j,org.apache.logging.log4j.core,org.apache.logging.log4j.core.asyn

 c,org.apache.logging.log4j.core.config.builder.api,org.apache.logging

 .log4j.core.config.plugins,org.apache.logging.log4j.core.config.plugi

 ns.util,org.apache.logging.log4j.core.config.plugins.validation.const

 raints,org.apache.logging.log4j.core.filter,org.apache.logging.log4j.

 core.impl,org.apache.logging.log4j.core.lookup,org.apache.logging.log

 4j.core.net,org.apache.logging.log4j.core.script,org.apache.logging.l

 og4j.core.util,org.apache.logging.log4j.message,org.apache.logging.lo

 g4j.util";version="2.17.1",org.apache.logging.log4j.core.config.arbit

 ers;uses:="org.apache.logging.log4j.core.config,org.apache.logging.lo

 g4j.core.config.plugins,org.apache.logging.log4j.core.util";version="

 2.17.1",org.apache.logging.log4j.core.config.builder.api;uses:="org.a

 pache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.

 log4j.core.config,org.apache.logging.log4j.core.config.builder.impl,o

 rg.apache.logging.log4j.core.util";version="2.17.1",org.apache.loggin

 g.log4j.core.config.builder.impl;uses:="javax.xml.transform,org.apach

 e.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.log4

 j.core.config,org.apache.logging.log4j.core.config.builder.api,org.ap

 ache.logging.log4j.core.config.plugins.util,org.apache.logging.log4j.

 core.config.status";version="2.17.1",org.apache.logging.log4j.core.co

 nfig.composite;uses:="org.apache.logging.log4j.core.config,org.apache

 .logging.log4j.core.config.plugins.util";version="2.17.1",org.apache.

 logging.log4j.core.config.json;uses:="com.fasterxml.jackson.databind,

 org.apache.logging.log4j.core,org.apache.logging.log4j.core.config,or

 g.apache.logging.log4j.core.config.plugins";version="2.17.1",org.apac

 he.logging.log4j.core.config.plugins;uses:="org.apache.logging.log4j.

 core.config.plugins.visitors";version="2.17.1",org.apache.logging.log

 4j.core.config.plugins.convert;uses:="org.apache.logging.log4j,org.ap

 ache.logging.log4j.core.appender.rolling.action,org.apache.logging.lo

 g4j.core.config.plugins,org.apache.logging.log4j.core.util";version="

 2.17.1",org.apache.logging.log4j.core.config.plugins.processor;uses:=

 "javax.annotation.processing,javax.lang.model,javax.lang.model.elemen

 t";version="2.17.1",org.apache.logging.log4j.core.config.plugins.util

 ;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.core.c

 onfig,org.apache.logging.log4j.core.config.plugins.processor,org.apac

 he.logging.log4j.core.util";version="2.17.1",org.apache.logging.log4j

 .core.config.plugins.validation;version="2.17.1",org.apache.logging.l

 og4j.core.config.plugins.validation.constraints;uses:="org.apache.log

 ging.log4j.core.config.plugins.validation,org.apache.logging.log4j.co

 re.config.plugins.validation.validators";version="2.17.1",org.apache.

 logging.log4j.core.config.plugins.validation.validators;uses:="org.ap

 ache.logging.log4j.core.config.plugins.validation,org.apache.logging.

 log4j.core.config.plugins.validation.constraints";version="2.17.1",or

 g.apache.logging.log4j.core.config.plugins.visitors;uses:="org.apache

 .logging.log4j,org.apache.logging.log4j.core,org.apache.logging.log4j

 .core.config,org.apache.logging.log4j.core.config.plugins,org.apache.

 logging.log4j.core.lookup";version="2.17.1",org.apache.logging.log4j.

 core.config.properties;uses:="org.apache.logging.log4j.core,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.buil

 der.api,org.apache.logging.log4j.core.config.builder.impl,org.apache.

 logging.log4j.core.config.plugins,org.apache.logging.log4j.core.util"

 ;version="2.17.1",org.apache.logging.log4j.core.config.status;uses:="

 org.apache.logging.log4j";version="2.17.1",org.apache.logging.log4j.c

 ore.config.xml;uses:="org.apache.logging.log4j.core,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.config.plugins";ver

 sion="2.17.1",org.apache.logging.log4j.core.config.yaml;uses:="com.fa

 sterxml.jackson.databind,org.apache.logging.log4j.core,org.apache.log

 ging.log4j.core.config,org.apache.logging.log4j.core.config.json,org.

 apache.logging.log4j.core.config.plugins";version="2.17.1",org.apache

 .logging.log4j.core.filter;uses:="org.apache.logging.log4j,org.apache

 .logging.log4j.core,org.apache.logging.log4j.core.config,org.apache.l

 ogging.log4j.core.config.plugins,org.apache.logging.log4j.core.script

 ,org.apache.logging.log4j.core.util,org.apache.logging.log4j.message,

 org.apache.logging.log4j.util";version="2.17.1",org.apache.logging.lo

 g4j.core.impl;uses:="org.apache.logging.log4j,org.apache.logging.log4

 j.core,org.apache.logging.log4j.core.config,org.apache.logging.log4j.

 core.pattern,org.apache.logging.log4j.core.selector,org.apache.loggin

 g.log4j.core.time,org.apache.logging.log4j.core.util,org.apache.loggi

 ng.log4j.message,org.apache.logging.log4j.spi,org.apache.logging.log4

 j.util";version="2.17.1",org.apache.logging.log4j.core.jackson;uses:=

 "com.fasterxml.jackson.core,com.fasterxml.jackson.databind,com.faster

 xml.jackson.databind.deser.std,com.fasterxml.jackson.databind.ser.std

 ,com.fasterxml.jackson.dataformat.xml,com.fasterxml.jackson.dataforma

 t.yaml,org.apache.logging.log4j.message,org.apache.logging.log4j.util

 ";version="2.17.1",org.apache.logging.log4j.core.jmx;uses:="com.lmax.

 disruptor,javax.management,org.apache.logging.log4j,org.apache.loggin

 g.log4j.core,org.apache.logging.log4j.core.appender,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.selector,org.apache

 .logging.log4j.status";version="2.17.1",org.apache.logging.log4j.core

 .layout;uses:="com.fasterxml.jackson.annotation,com.fasterxml.jackson

 .core,com.fasterxml.jackson.databind,com.fasterxml.jackson.dataformat

 .xml.annotation,org.apache.commons.csv,org.apache.logging.log4j,org.a

 pache.logging.log4j.core,org.apache.logging.log4j.core.config,org.apa

 che.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.i

 mpl,org.apache.logging.log4j.core.net,org.apache.logging.log4j.core.p

 attern,org.apache.logging.log4j.core.script,org.apache.logging.log4j.

 core.util,org.apache.logging.log4j.message";version="2.17.1",org.apac

 he.logging.log4j.core.layout.internal;version="2.17.1",org.apache.log

 ging.log4j.core.lookup;uses:="org.apache.logging.log4j.core,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins";version="2.17.1",org.apache.logging.log4j.core.message;uses:="or

 g.apache.logging.log4j.message";version="2.17.1",org.apache.logging.l

 og4j.core.net;uses:="javax.mail,javax.mail.internet,javax.naming,org.

 apache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging

 .log4j.core.appender,org.apache.logging.log4j.core.config,org.apache.

 logging.log4j.core.config.plugins,org.apache.logging.log4j.core.net.s

 sl,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.lo

 gging.log4j.core.net.ssl;uses:="javax.net.ssl,org.apache.logging.log4

 j.core.config.plugins,org.apache.logging.log4j.status";version="2.17.

 1",org.apache.logging.log4j.core.osgi;uses:="org.apache.logging.log4j

 .core,org.apache.logging.log4j.core.selector,org.osgi.framework";vers

 ion="2.17.1",org.apache.logging.log4j.core.parser;uses:="org.apache.l

 ogging.log4j.core";version="2.17.1",org.apache.logging.log4j.core.pat

 tern;uses:="org.apache.logging.log4j,org.apache.logging.log4j.core,or

 g.apache.logging.log4j.core.config,org.apache.logging.log4j.core.conf

 ig.plugins,org.apache.logging.log4j.core.impl,org.apache.logging.log4

 j.core.time,org.apache.logging.log4j.message,org.fusesource.jansi";ve

 rsion="2.17.1",org.apache.logging.log4j.core.script;uses:="javax.scri

 pt,org.apache.logging.log4j,org.apache.logging.log4j.core.config,org.

 apache.logging.log4j.core.config.plugins,org.apache.logging.log4j.cor

 e.util";version="2.17.1",org.apache.logging.log4j.core.selector;uses:

 ="org.apache.logging.log4j.core,org.apache.logging.log4j.spi,org.apac

 he.logging.log4j.status";version="2.17.1",org.apache.logging.log4j.co

 re.time;uses:="org.apache.logging.log4j.core.util,org.apache.logging.

 log4j.util";version="2.17.1",org.apache.logging.log4j.core.time.inter

 nal;uses:="org.apache.logging.log4j.core.time";version="2.17.1",org.a

 pache.logging.log4j.core.tools;version="2.17.1",org.apache.logging.lo

 g4j.core.tools.picocli;version="2.17.1",org.apache.logging.log4j.core

 .util;uses:="javax.crypto,javax.naming,org.apache.logging.log4j,org.a

 pache.logging.log4j.core,org.apache.logging.log4j.core.config,org.apa

 che.logging.log4j.core.config.plugins,org.apache.logging.log4j.util";

 version="2.17.1",org.apache.logging.log4j.core.util.datetime;uses:="o

 rg.apache.logging.log4j.core.time";version="2.17.1"

Bundle-Name: Apache Log4j Core

Log4jReleaseVersionJava6: 2.3.1

Multi-Release: true

Bundle-Activator: org.apache.logging.log4j.core.osgi.Activator

Log4jReleaseVersionJava7: 2.12.3

Log4jReleaseVersion: 2.17.1

Implementation-Title: Apache Log4j Core

Bundle-Description: The Apache Log4j Implementation

Automatic-Module-Name: org.apache.logging.log4j.core

Implementation-Version: 2.17.1

Specification-Vendor: The Apache Software Foundation

Bundle-ManifestVersion: 2

Bundle-Vendor: The Apache Software Foundation

Tool: Bnd-3.5.0.201709291849

Implementation-Vendor: The Apache Software Foundation

Bundle-Version: 2.17.1

X-Compile-Target-JDK: 1.8

X-Compile-Source-JDK: 1.8

Created-By: Apache Maven Bundle Plugin

Build-Jdk: 1.8.0_312

Specification-Version: 2.17.1

Implementation-URL: https://logging.apache.org/log4j/2.x/log4j-core/

Log4jReleaseKey: D7C92B70FA1C814D

Log4j-levels.xsd

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy$Mode.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized enum MapRewritePolicy$Mode {
 public static final MapRewritePolicy$Mode Add;
 public static final MapRewritePolicy$Mode Update;
 public static MapRewritePolicy$Mode[] values();
 public static MapRewritePolicy$Mode valueOf(String);
 private void MapRewritePolicy$Mode(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rewrite/RewriteAppender.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class RewriteAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final java.util.concurrent.ConcurrentMap appenders;
 private final RewritePolicy rewritePolicy;
 private final org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private void RewriteAppender(String, org.apache.logging.log4j.core.Filter, boolean, org.apache.logging.log4j.core.config.AppenderRef[], RewritePolicy, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public static RewriteAppender createAppender(String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Configuration, RewritePolicy, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class OutputStreamAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean follow;
 private final boolean ignoreExceptions;
 private java.io.OutputStream target;
 public void OutputStreamAppender$Builder();
 public OutputStreamAppender build();
 public OutputStreamAppender$Builder setFollow(boolean);
 public OutputStreamAppender$Builder setTarget(java.io.OutputStream);
}

org/apache/logging/log4j/core/appender/rolling/RolloverListener.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverListener {
 public abstract void rolloverTriggered(String);
 public abstract void rolloverComplete(String);
}

org/apache/logging/log4j/core/appender/rolling/NoOpTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class NoOpTriggeringPolicy extends AbstractTriggeringPolicy {
 public static final NoOpTriggeringPolicy INSTANCE;
 public void NoOpTriggeringPolicy();
 public static NoOpTriggeringPolicy createPolicy();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$AsyncAction.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$AsyncAction extends action.AbstractAction {
 private final action.Action action;
 private final RollingFileManager manager;
 public void RollingFileManager$AsyncAction(action.Action, RollingFileManager);
 public boolean execute() throws java.io.IOException;
 public void close();
 public boolean isComplete();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/SortingVisitor.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class SortingVisitor extends java.nio.file.SimpleFileVisitor {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final PathSorter sorter;
 private final java.util.List collected;
 public void SortingVisitor(PathSorter);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
 public java.nio.file.FileVisitResult visitFileFailed(java.nio.file.Path, java.io.IOException) throws java.io.IOException;
 public java.util.List getSortedPaths();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class RollingFileManager extends org.apache.logging.log4j.core.appender.FileManager {
 private static RollingFileManager$RollingFileManagerFactory factory;
 private static final int MAX_TRIES = 3;
 private static final int MIN_DURATION = 100;
 private static final java.nio.file.attribute.FileTime EPOCH;
 protected long size;
 private long initialTime;
 private volatile PatternProcessor patternProcessor;
 private final java.util.concurrent.Semaphore semaphore;
 private final org.apache.logging.log4j.core.util.Log4jThreadFactory threadFactory;
 private volatile TriggeringPolicy triggeringPolicy;
 private volatile RolloverStrategy rolloverStrategy;
 private volatile boolean renameEmptyFiles;
 private volatile boolean initialized;
 private volatile String fileName;
 private final boolean directWrite;
 private final java.util.concurrent.CopyOnWriteArrayList rolloverListeners;
 private final java.util.concurrent.ExecutorService asyncExecutor;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater triggeringPolicyUpdater;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater rolloverStrategyUpdater;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater patternProcessorUpdater;
 protected void RollingFileManager(String, String, java.io.OutputStream, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean);
 protected void RollingFileManager(String, String, java.io.OutputStream, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void RollingFileManager(org.apache.logging.log4j.core.LoggerContext, String, String, java.io.OutputStream, boolean, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void RollingFileManager(org.apache.logging.log4j.core.LoggerContext, String, String, java.io.OutputStream, boolean, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean, java.nio.ByteBuffer);
 public void initialize();
 public static RollingFileManager getFileManager(String, String, boolean, boolean, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean, boolean, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public void addRolloverListener(RolloverListener);
 public void removeRolloverListener(RolloverListener);
 public String getFileName();
 protected void createParentDir(java.io.File);
 public boolean isDirectWrite();
 public FileExtension getFileExtension();
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 public boolean isRenameEmptyFiles();
 public void setRenameEmptyFiles(boolean);
 public long getFileSize();
 public long getFileTime();
 public synchronized void checkRollover(org.apache.logging.log4j.core.LogEvent);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public synchronized void rollover(java.util.Date, java.util.Date);
 public synchronized void rollover();
 protected void createFileAfterRollover() throws java.io.IOException;
 public PatternProcessor getPatternProcessor();
 public void setTriggeringPolicy(TriggeringPolicy);
 public void setRolloverStrategy(RolloverStrategy);
 public void setPatternProcessor(PatternProcessor);
 public TriggeringPolicy getTriggeringPolicy();
 java.util.concurrent.Semaphore getSemaphore();
 public RolloverStrategy getRolloverStrategy();
 private boolean rollover(RolloverStrategy);
 public void updateData(Object);
 private static long initialFileTime(java.io.File);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/OutputStreamAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class OutputStreamAppender extends AbstractOutputStreamAppender {
 private static OutputStreamAppender$OutputStreamManagerFactory factory;
 public static OutputStreamAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, java.io.OutputStream, String, boolean, boolean);
 private static OutputStreamManager getManager(java.io.OutputStream, boolean, org.apache.logging.log4j.core.Layout);
 public static OutputStreamAppender$Builder newBuilder();
 private void OutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/WriterAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$1 {
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RandomAccessFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RandomAccessFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, RandomAccessFileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getFileName();
 public int getBufferSize();
 public static RandomAccessFileAppender createAppender(String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RandomAccessFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/db/DbAppenderLoggingException.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class DbAppenderLoggingException extends org.apache.logging.log4j.core.appender.AppenderLoggingException {
 private static final long serialVersionUID = 1;
 public transient void DbAppenderLoggingException(String, Object[]);
 public void DbAppenderLoggingException(String, Throwable);
 public transient void DbAppenderLoggingException(Throwable, String, Object[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class JdbcDatabaseManager$1 {
}

org/apache/logging/log4j/core/appender/ConsoleAppender$SystemErrStream.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$SystemErrStream extends java.io.OutputStream {
 public void ConsoleAppender$SystemErrStream();
 public void close();
 public void flush();
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int);
}

org/apache/logging/log4j/core/appender/routing/Routes$Builder.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class Routes$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String pattern;
 private org.apache.logging.log4j.core.script.AbstractScript patternScript;
 private Route[] routes;
 public void Routes$Builder();
 public Routes build();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public String getPattern();
 public org.apache.logging.log4j.core.script.AbstractScript getPatternScript();
 public Route[] getRoutes();
 public Routes$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public Routes$Builder withPattern(String);
 public Routes$Builder withPatternScript(org.apache.logging.log4j.core.script.AbstractScript);
 public Routes$Builder withRoutes(Route[]);
}

org/apache/logging/log4j/core/appender/routing/Route.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class Route {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.Node node;
 private final String appenderRef;
 private final String key;
 private void Route(org.apache.logging.log4j.core.config.Node, String, String);
 public org.apache.logging.log4j.core.config.Node getNode();
 public String getAppenderRef();
 public String getKey();
 public String toString();
 public static Route createRoute(String, String, org.apache.logging.log4j.core.config.Node);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SmtpAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class SmtpAppender$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$1.class

package org.apache.logging.log4j.core.appender.nosql;
synchronized class NoSqlDatabaseManager$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$NoSQLDatabaseManagerFactory.class

package org.apache.logging.log4j.core.appender.nosql;
final synchronized class NoSqlDatabaseManager$NoSQLDatabaseManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void NoSqlDatabaseManager$NoSQLDatabaseManagerFactory();
 public NoSqlDatabaseManager createManager(String, NoSqlDatabaseManager$FactoryData);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$KafkaManagerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$KafkaManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void KafkaManager$KafkaManagerFactory();
 public KafkaManager createManager(String, KafkaManager$FactoryData);
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$1.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$1 {
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper$1.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyHelper$1 {
}

org/apache/logging/log4j/core/impl/ReusableLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ReusableLogEventFactory implements LogEventFactory, LocationAwareLogEventFactory {
 private static final org.apache.logging.log4j.core.async.ThreadNameCachingStrategy THREAD_NAME_CACHING_STRATEGY;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final ThreadLocal mutableLogEventThreadLocal;
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 public void ReusableLogEventFactory();
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 private static MutableLogEvent getOrCreateMutableLogEvent();
 private static MutableLogEvent createInstance(MutableLogEvent);
 public static void release(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/ClassLoaderContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class ClassLoaderContextSelector implements ContextSelector, org.apache.logging.log4j.spi.LoggerContextShutdownAware {
 private static final java.util.concurrent.atomic.AtomicReference DEFAULT_CONTEXT;
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 protected static final java.util.concurrent.ConcurrentMap CONTEXT_MAP;
 public void ClassLoaderContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public void contextShutdown(org.apache.logging.log4j.spi.LoggerContext);
 public boolean hasContext(String, ClassLoader, boolean);
 private org.apache.logging.log4j.core.LoggerContext findContext(ClassLoader);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 private org.apache.logging.log4j.core.LoggerContext locateContext(ClassLoader, java.util.Map$Entry, java.net.URI);
 protected org.apache.logging.log4j.core.LoggerContext createContext(String, java.net.URI);
 protected String toContextMapKey(ClassLoader);
 protected org.apache.logging.log4j.core.LoggerContext getDefault();
 protected String defaultContextName();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunAll.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunAll implements CommandLine$IParseResultHandler {
 public void CommandLine$RunAll();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$PositionalParametersSorter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$PositionalParametersSorter implements java.util.Comparator {
 private void CommandLine$PositionalParametersSorter();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Range.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Range implements Comparable {
 public final int min;
 public final int max;
 public final boolean isVariable;
 private final boolean isUnspecified;
 private final String originalValue;
 public void CommandLine$Range(int, int, boolean, boolean, String);
 public static CommandLine$Range optionArity(reflect.Field);
 public static CommandLine$Range parameterArity(reflect.Field);
 public static CommandLine$Range parameterIndex(reflect.Field);
 static CommandLine$Range adjustForType(CommandLine$Range, reflect.Field);
 public static CommandLine$Range defaultArity(reflect.Field);
 public static CommandLine$Range defaultArity(Class);
 private int size();
 static CommandLine$Range parameterCapacity(reflect.Field);
 public static CommandLine$Range valueOf(String);
 private static int parseInt(String, int);
 public CommandLine$Range min(int);
 public CommandLine$Range max(int);
 public boolean contains(int);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public int compareTo(CommandLine$Range);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$IParseResultHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$IParseResultHandler {
 public abstract java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi) throws CommandLine$ExecutionException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunFirst.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunFirst implements CommandLine$IParseResultHandler {
 public void CommandLine$RunFirst();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/net/Protocol.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Protocol {
 public static final Protocol TCP;
 public static final Protocol SSL;
 public static final Protocol UDP;
 public static Protocol[] values();
 public static Protocol valueOf(String);
 private void Protocol(String, int);
 public boolean isEqual(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/StoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class StoreConfiguration {
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private String location;
 private PasswordProvider passwordProvider;
 public void StoreConfiguration(String, PasswordProvider);
 public void StoreConfiguration(String, char[]);
 public void StoreConfiguration(String, String);
 public void clearSecrets();
 public String getLocation();
 public void setLocation(String);
 public String getPassword();
 public char[] getPasswordAsCharArray();
 public void setPassword(char[]);
 public void setPassword(String);
 protected Object load() throws StoreConfigurationException;
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/TrustStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class TrustStoreConfiguration extends AbstractKeyStoreConfiguration {
 private final String trustManagerFactoryAlgorithm;
 public void TrustStoreConfiguration(String, PasswordProvider, String, String) throws StoreConfigurationException;
 public void TrustStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public void TrustStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, char[], String, String, String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public javax.net.ssl.TrustManagerFactory initTrustManagerFactory() throws java.security.NoSuchAlgorithmException, java.security.KeyStoreException;
 public int hashCode();
 public boolean equals(Object);
 public String getTrustManagerFactoryAlgorithm();
}

org/apache/logging/log4j/core/net/DatagramOutputStream.class

package org.apache.logging.log4j.core.net;
public synchronized class DatagramOutputStream extends java.io.OutputStream {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final int SHIFT_1 = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_3 = 24;
 private java.net.DatagramSocket datagramSocket;
 private final java.net.InetAddress inetAddress;
 private final int port;
 private byte[] data;
 private final byte[] header;
 private final byte[] footer;
 public void DatagramOutputStream(String, int, byte[], byte[]);
 public synchronized void write(byte[], int, int) throws java.io.IOException;
 public synchronized void write(int) throws java.io.IOException;
 public synchronized void write(byte[]) throws java.io.IOException;
 public synchronized void flush() throws java.io.IOException;
 public synchronized void close() throws java.io.IOException;
 private void copy(byte[], int, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Rfc1349TrafficClass.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Rfc1349TrafficClass {
 public static final Rfc1349TrafficClass IPTOS_NORMAL;
 public static final Rfc1349TrafficClass IPTOS_LOWCOST;
 public static final Rfc1349TrafficClass IPTOS_LOWDELAY;
 public static final Rfc1349TrafficClass IPTOS_RELIABILITY;
 public static final Rfc1349TrafficClass IPTOS_THROUGHPUT;
 private final int trafficClass;
 public static Rfc1349TrafficClass[] values();
 public static Rfc1349TrafficClass valueOf(String);
 private void Rfc1349TrafficClass(String, int, int);
 public int value();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CloseShieldOutputStream.class

package org.apache.logging.log4j.core.util;
public synchronized class CloseShieldOutputStream extends java.io.OutputStream {
 private final java.io.OutputStream delegate;
 public void CloseShieldOutputStream(java.io.OutputStream);
 public void close();
 public void flush() throws java.io.IOException;
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/BasicAuthorizationProvider.class

package org.apache.logging.log4j.core.util;
public synchronized class BasicAuthorizationProvider implements AuthorizationProvider {
 private static final String[] PREFIXES;
 private static final String AUTH_USER_NAME = username;
 private static final String AUTH_PASSWORD = password;
 private static final String AUTH_PASSWORD_DECRYPTOR = passwordDecryptor;
 public static final String CONFIG_USER_NAME = log4j2.configurationUserName;
 public static final String CONFIG_PASSWORD = log4j2.configurationPassword;
 public static final String PASSWORD_DECRYPTOR = log4j2.passwordDecryptor;
 private static org.apache.logging.log4j.Logger LOGGER;
 private String authString;
 public void BasicAuthorizationProvider(org.apache.logging.log4j.util.PropertiesUtil);
 public void addAuthorization(java.net.URLConnection);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Assert.class

package org.apache.logging.log4j.core.util;
public final synchronized class Assert {
 private void Assert();
 public static boolean isEmpty(Object);
 public static boolean isNonEmpty(Object);
 public static Object requireNonEmpty(Object);
 public static Object requireNonEmpty(Object, String);
 public static int valueIsAtLeast(int, int);
}

org/apache/logging/log4j/core/util/datetime/FormatCache$MultipartKey.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FormatCache$MultipartKey {
 private final Object[] keys;
 private int hashCode;
 public transient void FormatCache$MultipartKey(Object[]);
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$PatternStrategy.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FastDateParser$PatternStrategy extends FastDateParser$Strategy {
 private java.util.regex.Pattern pattern;
 private void FastDateParser$PatternStrategy();
 void createPattern(StringBuilder);
 void createPattern(String);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
 abstract void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$WeekYear.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$WeekYear implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$WeekYear(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwelveHourField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwelveHourField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$TwelveHourField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$CharacterLiteral.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$CharacterLiteral implements FastDatePrinter$Rule {
 private final char mValue;
 void FastDatePrinter$CharacterLiteral(char);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/CronExpression.class

package org.apache.logging.log4j.core.util;
public final synchronized class CronExpression {
 protected static final int SECOND = 0;
 protected static final int MINUTE = 1;
 protected static final int HOUR = 2;
 protected static final int DAY_OF_MONTH = 3;
 protected static final int MONTH = 4;
 protected static final int DAY_OF_WEEK = 5;
 protected static final int YEAR = 6;
 protected static final int ALL_SPEC_INT = 99;
 protected static final int NO_SPEC_INT = 98;
 protected static final Integer ALL_SPEC;
 protected static final Integer NO_SPEC;
 protected static final java.util.Map monthMap;
 protected static final java.util.Map dayMap;
 private final String cronExpression;
 private java.util.TimeZone timeZone;
 protected transient java.util.TreeSet seconds;
 protected transient java.util.TreeSet minutes;
 protected transient java.util.TreeSet hours;
 protected transient java.util.TreeSet daysOfMonth;
 protected transient java.util.TreeSet months;
 protected transient java.util.TreeSet daysOfWeek;
 protected transient java.util.TreeSet years;
 protected transient boolean lastdayOfWeek;
 protected transient int nthdayOfWeek;
 protected transient boolean lastdayOfMonth;
 protected transient boolean nearestWeekday;
 protected transient int lastdayOffset;
 protected transient boolean expressionParsed;
 public static final int MAX_YEAR;
 public static final java.util.Calendar MIN_CAL;
 public static final java.util.Date MIN_DATE;
 public void CronExpression(String) throws java.text.ParseException;
 public boolean isSatisfiedBy(java.util.Date);
 public java.util.Date getNextValidTimeAfter(java.util.Date);
 public java.util.Date getNextInvalidTimeAfter(java.util.Date);
 public java.util.TimeZone getTimeZone();
 public void setTimeZone(java.util.TimeZone);
 public String toString();
 public static boolean isValidExpression(String);
 public static void validateExpression(String) throws java.text.ParseException;
 protected void buildExpression(String) throws java.text.ParseException;
 protected int storeExpressionVals(int, String, int) throws java.text.ParseException;
 protected int checkNext(int, String, int, int) throws java.text.ParseException;
 public String getCronExpression();
 public String getExpressionSummary();
 protected String getExpressionSetSummary(java.util.Set);
 protected String getExpressionSetSummary(java.util.ArrayList);
 protected int skipWhiteSpace(int, String);
 protected int findNextWhiteSpace(int, String);
 protected void addToSet(int, int, int, int) throws java.text.ParseException;
 java.util.TreeSet getSet(int);
 protected CronExpression$ValueSet getValue(int, String, int);
 protected int getNumericValue(String, int);
 protected int getMonthNumber(String);
 protected int getDayOfWeekNumber(String);
 public java.util.Date getTimeAfter(java.util.Date);
 protected void setCalendarHour(java.util.Calendar, int);
 protected java.util.Date getTimeBefore(java.util.Date);
 public java.util.Date getPrevFireTime(java.util.Date);
 private long findMinIncrement();
 private int minInSet(java.util.TreeSet);
 public java.util.Date getFinalFireTime();
 protected boolean isLeapYear(int);
 protected int getLastDayOfMonth(int, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/IOUtils.class

package org.apache.logging.log4j.core.util;
public synchronized class IOUtils {
 private static final int DEFAULT_BUFFER_SIZE = 4096;
 public static final int EOF = -1;
 public void IOUtils();
 public static int copy(java.io.Reader, java.io.Writer) throws java.io.IOException;
 public static long copyLarge(java.io.Reader, java.io.Writer) throws java.io.IOException;
 public static long copyLarge(java.io.Reader, java.io.Writer, char[]) throws java.io.IOException;
 public static String toString(java.io.Reader) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/NetUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class NetUtils {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String UNKNOWN_LOCALHOST = UNKNOWN_LOCALHOST;
 private void NetUtils();
 public static String getLocalHostname();
 public static byte[] getMacAddress();
 public static String getMacAddressString();
 private static boolean isUpAndNotLoopback(java.net.NetworkInterface) throws java.net.SocketException;
 public static java.net.URI toURI(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/FileWatcher.class

package org.apache.logging.log4j.core.util;
public abstract interface FileWatcher {
 public abstract void fileModified(java.io.File);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginConfigurationVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginConfigurationVisitor extends AbstractPluginVisitor {
 public void PluginConfigurationVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginAttributeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginAttributeVisitor extends AbstractPluginVisitor {
 public void PluginAttributeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private Object findDefaultValue(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/config/plugins/util/PluginRegistry$PluginTest.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginRegistry$PluginTest implements ResolverUtil$Test {
 public void PluginRegistry$PluginTest();
 public boolean matches(Class);
 public String toString();
 public boolean matches(java.net.URI);
 public boolean doesMatchClass();
 public boolean doesMatchResource();
}

org/apache/logging/log4j/core/config/plugins/PluginVisitorStrategy.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginVisitorStrategy extends annotation.Annotation {
 public abstract Class value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$PathConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$PathConverter implements TypeConverter {
 public void TypeConverters$PathConverter();
 public java.nio.file.Path convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$DoubleConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$DoubleConverter implements TypeConverter {
 public void TypeConverters$DoubleConverter();
 public Double convert(String);
}

org/apache/logging/log4j/core/config/ConfigurationScheduler$CronRunnable.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationScheduler$CronRunnable implements Runnable {
 private final org.apache.logging.log4j.core.util.CronExpression cronExpression;
 private final Runnable runnable;
 private CronScheduledFuture scheduledFuture;
 public void ConfigurationScheduler$CronRunnable(ConfigurationScheduler, Runnable, org.apache.logging.log4j.core.util.CronExpression);
 public void setScheduledFuture(CronScheduledFuture);
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/config/ConfigurationSource.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationSource {
 public static final ConfigurationSource NULL_SOURCE;
 public static final ConfigurationSource COMPOSITE_SOURCE;
 private static final String HTTPS = https;
 private final java.io.File file;
 private final java.net.URL url;
 private final String location;
 private final java.io.InputStream stream;
 private volatile byte[] data;
 private volatile org.apache.logging.log4j.core.util.Source source;
 private final long lastModified;
 private volatile long modifiedMillis;
 public void ConfigurationSource(java.io.InputStream, java.io.File);
 public void ConfigurationSource(java.io.InputStream, java.net.URL);
 public void ConfigurationSource(java.io.InputStream, java.net.URL, long);
 public void ConfigurationSource(java.io.InputStream) throws java.io.IOException;
 public void ConfigurationSource(org.apache.logging.log4j.core.util.Source, byte[], long) throws java.io.IOException;
 private void ConfigurationSource(byte[], java.net.URL, long);
 private static byte[] toByteArray(java.io.InputStream) throws java.io.IOException;
 public java.io.File getFile();
 public java.net.URL getURL();
 public void setSource(org.apache.logging.log4j.core.util.Source);
 public void setData(byte[]);
 public void setModifiedMillis(long);
 public java.net.URI getURI();
 public long getLastModified();
 public String getLocation();
 public java.io.InputStream getInputStream();
 public ConfigurationSource resetInputStream() throws java.io.IOException;
 public String toString();
 public static ConfigurationSource fromUri(java.net.URI);
 public static ConfigurationSource fromResource(String, ClassLoader);
 private static ConfigurationSource getConfigurationSource(java.net.URL);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration.class

package org.apache.logging.log4j.core.config.xml;
public synchronized class XmlConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 private static final String XINCLUDE_FIXUP_LANGUAGE = http://apache.org/xml/features/xinclude/fixup-language;
 private static final String XINCLUDE_FIXUP_BASE_URIS = http://apache.org/xml/features/xinclude/fixup-base-uris;
 private static final String[] VERBOSE_CLASSES;
 private static final String LOG4J_XSD = Log4j-config.xsd;
 private final java.util.List status;
 private org.w3c.dom.Element rootElement;
 private boolean strict;
 private String schemaResource;
 public void XmlConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 static javax.xml.parsers.DocumentBuilder newDocumentBuilder(boolean) throws javax.xml.parsers.ParserConfigurationException;
 private static void disableDtdProcessing(javax.xml.parsers.DocumentBuilderFactory);
 private static void setFeature(javax.xml.parsers.DocumentBuilderFactory, String, boolean);
 private static void enableXInclude(javax.xml.parsers.DocumentBuilderFactory);
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private void constructHierarchy(org.apache.logging.log4j.core.config.Node, org.w3c.dom.Element);
 private String getType(org.w3c.dom.Element);
 private java.util.Map processAttributes(org.apache.logging.log4j.core.config.Node, org.w3c.dom.Element);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/DefaultReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private final LoggerConfig loggerConfig;
 public void DefaultReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/AwaitUnconditionallyReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class AwaitUnconditionallyReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private static final long DEFAULT_SLEEP_MILLIS = 5000;
 private static final long SLEEP_MILLIS;
 private final LoggerConfig loggerConfig;
 public void AwaitUnconditionallyReliabilityStrategy(LoggerConfig);
 private static long sleepMillis();
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/yaml/YamlConfiguration.class

package org.apache.logging.log4j.core.config.yaml;
public synchronized class YamlConfiguration extends org.apache.logging.log4j.core.config.json.JsonConfiguration {
 public void YamlConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 protected com.fasterxml.jackson.databind.ObjectMapper getObjectMapper();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
}

org/apache/logging/log4j/core/config/LoggerConfig.class

package org.apache.logging.log4j.core.config;
public synchronized class LoggerConfig extends org.apache.logging.log4j.core.filter.AbstractFilterable implements org.apache.logging.log4j.core.impl.LocationAware {
 public static final String ROOT = root;
 private static org.apache.logging.log4j.core.impl.LogEventFactory LOG_EVENT_FACTORY;
 private java.util.List appenderRefs;
 private final AppenderControlArraySet appenders;
 private final String name;
 private org.apache.logging.log4j.core.impl.LogEventFactory logEventFactory;
 private org.apache.logging.log4j.Level level;
 private boolean additive;
 private boolean includeLocation;
 private LoggerConfig parent;
 private java.util.Map propertiesMap;
 private final java.util.List properties;
 private final boolean propertiesRequireLookup;
 private final Configuration config;
 private final ReliabilityStrategy reliabilityStrategy;
 public void LoggerConfig();
 public void LoggerConfig(String, org.apache.logging.log4j.Level, boolean);
 protected void LoggerConfig(String, java.util.List, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.Level, boolean, Property[], Configuration, boolean);
 private static boolean containsPropertyRequiringLookup(Property[]);
 public org.apache.logging.log4j.core.Filter getFilter();
 public String getName();
 public void setParent(LoggerConfig);
 public LoggerConfig getParent();
 public void addAppender(org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public void removeAppender(String);
 public java.util.Map getAppenders();
 protected void clearAppenders();
 private void cleanupFilter(AppenderControl);
 public java.util.List getAppenderRefs();
 public void setLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.core.impl.LogEventFactory getLogEventFactory();
 public void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
 public boolean isAdditive();
 public void setAdditive(boolean);
 public boolean isIncludeLocation();
 public java.util.Map getProperties();
 public java.util.List getPropertyList();
 public boolean isPropertiesRequireLookup();
 public void log(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement location(String);
 public void log(String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private java.util.List getProperties(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private java.util.List getPropertiesWithLookups(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, java.util.List);
 public void log(org.apache.logging.log4j.core.LogEvent);
 protected void log(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 public ReliabilityStrategy getReliabilityStrategy();
 private void processLogEvent(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 public boolean requiresLocation();
 private void logParent(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 protected void callAppenders(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
 public static LoggerConfig createLogger(boolean, org.apache.logging.log4j.Level, String, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
 protected static boolean includeLocation(String);
 protected static boolean includeLocation(String, Configuration);
 protected final boolean hasAppenders();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/BuiltConfiguration.class

package org.apache.logging.log4j.core.config.builder.impl;
public synchronized class BuiltConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration {
 private static final String[] VERBOSE_CLASSES;
 private final org.apache.logging.log4j.core.config.status.StatusConfiguration statusConfig;
 protected org.apache.logging.log4j.core.config.builder.api.Component rootComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component loggersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component appendersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component filtersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component propertiesComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component customLevelsComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component scriptsComponent;
 private String contentType;
 public void BuiltConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource, org.apache.logging.log4j.core.config.builder.api.Component);
 public void setup();
 public String getContentType();
 public void setContentType(String);
 public void createAdvertiser(String, org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.config.status.StatusConfiguration getStatusConfiguration();
 public void setPluginPackages(String);
 public void setShutdownHook(String);
 public void setShutdownTimeoutMillis(long);
 public void setMonitorInterval(int);
 public org.apache.logging.log4j.core.config.plugins.util.PluginManager getPluginManager();
 protected org.apache.logging.log4j.core.config.Node convertToNode(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.builder.api.Component);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultComponentBuilder implements org.apache.logging.log4j.core.config.builder.api.ComponentBuilder {
 private final org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder builder;
 private final String type;
 private final java.util.Map attributes;
 private final java.util.List components;
 private final String name;
 private final String value;
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String);
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String, String);
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, Enum);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, int);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, Object);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addComponent(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.Component build();
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder getBuilder();
 public String getName();
 protected org.apache.logging.log4j.core.config.builder.api.ComponentBuilder put(String, String);
}

org/apache/logging/log4j/core/LoggerContext$ThreadContextDataTask.class

package org.apache.logging.log4j.core;
synchronized class LoggerContext$ThreadContextDataTask implements Runnable {
 private void LoggerContext$ThreadContextDataTask(LoggerContext);
 public void run();
}

org/apache/logging/log4j/core/jmx/ContextSelectorAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface ContextSelectorAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=ContextSelector;
 public abstract String getImplementationClassName();
}

org/apache/logging/log4j/core/layout/Rfc5424Layout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class Rfc5424Layout extends AbstractStringLayout {
 public static final int DEFAULT_ENTERPRISE_NUMBER = 18060;
 public static final String DEFAULT_ID = Audit;
 public static final java.util.regex.Pattern NEWLINE_PATTERN;
 public static final java.util.regex.Pattern PARAM_VALUE_ESCAPE_PATTERN;
 public static final String DEFAULT_MDCID = mdc;
 private static final String LF =
;
 private static final int TWO_DIGITS = 10;
 private static final int THREE_DIGITS = 100;
 private static final int MILLIS_PER_MINUTE = 60000;
 private static final int MINUTES_PER_HOUR = 60;
 private static final String COMPONENT_KEY = RFC5424-Converter;
 private final org.apache.logging.log4j.core.net.Facility facility;
 private final String defaultId;
 private final int enterpriseNumber;
 private final boolean includeMdc;
 private final String mdcId;
 private final org.apache.logging.log4j.message.StructuredDataId mdcSdId;
 private final String localHostName;
 private final String appName;
 private final String messageId;
 private final String configName;
 private final String mdcPrefix;
 private final String eventPrefix;
 private final java.util.List mdcExcludes;
 private final java.util.List mdcIncludes;
 private final java.util.List mdcRequired;
 private final internal.ListChecker listChecker;
 private final boolean includeNewLine;
 private final String escapeNewLine;
 private final boolean useTlsMessageFormat;
 private long lastTimestamp;
 private String timestamppStr;
 private final java.util.List exceptionFormatters;
 private final java.util.Map fieldFormatters;
 private final String procId;
 private void Rfc5424Layout(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.net.Facility, String, int, boolean, boolean, String, String, String, String, String, String, String, String, String, java.nio.charset.Charset, String, boolean, LoggerFields[]);
 private java.util.Map createFieldFormatters(LoggerFields[], org.apache.logging.log4j.core.config.Configuration);
 private static org.apache.logging.log4j.core.pattern.PatternParser createPatternParser(org.apache.logging.log4j.core.config.Configuration, Class);
 public java.util.Map getContentFormat();
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private void appendPriority(StringBuilder, org.apache.logging.log4j.Level);
 private void appendTimestamp(StringBuilder, long);
 private void appendSpace(StringBuilder);
 private void appendHostName(StringBuilder);
 private void appendAppName(StringBuilder);
 private void appendProcessId(StringBuilder);
 private void appendMessageId(StringBuilder, org.apache.logging.log4j.message.Message);
 private void appendMessage(StringBuilder, org.apache.logging.log4j.core.LogEvent);
 private void appendStructuredElements(StringBuilder, org.apache.logging.log4j.core.LogEvent);
 private void addStructuredData(java.util.Map, org.apache.logging.log4j.message.StructuredDataMessage);
 private String escapeNewlines(String, String);
 protected String getProcId();
 protected java.util.List getMdcExcludes();
 protected java.util.List getMdcIncludes();
 private String computeTimeStampString(long);
 private void pad(int, int, StringBuilder);
 private void formatStructuredElement(String, Rfc5424Layout$StructuredDataElement, StringBuilder, internal.ListChecker);
 private String getId(org.apache.logging.log4j.message.StructuredDataId);
 private void checkRequired(java.util.Map);
 private void appendMap(String, java.util.Map, StringBuilder, internal.ListChecker);
 private String escapeSDParams(String);
 public String toString();
 public static Rfc5424Layout createLayout(org.apache.logging.log4j.core.net.Facility, String, int, boolean, String, String, String, boolean, String, String, String, String, String, String, String, boolean, LoggerFields[], org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.net.Facility getFacility();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Serializer2.class

package org.apache.logging.log4j.core.layout;
public abstract interface AbstractStringLayout$Serializer2 {
 public abstract StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/layout/HtmlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class HtmlLayout extends AbstractStringLayout {
 public static final String DEFAULT_FONT_FAMILY = arial,sans-serif;
 private static final String TRACE_PREFIX =
 ;
 private static final String REGEXP;
 private static final String DEFAULT_TITLE = Log4j Log Messages;
 private static final String DEFAULT_CONTENT_TYPE = text/html;
 private static final String DEFAULT_DATE_PATTERN = JVM_ELAPSE_TIME;
 private final long jvmStartTime;
 private final boolean locationInfo;
 private final String title;
 private final String contentType;
 private final String font;
 private final String fontSize;
 private final String headerSize;
 private final org.apache.logging.log4j.core.pattern.DatePatternConverter datePatternConverter;
 private void HtmlLayout(boolean, String, String, java.nio.charset.Charset, String, String, String, String, String);
 public String getTitle();
 public boolean isLocationInfo();
 public boolean requiresLocation();
 private String addCharsetToContentType(String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String getContentType();
 private void appendThrowableAsHtml(Throwable, StringBuilder);
 private StringBuilder appendLs(StringBuilder, String);
 private StringBuilder append(StringBuilder, String);
 public byte[] getHeader();
 public byte[] getFooter();
 public static HtmlLayout createLayout(boolean, String, String, java.nio.charset.Charset, String, String);
 public static HtmlLayout createDefaultLayout();
 public static HtmlLayout$Builder newBuilder();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class LevelPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class MarkerPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final boolean requiresLocation;
 public void MarkerPatternSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 private void MarkerPatternSelector(PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static MarkerPatternSelector$Builder newBuilder();
 public static MarkerPatternSelector createSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$2.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$2 {
 void GelfLayout$CompressionType$2(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/AbstractLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractLayout implements org.apache.logging.log4j.core.Layout {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected final org.apache.logging.log4j.core.config.Configuration configuration;
 protected long eventCount;
 protected final byte[] footer;
 protected final byte[] header;
 public void AbstractLayout(byte[], byte[]);
 public void AbstractLayout(org.apache.logging.log4j.core.config.Configuration, byte[], byte[]);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public java.util.Map getContentFormat();
 public byte[] getFooter();
 public byte[] getHeader();
 protected void markEvent();
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/DisruptorUtil.class

package org.apache.logging.log4j.core.async;
final synchronized class DisruptorUtil {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int RINGBUFFER_MIN_SIZE = 128;
 private static final int RINGBUFFER_DEFAULT_SIZE = 262144;
 private static final int RINGBUFFER_NO_GC_DEFAULT_SIZE = 4096;
 static final boolean ASYNC_LOGGER_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL;
 static final boolean ASYNC_CONFIG_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL;
 private void DisruptorUtil();
 static com.lmax.disruptor.WaitStrategy createWaitStrategy(String);
 private static String getFullPropertyKey(String, String);
 private static long parseAdditionalLongProperty(String, String, long);
 static int calculateRingBufferSize(String);
 static com.lmax.disruptor.ExceptionHandler getAsyncLoggerExceptionHandler();
 static com.lmax.disruptor.ExceptionHandler getAsyncLoggerConfigExceptionHandler();
 public static long getExecutorThreadId(java.util.concurrent.ExecutorService);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$WaitStrategy.class

package org.apache.logging.log4j.core.async;
public final synchronized enum JCToolsBlockingQueueFactory$WaitStrategy {
 public static final JCToolsBlockingQueueFactory$WaitStrategy SPIN;
 public static final JCToolsBlockingQueueFactory$WaitStrategy YIELD;
 public static final JCToolsBlockingQueueFactory$WaitStrategy PARK;
 public static final JCToolsBlockingQueueFactory$WaitStrategy PROGRESSIVE;
 private final JCToolsBlockingQueueFactory$Idle idle;
 public static JCToolsBlockingQueueFactory$WaitStrategy[] values();
 public static JCToolsBlockingQueueFactory$WaitStrategy valueOf(String);
 private int idle(int);
 private void JCToolsBlockingQueueFactory$WaitStrategy(String, int, JCToolsBlockingQueueFactory$Idle);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/RingBufferLogEventHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEventHandler implements com.lmax.disruptor.SequenceReportingEventHandler, com.lmax.disruptor.LifecycleAware {
 private static final int NOTIFY_PROGRESS_THRESHOLD = 50;
 private com.lmax.disruptor.Sequence sequenceCallback;
 private int counter;
 private long threadId;
 public void RingBufferLogEventHandler();
 public void setSequenceCallback(com.lmax.disruptor.Sequence);
 public void onEvent(RingBufferLogEvent, long, boolean) throws Exception;
 private void notifyCallback(long);
 public long getThreadId();
 public void onStart();
 public void onShutdown();
}

org/apache/logging/log4j/core/lookup/MainMapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MainMapLookup extends MapLookup {
 static final MapLookup MAIN_SINGLETON;
 public void MainMapLookup();
 public void MainMapLookup(java.util.Map);
 public static transient void setMainArguments(String[]);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$TrimMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$TrimMatcher extends StrMatcher {
 void StrMatcher$TrimMatcher();
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/JmxRuntimeInputArgumentsLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JmxRuntimeInputArgumentsLookup extends MapLookup {
 public static final JmxRuntimeInputArgumentsLookup JMX_SINGLETON;
 public void JmxRuntimeInputArgumentsLookup();
 public void JmxRuntimeInputArgumentsLookup(java.util.Map);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/ConfigurationStrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class ConfigurationStrSubstitutor extends StrSubstitutor {
 public void ConfigurationStrSubstitutor();
 public void ConfigurationStrSubstitutor(java.util.Map);
 public void ConfigurationStrSubstitutor(java.util.Properties);
 public void ConfigurationStrSubstitutor(StrLookup);
 public void ConfigurationStrSubstitutor(StrSubstitutor);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 public String toString();
}

org/apache/logging/log4j/core/parser/LogEventParser.class

package org.apache.logging.log4j.core.parser;
public abstract interface LogEventParser {
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(byte[]) throws ParseException;
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(byte[], int, int) throws ParseException;
}

org/apache/logging/log4j/core/script/ScriptManager$1.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$1 {
}

org/apache/logging/log4j/core/time/internal/FixedPreciseClock.class

package org.apache.logging.log4j.core.time.internal;
public synchronized class FixedPreciseClock implements org.apache.logging.log4j.core.time.PreciseClock {
 private final long currentTimeMillis;
 private final int nanosOfMillisecond;
 public void FixedPreciseClock();
 public void FixedPreciseClock(long);
 public void FixedPreciseClock(long, int);
 public void init(org.apache.logging.log4j.core.time.MutableInstant);
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/Appender.class

package org.apache.logging.log4j.core;
public abstract interface Appender extends LifeCycle {
 public static final String ELEMENT_TYPE = appender;
 public abstract void append(LogEvent);
 public abstract String getName();
 public abstract Layout getLayout();
 public abstract boolean ignoreExceptions();
 public abstract ErrorHandler getHandler();
 public abstract void setHandler(ErrorHandler);
}

org/apache/logging/log4j/core/filter/BurstFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class BurstFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.Level level;
 private float rate;
 private long maxBurst;
 public void BurstFilter$Builder();
 public BurstFilter$Builder setLevel(org.apache.logging.log4j.Level);
 public BurstFilter$Builder setRate(float);
 public BurstFilter$Builder setMaxBurst(long);
 public BurstFilter build();
}

org/apache/logging/log4j/core/filter/LevelRangeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class LevelRangeFilter extends AbstractFilter {
 private final org.apache.logging.log4j.Level maxLevel;
 private final org.apache.logging.log4j.Level minLevel;
 public static LevelRangeFilter createFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private void LevelRangeFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.Level getMinLevel();
 public String toString();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class NoMarkerFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void NoMarkerFilter$Builder();
 public NoMarkerFilter build();
}

org/apache/logging/log4j/core/pattern/LoggerFqcnPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LoggerFqcnPatternConverter extends LogEventPatternConverter {
 private static final LoggerFqcnPatternConverter INSTANCE;
 private void LoggerFqcnPatternConverter();
 public static LoggerFqcnPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/CachedDateFormat.class

package org.apache.logging.log4j.core.pattern;
final synchronized class CachedDateFormat extends java.text.DateFormat {
 public static final int NO_MILLISECONDS = -2;
 public static final int UNRECOGNIZED_MILLISECONDS = -1;
 private static final long serialVersionUID = -1253877934598423628;
 private static final String DIGITS = 0123456789;
 private static final int MAGIC1 = 654;
 private static final String MAGICSTRING1 = 654;
 private static final int MAGIC2 = 987;
 private static final String MAGICSTRING2 = 987;
 private static final String ZERO_STRING = 000;
 private static final int BUF_SIZE = 50;
 private static final int DEFAULT_VALIDITY = 1000;
 private static final int THREE_DIGITS = 100;
 private static final int TWO_DIGITS = 10;
 private static final long SLOTS = 1000;
 private final java.text.DateFormat formatter;
 private int millisecondStart;
 private long slotBegin;
 private final StringBuffer cache;
 private final int expiration;
 private long previousTime;
 private final java.util.Date tmpDate;
 public void CachedDateFormat(java.text.DateFormat, int);
 public static int findMillisecondStart(long, String, java.text.DateFormat);
 public StringBuffer format(java.util.Date, StringBuffer, java.text.FieldPosition);
 public StringBuffer format(long, StringBuffer);
 private static void millisecondFormat(int, StringBuffer, int);
 public void setTimeZone(java.util.TimeZone);
 public java.util.Date parse(String, java.text.ParsePosition);
 public java.text.NumberFormat getNumberFormat();
 public static int getMaximumCacheValidity(String);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Green.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Green extends AbstractStyleNameConverter {
 protected static final String NAME = green;
 public void AbstractStyleNameConverter$Green(java.util.List, String);
 public static AbstractStyleNameConverter$Green newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ContextDataAsEntryListDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void ContextDataAsEntryListDeserializer$1(ContextDataAsEntryListDeserializer);
}

org/apache/logging/log4j/core/jackson/ThrowableProxyWithStacktraceAsStringMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyWithStacktraceAsStringMixIn {
 private ThrowableProxyWithStacktraceAsStringMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyWithStacktraceAsStringMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/LogEventJsonMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LogEventJsonMixIn implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = 1;
 void LogEventJsonMixIn();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerFqcn();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract StackTraceElement getSource();
 public abstract long getThreadId();
 public abstract String getThreadName();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public abstract long getTimeMillis();
 public abstract org.apache.logging.log4j.core.time.Instant getInstant();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
}

META-INF/services/org.apache.logging.log4j.message.ThreadDumpMessage$ThreadInfoFactory

org.apache.logging.log4j.core.message.ExtendedThreadInfoFactory

META-INF/services/org.apache.logging.log4j.spi.Provider

org.apache.logging.log4j.core.impl.Log4jProvider

org/apache/logging/log4j/core/appender/ConsoleAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class ConsoleAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = Console;
 private static final String JANSI_CLASS = org.fusesource.jansi.WindowsAnsiOutputStream;
 private static ConsoleAppender$ConsoleManagerFactory factory;
 private static final ConsoleAppender$Target DEFAULT_TARGET;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private final ConsoleAppender$Target target;
 private void ConsoleAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, boolean, ConsoleAppender$Target, org.apache.logging.log4j.core.config.Property[]);
 public static ConsoleAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, String);
 public static ConsoleAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, ConsoleAppender$Target, String, boolean, boolean, boolean);
 public static ConsoleAppender createDefaultAppenderForLayout(org.apache.logging.log4j.core.Layout);
 public static ConsoleAppender$Builder newBuilder();
 private static OutputStreamManager getDefaultManager(ConsoleAppender$Target, boolean, boolean, org.apache.logging.log4j.core.Layout);
 private static OutputStreamManager getManager(ConsoleAppender$Target, boolean, boolean, org.apache.logging.log4j.core.Layout);
 private static java.io.OutputStream getOutputStream(boolean, boolean, ConsoleAppender$Target);
 private static String clean(String);
 public ConsoleAppender$Target getTarget();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SocketAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SocketAppender$Builder extends SocketAppender$AbstractBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void SocketAppender$Builder();
 public SocketAppender build();
}

org/apache/logging/log4j/core/appender/SyslogAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SyslogAppender$Builder extends SocketAppender$AbstractBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.net.Facility facility;
 private String id;
 private int enterpriseNumber;
 private boolean includeMdc;
 private String mdcId;
 private String mdcPrefix;
 private String eventPrefix;
 private boolean newLine;
 private String escapeNL;
 private String appName;
 private String msgId;
 private String excludes;
 private String includes;
 private String required;
 private String format;
 private java.nio.charset.Charset charsetName;
 private String exceptionPattern;
 private org.apache.logging.log4j.core.layout.LoggerFields[] loggerFields;
 public void SyslogAppender$Builder();
 public SyslogAppender build();
 public org.apache.logging.log4j.core.net.Facility getFacility();
 public String getId();
 public int getEnterpriseNumber();
 public boolean isIncludeMdc();
 public String getMdcId();
 public String getMdcPrefix();
 public String getEventPrefix();
 public boolean isNewLine();
 public String getEscapeNL();
 public String getAppName();
 public String getMsgId();
 public String getExcludes();
 public String getIncludes();
 public String getRequired();
 public String getFormat();
 public java.nio.charset.Charset getCharsetName();
 public String getExceptionPattern();
 public org.apache.logging.log4j.core.layout.LoggerFields[] getLoggerFields();
 public SyslogAppender$Builder setFacility(org.apache.logging.log4j.core.net.Facility);
 public SyslogAppender$Builder setId(String);
 public SyslogAppender$Builder setEnterpriseNumber(int);
 public SyslogAppender$Builder setIncludeMdc(boolean);
 public SyslogAppender$Builder setMdcId(String);
 public SyslogAppender$Builder setMdcPrefix(String);
 public SyslogAppender$Builder setEventPrefix(String);
 public SyslogAppender$Builder setNewLine(boolean);
 public SyslogAppender$Builder setEscapeNL(String);
 public SyslogAppender$Builder setAppName(String);
 public SyslogAppender$Builder setMsgId(String);
 public SyslogAppender$Builder setExcludes(String);
 public SyslogAppender$Builder setIncludes(String);
 public SyslogAppender$Builder setRequired(String);
 public SyslogAppender$Builder setFormat(String);
 public SyslogAppender$Builder setCharsetName(java.nio.charset.Charset);
 public SyslogAppender$Builder setExceptionPattern(String);
 public SyslogAppender$Builder setLoggerFields(org.apache.logging.log4j.core.layout.LoggerFields[]);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RollingRandomAccessFileAppender$1 {
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class TimeBasedTriggeringPolicy extends AbstractTriggeringPolicy {
 private long nextRolloverMillis;
 private final int interval;
 private final boolean modulate;
 private final long maxRandomDelayMillis;
 private RollingFileManager manager;
 private void TimeBasedTriggeringPolicy(int, boolean, long);
 public int getInterval();
 public long getNextRolloverMillis();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public static TimeBasedTriggeringPolicy createPolicy(String, String);
 public static TimeBasedTriggeringPolicy$Builder newBuilder();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/DirectFileRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface DirectFileRolloverStrategy {
 public abstract String getCurrentFileName(RollingFileManager);
 public abstract void clearCurrentFileName();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$FactoryData extends org.apache.logging.log4j.core.appender.ConfigurationFactoryData {
 private final String fileName;
 private final String pattern;
 private final boolean append;
 private final boolean immediateFlush;
 private final int bufferSize;
 private final TriggeringPolicy policy;
 private final RolloverStrategy strategy;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void RollingRandomAccessFileManager$FactoryData(String, String, boolean, boolean, int, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public String getPattern();
 public TriggeringPolicy getTriggeringPolicy();
 public RolloverStrategy getRolloverStrategy();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$RollingFileManagerFactory.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$RollingFileManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void RollingFileManager$RollingFileManagerFactory();
 public RollingFileManager createManager(String, RollingFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/action/IfNot.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfNot implements PathCondition {
 private final PathCondition negate;
 private void IfNot(PathCondition);
 public PathCondition getWrappedFilter();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static IfNot createNotCondition(PathCondition);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PosixViewAttributeAction extends AbstractPathAction {
 private final java.util.Set filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 private void PosixViewAttributeAction(String, boolean, int, PathCondition[], org.apache.logging.log4j.core.lookup.StrSubstitutor, java.util.Set, String, String);
 public static PosixViewAttributeAction$Builder newBuilder();
 protected java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public java.util.Set getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/DeleteAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class DeleteAction extends AbstractPathAction {
 private final PathSorter pathSorter;
 private final boolean testMode;
 private final ScriptCondition scriptCondition;
 void DeleteAction(String, boolean, int, boolean, PathSorter, PathCondition[], ScriptCondition, org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public boolean execute() throws java.io.IOException;
 private boolean executeScript() throws java.io.IOException;
 private java.util.List callScript() throws java.io.IOException;
 private void deleteSelectedFiles(java.util.List) throws java.io.IOException;
 protected void delete(java.nio.file.Path) throws java.io.IOException;
 public boolean execute(java.nio.file.FileVisitor) throws java.io.IOException;
 private void trace(String, java.util.List);
 java.util.List getSortedPaths() throws java.io.IOException;
 public boolean isTestMode();
 protected java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public static DeleteAction createDeleteAction(String, boolean, int, boolean, PathSorter, PathCondition[], ScriptCondition, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/action/ZipCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class ZipCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 private final int level;
 public void ZipCompressAction(java.io.File, java.io.File, boolean, int);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean, int) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
 public int getLevel();
}

org/apache/logging/log4j/core/appender/rolling/CompositeTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class CompositeTriggeringPolicy extends AbstractTriggeringPolicy {
 private final TriggeringPolicy[] triggeringPolicies;
 private transient void CompositeTriggeringPolicy(TriggeringPolicy[]);
 public TriggeringPolicy[] getTriggeringPolicies();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public static transient CompositeTriggeringPolicy createPolicy(TriggeringPolicy[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$3.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$3 {
 void FileExtension$3(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$2.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$2 {
 void FileExtension$2(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/HttpAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class HttpAppender extends AbstractAppender {
 private final HttpManager manager;
 public static HttpAppender$Builder newBuilder();
 private void HttpAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, HttpManager, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/AbstractFileAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private final Object advertisement;
 private void AbstractFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public String getFileName();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$FactoryData {
 private final java.io.OutputStream os;
 private final String name;
 private final org.apache.logging.log4j.core.Layout layout;
 public void ConsoleAppender$FactoryData(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$FactoryData {
 private final org.apache.logging.log4j.core.Layout layout;
 private final String name;
 private final java.io.OutputStream os;
 public void OutputStreamAppender$FactoryData(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/AppenderLoggingException.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderLoggingException extends org.apache.logging.log4j.LoggingException {
 private static final long serialVersionUID = 6545990597472958303;
 public void AppenderLoggingException(String);
 public transient void AppenderLoggingException(String, Object[]);
 public void AppenderLoggingException(String, Throwable);
 public void AppenderLoggingException(Throwable);
 public transient void AppenderLoggingException(Throwable, String, Object[]);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RollingRandomAccessFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private final String filePattern;
 private final Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RollingRandomAccessFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, rolling.RollingRandomAccessFileManager, String, String, boolean, boolean, int, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public String getFileName();
 public String getFilePattern();
 public int getBufferSize();
 public static RollingRandomAccessFileAppender createAppender(String, String, String, String, String, String, rolling.TriggeringPolicy, rolling.RolloverStrategy, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RollingRandomAccessFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/AsyncAppenderEventDispatcher.class

package org.apache.logging.log4j.core.appender;
synchronized class AsyncAppenderEventDispatcher extends org.apache.logging.log4j.core.util.Log4jThread {
 private static final org.apache.logging.log4j.core.LogEvent STOP_EVENT;
 private static final java.util.concurrent.atomic.AtomicLong THREAD_COUNTER;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.AppenderControl errorAppender;
 private final java.util.List appenders;
 private final java.util.concurrent.BlockingQueue queue;
 private final java.util.concurrent.atomic.AtomicBoolean stoppedRef;
 void AsyncAppenderEventDispatcher(String, org.apache.logging.log4j.core.config.AppenderControl, java.util.List, java.util.concurrent.BlockingQueue);
 public void run();
 private void dispatchAll();
 private void dispatchRemaining();
 void dispatch(org.apache.logging.log4j.core.LogEvent);
 void stop(long) throws InterruptedException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractOutputStreamAppender extends AbstractAppender {
 private final boolean immediateFlush;
 private final OutputStreamManager manager;
 protected void AbstractOutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, OutputStreamManager);
 protected void AbstractOutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.config.Property[], OutputStreamManager);
 public boolean getImmediateFlush();
 public OutputStreamManager getManager();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 protected boolean stop(long, java.util.concurrent.TimeUnit, boolean);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void tryAppend(org.apache.logging.log4j.core.LogEvent);
 protected void directEncodeEvent(org.apache.logging.log4j.core.LogEvent);
 protected void writeByteArrayToManager(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/SmtpAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class SmtpAppender extends AbstractAppender {
 private static final int DEFAULT_BUFFER_SIZE = 512;
 private final org.apache.logging.log4j.core.net.SmtpManager manager;
 private void SmtpAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.net.SmtpManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 public static SmtpAppender$Builder newBuilder();
 public static SmtpAppender createAppender(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String, String, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String);
 public boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseAppender$Builder.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class AbstractDatabaseAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder {
 public void AbstractDatabaseAppender$Builder();
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractDriverManagerConnectionSource$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class AbstractDriverManagerConnectionSource$Builder {
 protected String connectionString;
 protected String driverClassName;
 protected char[] password;
 protected org.apache.logging.log4j.core.config.Property[] properties;
 protected char[] userName;
 public void AbstractDriverManagerConnectionSource$Builder();
 protected AbstractDriverManagerConnectionSource$Builder asBuilder();
 public String getConnectionString();
 public String getDriverClassName();
 public char[] getPassword();
 public org.apache.logging.log4j.core.config.Property[] getProperties();
 public char[] getUserName();
 public AbstractDriverManagerConnectionSource$Builder setConnectionString(String);
 public AbstractDriverManagerConnectionSource$Builder setDriverClassName(String);
 public AbstractDriverManagerConnectionSource$Builder setPassword(char[]);
 public AbstractDriverManagerConnectionSource$Builder setProperties(org.apache.logging.log4j.core.config.Property[]);
 public AbstractDriverManagerConnectionSource$Builder setUserName(char[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/FactoryMethodConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class FactoryMethodConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final javax.sql.DataSource dataSource;
 private final String description;
 private void FactoryMethodConnectionSource(javax.sql.DataSource, String, String, String);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String toString();
 public static FactoryMethodConnectionSource createConnectionSource(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseManager$AbstractFactoryData.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseManager$AbstractFactoryData {
 private final int bufferSize;
 private final org.apache.logging.log4j.core.Layout layout;
 protected void AbstractDatabaseManager$AbstractFactoryData(int, org.apache.logging.log4j.core.Layout);
 public int getBufferSize();
 public org.apache.logging.log4j.core.Layout getLayout();
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseManager.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseManager extends org.apache.logging.log4j.core.appender.AbstractManager implements java.io.Flushable {
 private final java.util.ArrayList buffer;
 private final int bufferSize;
 private final org.apache.logging.log4j.core.Layout layout;
 private boolean running;
 protected static AbstractDatabaseManager getManager(String, AbstractDatabaseManager$AbstractFactoryData, org.apache.logging.log4j.core.appender.ManagerFactory);
 protected void AbstractDatabaseManager(String, int);
 protected void AbstractDatabaseManager(String, int, org.apache.logging.log4j.core.Layout);
 protected void buffer(org.apache.logging.log4j.core.LogEvent);
 protected abstract boolean commitAndClose();
 protected abstract void connectAndStart();
 public final synchronized void flush();
 protected boolean isBuffered();
 public final boolean isRunning();
 public final boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public final synchronized boolean shutdown();
 protected abstract boolean shutdownInternal() throws Exception;
 public final synchronized void startup();
 protected abstract void startupInternal() throws Exception;
 public final String toString();
 public final synchronized void write(org.apache.logging.log4j.core.LogEvent);
 public final synchronized void write(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent);
 protected abstract void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeThrough(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$ReferencedRouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
final synchronized class RoutingAppender$ReferencedRouteAppenderControl extends RoutingAppender$RouteAppenderControl {
 void RoutingAppender$ReferencedRouteAppenderControl(org.apache.logging.log4j.core.Appender);
 void checkout();
 void release();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlProvider.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlProvider {
 public abstract NoSqlConnection getConnection();
 public abstract String toString();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender$1.class

package org.apache.logging.log4j.core.appender.nosql;
synchronized class NoSqlAppender$1 {
}

org/apache/logging/log4j/core/appender/SmtpAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SmtpAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String to;
 private String cc;
 private String bcc;
 private String from;
 private String replyTo;
 private String subject;
 private String smtpProtocol;
 private String smtpHost;
 private int smtpPort;
 private String smtpUsername;
 private String smtpPassword;
 private boolean smtpDebug;
 private int bufferSize;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 public void SmtpAppender$Builder();
 public SmtpAppender$Builder setTo(String);
 public SmtpAppender$Builder setCc(String);
 public SmtpAppender$Builder setBcc(String);
 public SmtpAppender$Builder setFrom(String);
 public SmtpAppender$Builder setReplyTo(String);
 public SmtpAppender$Builder setSubject(String);
 public SmtpAppender$Builder setSmtpProtocol(String);
 public SmtpAppender$Builder setSmtpHost(String);
 public SmtpAppender$Builder setSmtpPort(int);
 public SmtpAppender$Builder setSmtpUsername(String);
 public SmtpAppender$Builder setSmtpPassword(String);
 public SmtpAppender$Builder setSmtpDebug(boolean);
 public SmtpAppender$Builder setBufferSize(int);
 public SmtpAppender$Builder setSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public SmtpAppender$Builder setLayout(org.apache.logging.log4j.core.Layout);
 public SmtpAppender$Builder setFilter(org.apache.logging.log4j.core.Filter);
 public SmtpAppender build();
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender$1.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public final synchronized class KafkaAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private static final String[] KAFKA_CLIENT_PACKAGES;
 private final Integer retryCount;
 private final KafkaManager manager;
 public static KafkaAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, boolean, String, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, String);
 private static boolean isRecursive(org.apache.logging.log4j.core.LogEvent);
 public static KafkaAppender$Builder newBuilder();
 private void KafkaAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, KafkaManager, org.apache.logging.log4j.core.config.Property[], Integer);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
 private void tryAppend(org.apache.logging.log4j.core.LogEvent) throws java.util.concurrent.ExecutionException, InterruptedException, java.util.concurrent.TimeoutException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaProducerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public abstract interface KafkaProducerFactory {
 public abstract org.apache.kafka.clients.producer.Producer newKafkaProducer(java.util.Properties);
}

org/apache/logging/log4j/core/appender/AbstractFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractFileAppender$Builder extends AbstractOutputStreamAppender$Builder {
 private String fileName;
 private boolean append;
 private boolean locking;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void AbstractFileAppender$Builder();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public AbstractFileAppender$Builder withAdvertise(boolean);
 public AbstractFileAppender$Builder withAdvertiseUri(String);
 public AbstractFileAppender$Builder withAppend(boolean);
 public AbstractFileAppender$Builder withFileName(String);
 public AbstractFileAppender$Builder withCreateOnDemand(boolean);
 public AbstractFileAppender$Builder withLocking(boolean);
 public AbstractFileAppender$Builder withFilePermissions(String);
 public AbstractFileAppender$Builder withFileOwner(String);
 public AbstractFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/impl/Log4jLogEvent.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jLogEvent implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = -8393305700508709443;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static volatile org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private static final org.apache.logging.log4j.core.ContextDataInjector CONTEXT_DATA_INJECTOR;
 private final String loggerFqcn;
 private final org.apache.logging.log4j.Marker marker;
 private final org.apache.logging.log4j.Level level;
 private final String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private final transient Throwable thrown;
 private ThrowableProxy thrownProxy;
 private final org.apache.logging.log4j.util.StringMap contextData;
 private final org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement source;
 private boolean includeLocation;
 private boolean endOfBatch;
 private final transient long nanoTime;
 public static Log4jLogEvent$Builder newBuilder();
 public void Log4jLogEvent();
 public void Log4jLogEvent(long);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, java.util.Map, org.apache.logging.log4j.ThreadContext$ContextStack, String, StackTraceElement, long);
 public static Log4jLogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, java.util.Map, org.apache.logging.log4j.ThreadContext$ContextStack, String, StackTraceElement, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, long, int, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, org.apache.logging.log4j.core.util.Clock, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, long);
 private static org.apache.logging.log4j.util.StringMap createContextData(java.util.Map);
 private static org.apache.logging.log4j.util.StringMap createContextData(java.util.List);
 public static org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public static void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
 public Log4jLogEvent$Builder asBuilder();
 public Log4jLogEvent toImmutable();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerName();
 public org.apache.logging.log4j.message.Message getMessage();
 public void makeMessageImmutable();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public Throwable getThrown();
 public ThrowableProxy getThrownProxy();
 public org.apache.logging.log4j.Marker getMarker();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public StackTraceElement getSource();
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public long getNanoTime();
 protected Object writeReplace();
 public static java.io.Serializable serialize(org.apache.logging.log4j.core.LogEvent, boolean);
 public static java.io.Serializable serialize(Log4jLogEvent, boolean);
 public static boolean canDeserialize(java.io.Serializable);
 public static Log4jLogEvent deserialize(java.io.Serializable);
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public static org.apache.logging.log4j.core.LogEvent createMemento(org.apache.logging.log4j.core.LogEvent);
 public static Log4jLogEvent createMemento(org.apache.logging.log4j.core.LogEvent, boolean);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BooleanConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BooleanConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BooleanConverter();
 public Boolean convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$StringBuilderConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$StringBuilderConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$StringBuilderConverter();
 public StringBuilder convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MaxValuesforFieldExceededException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MaxValuesforFieldExceededException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 6536145439570100641;
 public void CommandLine$MaxValuesforFieldExceededException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$InitializationException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$InitializationException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 8423014001666638895;
 public void CommandLine$InitializationException(String);
 public void CommandLine$InitializationException(String, Exception);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$TraceLevel.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized enum CommandLine$TraceLevel {
 public static final CommandLine$TraceLevel OFF;
 public static final CommandLine$TraceLevel WARN;
 public static final CommandLine$TraceLevel INFO;
 public static final CommandLine$TraceLevel DEBUG;
 public static CommandLine$TraceLevel[] values();
 public static CommandLine$TraceLevel valueOf(String);
 private void CommandLine$TraceLevel(String, int);
 public boolean isEnabled(CommandLine$TraceLevel);
 private transient void print(CommandLine$Tracer, String, Object[]);
 private String prefix(String);
 static CommandLine$TraceLevel lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Palette256Color.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$Ansi$Palette256Color implements CommandLine$Help$Ansi$IStyle {
 private final int fgbg;
 private final int color;
 void CommandLine$Help$Ansi$Palette256Color(boolean, String);
 public String on();
 public String off();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help {
 protected static final String DEFAULT_COMMAND_NAME = <main class>;
 protected static final String DEFAULT_SEPARATOR = =;
 private static final int usageHelpWidth = 80;
 private static final int optionsColumnWidth = 29;
 private final Object command;
 private final java.util.Map commands;
 final CommandLine$Help$ColorScheme colorScheme;
 public final java.util.List optionFields;
 public final java.util.List positionalParametersFields;
 public String separator;
 public String commandName;
 public String[] description;
 public String[] customSynopsis;
 public String[] header;
 public String[] footer;
 public CommandLine$Help$IParamLabelRenderer parameterLabelRenderer;
 public Boolean abbreviateSynopsis;
 public Boolean sortOptions;
 public Boolean showDefaultValues;
 public Character requiredOptionMarker;
 public String headerHeading;
 public String synopsisHeading;
 public String descriptionHeading;
 public String parameterListHeading;
 public String optionListHeading;
 public String commandListHeading;
 public String footerHeading;
 public void CommandLine$Help(Object);
 public void CommandLine$Help(Object, CommandLine$Help$Ansi);
 public void CommandLine$Help(Object, CommandLine$Help$ColorScheme);
 public CommandLine$Help addAllSubcommands(java.util.Map);
 public CommandLine$Help addSubcommand(String, Object);
 public String synopsis();
 public String synopsis(int);
 public String abbreviatedSynopsis();
 public String detailedSynopsis(java.util.Comparator, boolean);
 public String detailedSynopsis(int, java.util.Comparator, boolean);
 private CommandLine$Help$Ansi$Text appendOptionSynopsis(CommandLine$Help$Ansi$Text, reflect.Field, String, String, String);
 public int synopsisHeadingLength();
 public String optionList();
 public String optionList(CommandLine$Help$Layout, java.util.Comparator, CommandLine$Help$IParamLabelRenderer);
 public String parameterList();
 public String parameterList(CommandLine$Help$Layout, CommandLine$Help$IParamLabelRenderer);
 private static transient String heading(CommandLine$Help$Ansi, String, Object[]);
 private static char[] spaces(int);
 private static int countTrailingSpaces(String);
 public static transient StringBuilder join(CommandLine$Help$Ansi, String[], StringBuilder, Object[]);
 private static transient String format(String, Object[]);
 public transient String customSynopsis(Object[]);
 public transient String description(Object[]);
 public transient String header(Object[]);
 public transient String footer(Object[]);
 public transient String headerHeading(Object[]);
 public transient String synopsisHeading(Object[]);
 public transient String descriptionHeading(Object[]);
 public transient String parameterListHeading(Object[]);
 public transient String optionListHeading(Object[]);
 public transient String commandListHeading(Object[]);
 public transient String footerHeading(Object[]);
 public String commandList();
 private static int maxLength(java.util.Collection);
 private static String join(String[], int, int, String);
 private static String stringOf(char, int);
 public CommandLine$Help$Layout createDefaultLayout();
 public CommandLine$Help$IOptionRenderer createDefaultOptionRenderer();
 public static CommandLine$Help$IOptionRenderer createMinimalOptionRenderer();
 public CommandLine$Help$IParameterRenderer createDefaultParameterRenderer();
 public static CommandLine$Help$IParameterRenderer createMinimalParameterRenderer();
 public static CommandLine$Help$IParamLabelRenderer createMinimalParamLabelRenderer();
 public CommandLine$Help$IParamLabelRenderer createDefaultParamLabelRenderer();
 public static java.util.Comparator createShortOptionNameComparator();
 public static java.util.Comparator createShortOptionArityAndNameComparator();
 public static java.util.Comparator shortestFirst();
 public CommandLine$Help$Ansi ansi();
 public static CommandLine$Help$ColorScheme defaultColorScheme(CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Layout.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Layout {
 protected final CommandLine$Help$ColorScheme colorScheme;
 protected final CommandLine$Help$TextTable table;
 protected CommandLine$Help$IOptionRenderer optionRenderer;
 protected CommandLine$Help$IParameterRenderer parameterRenderer;
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme);
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme, CommandLine$Help$TextTable);
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme, CommandLine$Help$TextTable, CommandLine$Help$IOptionRenderer, CommandLine$Help$IParameterRenderer);
 public void layout(reflect.Field, CommandLine$Help$Ansi$Text[][]);
 public void addOptions(java.util.List, CommandLine$Help$IParamLabelRenderer);
 public void addOption(reflect.Field, CommandLine$Help$IParamLabelRenderer);
 public void addPositionalParameters(java.util.List, CommandLine$Help$IParamLabelRenderer);
 public void addPositionalParameter(reflect.Field, CommandLine$Help$IParamLabelRenderer);
 public String toString();
}

org/apache/logging/log4j/core/tools/CustomLoggerGenerator.class

package org.apache.logging.log4j.core.tools;
public synchronized class CustomLoggerGenerator {
 public void CustomLoggerGenerator();
 public static void main(String[]);
}

org/apache/logging/log4j/core/net/ssl/KeyStoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class KeyStoreConfigurationException extends StoreConfigurationException {
 private static final long serialVersionUID = 1;
 public void KeyStoreConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/ssl/TrustStoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class TrustStoreConfigurationException extends StoreConfigurationException {
 private static final long serialVersionUID = 1;
 public void TrustStoreConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/TcpSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager extends AbstractSocketManager {
 public static final int DEFAULT_RECONNECTION_DELAY_MILLIS = 30000;
 private static final int DEFAULT_PORT = 4560;
 private static final TcpSocketManager$TcpSocketManagerFactory FACTORY;
 private final int reconnectionDelayMillis;
 private TcpSocketManager$Reconnector reconnector;
 private java.net.Socket socket;
 private final SocketOptions socketOptions;
 private final boolean retry;
 private final boolean immediateFail;
 private final int connectTimeoutMillis;
 public void TcpSocketManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public void TcpSocketManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public static TcpSocketManager getSocketManager(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public static TcpSocketManager getSocketManager(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 protected void write(byte[], int, int, boolean);
 private void writeAndFlush(byte[], int, int, boolean) throws java.io.IOException;
 protected synchronized boolean closeOutputStream();
 public int getConnectTimeoutMillis();
 public java.util.Map getContentFormat();
 private TcpSocketManager$Reconnector createReconnector();
 protected java.net.Socket createSocket(java.net.InetSocketAddress) throws java.io.IOException;
 protected static java.net.Socket createSocket(java.net.InetSocketAddress, SocketOptions, int) throws java.io.IOException;
 public static void setHostResolver(TcpSocketManager$HostResolver);
 public SocketOptions getSocketOptions();
 public java.net.Socket getSocket();
 public int getReconnectionDelayMillis();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Priority.class

package org.apache.logging.log4j.core.net;
public synchronized class Priority {
 private final Facility facility;
 private final Severity severity;
 public void Priority(Facility, Severity);
 public static int getPriority(Facility, org.apache.logging.log4j.Level);
 private static int toPriority(Facility, Severity);
 public Facility getFacility();
 public Severity getSeverity();
 public int getValue();
 public String toString();
}

org/apache/logging/log4j/core/net/SslSocketManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$1 {
}

org/apache/logging/log4j/core/net/SslSocketManager$SslSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$SslSocketManagerFactory extends TcpSocketManager$TcpSocketManagerFactory {
 private void SslSocketManager$SslSocketManagerFactory();
 SslSocketManager createManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, SslSocketManager$SslFactoryData);
 java.net.Socket createSocket(SslSocketManager$SslFactoryData) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/NameUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class NameUtil {
 private void NameUtil();
 public static String getSubName(String);
 public static String md5(String);
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FixedDateFormat {
 private static final char NONE = 0;
 private final FixedDateFormat$FixedFormat fixedFormat;
 private final java.util.TimeZone timeZone;
 private final int length;
 private final int secondFractionDigits;
 private final FastDateFormat fastDateFormat;
 private final char timeSeparatorChar;
 private final char millisSeparatorChar;
 private final int timeSeparatorLength;
 private final int millisSeparatorLength;
 private final FixedDateFormat$FixedTimeZoneFormat fixedTimeZoneFormat;
 private volatile long midnightToday;
 private volatile long midnightTomorrow;
 private final int[] dstOffsets;
 private char[] cachedDate;
 private int dateLength;
 static int[] TABLE;
 void FixedDateFormat(FixedDateFormat$FixedFormat, java.util.TimeZone);
 void FixedDateFormat(FixedDateFormat$FixedFormat, java.util.TimeZone, int);
 public static transient FixedDateFormat createIfSupported(String[]);
 public static FixedDateFormat create(FixedDateFormat$FixedFormat);
 public static FixedDateFormat create(FixedDateFormat$FixedFormat, java.util.TimeZone);
 public String getFormat();
 public java.util.TimeZone getTimeZone();
 public long millisSinceMidnight(long);
 private void updateMidnightMillis(long);
 private long calcMidnightMillis(long, int);
 private void updateDaylightSavingTime();
 private void updateCachedDate(long);
 public String formatInstant(org.apache.logging.log4j.core.time.Instant);
 public int formatInstant(org.apache.logging.log4j.core.time.Instant, char[], int);
 private int digitsLessThanThree();
 public String format(long);
 public int format(long, char[], int);
 private void writeDate(char[], int);
 private int writeTime(int, char[], int);
 private int writeTimeZone(long, char[], int);
 private int formatNanoOfMillisecond(int, char[], int);
 private int daylightSavingTime(int);
 public boolean isEquivalent(long, int, long, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$Rule.class

package org.apache.logging.log4j.core.util.datetime;
abstract interface FastDatePrinter$Rule {
 public abstract int estimateLength();
 public abstract void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$UnpaddedNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$UnpaddedNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 void FastDatePrinter$UnpaddedNumberField(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$StringLiteral.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$StringLiteral implements FastDatePrinter$Rule {
 private final String mValue;
 void FastDatePrinter$StringLiteral(String);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$2.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$2 extends FastDateParser$NumberStrategy {
 void FastDateParser$2(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$NumberStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$NumberStrategy extends FastDateParser$Strategy {
 private final int field;
 void FastDateParser$NumberStrategy(int);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/DateParser.class

package org.apache.logging.log4j.core.util.datetime;
public abstract interface DateParser {
 public abstract java.util.Date parse(String) throws java.text.ParseException;
 public abstract java.util.Date parse(String, java.text.ParsePosition);
 public abstract boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 public abstract String getPattern();
 public abstract java.util.TimeZone getTimeZone();
 public abstract java.util.Locale getLocale();
 public abstract Object parseObject(String) throws java.text.ParseException;
 public abstract Object parseObject(String, java.text.ParsePosition);
}

org/apache/logging/log4j/core/util/WatchManager$WatchRunnable.class

package org.apache.logging.log4j.core.util;
final synchronized class WatchManager$WatchRunnable implements Runnable {
 private final String SIMPLE_NAME;
 private void WatchManager$WatchRunnable(WatchManager);
 public void run();
}

org/apache/logging/log4j/core/util/AbstractWatcher$ReconfigurationRunnable.class

package org.apache.logging.log4j.core.util;
public synchronized class AbstractWatcher$ReconfigurationRunnable implements Runnable {
 private final org.apache.logging.log4j.core.config.ConfigurationListener configurationListener;
 private final org.apache.logging.log4j.core.config.Reconfigurable reconfigurable;
 public void AbstractWatcher$ReconfigurationRunnable(org.apache.logging.log4j.core.config.ConfigurationListener, org.apache.logging.log4j.core.config.Reconfigurable);
 public void run();
}

org/apache/logging/log4j/core/util/StringEncoder.class

package org.apache.logging.log4j.core.util;
public final synchronized class StringEncoder {
 private void StringEncoder();
 public static byte[] toBytes(String, java.nio.charset.Charset);
 public static byte[] encodeSingleByteChars(CharSequence);
 public static int encodeIsoChars(CharSequence, int, byte[], int, int);
 public static int encodeString(CharSequence, int, int, byte[]);
}

org/apache/logging/log4j/core/util/WrappedFileWatcher.class

package org.apache.logging.log4j.core.util;
public synchronized class WrappedFileWatcher extends AbstractWatcher implements FileWatcher {
 private final FileWatcher watcher;
 private volatile long lastModifiedMillis;
 public void WrappedFileWatcher(FileWatcher, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 public void WrappedFileWatcher(FileWatcher);
 public long getLastModified();
 public void fileModified(java.io.File);
 public boolean isModified();
 public java.util.List getListeners();
 public void modified();
 public void watching(Source);
 public Watcher newWatcher(org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/util/CoarseCachedClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class CoarseCachedClock implements Clock {
 private static volatile CoarseCachedClock instance;
 private static final Object INSTANCE_LOCK;
 private volatile long millis;
 private final Thread updater;
 private void CoarseCachedClock();
 public static CoarseCachedClock instance();
 public long currentTimeMillis();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/AppenderControlArraySet.class

package org.apache.logging.log4j.core.config;
public synchronized class AppenderControlArraySet {
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater appenderArrayUpdater;
 private volatile AppenderControl[] appenderArray;
 public void AppenderControlArraySet();
 public boolean add(AppenderControl);
 public AppenderControl remove(String);
 private AppenderControl[] removeElementAt(int, AppenderControl[]);
 public java.util.Map asMap();
 public AppenderControl[] clear();
 public boolean isEmpty();
 public AppenderControl[] get();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/NullConfiguration.class

package org.apache.logging.log4j.core.config;
public synchronized class NullConfiguration extends AbstractConfiguration {
 public static final String NULL_NAME = Null;
 public void NullConfiguration();
}

org/apache/logging/log4j/core/config/ConfigurationFactory$Factory.class

package org.apache.logging.log4j.core.config;
synchronized class ConfigurationFactory$Factory extends ConfigurationFactory {
 private static final String ALL_TYPES = *;
 private void ConfigurationFactory$Factory();
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI);
 private Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String);
 private Configuration getConfiguration(String, org.apache.logging.log4j.core.LoggerContext, String);
 private Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, boolean, String);
 public String[] getSupportedTypes();
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 private String[] parseConfigLocations(java.net.URI);
 private String[] parseConfigLocations(String);
}

org/apache/logging/log4j/core/config/arbiters/Arbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public abstract interface Arbiter {
 public static final String ELEMENT_TYPE = Arbiter;
 public abstract boolean isCondition();
}

org/apache/logging/log4j/core/config/plugins/Plugin.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface Plugin extends annotation.Annotation {
 public static final String EMPTY = ;
 public abstract String name();
 public abstract String category();
 public abstract String elementType();
 public abstract boolean printObject();
 public abstract boolean deferChildren();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/ValidHost.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface ValidHost extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/Required.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface Required extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/ValidPort.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface ValidPort extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/ConstraintValidators.class

package org.apache.logging.log4j.core.config.plugins.validation;
public final synchronized class ConstraintValidators {
 private void ConstraintValidators();
 public static transient java.util.Collection findValidators(annotation.Annotation[]);
 private static ConstraintValidator getValidator(annotation.Annotation, Class);
 private static reflect.Type getConstraintValidatorAnnotationType(Class);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$FloatConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$FloatConverter implements TypeConverter {
 public void TypeConverters$FloatConverter();
 public Float convert(String);
}

org/apache/logging/log4j/core/config/ConfigurationFactory$1.class

package org.apache.logging.log4j.core.config;
synchronized class ConfigurationFactory$1 {
}

org/apache/logging/log4j/core/config/AbstractConfiguration.class

package org.apache.logging.log4j.core.config;
public abstract synchronized class AbstractConfiguration extends org.apache.logging.log4j.core.filter.AbstractFilterable implements Configuration {
 private static final int BUF_SIZE = 16384;
 protected Node rootNode;
 protected final java.util.List listeners;
 protected final java.util.List pluginPackages;
 protected plugins.util.PluginManager pluginManager;
 protected boolean isShutdownHookEnabled;
 protected long shutdownTimeoutMillis;
 protected org.apache.logging.log4j.core.script.ScriptManager scriptManager;
 private org.apache.logging.log4j.core.net.Advertiser advertiser;
 private Node advertiserNode;
 private Object advertisement;
 private String name;
 private java.util.concurrent.ConcurrentMap appenders;
 private java.util.concurrent.ConcurrentMap loggerConfigs;
 private java.util.List customLevels;
 private final java.util.concurrent.ConcurrentMap propertyMap;
 private final org.apache.logging.log4j.core.lookup.StrLookup tempLookup;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor configurationStrSubstitutor;
 private LoggerConfig root;
 private final java.util.concurrent.ConcurrentMap componentMap;
 private final ConfigurationSource configurationSource;
 private final ConfigurationScheduler configurationScheduler;
 private final org.apache.logging.log4j.core.util.WatchManager watchManager;
 private org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor asyncLoggerConfigDisruptor;
 private org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private final ref.WeakReference loggerContext;
 protected void AbstractConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 public ConfigurationSource getConfigurationSource();
 public java.util.List getPluginPackages();
 public java.util.Map getProperties();
 public org.apache.logging.log4j.core.script.ScriptManager getScriptManager();
 public void setScriptManager(org.apache.logging.log4j.core.script.ScriptManager);
 public plugins.util.PluginManager getPluginManager();
 public void setPluginManager(plugins.util.PluginManager);
 public org.apache.logging.log4j.core.util.WatchManager getWatchManager();
 public ConfigurationScheduler getScheduler();
 public Node getRootNode();
 public org.apache.logging.log4j.core.async.AsyncLoggerConfigDelegate getAsyncLoggerConfigDelegate();
 public void initialize();
 protected void initializeWatchers(Reconfigurable, ConfigurationSource, int);
 private void monitorSource(Reconfigurable, ConfigurationSource);
 public void start();
 private boolean hasAsyncLoggers();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private java.util.List getAsyncAppenders(org.apache.logging.log4j.core.Appender[]);
 public boolean isShutdownHookEnabled();
 public long getShutdownTimeoutMillis();
 public void setup();
 protected org.apache.logging.log4j.Level getDefaultStatus();
 protected void createAdvertiser(String, ConfigurationSource, byte[], String);
 private void setupAdvertisement();
 public Object getComponent(String);
 public void addComponent(String, Object);
 protected void preConfigure(Node);
 protected void processConditionals(Node);
 protected java.util.List processSelect(Node, plugins.util.PluginType);
 protected void doConfigure();
 protected void setToDefault();
 public void setName(String);
 public String getName();
 public void addListener(ConfigurationListener);
 public void removeListener(ConfigurationListener);
 public org.apache.logging.log4j.core.Appender getAppender(String);
 public java.util.Map getAppenders();
 public void addAppender(org.apache.logging.log4j.core.Appender);
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getConfigurationStrSubstitutor();
 public void setAdvertiser(org.apache.logging.log4j.core.net.Advertiser);
 public org.apache.logging.log4j.core.net.Advertiser getAdvertiser();
 public ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
 public synchronized void addLoggerAppender(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Appender);
 public synchronized void addLoggerFilter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Filter);
 public synchronized void setLoggerAdditive(org.apache.logging.log4j.core.Logger, boolean);
 public synchronized void removeAppender(String);
 public java.util.List getCustomLevels();
 public LoggerConfig getLoggerConfig(String);
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
 public LoggerConfig getRootLogger();
 public java.util.Map getLoggers();
 public LoggerConfig getLogger(String);
 public synchronized void addLogger(String, LoggerConfig);
 public synchronized void removeLogger(String);
 public void createConfiguration(Node, org.apache.logging.log4j.core.LogEvent);
 public Object createPluginObject(plugins.util.PluginType, Node);
 private Object createPluginObject(plugins.util.PluginType, Node, org.apache.logging.log4j.core.LogEvent);
 private static java.util.Map createPluginMap(Node);
 private static java.util.Collection createPluginCollection(Node);
 private void setParents();
 protected static byte[] toByteArray(java.io.InputStream) throws java.io.IOException;
 public org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
}

org/apache/logging/log4j/core/config/yaml/YamlConfigurationFactory.class

package org.apache.logging.log4j.core.config.yaml;
public synchronized class YamlConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 private static final String[] SUFFIXES;
 private static final String[] dependencies;
 private final boolean isActive;
 public void YamlConfigurationFactory();
 protected boolean isActive();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$3.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$3 {
 void LoggerConfig$LoggerConfigPredicate$3(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/AppenderControl.class

package org.apache.logging.log4j.core.config;
public synchronized class AppenderControl extends org.apache.logging.log4j.core.filter.AbstractFilterable {
 static final AppenderControl[] EMPTY_ARRAY;
 private final ThreadLocal recursive;
 private final org.apache.logging.log4j.core.Appender appender;
 private final org.apache.logging.log4j.Level level;
 private final int intLevel;
 private final String appenderName;
 public void AppenderControl(org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public String getAppenderName();
 public org.apache.logging.log4j.core.Appender getAppender();
 public void callAppender(org.apache.logging.log4j.core.LogEvent);
 private boolean shouldSkip(org.apache.logging.log4j.core.LogEvent);
 private boolean isFilteredByAppenderControl(org.apache.logging.log4j.core.LogEvent);
 private boolean isFilteredByLevel(org.apache.logging.log4j.core.LogEvent);
 private boolean isRecursiveCall();
 private String appenderErrorHandlerMessage(String);
 private void callAppenderPreventRecursion(org.apache.logging.log4j.core.LogEvent);
 private void callAppender0(org.apache.logging.log4j.core.LogEvent);
 private void ensureAppenderStarted();
 private void handleError(String);
 private String createErrorMsg(String);
 private boolean isFilteredByAppender(org.apache.logging.log4j.core.LogEvent);
 private void tryCallAppender(org.apache.logging.log4j.core.LogEvent);
 private void handleAppenderError(org.apache.logging.log4j.core.LogEvent, RuntimeException);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultCompositeFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultCompositeFilterComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.CompositeFilterComponentBuilder {
 public void DefaultCompositeFilterComponentBuilder(DefaultConfigurationBuilder, String, String);
 public org.apache.logging.log4j.core.config.builder.api.CompositeFilterComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/ConfigurationBuilderFactory.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract synchronized class ConfigurationBuilderFactory {
 public void ConfigurationBuilderFactory();
 public static ConfigurationBuilder newConfigurationBuilder();
 public static ConfigurationBuilder newConfigurationBuilder(Class);
}

org/apache/logging/log4j/core/config/Configuration.class

package org.apache.logging.log4j.core.config;
public abstract interface Configuration extends org.apache.logging.log4j.core.filter.Filterable {
 public static final String CONTEXT_PROPERTIES = ContextProperties;
 public abstract String getName();
 public abstract LoggerConfig getLoggerConfig(String);
 public abstract org.apache.logging.log4j.core.Appender getAppender(String);
 public abstract java.util.Map getAppenders();
 public abstract void addAppender(org.apache.logging.log4j.core.Appender);
 public abstract java.util.Map getLoggers();
 public abstract void addLoggerAppender(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Appender);
 public abstract void addLoggerFilter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Filter);
 public abstract void setLoggerAdditive(org.apache.logging.log4j.core.Logger, boolean);
 public abstract void addLogger(String, LoggerConfig);
 public abstract void removeLogger(String);
 public abstract java.util.List getPluginPackages();
 public abstract java.util.Map getProperties();
 public abstract LoggerConfig getRootLogger();
 public abstract void addListener(ConfigurationListener);
 public abstract void removeListener(ConfigurationListener);
 public abstract org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getConfigurationStrSubstitutor();
 public abstract void createConfiguration(Node, org.apache.logging.log4j.core.LogEvent);
 public abstract Object getComponent(String);
 public abstract void addComponent(String, Object);
 public abstract void setAdvertiser(org.apache.logging.log4j.core.net.Advertiser);
 public abstract org.apache.logging.log4j.core.net.Advertiser getAdvertiser();
 public abstract boolean isShutdownHookEnabled();
 public abstract long getShutdownTimeoutMillis();
 public abstract ConfigurationScheduler getScheduler();
 public abstract ConfigurationSource getConfigurationSource();
 public abstract java.util.List getCustomLevels();
 public abstract org.apache.logging.log4j.core.script.ScriptManager getScriptManager();
 public abstract org.apache.logging.log4j.core.async.AsyncLoggerConfigDelegate getAsyncLoggerConfigDelegate();
 public abstract org.apache.logging.log4j.core.util.WatchManager getWatchManager();
 public abstract ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
 public abstract org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public abstract void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
 public abstract org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/jmx/LoggerConfigAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface LoggerConfigAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=Loggers,name=%s;
 public abstract String getName();
 public abstract String getLevel();
 public abstract void setLevel(String);
 public abstract boolean isAdditive();
 public abstract void setAdditive(boolean);
 public abstract boolean isIncludeLocation();
 public abstract String getFilter();
 public abstract String[] getAppenderRefs();
}

org/apache/logging/log4j/core/jmx/AsyncAppenderAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class AsyncAppenderAdmin implements AsyncAppenderAdminMBean {
 private final String contextName;
 private final org.apache.logging.log4j.core.appender.AsyncAppender asyncAppender;
 private final javax.management.ObjectName objectName;
 public void AsyncAppenderAdmin(String, org.apache.logging.log4j.core.appender.AsyncAppender);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLayout();
 public boolean isIgnoreExceptions();
 public String getErrorHandler();
 public String getFilter();
 public String[] getAppenderRefs();
 public boolean isIncludeLocation();
 public boolean isBlocking();
 public String getErrorRef();
 public int getQueueCapacity();
 public int getQueueRemainingCapacity();
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class ScriptPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/JacksonFactory.class

package org.apache.logging.log4j.core.layout;
abstract synchronized class JacksonFactory {
 void JacksonFactory();
 protected abstract String getPropertyNameForTimeMillis();
 protected abstract String getPropertyNameForInstant();
 protected abstract String getPropertNameForContextMap();
 protected abstract String getPropertNameForSource();
 protected abstract String getPropertNameForNanoTime();
 protected abstract com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected abstract com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected abstract com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
 com.fasterxml.jackson.databind.ObjectWriter newWriter(boolean, boolean, boolean);
 com.fasterxml.jackson.databind.ObjectWriter newWriter(boolean, boolean, boolean, boolean);
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Serializer.class

package org.apache.logging.log4j.core.layout;
public abstract interface AbstractStringLayout$Serializer extends AbstractStringLayout$Serializer2 {
 public abstract String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/layout/HtmlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class HtmlLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractLayout$Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private byte[] footer;
 private byte[] header;
 public void AbstractLayout$Builder();
 public AbstractLayout$Builder asBuilder();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public byte[] getFooter();
 public byte[] getHeader();
 public AbstractLayout$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractLayout$Builder setFooter(byte[]);
 public AbstractLayout$Builder setHeader(byte[]);
}

org/apache/logging/log4j/core/layout/SerializedLayout$PrivateObjectOutputStream.class

package org.apache.logging.log4j.core.layout;
synchronized class SerializedLayout$PrivateObjectOutputStream extends java.io.ObjectOutputStream {
 public void SerializedLayout$PrivateObjectOutputStream(SerializedLayout, java.io.OutputStream) throws java.io.IOException;
 protected void writeStreamHeader();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class LevelPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void LevelPatternSelector$Builder();
 public LevelPatternSelector build();
 public LevelPatternSelector$Builder setProperties(PatternMatch[]);
 public LevelPatternSelector$Builder setDefaultPattern(String);
 public LevelPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public LevelPatternSelector$Builder setDisableAnsi(boolean);
 public LevelPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public LevelPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$ReadOnlyLogEventWrapper.class

package org.apache.logging.log4j.core.layout;
synchronized class AbstractJacksonLayout$ReadOnlyLogEventWrapper implements org.apache.logging.log4j.core.LogEvent {
 private final org.apache.logging.log4j.core.LogEvent event;
 public void AbstractJacksonLayout$ReadOnlyLogEventWrapper(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.LogEvent toImmutable();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public org.apache.logging.log4j.message.Message getMessage();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public StackTraceElement getSource();
 public String getThreadName();
 public long getThreadId();
 public int getThreadPriority();
 public Throwable getThrown();
 public org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public boolean isEndOfBatch();
 public boolean isIncludeLocation();
 public void setEndOfBatch(boolean);
 public void setIncludeLocation(boolean);
 public long getNanoTime();
}

org/apache/logging/log4j/core/layout/Encoder.class

package org.apache.logging.log4j.core.layout;
public abstract interface Encoder {
 public abstract void encode(Object, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/PatternLayout$SerializerBuilder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternLayout$SerializerBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private String pattern;
 private String defaultPattern;
 private PatternSelector patternSelector;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 public void PatternLayout$SerializerBuilder();
 public AbstractStringLayout$Serializer build();
 public PatternLayout$SerializerBuilder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PatternLayout$SerializerBuilder setReplace(org.apache.logging.log4j.core.pattern.RegexReplacement);
 public PatternLayout$SerializerBuilder setPattern(String);
 public PatternLayout$SerializerBuilder setDefaultPattern(String);
 public PatternLayout$SerializerBuilder setPatternSelector(PatternSelector);
 public PatternLayout$SerializerBuilder setAlwaysWriteExceptions(boolean);
 public PatternLayout$SerializerBuilder setDisableAnsi(boolean);
 public PatternLayout$SerializerBuilder setNoConsoleNoAnsi(boolean);
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class ScriptPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final boolean requiresLocation;
 public void ScriptPatternSelector(org.apache.logging.log4j.core.script.AbstractScript, PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static ScriptPatternSelector$Builder newBuilder();
 public static ScriptPatternSelector createSelector(org.apache.logging.log4j.core.script.AbstractScript, PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/SyslogLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class SyslogLayout extends AbstractStringLayout {
 public static final java.util.regex.Pattern NEWLINE_PATTERN;
 private final org.apache.logging.log4j.core.net.Facility facility;
 private final boolean includeNewLine;
 private final String escapeNewLine;
 private final java.text.SimpleDateFormat dateFormat;
 private final String localHostname;
 public static SyslogLayout$Builder newBuilder();
 protected void SyslogLayout(org.apache.logging.log4j.core.net.Facility, boolean, String, java.nio.charset.Charset);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private synchronized void addDate(long, StringBuilder);
 public java.util.Map getContentFormat();
 public static SyslogLayout createLayout(org.apache.logging.log4j.core.net.Facility, boolean, String, java.nio.charset.Charset);
 public org.apache.logging.log4j.core.net.Facility getFacility();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLogger$TranslatorType.class

package org.apache.logging.log4j.core.async;
abstract synchronized class AsyncLogger$TranslatorType {
 void AsyncLogger$TranslatorType(AsyncLogger);
 abstract void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 abstract void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig$1.class

package org.apache.logging.log4j.core.async;
final synchronized class AsyncLoggerConfig$1 extends ThreadLocal {
 void AsyncLoggerConfig$1();
 protected Boolean initialValue();
}

org/apache/logging/log4j/core/async/BlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public abstract interface BlockingQueueFactory {
 public static final String ELEMENT_TYPE = BlockingQueueFactory;
 public abstract java.util.concurrent.BlockingQueue create(int);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDefaultExceptionHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDefaultExceptionHandler extends AbstractAsyncExceptionHandler {
 public void AsyncLoggerConfigDefaultExceptionHandler();
}

org/apache/logging/log4j/core/async/AsyncQueueFullMessageUtil.class

package org.apache.logging.log4j.core.async;
public final synchronized class AsyncQueueFullMessageUtil {
 private void AsyncQueueFullMessageUtil();
 public static void logWarningToStatusLogger();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy.class

package org.apache.logging.log4j.core.async;
public abstract synchronized enum ThreadNameCachingStrategy {
 public static final ThreadNameCachingStrategy CACHED;
 public static final ThreadNameCachingStrategy UNCACHED;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final ThreadLocal THREADLOCAL_NAME;
 static final ThreadNameCachingStrategy DEFAULT_STRATEGY;
 public static ThreadNameCachingStrategy[] values();
 public static ThreadNameCachingStrategy valueOf(String);
 private void ThreadNameCachingStrategy(String, int);
 abstract String getThreadName();
 public static ThreadNameCachingStrategy create();
 static boolean isAllocatingThreadGetName();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/RingBufferLogEventTranslator.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEventTranslator implements com.lmax.disruptor.EventTranslator {
 private static final org.apache.logging.log4j.core.ContextDataInjector INJECTOR;
 private AsyncLogger asyncLogger;
 String loggerName;
 protected org.apache.logging.log4j.Marker marker;
 protected String fqcn;
 protected org.apache.logging.log4j.Level level;
 protected org.apache.logging.log4j.message.Message message;
 protected Throwable thrown;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement location;
 private org.apache.logging.log4j.core.util.Clock clock;
 private org.apache.logging.log4j.core.util.NanoClock nanoClock;
 public void RingBufferLogEventTranslator();
 public void translateTo(RingBufferLogEvent, long);
 void clear();
 public void setBasicValues(AsyncLogger, String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, org.apache.logging.log4j.ThreadContext$ContextStack, StackTraceElement, org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 public void updateThreadValues();
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/JndiLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JndiLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 static final String CONTAINER_JNDI_RESOURCE_PATH_PREFIX = java:comp/env/;
 public void JndiLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 private String convertJndiName(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$NoMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$NoMatcher extends StrMatcher {
 void StrMatcher$NoMatcher();
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/StrLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract interface StrLookup {
 public static final String CATEGORY = Lookup;
 public abstract String lookup(String);
 public abstract String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/StructuredDataLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class StructuredDataLookup implements StrLookup {
 public void StructuredDataLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/message/ExtendedThreadInformation$1.class

package org.apache.logging.log4j.core.message;
synchronized class ExtendedThreadInformation$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/YamlLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class YamlLogEventParser extends AbstractJacksonLogEventParser {
 public void YamlLogEventParser();
}

org/apache/logging/log4j/core/parser/TextLogEventParser.class

package org.apache.logging.log4j.core.parser;
public abstract interface TextLogEventParser extends LogEventParser {
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(String) throws ParseException;
}

org/apache/logging/log4j/core/script/AbstractScript.class

package org.apache.logging.log4j.core.script;
public abstract synchronized class AbstractScript {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected static final String DEFAULT_LANGUAGE = JavaScript;
 private final String language;
 private final String scriptText;
 private final String name;
 public void AbstractScript(String, String, String);
 public String getLanguage();
 public String getScriptText();
 public String getName();
 static void <clinit>();
}

org/apache/logging/log4j/core/script/ScriptManager$AbstractScriptRunner.class

package org.apache.logging.log4j.core.script;
abstract synchronized class ScriptManager$AbstractScriptRunner implements ScriptManager$ScriptRunner {
 private static final String KEY_STATUS_LOGGER = statusLogger;
 private static final String KEY_CONFIGURATION = configuration;
 private void ScriptManager$AbstractScriptRunner(ScriptManager);
 public javax.script.Bindings createBindings();
}

org/apache/logging/log4j/core/time/MutableInstant$1.class

package org.apache.logging.log4j.core.time;
synchronized class MutableInstant$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/Filter$Result.class

package org.apache.logging.log4j.core;
public final synchronized enum Filter$Result {
 public static final Filter$Result ACCEPT;
 public static final Filter$Result NEUTRAL;
 public static final Filter$Result DENY;
 public static Filter$Result[] values();
 public static Filter$Result valueOf(String);
 private void Filter$Result(String, int);
 public static Filter$Result toResult(String);
 public static Filter$Result toResult(String, Filter$Result);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/MarkerFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class MarkerFilter extends AbstractFilter {
 public static final String ATTR_MARKER = marker;
 private final String name;
 private void MarkerFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static MarkerFilter createFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/Filterable.class

package org.apache.logging.log4j.core.filter;
public abstract interface Filterable extends org.apache.logging.log4j.core.LifeCycle {
 public abstract void addFilter(org.apache.logging.log4j.core.Filter);
 public abstract void removeFilter(org.apache.logging.log4j.core.Filter);
 public abstract org.apache.logging.log4j.core.Filter getFilter();
 public abstract boolean hasFilter();
 public abstract boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/filter/StringMatchFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class StringMatchFilter$1 {
}

org/apache/logging/log4j/core/pattern/HighlightConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class HighlightConverter extends LogEventPatternConverter implements AnsiConverter {
 private static final java.util.Map DEFAULT_STYLES;
 private static final java.util.Map LOGBACK_STYLES;
 private static final String STYLE_KEY = STYLE;
 private static final String STYLE_KEY_DEFAULT = DEFAULT;
 private static final String STYLE_KEY_LOGBACK = LOGBACK;
 private static final java.util.Map STYLES;
 private final java.util.Map levelStyles;
 private final java.util.List patternFormatters;
 private final boolean noAnsi;
 private final String defaultStyle;
 private static java.util.Map createLevelStyleMap(String[]);
 public static HighlightConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void HighlightConverter(java.util.List, java.util.Map, boolean);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 String getLevelStyle(org.apache.logging.log4j.Level);
 public boolean handlesThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/RelativeTimePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class RelativeTimePatternConverter extends LogEventPatternConverter {
 private final long startTime;
 public void RelativeTimePatternConverter();
 public static RelativeTimePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/PatternParser$ParserState.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum PatternParser$ParserState {
 public static final PatternParser$ParserState LITERAL_STATE;
 public static final PatternParser$ParserState CONVERTER_STATE;
 public static final PatternParser$ParserState DOT_STATE;
 public static final PatternParser$ParserState MIN_STATE;
 public static final PatternParser$ParserState MAX_STATE;
 public static PatternParser$ParserState[] values();
 public static PatternParser$ParserState valueOf(String);
 private void PatternParser$ParserState(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$Space.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$Space extends SimpleLiteralPatternConverter {
 private static final SimpleLiteralPatternConverter$Space INSTANCE;
 private void SimpleLiteralPatternConverter$Space();
 void format(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized class SimpleLiteralPatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private void SimpleLiteralPatternConverter();
 static LogEventPatternConverter of(String, boolean);
 static LogEventPatternConverter of(String);
 public final void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public final void format(Object, StringBuilder);
 public final transient void format(StringBuilder, Object[]);
 abstract void format(StringBuilder);
 public final boolean isVariable();
 public final boolean handlesThrowable();
}

org/apache/logging/log4j/core/pattern/RegexReplacement.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RegexReplacement {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.regex.Pattern pattern;
 private final String substitution;
 private void RegexReplacement(java.util.regex.Pattern, String);
 public String format(String);
 public String toString();
 public static RegexReplacement createRegexReplacement(java.util.regex.Pattern, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$1 {
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Red.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Red extends AbstractStyleNameConverter {
 protected static final String NAME = red;
 public void AbstractStyleNameConverter$Red(java.util.List, String);
 public static AbstractStyleNameConverter$Red newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$StringValue.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$StringValue extends SimpleLiteralPatternConverter {
 private final String literal;
 void SimpleLiteralPatternConverter$StringValue(String);
 void format(StringBuilder);
}

org/apache/logging/log4j/core/pattern/FormattingInfo.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FormattingInfo {
 private static final char[] SPACES;
 private static final char[] ZEROS;
 private static final FormattingInfo DEFAULT;
 private final int minLength;
 private final int maxLength;
 private final boolean leftAlign;
 private final boolean leftTruncate;
 private final boolean zeroPad;
 public void FormattingInfo(boolean, int, int, boolean);
 public void FormattingInfo(boolean, int, int, boolean, boolean);
 public static FormattingInfo getDefault();
 public boolean isLeftAligned();
 public boolean isLeftTruncate();
 public boolean isZeroPad();
 public int getMinLength();
 public int getMaxLength();
 public void format(int, StringBuilder);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class DatePatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Yellow.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Yellow extends AbstractStyleNameConverter {
 protected static final String NAME = yellow;
 public void AbstractStyleNameConverter$Yellow(java.util.List, String);
 public static AbstractStyleNameConverter$Yellow newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/AnsiConverter.class

package org.apache.logging.log4j.core.pattern;
abstract interface AnsiConverter {
}

org/apache/logging/log4j/core/Layout.class

package org.apache.logging.log4j.core;
public abstract interface Layout extends layout.Encoder {
 public static final String ELEMENT_TYPE = layout;
 public abstract byte[] getFooter();
 public abstract byte[] getHeader();
 public abstract byte[] toByteArray(LogEvent);
 public abstract java.io.Serializable toSerializable(LogEvent);
 public abstract String getContentType();
 public abstract java.util.Map getContentFormat();
}

org/apache/logging/log4j/core/StringLayout.class

package org.apache.logging.log4j.core;
public abstract interface StringLayout extends Layout {
 public abstract java.nio.charset.Charset getCharset();
}

org/apache/logging/log4j/core/jackson/MessageSerializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MessageSerializer extends com.fasterxml.jackson.databind.ser.std.StdScalarSerializer {
 private static final long serialVersionUID = 1;
 void MessageSerializer();
 public void serialize(org.apache.logging.log4j.message.Message, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

Log4j-events.xsd

 Log4J 2.0 XML Schema for XML log event files.

META-INF/maven/org.apache.logging.log4j/log4j-core/pom.properties

#Created by Apache Maven 3.8.4
version=2.17.1
groupId=org.apache.logging.log4j
artifactId=log4j-core

Log4j-events.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!--the entity declarations may be overridden in the internal subset-->
<!--namespace prefixes-->
<!ENTITY % log4j_prefix "log4j">
<!--namespace prefix to namespace uri mappings-->
<!ENTITY % log4j_prefix.. "%log4j_prefix;:">
<!--namespaces attributes for root element-->
<!ENTITY % documentElementAttributes " xmlns:%log4j_prefix; CDATA 'http://logging.apache.org/log4j/2.0/events'">
<!--the declarations below should not be modified-->
<!--element name mappings-->
<!ENTITY % log4j..Events "%log4j_prefix..;Events">
<!ENTITY % log4j..Event "%log4j_prefix..;Event">
<!ENTITY % log4j..Message "%log4j_prefix..;Message">
<!ENTITY % log4j..Marker "%log4j_prefix..;Marker">
<!ATTLIST %log4j..Marker;
 parent CDATA #IMPLIED
>
<!ENTITY % log4j..NDC "%log4j_prefix..;NDC">
<!ENTITY % log4j..Throwable "%log4j_prefix..;Throwable">
<!ENTITY % log4j..LocationInfo "%log4j_prefix..;LocationInfo">
<!ENTITY % log4j..Properties "%log4j_prefix..;Properties">
<!ENTITY % log4j..Data "%log4j_prefix..;Data">
<!--element and attribute declarations-->
<!--Log4J 2.0 XML Schema-->
<!ELEMENT %log4j..Events; ((%log4j..Event;)*)>
<!ATTLIST %log4j..Events;
	%documentElementAttributes;
>
<!ELEMENT %log4j..Event; (%log4j..Message;, (%log4j..NDC;)?, (%log4j..Marker;)?, (%log4j..Throwable;)?, (%log4j..LocationInfo;)?, (%log4j..Properties;)?)>
<!ATTLIST %log4j..Event;
	logger CDATA #REQUIRED
	timestamp NMTOKEN #REQUIRED
	level (OFF | FATAL | ERROR | WARN | INFO | DEBUG | TRACE | ALL) #REQUIRED
 threadId CDATA #REQUIRED
 thread CDATA #REQUIRED
 threadPriority CDATA #REQUIRED
>
<!ELEMENT %log4j..Message; ANY>
<!ELEMENT %log4j..NDC; ANY>
<!ELEMENT %log4j..Throwable; ANY>
<!ELEMENT %log4j..LocationInfo; EMPTY>
<!ATTLIST %log4j..LocationInfo;
	class CDATA #REQUIRED
	method CDATA #REQUIRED
	file CDATA #REQUIRED
	line NMTOKEN #REQUIRED
>
<!ELEMENT %log4j..Properties; ((%log4j..Data;)+)>
<!ELEMENT %log4j..Data; EMPTY>
<!ATTLIST %log4j..Data;
	name CDATA #REQUIRED
	value CDATA #REQUIRED
>

org/apache/logging/log4j/core/appender/WriterManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class WriterManager extends AbstractManager {
 protected final org.apache.logging.log4j.core.StringLayout layout;
 private volatile java.io.Writer writer;
 public static WriterManager getManager(String, Object, ManagerFactory);
 public void WriterManager(java.io.Writer, String, org.apache.logging.log4j.core.StringLayout, boolean);
 protected synchronized void closeWriter();
 public synchronized void flush();
 protected java.io.Writer getWriter();
 public boolean isOpen();
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected void setWriter(java.io.Writer);
 protected synchronized void write(String);
 protected void writeFooter();
}

org/apache/logging/log4j/core/appender/rolling/DirectWriteRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DirectWriteRolloverStrategy extends AbstractRolloverStrategy implements DirectFileRolloverStrategy {
 private static final int DEFAULT_MAX_FILES = 7;
 private final int maxFiles;
 private final int compressionLevel;
 private final java.util.List customActions;
 private final boolean stopCustomActionsOnError;
 private volatile String currentFileName;
 private int nextIndex;
 private final PatternProcessor tempCompressedFilePattern;
 private volatile boolean usePrevTime;
 public static DirectWriteRolloverStrategy$Builder newBuilder();
 public static DirectWriteRolloverStrategy createStrategy(String, String, action.Action[], boolean, org.apache.logging.log4j.core.config.Configuration);
 protected void DirectWriteRolloverStrategy(int, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean);
 protected void DirectWriteRolloverStrategy(int, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean, String);
 public int getCompressionLevel();
 public java.util.List getCustomActions();
 public int getMaxFiles();
 public boolean isStopCustomActionsOnError();
 public PatternProcessor getTempCompressedFilePattern();
 private int purge(RollingFileManager);
 public String getCurrentFileName(RollingFileManager);
 public void clearCurrentFileName();
 public RolloverDescription rollover(RollingFileManager) throws SecurityException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/ScriptCondition.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class ScriptCondition {
 private static org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 public void ScriptCondition(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration);
 public java.util.List selectFilesToDelete(java.nio.file.Path, java.util.List);
 public static ScriptCondition createCondition(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction$Builder.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PosixViewAttributeAction$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 private String basePath;
 private boolean followLinks;
 private int maxDepth;
 private PathCondition[] pathConditions;
 private String filePermissionsString;
 private java.util.Set filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void PosixViewAttributeAction$Builder();
 public PosixViewAttributeAction build();
 public PosixViewAttributeAction$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PosixViewAttributeAction$Builder withSubst(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public PosixViewAttributeAction$Builder withBasePath(String);
 public PosixViewAttributeAction$Builder withFollowLinks(boolean);
 public PosixViewAttributeAction$Builder withMaxDepth(int);
 public PosixViewAttributeAction$Builder withPathConditions(PathCondition[]);
 public PosixViewAttributeAction$Builder withFilePermissionsString(String);
 public PosixViewAttributeAction$Builder withFilePermissions(java.util.Set);
 public PosixViewAttributeAction$Builder withFileOwner(String);
 public PosixViewAttributeAction$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/rolling/action/CompositeAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class CompositeAction extends AbstractAction {
 private final Action[] actions;
 private final boolean stopOnError;
 public void CompositeAction(java.util.List, boolean);
 public void run();
 public boolean execute() throws java.io.IOException;
 public String toString();
 public Action[] getActions();
 public boolean isStopOnError();
}

org/apache/logging/log4j/core/appender/rolling/action/Action.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface Action extends Runnable {
 public abstract boolean execute() throws java.io.IOException;
 public abstract void close();
 public abstract boolean isComplete();
}

org/apache/logging/log4j/core/appender/rolling/DefaultRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DefaultRolloverStrategy extends AbstractRolloverStrategy {
 private static final int MIN_WINDOW_SIZE = 1;
 private static final int DEFAULT_WINDOW_SIZE = 7;
 private final int maxIndex;
 private final int minIndex;
 private final boolean useMax;
 private final int compressionLevel;
 private final java.util.List customActions;
 private final boolean stopCustomActionsOnError;
 private final PatternProcessor tempCompressedFilePattern;
 public static DefaultRolloverStrategy$Builder newBuilder();
 public static DefaultRolloverStrategy createStrategy(String, String, String, String, action.Action[], boolean, org.apache.logging.log4j.core.config.Configuration);
 protected void DefaultRolloverStrategy(int, int, boolean, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean);
 protected void DefaultRolloverStrategy(int, int, boolean, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean, String);
 public int getCompressionLevel();
 public java.util.List getCustomActions();
 public int getMaxIndex();
 public int getMinIndex();
 public boolean isStopCustomActionsOnError();
 public boolean isUseMax();
 public PatternProcessor getTempCompressedFilePattern();
 private int purge(int, int, RollingFileManager);
 private int purgeAscending(int, int, RollingFileManager);
 private int purgeDescending(int, int, RollingFileManager);
 public RolloverDescription rollover(RollingFileManager) throws SecurityException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class CronTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final String defaultSchedule = 0 0 0 * * ?;
 private RollingFileManager manager;
 private final org.apache.logging.log4j.core.util.CronExpression cronExpression;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final boolean checkOnStartup;
 private volatile java.util.Date lastRollDate;
 private org.apache.logging.log4j.core.config.CronScheduledFuture future;
 private void CronTriggeringPolicy(org.apache.logging.log4j.core.util.CronExpression, boolean, org.apache.logging.log4j.core.config.Configuration);
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.util.CronExpression getCronExpression();
 public static CronTriggeringPolicy createPolicy(org.apache.logging.log4j.core.config.Configuration, String, String);
 private static org.apache.logging.log4j.core.util.CronExpression getSchedule(String);
 private void rollover();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class MemoryMappedFileManager extends OutputStreamManager {
 static final int DEFAULT_REGION_LENGTH = 33554432;
 private static final int MAX_REMAP_COUNT = 10;
 private static final MemoryMappedFileManager$MemoryMappedFileManagerFactory FACTORY;
 private static final double NANOS_PER_MILLISEC = 1000000.0;
 private final boolean immediateFlush;
 private final int regionLength;
 private final String advertiseURI;
 private final java.io.RandomAccessFile randomAccessFile;
 private java.nio.MappedByteBuffer mappedBuffer;
 private long mappingOffset;
 protected void MemoryMappedFileManager(java.io.RandomAccessFile, String, java.io.OutputStream, boolean, long, int, String, org.apache.logging.log4j.core.Layout, boolean) throws java.io.IOException;
 public static MemoryMappedFileManager getFileManager(String, boolean, boolean, int, String, org.apache.logging.log4j.core.Layout);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected synchronized void write(byte[], int, int, boolean);
 private synchronized void remap();
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public static java.nio.MappedByteBuffer mmap(java.nio.channels.FileChannel, String, long, int) throws java.io.IOException;
 private static void unsafeUnmap(java.nio.MappedByteBuffer) throws java.security.PrivilegedActionException;
 public String getFileName();
 public int getRegionLength();
 public boolean isImmediateFlush();
 public java.util.Map getContentFormat();
 protected void flushBuffer(java.nio.ByteBuffer);
 public java.nio.ByteBuffer getByteBuffer();
 public java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/ManagerFactory.class

package org.apache.logging.log4j.core.appender;
public abstract interface ManagerFactory {
 public abstract Object createManager(String, Object);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class JdbcAppender extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender {
 private final String description;
 public static JdbcAppender createAppender(String, String, org.apache.logging.log4j.core.Filter, ConnectionSource, String, String, ColumnConfig[]);
 public static JdbcAppender$Builder newBuilder();
 private void JdbcAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], JdbcDatabaseManager);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/DriverManagerConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class DriverManagerConnectionSource extends AbstractDriverManagerConnectionSource {
 public static DriverManagerConnectionSource$Builder newBuilder();
 public void DriverManagerConnectionSource(String, String, String, char[], char[], org.apache.logging.log4j.core.config.Property[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class JdbcAppender$Builder extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private ConnectionSource connectionSource;
 private boolean immediateFail;
 private int bufferSize;
 private String tableName;
 private ColumnConfig[] columnConfigs;
 private org.apache.logging.log4j.core.appender.db.ColumnMapping[] columnMappings;
 private boolean truncateStrings;
 private long reconnectIntervalMillis;
 public void JdbcAppender$Builder();
 public JdbcAppender build();
 public long getReconnectIntervalMillis();
 public boolean isImmediateFail();
 public JdbcAppender$Builder setBufferSize(int);
 public transient JdbcAppender$Builder setColumnConfigs(ColumnConfig[]);
 public transient JdbcAppender$Builder setColumnMappings(org.apache.logging.log4j.core.appender.db.ColumnMapping[]);
 public JdbcAppender$Builder setConnectionSource(ConnectionSource);
 public void setImmediateFail(boolean);
 public void setReconnectIntervalMillis(long);
 public JdbcAppender$Builder setTableName(String);
 public JdbcAppender$Builder setTruncateStrings(boolean);
}

org/apache/logging/log4j/core/appender/AsyncAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class AsyncAppender$1 {
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$Builder.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class RoutingAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.script.AbstractScript defaultRouteScript;
 private Routes routes;
 private org.apache.logging.log4j.core.appender.rewrite.RewritePolicy rewritePolicy;
 private PurgePolicy purgePolicy;
 public void RoutingAppender$Builder();
 public RoutingAppender build();
 public Routes getRoutes();
 public org.apache.logging.log4j.core.script.AbstractScript getDefaultRouteScript();
 public org.apache.logging.log4j.core.appender.rewrite.RewritePolicy getRewritePolicy();
 public PurgePolicy getPurgePolicy();
 public RoutingAppender$Builder withRoutes(Routes);
 public RoutingAppender$Builder withDefaultRouteScript(org.apache.logging.log4j.core.script.AbstractScript);
 public RoutingAppender$Builder withRewritePolicy(org.apache.logging.log4j.core.appender.rewrite.RewritePolicy);
 public void withPurgePolicy(PurgePolicy);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlObject.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlObject {
 public abstract void set(String, Object);
 public abstract void set(String, NoSqlObject);
 public abstract void set(String, Object[]);
 public abstract void set(String, NoSqlObject[]);
 public abstract Object unwrap();
}

org/apache/logging/log4j/core/appender/nosql/AbstractNoSqlConnection.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract synchronized class AbstractNoSqlConnection implements NoSqlConnection {
 private final java.util.concurrent.atomic.AtomicBoolean closed;
 public void AbstractNoSqlConnection();
 public void close();
 protected abstract void closeImpl();
 public boolean isClosed();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class MemoryMappedFileAppender extends AbstractOutputStreamAppender {
 private static final int BIT_POSITION_1GB = 30;
 private static final int MAX_REGION_LENGTH = 1073741824;
 private static final int MIN_REGION_LENGTH = 256;
 private final String fileName;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void MemoryMappedFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, MemoryMappedFileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getFileName();
 public int getRegionLength();
 public static MemoryMappedFileAppender createAppender(String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static MemoryMappedFileAppender$Builder newBuilder();
 private static int determineValidRegionLength(String, int);
}

org/apache/logging/log4j/core/impl/ThrowableProxy.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThrowableProxy implements java.io.Serializable {
 static final ThrowableProxy[] EMPTY_ARRAY;
 private static final char EOL = 10;
 private static final String EOL_STR;
 private static final long serialVersionUID = -2752771578252251910;
 private final ThrowableProxy causeProxy;
 private int commonElementCount;
 private final ExtendedStackTraceElement[] extendedStackTrace;
 private final String localizedMessage;
 private final String message;
 private final String name;
 private final ThrowableProxy[] suppressedProxies;
 private final transient Throwable throwable;
 void ThrowableProxy();
 public void ThrowableProxy(Throwable);
 void ThrowableProxy(Throwable, java.util.Set);
 private void ThrowableProxy(Throwable, java.util.Stack, java.util.Map, Throwable, java.util.Set, java.util.Set);
 public boolean equals(Object);
 public void formatWrapper(StringBuilder, ThrowableProxy, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public ThrowableProxy getCauseProxy();
 public String getCauseStackTraceAsString(String);
 public String getCauseStackTraceAsString(java.util.List, String);
 public String getCauseStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public String getCauseStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public int getCommonElementCount();
 void setCommonElementCount(int);
 public ExtendedStackTraceElement[] getExtendedStackTrace();
 public String getExtendedStackTraceAsString();
 public String getExtendedStackTraceAsString(String);
 public String getExtendedStackTraceAsString(java.util.List, String);
 public String getExtendedStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public String getExtendedStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public void formatExtendedStackTraceTo(StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public String getLocalizedMessage();
 public String getMessage();
 public String getName();
 public StackTraceElement[] getStackTrace();
 public ThrowableProxy[] getSuppressedProxies();
 public String getSuppressedStackTrace(String);
 public Throwable getThrowable();
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/ContextDataFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ContextDataFactory {
 private static final String CLASS_NAME;
 private static final Class CACHED_CLASS;
 private static final reflect.Constructor DEFAULT_CONSTRUCTOR;
 private static final reflect.Constructor INITIAL_CAPACITY_CONSTRUCTOR;
 private static final org.apache.logging.log4j.util.StringMap EMPTY_STRING_MAP;
 public void ContextDataFactory();
 private static Class createCachedClass(String);
 private static reflect.Constructor createDefaultConstructor(Class);
 private static reflect.Constructor createInitialCapacityConstructor(Class);
 public static org.apache.logging.log4j.util.StringMap createContextData();
 public static org.apache.logging.log4j.util.StringMap createContextData(int);
 public static org.apache.logging.log4j.util.StringMap createContextData(java.util.Map);
 public static org.apache.logging.log4j.util.StringMap createContextData(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public static org.apache.logging.log4j.util.StringMap emptyFrozenContextData();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/JndiContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class JndiContextSelector implements NamedContextSelector {
 private static final org.apache.logging.log4j.core.LoggerContext CONTEXT;
 private static final java.util.concurrent.ConcurrentMap CONTEXT_MAP;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 public void JndiContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 private String getContextName();
 public org.apache.logging.log4j.core.LoggerContext locateContext(String, Object, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public org.apache.logging.log4j.core.LoggerContext removeContext(String);
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$ShortestFirst.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$ShortestFirst implements java.util.Comparator {
 void CommandLine$Help$ShortestFirst();
 public int compare(String, String);
 public static String[] sort(String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$IExceptionHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$IExceptionHandler {
 public abstract transient java.util.List handleException(CommandLine$ParameterException, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine {
 public static final String VERSION = 2.0.3;
 private final CommandLine$Tracer tracer;
 private final CommandLine$Interpreter interpreter;
 private String commandName;
 private boolean overwrittenOptionsAllowed;
 private boolean unmatchedArgumentsAllowed;
 private final java.util.List unmatchedArguments;
 private CommandLine parent;
 private boolean usageHelpRequested;
 private boolean versionHelpRequested;
 private final java.util.List versionLines;
 public void CommandLine(Object);
 public CommandLine addSubcommand(String, Object);
 public java.util.Map getSubcommands();
 public CommandLine getParent();
 public Object getCommand();
 public boolean isUsageHelpRequested();
 public boolean isVersionHelpRequested();
 public boolean isOverwrittenOptionsAllowed();
 public CommandLine setOverwrittenOptionsAllowed(boolean);
 public boolean isUnmatchedArgumentsAllowed();
 public CommandLine setUnmatchedArgumentsAllowed(boolean);
 public java.util.List getUnmatchedArguments();
 public static transient Object populateCommand(Object, String[]);
 public transient java.util.List parse(String[]);
 public static boolean printHelpIfRequested(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
 private static Object execute(CommandLine);
 public transient java.util.List parseWithHandler(CommandLine$IParseResultHandler, java.io.PrintStream, String[]);
 public transient java.util.List parseWithHandlers(CommandLine$IParseResultHandler, java.io.PrintStream, CommandLine$Help$Ansi, CommandLine$IExceptionHandler, String[]);
 public static void usage(Object, java.io.PrintStream);
 public static void usage(Object, java.io.PrintStream, CommandLine$Help$Ansi);
 public static void usage(Object, java.io.PrintStream, CommandLine$Help$ColorScheme);
 public void usage(java.io.PrintStream);
 public void usage(java.io.PrintStream, CommandLine$Help$Ansi);
 public void usage(java.io.PrintStream, CommandLine$Help$ColorScheme);
 public void printVersionHelp(java.io.PrintStream);
 public void printVersionHelp(java.io.PrintStream, CommandLine$Help$Ansi);
 public transient void printVersionHelp(java.io.PrintStream, CommandLine$Help$Ansi, Object[]);
 public static transient Object call(java.util.concurrent.Callable, java.io.PrintStream, String[]);
 public static transient Object call(java.util.concurrent.Callable, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
 public static transient void run(Runnable, java.io.PrintStream, String[]);
 public static transient void run(Runnable, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
 public CommandLine registerConverter(Class, CommandLine$ITypeConverter);
 public String getSeparator();
 public CommandLine setSeparator(String);
 public String getCommandName();
 public CommandLine setCommandName(String);
 private static boolean empty(String);
 private static boolean empty(Object[]);
 private static boolean empty(CommandLine$Help$Ansi$Text);
 private static String str(String[], int);
 private static boolean isBoolean(Class);
 private static CommandLine toCommandLine(Object);
 private static boolean isMultiValue(reflect.Field);
 private static boolean isMultiValue(Class);
 private static Class[] getTypeAttribute(reflect.Field);
 static void init(Class, java.util.List, java.util.Map, java.util.Map, java.util.List);
 static void validatePositionalParameters(java.util.List);
 private static java.util.Stack reverse(java.util.Stack);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Option.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Option extends annotation.Annotation {
 public abstract String[] names();
 public abstract boolean required();
 public abstract boolean help();
 public abstract boolean usageHelp();
 public abstract boolean versionHelp();
 public abstract String[] description();
 public abstract String arity();
 public abstract String paramLabel();
 public abstract Class[] type();
 public abstract String split();
 public abstract boolean hidden();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$MinimalParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$MinimalParameterRenderer implements CommandLine$Help$IParameterRenderer {
 void CommandLine$Help$MinimalParameterRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ShortConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ShortConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ShortConverter();
 public Short convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Text.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Ansi$Text implements Cloneable {
 private final int maxLength;
 private int from;
 private int length;
 private StringBuilder plain;
 private java.util.List sections;
 public void CommandLine$Help$Ansi$Text(CommandLine$Help$Ansi, int);
 public void CommandLine$Help$Ansi$Text(CommandLine$Help$Ansi, String);
 private void addStyledSection(int, int, String, String);
 public Object clone();
 public CommandLine$Help$Ansi$Text[] splitLines();
 public CommandLine$Help$Ansi$Text substring(int);
 public CommandLine$Help$Ansi$Text substring(int, int);
 public CommandLine$Help$Ansi$Text append(String);
 public CommandLine$Help$Ansi$Text append(CommandLine$Help$Ansi$Text);
 public void getStyledChars(int, int, CommandLine$Help$Ansi$Text, int);
 public String plainString();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private CommandLine$Help$Ansi$StyledSection findSectionContaining(int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharsetConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharsetConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharsetConverter();
 public java.nio.charset.Charset convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultParameterRenderer implements CommandLine$Help$IParameterRenderer {
 public String requiredMarker;
 void CommandLine$Help$DefaultParameterRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn {
 private void CommandLine$BuiltIn();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$LongConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$LongConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$LongConverter();
 public Long convert(String);
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationFactory.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationFactory {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static SslConfiguration sslConfiguration;
 private static final String trustStorelocation = log4j2.trustStoreLocation;
 private static final String trustStorePassword = log4j2.trustStorePassword;
 private static final String trustStorePasswordFile = log4j2.trustStorePasswordFile;
 private static final String trustStorePasswordEnvVar = log4j2.trustStorePasswordEnvironmentVariable;
 private static final String trustStoreKeyStoreType = log4j2.trustStoreKeyStoreType;
 private static final String trustStoreKeyManagerFactoryAlgorithm = log4j2.trustStoreKeyManagerFactoryAlgorithm;
 private static final String keyStoreLocation = log4j2.keyStoreLocation;
 private static final String keyStorePassword = log4j2.keyStorePassword;
 private static final String keyStorePasswordFile = log4j2.keyStorePasswordFile;
 private static final String keyStorePasswordEnvVar = log4j2.keyStorePasswordEnvironmentVariable;
 private static final String keyStoreType = log4j2.keyStoreType;
 private static final String keyStoreKeyManagerFactoryAlgorithm = log4j2.keyStoreKeyManagerFactoryAlgorithm;
 private static final String verifyHostName = log4j2.sslVerifyHostName;
 public void SslConfigurationFactory();
 public static SslConfiguration getSslConfiguration();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/EnvironmentPasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class EnvironmentPasswordProvider implements PasswordProvider {
 private final String passwordEnvironmentVariable;
 public void EnvironmentPasswordProvider(String);
 public char[] getPassword();
}

org/apache/logging/log4j/core/net/ssl/AbstractKeyStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class AbstractKeyStoreConfiguration extends StoreConfiguration {
 private final java.security.KeyStore keyStore;
 private final String keyStoreType;
 public void AbstractKeyStoreConfiguration(String, PasswordProvider, String) throws StoreConfigurationException;
 public void AbstractKeyStoreConfiguration(String, char[], String) throws StoreConfigurationException;
 public void AbstractKeyStoreConfiguration(String, String, String) throws StoreConfigurationException;
 protected java.security.KeyStore load() throws StoreConfigurationException;
 private java.io.InputStream openInputStream(String);
 public java.security.KeyStore getKeyStore();
 public int hashCode();
 public boolean equals(Object);
 public String getKeyStoreType();
}

org/apache/logging/log4j/core/net/AbstractSocketManager.class

package org.apache.logging.log4j.core.net;
public abstract synchronized class AbstractSocketManager extends org.apache.logging.log4j.core.appender.OutputStreamManager {
 protected final java.net.InetAddress inetAddress;
 protected final String host;
 protected final int port;
 public void AbstractSocketManager(String, java.io.OutputStream, java.net.InetAddress, String, int, org.apache.logging.log4j.core.Layout, boolean, int);
 public java.util.Map getContentFormat();
}

org/apache/logging/log4j/core/net/Facility.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Facility {
 public static final Facility KERN;
 public static final Facility USER;
 public static final Facility MAIL;
 public static final Facility DAEMON;
 public static final Facility AUTH;
 public static final Facility SYSLOG;
 public static final Facility LPR;
 public static final Facility NEWS;
 public static final Facility UUCP;
 public static final Facility CRON;
 public static final Facility AUTHPRIV;
 public static final Facility FTP;
 public static final Facility NTP;
 public static final Facility LOG_AUDIT;
 public static final Facility LOG_ALERT;
 public static final Facility CLOCK;
 public static final Facility LOCAL0;
 public static final Facility LOCAL1;
 public static final Facility LOCAL2;
 public static final Facility LOCAL3;
 public static final Facility LOCAL4;
 public static final Facility LOCAL5;
 public static final Facility LOCAL6;
 public static final Facility LOCAL7;
 private final int code;
 public static Facility[] values();
 public static Facility valueOf(String);
 private void Facility(String, int, int);
 public static Facility toFacility(String);
 public static Facility toFacility(String, Facility);
 public int getCode();
 public boolean isEqual(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatcherFactory.class

package org.apache.logging.log4j.core.util;
public synchronized class WatcherFactory {
 private static org.apache.logging.log4j.Logger LOGGER;
 private static org.apache.logging.log4j.core.config.plugins.util.PluginManager pluginManager;
 private static volatile WatcherFactory factory;
 private final java.util.Map plugins;
 private void WatcherFactory(java.util.List);
 public static WatcherFactory getInstance(java.util.List);
 public Watcher newWatcher(Source, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 public static Watcher instantiate(String, Class, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CyclicBuffer.class

package org.apache.logging.log4j.core.util;
public final synchronized class CyclicBuffer {
 private final Object[] ring;
 private int first;
 private int last;
 private int numElems;
 private final Class clazz;
 public void CyclicBuffer(Class, int) throws IllegalArgumentException;
 private Object[] makeArray(Class, int);
 public synchronized void add(Object);
 public synchronized Object[] removeAll();
 public boolean isEmpty();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$TimeZoneStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$TimeZoneStrategy extends FastDateParser$PatternStrategy {
 private static final String RFC_822_TIME_ZONE = [+-]\d{4};
 private static final String GMT_OPTION = GMT[+-]\d{1,2}:\d{2};
 private final java.util.Locale locale;
 private final java.util.Map tzNames;
 private static final int ID = 0;
 void FastDateParser$TimeZoneStrategy(java.util.Locale);
 void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDatePrinter implements DatePrinter, java.io.Serializable {
 private static final long serialVersionUID = 1;
 public static final int FULL = 0;
 public static final int LONG = 1;
 public static final int MEDIUM = 2;
 public static final int SHORT = 3;
 private final String mPattern;
 private final java.util.TimeZone mTimeZone;
 private final java.util.Locale mLocale;
 private transient FastDatePrinter$Rule[] mRules;
 private transient int mMaxLengthEstimate;
 private static final int MAX_DIGITS = 10;
 private static final java.util.concurrent.ConcurrentMap cTimeZoneDisplayCache;
 protected void FastDatePrinter(String, java.util.TimeZone, java.util.Locale);
 private void init();
 protected java.util.List parsePattern();
 protected String parseToken(String, int[]);
 protected FastDatePrinter$NumberRule selectNumberRule(int, int);
 public StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 String format(Object);
 public String format(long);
 private String applyRulesToString(java.util.Calendar);
 private java.util.Calendar newCalendar();
 public String format(java.util.Date);
 public String format(java.util.Calendar);
 public Appendable format(long, Appendable);
 public Appendable format(java.util.Date, Appendable);
 public Appendable format(java.util.Calendar, Appendable);
 protected StringBuffer applyRules(java.util.Calendar, StringBuffer);
 private Appendable applyRules(java.util.Calendar, Appendable);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public int getMaxLengthEstimate();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private static void appendDigits(Appendable, int) throws java.io.IOException;
 private static void appendFullDigits(Appendable, int, int) throws java.io.IOException;
 static String getTimeZoneDisplay(java.util.TimeZone, boolean, int, java.util.Locale);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$StrategyParser.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$StrategyParser {
 private final java.util.Calendar definingCalendar;
 private int currentIdx;
 void FastDateParser$StrategyParser(FastDateParser, java.util.Calendar);
 FastDateParser$StrategyAndWidth getNextStrategy();
 private FastDateParser$StrategyAndWidth letterPattern(char);
 private FastDateParser$StrategyAndWidth literal();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$5.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$5 extends FastDateParser$NumberStrategy {
 void FastDateParser$5(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$1.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$1 extends FastDateParser$NumberStrategy {
 void FastDateParser$1(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateFormat$1.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateFormat$1 extends FormatCache {
 void FastDateFormat$1();
 protected FastDateFormat createInstance(String, java.util.TimeZone, java.util.Locale);
}

org/apache/logging/log4j/core/util/PasswordDecryptor.class

package org.apache.logging.log4j.core.util;
public abstract interface PasswordDecryptor {
 public abstract String decryptPassword(String);
}

org/apache/logging/log4j/core/util/Closer.class

package org.apache.logging.log4j.core.util;
public final synchronized class Closer {
 private void Closer();
 public static boolean close(AutoCloseable) throws Exception;
 public static boolean closeSilently(AutoCloseable);
}

org/apache/logging/log4j/core/util/WatchManager.class

package org.apache.logging.log4j.core.util;
public synchronized class WatchManager extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static org.apache.logging.log4j.Logger logger;
 private final java.util.concurrent.ConcurrentMap watchers;
 private int intervalSeconds;
 private java.util.concurrent.ScheduledFuture future;
 private final org.apache.logging.log4j.core.config.ConfigurationScheduler scheduler;
 private final java.util.List eventServiceList;
 private final java.util.UUID id;
 public void WatchManager(org.apache.logging.log4j.core.config.ConfigurationScheduler);
 public void checkFiles();
 public java.util.Map getConfigurationWatchers();
 private java.util.List getEventServices();
 public java.util.UUID getId();
 public int getIntervalSeconds();
 public java.util.Map getWatchers();
 public boolean hasEventListeners();
 private String millisToString(long);
 public void reset();
 public void reset(java.io.File);
 public void reset(Source);
 public void setIntervalSeconds(int);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
 public void unwatch(Source);
 public void unwatchFile(java.io.File);
 public void watch(Source, Watcher);
 public void watchFile(java.io.File, FileWatcher);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Watcher.class

package org.apache.logging.log4j.core.util;
public abstract interface Watcher {
 public static final String CATEGORY = Watcher;
 public static final String ELEMENT_TYPE = watcher;
 public abstract java.util.List getListeners();
 public abstract void modified();
 public abstract boolean isModified();
 public abstract long getLastModified();
 public abstract void watching(Source);
 public abstract Source getSource();
 public abstract Watcher newWatcher(org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/util/ExecutorServices.class

package org.apache.logging.log4j.core.util;
public synchronized class ExecutorServices {
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void ExecutorServices();
 public static boolean shutdown(java.util.concurrent.ExecutorService, long, java.util.concurrent.TimeUnit, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/AuthorizationProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface AuthorizationProvider {
 public abstract void addAuthorization(java.net.URLConnection);
}

org/apache/logging/log4j/core/util/ShutdownCallbackRegistry.class

package org.apache.logging.log4j.core.util;
public abstract interface ShutdownCallbackRegistry {
 public static final String SHUTDOWN_CALLBACK_REGISTRY = log4j.shutdownCallbackRegistry;
 public static final String SHUTDOWN_HOOK_ENABLED = log4j.shutdownHookEnabled;
 public static final org.apache.logging.log4j.Marker SHUTDOWN_HOOK_MARKER;
 public abstract Cancellable addShutdownCallback(Runnable);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DummyNanoClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class DummyNanoClock implements NanoClock {
 private final long fixedNanoTime;
 public void DummyNanoClock();
 public void DummyNanoClock(long);
 public long nanoTime();
}

org/apache/logging/log4j/core/config/LoggerConfig$RootLogger.class

package org.apache.logging.log4j.core.config;
public synchronized class LoggerConfig$RootLogger extends LoggerConfig {
 public void LoggerConfig$RootLogger();
 public static LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginElementVisitor extends AbstractPluginVisitor {
 public void PluginElementVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private org.apache.logging.log4j.core.config.Node findNamedNode(String, Iterable);
}

org/apache/logging/log4j/core/config/plugins/util/PluginRegistry.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginRegistry {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile PluginRegistry INSTANCE;
 private static final Object INSTANCE_LOCK;
 private final java.util.concurrent.atomic.AtomicReference pluginsByCategoryRef;
 private final java.util.concurrent.ConcurrentMap pluginsByCategoryByBundleId;
 private final java.util.concurrent.ConcurrentMap pluginsByCategoryByPackage;
 private void PluginRegistry();
 public static PluginRegistry getInstance();
 public void clear();
 public java.util.Map getPluginsByCategoryByBundleId();
 public java.util.Map loadFromMainClassLoader();
 public void clearBundlePlugins(long);
 public java.util.Map loadFromBundle(long, ClassLoader);
 private java.util.Map decodeCacheFiles(ClassLoader);
 public java.util.Map loadFromPackage(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/PluginManager.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginManager {
 private static final java.util.concurrent.CopyOnWriteArrayList PACKAGES;
 private static final String LOG4J_PACKAGES = org.apache.logging.log4j.core;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private java.util.Map plugins;
 private final String category;
 public void PluginManager(String);
 public static void main(String[]);
 public static void addPackage(String);
 public static void addPackages(java.util.Collection);
 public PluginType getPluginType(String);
 public java.util.Map getPlugins();
 public void collectPlugins();
 public void collectPlugins(java.util.List);
 private static void mergeByName(java.util.Map, java.util.List);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/PluginConfiguration.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginConfiguration extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/validation/validators/ValidPortValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class ValidPortValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidPort annotation;
 public void ValidPortValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidPort);
 public boolean isValid(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/HexConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class HexConverter {
 public void HexConverter();
 public static byte[] parseHexBinary(String);
}

org/apache/logging/log4j/core/config/plugins/convert/Base64Converter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class Base64Converter {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static reflect.Method method;
 private static Object decoder;
 public void Base64Converter();
 public static byte[] parseBase64Binary(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/Configurator.class

package org.apache.logging.log4j.core.config;
public final synchronized class Configurator {
 private static final String FQCN;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static org.apache.logging.log4j.core.impl.Log4jContextFactory getFactory();
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, ConfigurationSource);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, ConfigurationSource, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, String);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, String, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI, java.util.Map$Entry);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.util.List, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, String);
 public static org.apache.logging.log4j.core.LoggerContext initialize(Configuration);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, Configuration);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, Configuration, Object);
 public static void reconfigure(Configuration);
 public static void reconfigure();
 public static void reconfigure(java.net.URI);
 public static void setAllLevels(String, org.apache.logging.log4j.Level);
 private static boolean setLevel(LoggerConfig, org.apache.logging.log4j.Level);
 public static void setLevel(java.util.Map);
 public static void setLevel(String, org.apache.logging.log4j.Level);
 private static boolean setLevel(String, org.apache.logging.log4j.Level, Configuration);
 public static void setRootLevel(org.apache.logging.log4j.Level);
 public static void shutdown(org.apache.logging.log4j.core.LoggerContext);
 public static boolean shutdown(org.apache.logging.log4j.core.LoggerContext, long, java.util.concurrent.TimeUnit);
 private void Configurator();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/composite/DefaultMergeStrategy.class

package org.apache.logging.log4j.core.config.composite;
public synchronized class DefaultMergeStrategy implements MergeStrategy {
 private static final String APPENDERS = appenders;
 private static final String PROPERTIES = properties;
 private static final String LOGGERS = loggers;
 private static final String SCRIPTS = scripts;
 private static final String FILTERS = filters;
 private static final String STATUS = status;
 private static final String NAME = name;
 private static final String REF = ref;
 public void DefaultMergeStrategy();
 public void mergeRootProperties(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.AbstractConfiguration);
 public void mergConfigurations(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
 private org.apache.logging.log4j.core.config.Node getLoggerNode(org.apache.logging.log4j.core.config.Node, String);
 private void updateFilterNode(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
 private boolean isFilterNode(org.apache.logging.log4j.core.config.Node);
 private boolean isSameName(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node);
 private boolean isSameReference(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node);
}

org/apache/logging/log4j/core/config/properties/PropertiesConfiguration.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfiguration extends org.apache.logging.log4j.core.config.builder.impl.BuiltConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 public void PropertiesConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource, org.apache.logging.log4j.core.config.builder.api.Component);
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
}

org/apache/logging/log4j/core/config/CustomLevels.class

package org.apache.logging.log4j.core.config;
public final synchronized class CustomLevels {
 private final java.util.List customLevels;
 private void CustomLevels(CustomLevelConfig[]);
 public static CustomLevels createCustomLevels(CustomLevelConfig[]);
 public java.util.List getCustomLevels();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultKeyValuePairComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultKeyValuePairComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.KeyValuePairComponentBuilder {
 public void DefaultKeyValuePairComponentBuilder(DefaultConfigurationBuilder, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultComponentAndConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultComponentAndConfigurationBuilder extends DefaultComponentBuilder {
 void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String, String, String);
 void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String);
}

org/apache/logging/log4j/core/config/builder/api/PropertyComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface PropertyComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/FilterableComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface FilterableComponentBuilder extends ComponentBuilder {
 public abstract ComponentBuilder add(FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/LoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LoggerComponentBuilder extends LoggableComponentBuilder {
}

org/apache/logging/log4j/core/jmx/RingBufferAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface RingBufferAdminMBean {
 public static final String PATTERN_ASYNC_LOGGER = org.apache.logging.log4j2:type=%s,component=AsyncLoggerRingBuffer;
 public static final String PATTERN_ASYNC_LOGGER_CONFIG = org.apache.logging.log4j2:type=%s,component=Loggers,name=%s,subtype=RingBuffer;
 public abstract long getBufferSize();
 public abstract long getRemainingCapacity();
}

org/apache/logging/log4j/core/jmx/StatusLoggerAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class StatusLoggerAdmin extends javax.management.NotificationBroadcasterSupport implements org.apache.logging.log4j.status.StatusListener, StatusLoggerAdminMBean {
 private final java.util.concurrent.atomic.AtomicLong sequenceNo;
 private final javax.management.ObjectName objectName;
 private final String contextName;
 private org.apache.logging.log4j.Level level;
 public void StatusLoggerAdmin(String, java.util.concurrent.Executor);
 private void removeListeners(String);
 private static javax.management.MBeanNotificationInfo createNotificationInfo();
 public String[] getStatusDataHistory();
 public java.util.List getStatusData();
 public String getLevel();
 public org.apache.logging.log4j.Level getStatusLevel();
 public void setLevel(String);
 public String getContextName();
 public void log(org.apache.logging.log4j.status.StatusData);
 public javax.management.ObjectName getObjectName();
 private long nextSeqNo();
 private long nowMillis();
 public void close() throws java.io.IOException;
}

org/apache/logging/log4j/core/jmx/AsyncAppenderAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface AsyncAppenderAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=AsyncAppenders,name=%s;
 public abstract String getName();
 public abstract String getLayout();
 public abstract boolean isIgnoreExceptions();
 public abstract String getErrorHandler();
 public abstract String getFilter();
 public abstract String[] getAppenderRefs();
 public abstract boolean isIncludeLocation();
 public abstract boolean isBlocking();
 public abstract String getErrorRef();
 public abstract int getQueueCapacity();
 public abstract int getQueueRemainingCapacity();
}

org/apache/logging/log4j/core/jmx/StatusLoggerAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface StatusLoggerAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=StatusLogger;
 public static final String NOTIF_TYPE_DATA = com.apache.logging.log4j.core.jmx.statuslogger.data;
 public static final String NOTIF_TYPE_MESSAGE = com.apache.logging.log4j.core.jmx.statuslogger.message;
 public abstract javax.management.ObjectName getObjectName();
 public abstract java.util.List getStatusData();
 public abstract String[] getStatusDataHistory();
 public abstract String getLevel();
 public abstract void setLevel(String);
 public abstract String getContextName();
}

org/apache/logging/log4j/core/jmx/AppenderAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class AppenderAdmin implements AppenderAdminMBean {
 private final String contextName;
 private final org.apache.logging.log4j.core.Appender appender;
 private final javax.management.ObjectName objectName;
 public void AppenderAdmin(String, org.apache.logging.log4j.core.Appender);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLayout();
 public boolean isIgnoreExceptions();
 public String getErrorHandler();
 public String getFilter();
}

org/apache/logging/log4j/core/layout/YamlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class YamlLayout extends AbstractJacksonLayout {
 private static final String DEFAULT_FOOTER = ;
 private static final String DEFAULT_HEADER = ;
 static final String CONTENT_TYPE = application/yaml;
 protected void YamlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 private void YamlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static AbstractJacksonLayout createLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 public static YamlLayout$Builder newBuilder();
 public static AbstractJacksonLayout createDefaultLayout();
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$ResolvableKeyValuePair.class

package org.apache.logging.log4j.core.layout;
public synchronized class AbstractJacksonLayout$ResolvableKeyValuePair {
 static final AbstractJacksonLayout$ResolvableKeyValuePair[] EMPTY_ARRAY;
 final String key;
 final String value;
 final boolean valueNeedsLookup;
 void AbstractJacksonLayout$ResolvableKeyValuePair(org.apache.logging.log4j.core.util.KeyValuePair);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/YamlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class YamlLayout$1 {
}

org/apache/logging/log4j/core/layout/CsvLogEventLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class CsvLogEventLayout extends AbstractCsvLayout {
 public static CsvLogEventLayout createDefaultLayout();
 public static CsvLogEventLayout createLayout(org.apache.commons.csv.CSVFormat);
 public static CsvLogEventLayout createLayout(org.apache.logging.log4j.core.config.Configuration, String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String, java.nio.charset.Charset, String, String);
 protected void CsvLogEventLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractStringLayout$Builder extends AbstractLayout$Builder {
 private java.nio.charset.Charset charset;
 private AbstractStringLayout$Serializer footerSerializer;
 private AbstractStringLayout$Serializer headerSerializer;
 public void AbstractStringLayout$Builder();
 public java.nio.charset.Charset getCharset();
 public AbstractStringLayout$Serializer getFooterSerializer();
 public AbstractStringLayout$Serializer getHeaderSerializer();
 public AbstractStringLayout$Builder setCharset(java.nio.charset.Charset);
 public AbstractStringLayout$Builder setFooterSerializer(AbstractStringLayout$Serializer);
 public AbstractStringLayout$Builder setHeaderSerializer(AbstractStringLayout$Serializer);
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternFormatterPatternSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternFormatterPatternSerializer implements PatternLayout$PatternSerializer {
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] formatters;
 private void PatternLayout$PatternFormatterPatternSerializer(org.apache.logging.log4j.core.pattern.PatternFormatter[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$3.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$3 {
 void GelfLayout$CompressionType$3(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class MarkerPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void MarkerPatternSelector$Builder();
 public MarkerPatternSelector build();
 public MarkerPatternSelector$Builder setProperties(PatternMatch[]);
 public MarkerPatternSelector$Builder setDefaultPattern(String);
 public MarkerPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public MarkerPatternSelector$Builder setDisableAnsi(boolean);
 public MarkerPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public MarkerPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/layout/JsonLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class JsonLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean propertiesAsList;
 private boolean objectMessageAsJsonObject;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 public void JsonLayout$Builder();
 public JsonLayout build();
 public boolean isPropertiesAsList();
 public JsonLayout$Builder setPropertiesAsList(boolean);
 public boolean getObjectMessageAsJsonObject();
 public JsonLayout$Builder setObjectMessageAsJsonObject(boolean);
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public JsonLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
}

org/apache/logging/log4j/core/async/RingBufferLogEvent.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEvent implements org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.message.ReusableMessage, CharSequence, org.apache.logging.log4j.message.ParameterVisitable {
 public static final RingBufferLogEvent$Factory FACTORY;
 private static final long serialVersionUID = 8462119088943934758;
 private static final org.apache.logging.log4j.message.Message EMPTY;
 private boolean populated;
 private int threadPriority;
 private long threadId;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private long nanoTime;
 private short parameterCount;
 private boolean includeLocation;
 private boolean endOfBatch;
 private org.apache.logging.log4j.Level level;
 private String threadName;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private String messageFormat;
 private StringBuilder messageText;
 private Object[] parameters;
 private transient Throwable thrown;
 private org.apache.logging.log4j.core.impl.ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.Marker marker;
 private String fqcn;
 private StackTraceElement location;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private transient AsyncLogger asyncLogger;
 public void RingBufferLogEvent();
 public void setValues(AsyncLogger, String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 private void initTime(org.apache.logging.log4j.core.util.Clock);
 public org.apache.logging.log4j.core.LogEvent toImmutable();
 private void setMessage(org.apache.logging.log4j.message.Message);
 private StringBuilder getMessageTextForWriting();
 public void execute(boolean);
 public boolean isPopulated();
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.message.Message getMessage();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(org.apache.logging.log4j.message.ParameterConsumer, Object);
 public org.apache.logging.log4j.message.Message memento();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 public Throwable getThrown();
 public org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 void setContextData(org.apache.logging.log4j.util.StringMap);
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public StackTraceElement getSource();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public long getNanoTime();
 public void clear();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 public org.apache.logging.log4j.core.LogEvent createMemento();
 public void initializeBuilder(org.apache.logging.log4j.core.impl.Log4jLogEvent$Builder);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public abstract interface AsyncQueueFullPolicy {
 public abstract EventRoute getRoute(long, org.apache.logging.log4j.Level);
}

org/apache/logging/log4j/core/async/DefaultAsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public synchronized class DefaultAsyncQueueFullPolicy implements AsyncQueueFullPolicy {
 public void DefaultAsyncQueueFullPolicy();
 public EventRoute getRoute(long, org.apache.logging.log4j.Level);
}

org/apache/logging/log4j/core/lookup/StrMatcher$CharMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$CharMatcher extends StrMatcher {
 private final char ch;
 void StrMatcher$CharMatcher(char);
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/EnvironmentLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class EnvironmentLookup extends AbstractLookup {
 public void EnvironmentLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/PropertiesLookup.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class PropertiesLookup implements StrLookup {
 private final java.util.Map properties;
 public void PropertiesLookup(java.util.Map);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 public String toString();
}

org/apache/logging/log4j/core/LoggerContext$1.class

package org.apache.logging.log4j.core;
synchronized class LoggerContext$1 implements Runnable {
 void LoggerContext$1(LoggerContext, long);
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/script/ScriptFile.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptFile extends AbstractScript {
 private final java.nio.file.Path filePath;
 private final boolean isWatched;
 public void ScriptFile(String, java.nio.file.Path, String, boolean, String);
 public java.nio.file.Path getPath();
 public boolean isWatched();
 public static ScriptFile createScript(String, String, String, Boolean, java.nio.charset.Charset);
 public String toString();
}

org/apache/logging/log4j/core/ContextDataInjector.class

package org.apache.logging.log4j.core;
public abstract interface ContextDataInjector {
 public abstract org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/time/PreciseClock.class

package org.apache.logging.log4j.core.time;
public abstract interface PreciseClock extends org.apache.logging.log4j.core.util.Clock {
 public abstract void init(MutableInstant);
}

org/apache/logging/log4j/core/filter/LevelMatchFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class LevelMatchFilter$1 {
}

org/apache/logging/log4j/core/filter/StructuredDataFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class StructuredDataFilter extends MapFilter {
 private static final int MAX_BUFFER_SIZE = 2048;
 private static ThreadLocal threadLocalStringBuilder;
 private void StructuredDataFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 protected org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.message.StructuredDataMessage);
 private StringBuilder getValue(org.apache.logging.log4j.message.StructuredDataMessage, String);
 private StringBuilder getStringBuilder();
 private StringBuilder appendOrNull(String, StringBuilder);
 private boolean listContainsValue(java.util.List, StringBuilder);
 public static StructuredDataFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/ThresholdFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class ThresholdFilter extends AbstractFilter {
 private final org.apache.logging.log4j.Level level;
 private void ThresholdFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.Level getLevel();
 public String toString();
 public static ThresholdFilter createFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/StringMatchFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class StringMatchFilter extends AbstractFilter {
 public static final String ATTR_MATCH = match;
 private final String text;
 private void StringMatchFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(String);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static StringMatchFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/StyleConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class StyleConverter extends LogEventPatternConverter implements AnsiConverter {
 private final java.util.List patternFormatters;
 private final boolean noAnsi;
 private final String style;
 private final String defaultStyle;
 private void StyleConverter(java.util.List, String, boolean);
 public static StyleConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean handlesThrowable();
 public String toString();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$Noop.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$Noop extends SimpleLiteralPatternConverter {
 private static final SimpleLiteralPatternConverter$Noop INSTANCE;
 private void SimpleLiteralPatternConverter$Noop();
 void format(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class NamePatternConverter extends LogEventPatternConverter {
 private final NameAbbreviator abbreviator;
 protected void NamePatternConverter(String, String, String[]);
 protected final void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MethodLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MethodLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final MethodLocationPatternConverter INSTANCE;
 private void MethodLocationPatternConverter();
 public static MethodLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LiteralPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LiteralPatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private final String literal;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final boolean substitute;
 public void LiteralPatternConverter(org.apache.logging.log4j.core.config.Configuration, String, boolean);
 static boolean containsSubstitutionSequence(String);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public transient void format(StringBuilder, Object[]);
 public String getLiteral();
 public boolean isVariable();
 public String toString();
}

org/apache/logging/log4j/core/pattern/ConverterKeys.class

package org.apache.logging.log4j.core.pattern;
public abstract interface ConverterKeys extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class EncodingPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/EqualsReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EqualsReplacementConverter extends EqualsBaseReplacementConverter {
 public static EqualsReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void EqualsReplacementConverter(java.util.List, String, String, PatternParser);
 protected boolean equals(String, StringBuilder, int, int);
}

org/apache/logging/log4j/core/pattern/AbstractPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class AbstractPatternConverter implements PatternConverter {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final String name;
 private final String style;
 protected void AbstractPatternConverter(String, String);
 public final String getName();
 public String getStyleClass(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Magenta.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Magenta extends AbstractStyleNameConverter {
 protected static final String NAME = magenta;
 public void AbstractStyleNameConverter$Magenta(java.util.List, String);
 public static AbstractStyleNameConverter$Magenta newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Blue.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Blue extends AbstractStyleNameConverter {
 protected static final String NAME = blue;
 public void AbstractStyleNameConverter$Blue(java.util.List, String);
 public static AbstractStyleNameConverter$Blue newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/jackson/Initializers.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers {
 void Initializers();
}

org/apache/logging/log4j/core/jackson/Log4jXmlModule.class

package org.apache.logging.log4j.core.jackson;
final synchronized class Log4jXmlModule extends com.fasterxml.jackson.dataformat.xml.JacksonXmlModule {
 private static final long serialVersionUID = 1;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 void Log4jXmlModule(boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/ThrowableProxyWithoutStacktraceMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyWithoutStacktraceMixIn {
 private ThrowableProxyWithoutStacktraceMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyWithoutStacktraceMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/Log4jStackTraceElementDeserializer.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class Log4jStackTraceElementDeserializer extends com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer {
 private static final long serialVersionUID = 1;
 public void Log4jStackTraceElementDeserializer();
 public StackTraceElement deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Initializers$SetupContextInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SetupContextInitializer {
 void Initializers$SetupContextInitializer();
 void setupModule(com.fasterxml.jackson.databind.Module$SetupContext, boolean, boolean);
}

META-INF/DEPENDENCIES

// --
// Transitive dependencies of this project determined from the
// maven pom organized by organization.
// --

Apache Log4j Core

From: 'an unknown organization'
 - Disruptor Framework (http://lmax-exchange.github.com/disruptor) com.lmax:disruptor:jar:3.4.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - JavaBeans Activation Framework (JAF) (http://java.sun.com/products/javabeans/jaf/index.jsp) javax.activation:activation:jar:1.1
 License: Common Development and Distribution License (CDDL) v1.0 (https://glassfish.dev.java.net/public/CDDLv1.0.html)
 - Apache Kafka (http://kafka.apache.org) org.apache.kafka:kafka-clients:jar:1.1.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Java Concurrency Tools Core Library (https://github.com/JCTools) org.jctools:jctools-core:jar:1.2.1
 License: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - LZ4 and xxHash (https://github.com/lz4/lz4-java) org.lz4:lz4-java:jar:1.4.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - SnakeYAML (http://www.snakeyaml.org) org.yaml:snakeyaml:bundle:1.27
 License: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - JeroMQ (https://github.com/zeromq/jeromq) org.zeromq:jeromq:jar:0.4.3
 License: Mozilla Public License version 2.0 (https://www.mozilla.org/en-US/MPL/2.0)
 - org.zeromq:jnacl (https://github.com/trevorbernard/jnacl) org.zeromq:jnacl:jar:0.1.0
 License: The BSD 2-Clause License (http://opensource.org/licenses/bsd-license.php)

From: 'Conversant Engineering' (http://engineering.conversantmedia.com)
 - com.conversantmedia:disruptor (https://github.com/conversant/disruptor) com.conversantmedia:disruptor:jar:1.2.15
 License: The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Eclipse Foundation' (https://www.eclipse.org)
 - JavaBeans Activation Framework API jar (https://github.com/eclipse-ee4j/jaf/jakarta.activation-api) jakarta.activation:jakarta.activation-api:jar:1.2.1
 License: EDL 1.0 (http://www.eclipse.org/org/documents/edl-v10.php)
 - jakarta.xml.bind-api (https://github.com/eclipse-ee4j/jaxb-api/jakarta.xml.bind-api) jakarta.xml.bind:jakarta.xml.bind-api:jar:2.3.2
 License: Eclipse Distribution License - v 1.0 (http://www.eclipse.org/org/documents/edl-v10.php)

From: 'FasterXML' (http://fasterxml.com)
 - Woodstox (https://github.com/FasterXML/woodstox) com.fasterxml.woodstox:woodstox-core:bundle:6.2.6
 License: The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'FasterXML' (http://fasterxml.com/)
 - Jackson-annotations (http://github.com/FasterXML/jackson) com.fasterxml.jackson.core:jackson-annotations:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-core (https://github.com/FasterXML/jackson-core) com.fasterxml.jackson.core:jackson-core:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - jackson-databind (http://github.com/FasterXML/jackson) com.fasterxml.jackson.core:jackson-databind:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-dataformat-XML (https://github.com/FasterXML/jackson-dataformat-xml) com.fasterxml.jackson.dataformat:jackson-dataformat-xml:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-dataformat-YAML (https://github.com/FasterXML/jackson-dataformats-text) com.fasterxml.jackson.dataformat:jackson-dataformat-yaml:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson module: JAXB Annotations (https://github.com/FasterXML/jackson-modules-base) com.fasterxml.jackson.module:jackson-module-jaxb-annotations:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'fasterxml.com' (http://fasterxml.com)
 - Stax2 API (http://github.com/FasterXML/stax2-api) org.codehaus.woodstox:stax2-api:bundle:4.2.1
 License: The BSD License (http://www.opensource.org/licenses/bsd-license.php)

From: 'FuseSource, Corp.' (http://fusesource.com/)
 - jansi (http://fusesource.github.io/jansi) org.fusesource.jansi:jansi:jar:2.3.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Oracle' (http://www.oracle.com)
 - JavaMail API (http://javaee.github.io/javamail/javax.mail) com.sun.mail:javax.mail:jar:1.6.2
 License: CDDL/GPLv2+CE (https://javaee.github.io/javamail/LICENSE)

From: 'QOS.ch' (http://www.qos.ch)
 - SLF4J API Module (http://www.slf4j.org) org.slf4j:slf4j-api:jar:1.7.25
 License: MIT License (http://www.opensource.org/licenses/mit-license.php)

From: 'The Apache Software Foundation' (https://www.apache.org/)
 - Apache Commons Compress (https://commons.apache.org/proper/commons-compress/) org.apache.commons:commons-compress:jar:1.21
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)
 - Apache Commons CSV (https://commons.apache.org/proper/commons-csv/) org.apache.commons:commons-csv:jar:1.9.0
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)
 - Apache Log4j API (https://logging.apache.org/log4j/2.x/log4j-api/) org.apache.logging.log4j:log4j-api:jar:2.17.1
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'xerial.org'
 - snappy-java (https://github.com/xerial/snappy-java) org.xerial.snappy:snappy-java:jar:1.1.7.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

META-INF/services/org.apache.logging.log4j.core.util.ContextDataProvider

org.apache.logging.log4j.core.impl.ThreadContextDataProvider

META-INF/services/javax.annotation.processing.Processor

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.
#
org.apache.logging.log4j.core.config.plugins.processor.PluginProcessor

org/apache/logging/log4j/core/appender/RandomAccessFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$FactoryData extends ConfigurationFactoryData {
 private final boolean append;
 private final boolean immediateFlush;
 private final int bufferSize;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 public void RandomAccessFileManager$FactoryData(boolean, boolean, int, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/RolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverStrategy {
 public abstract RolloverDescription rollover(RollingFileManager) throws SecurityException;
}

org/apache/logging/log4j/core/appender/rolling/action/AbstractPathAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract synchronized class AbstractPathAction extends AbstractAction {
 private final String basePathString;
 private final java.util.Set options;
 private final int maxDepth;
 private final java.util.List pathConditions;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 protected void AbstractPathAction(String, boolean, int, PathCondition[], org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public boolean execute() throws java.io.IOException;
 public boolean execute(java.nio.file.FileVisitor) throws java.io.IOException;
 protected abstract java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public java.nio.file.Path getBasePath();
 public String getBasePathString();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public java.util.Set getOptions();
 public boolean isFollowSymbolicLinks();
 public int getMaxDepth();
 public java.util.List getPathConditions();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAccumulatedFileCount.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAccumulatedFileCount implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final int threshold;
 private int count;
 private final PathCondition[] nestedConditions;
 private transient void IfAccumulatedFileCount(int, PathCondition[]);
 public int getThresholdCount();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAccumulatedFileCount createFileCountCondition(int, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$4.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$4 {
 void FileExtension$4(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/CountingNoOpAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class CountingNoOpAppender extends AbstractAppender {
 private final java.util.concurrent.atomic.AtomicLong total;
 public void CountingNoOpAppender(String, org.apache.logging.log4j.core.Layout);
 private void CountingNoOpAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Property[]);
 public long getCount();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public static CountingNoOpAppender createAppender(String);
}

org/apache/logging/log4j/core/appender/WriterAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class WriterAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean follow;
 private java.io.Writer target;
 public void WriterAppender$Builder();
 public WriterAppender build();
 public WriterAppender$Builder setFollow(boolean);
 public WriterAppender$Builder setTarget(java.io.Writer);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$1 {
}

org/apache/logging/log4j/core/appender/SocketAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class SocketAppender$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AppenderSet.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderSet {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final java.util.Map nodeMap;
 public static AppenderSet$Builder newBuilder();
 private void AppenderSet(org.apache.logging.log4j.core.config.Configuration, java.util.Map);
 public org.apache.logging.log4j.core.Appender createAppender(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractAppender$Builder extends org.apache.logging.log4j.core.filter.AbstractFilterable$Builder {
 private boolean ignoreExceptions;
 private org.apache.logging.log4j.core.Layout layout;
 private String name;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void AbstractAppender$Builder();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public org.apache.logging.log4j.core.Layout getLayout();
 public String getName();
 public org.apache.logging.log4j.core.Layout getOrCreateLayout();
 public org.apache.logging.log4j.core.Layout getOrCreateLayout(java.nio.charset.Charset);
 public boolean isIgnoreExceptions();
 public AbstractAppender$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractAppender$Builder setIgnoreExceptions(boolean);
 public AbstractAppender$Builder setLayout(org.apache.logging.log4j.core.Layout);
 public AbstractAppender$Builder setName(String);
 public AbstractAppender$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractAppender$Builder withIgnoreExceptions(boolean);
 public AbstractAppender$Builder withLayout(org.apache.logging.log4j.core.Layout);
 public AbstractAppender$Builder withName(String);
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class ColumnConfig$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String name;
 private String pattern;
 private String literal;
 private boolean isEventTimestamp;
 private boolean isUnicode;
 private boolean isClob;
 public void ColumnConfig$Builder();
 public ColumnConfig build();
 public ColumnConfig$Builder setClob(boolean);
 public ColumnConfig$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ColumnConfig$Builder setEventTimestamp(boolean);
 public ColumnConfig$Builder setLiteral(String);
 public ColumnConfig$Builder setName(String);
 public ColumnConfig$Builder setPattern(String);
 public ColumnConfig$Builder setUnicode(boolean);
}

org/apache/logging/log4j/core/appender/db/jdbc/ConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public abstract interface ConnectionSource extends org.apache.logging.log4j.core.LifeCycle {
 public abstract java.sql.Connection getConnection() throws java.sql.SQLException;
 public abstract String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/FactoryMethodConnectionSource$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class FactoryMethodConnectionSource$1 implements javax.sql.DataSource {
 void FactoryMethodConnectionSource$1(reflect.Method);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public java.sql.Connection getConnection(String, String) throws java.sql.SQLException;
 public int getLoginTimeout() throws java.sql.SQLException;
 public java.io.PrintWriter getLogWriter() throws java.sql.SQLException;
 public java.util.logging.Logger getParentLogger();
 public boolean isWrapperFor(Class) throws java.sql.SQLException;
 public void setLoginTimeout(int) throws java.sql.SQLException;
 public void setLogWriter(java.io.PrintWriter) throws java.sql.SQLException;
 public Object unwrap(Class) throws java.sql.SQLException;
}

org/apache/logging/log4j/core/appender/routing/PurgePolicy.class

package org.apache.logging.log4j.core.appender.routing;
public abstract interface PurgePolicy {
 public abstract void purge();
 public abstract void update(String, org.apache.logging.log4j.core.LogEvent);
 public abstract void initialize(RoutingAppender);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlConnection.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlConnection extends java.io.Closeable {
 public abstract NoSqlObject createObject();
 public abstract NoSqlObject[] createList(int);
 public abstract void insertObject(NoSqlObject);
 public abstract void close();
 public abstract boolean isClosed();
}

org/apache/logging/log4j/core/appender/nosql/DefaultNoSqlObject.class

package org.apache.logging.log4j.core.appender.nosql;
public synchronized class DefaultNoSqlObject implements NoSqlObject {
 private final java.util.Map map;
 public void DefaultNoSqlObject();
 public void set(String, Object);
 public void set(String, NoSqlObject);
 public void set(String, Object[]);
 public void set(String, NoSqlObject[]);
 public java.util.Map unwrap();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$FactoryData.class

package org.apache.logging.log4j.core.appender.nosql;
final synchronized class NoSqlDatabaseManager$FactoryData extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager$AbstractFactoryData {
 private final NoSqlProvider provider;
 protected void NoSqlDatabaseManager$FactoryData(int, NoSqlProvider);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager.class

package org.apache.logging.log4j.core.appender.nosql;
public final synchronized class NoSqlDatabaseManager extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager {
 private static final NoSqlDatabaseManager$NoSQLDatabaseManagerFactory FACTORY;
 private final NoSqlProvider provider;
 private NoSqlConnection connection;
 private void NoSqlDatabaseManager(String, int, NoSqlProvider);
 protected void startupInternal();
 protected boolean shutdownInternal();
 protected void connectAndStart();
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 private void setFields(org.apache.logging.log4j.message.MapMessage, NoSqlObject);
 private void setFields(org.apache.logging.log4j.core.LogEvent, NoSqlObject);
 private NoSqlObject buildMarkerEntity(org.apache.logging.log4j.Marker);
 protected boolean commitAndClose();
 private NoSqlObject[] convertStackTrace(StackTraceElement[]);
 private NoSqlObject convertStackTraceElement(StackTraceElement);
 public static NoSqlDatabaseManager getNoSqlDatabaseManager(String, int, NoSqlProvider);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/FileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class FileAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/JmsAppender.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private volatile JmsManager manager;
 public static JmsAppender$Builder newBuilder();
 protected void JmsAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], JmsManager) throws javax.jms.JMSException;
 protected void JmsAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, JmsManager) throws javax.jms.JMSException;
 public void append(org.apache.logging.log4j.core.LogEvent);
 public JmsManager getManager();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$JeroMqConfiguration.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$JeroMqConfiguration {
 private final long affinity;
 private final long backlog;
 private final boolean delayAttachOnConnect;
 private final byte[] identity;
 private final boolean ipv4Only;
 private final long linger;
 private final long maxMsgSize;
 private final long rcvHwm;
 private final long receiveBufferSize;
 private final int receiveTimeOut;
 private final long reconnectIVL;
 private final long reconnectIVLMax;
 private final long sendBufferSize;
 private final int sendTimeOut;
 private final long sndHwm;
 private final int tcpKeepAlive;
 private final long tcpKeepAliveCount;
 private final long tcpKeepAliveIdle;
 private final long tcpKeepAliveInterval;
 private final boolean xpubVerbose;
 private final java.util.List endpoints;
 private void JeroMqManager$JeroMqConfiguration(long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, java.util.List);
 public String toString();
}

org/apache/logging/log4j/core/impl/DefaultLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class DefaultLogEventFactory implements LogEventFactory, LocationAwareLogEventFactory {
 private static final DefaultLogEventFactory instance;
 public void DefaultLogEventFactory();
 public static DefaultLogEventFactory getInstance();
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/MutableLogEvent.class

package org.apache.logging.log4j.core.impl;
public synchronized class MutableLogEvent implements org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.message.ReusableMessage, org.apache.logging.log4j.message.ParameterVisitable {
 private static final org.apache.logging.log4j.message.Message EMPTY;
 private int threadPriority;
 private long threadId;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private long nanoTime;
 private short parameterCount;
 private boolean includeLocation;
 private boolean endOfBatch;
 private org.apache.logging.log4j.Level level;
 private String threadName;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private String messageFormat;
 private StringBuilder messageText;
 private Object[] parameters;
 private Throwable thrown;
 private ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.Marker marker;
 private String loggerFqcn;
 private StackTraceElement source;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 transient boolean reserved;
 public void MutableLogEvent();
 public void MutableLogEvent(StringBuilder, Object[]);
 public Log4jLogEvent toImmutable();
 public void initFrom(org.apache.logging.log4j.core.LogEvent);
 public void clear();
 public String getLoggerFqcn();
 public void setLoggerFqcn(String);
 public org.apache.logging.log4j.Marker getMarker();
 public void setMarker(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.Level getLevel();
 public void setLevel(org.apache.logging.log4j.Level);
 public String getLoggerName();
 public void setLoggerName(String);
 public org.apache.logging.log4j.message.Message getMessage();
 public void setMessage(org.apache.logging.log4j.message.Message);
 private StringBuilder getMessageTextForWriting();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public void forEachParameter(org.apache.logging.log4j.message.ParameterConsumer, Object);
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public org.apache.logging.log4j.message.Message memento();
 public Throwable getThrown();
 public void setThrown(Throwable);
 void initTime(org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 public long getTimeMillis();
 public void setTimeMillis(long);
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public ThrowableProxy getThrownProxy();
 public void setSource(StackTraceElement);
 public StackTraceElement getSource();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public void setContextData(org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public void setContextStack(org.apache.logging.log4j.ThreadContext$ContextStack);
 public long getThreadId();
 public void setThreadId(long);
 public String getThreadName();
 public void setThreadName(String);
 public int getThreadPriority();
 public void setThreadPriority(int);
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public long getNanoTime();
 public void setNanoTime(long);
 protected Object writeReplace();
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public Log4jLogEvent createMemento();
 public void initializeBuilder(Log4jLogEvent$Builder);
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$1.class

package org.apache.logging.log4j.core.impl;
synchronized class Log4jLogEvent$1 {
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ParameterIndexGapException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ParameterIndexGapException extends CommandLine$InitializationException {
 private static final long serialVersionUID = -1520981133257618319;
 public void CommandLine$ParameterIndexGapException(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$UnmatchedArgumentException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$UnmatchedArgumentException extends CommandLine$ParameterException {
 private static final long serialVersionUID = -8700426380701452440;
 public void CommandLine$UnmatchedArgumentException(CommandLine, String);
 public void CommandLine$UnmatchedArgumentException(CommandLine, java.util.Stack);
 public void CommandLine$UnmatchedArgumentException(CommandLine, java.util.List);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ParameterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ParameterException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 1477112829129763139;
 private final CommandLine commandLine;
 public void CommandLine$ParameterException(CommandLine, String);
 public void CommandLine$ParameterException(CommandLine, String, Exception);
 public CommandLine getCommandLine();
 private static CommandLine$ParameterException create(CommandLine, Exception, String, int, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$PathConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$PathConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$PathConverter();
 public java.nio.file.Path convert(String);
}

org/apache/logging/log4j/core/tools/ExtendedLoggerGenerator.class

package org.apache.logging.log4j.core.tools;
public synchronized class ExtendedLoggerGenerator {
 public void ExtendedLoggerGenerator();
 public static void main(String[]);
}

org/apache/logging/log4j/core/tools/Generate$ExtendedLogger.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate$ExtendedLogger {
 public static void main(String[]);
 private void Generate$ExtendedLogger();
}

org/apache/logging/log4j/core/net/SmtpManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$1 {
}

org/apache/logging/log4j/core/net/SmtpManager.class

package org.apache.logging.log4j.core.net;
public synchronized class SmtpManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 private static final SmtpManager$SMTPManagerFactory FACTORY;
 private final javax.mail.Session session;
 private final org.apache.logging.log4j.core.util.CyclicBuffer buffer;
 private volatile javax.mail.internet.MimeMessage message;
 private final SmtpManager$FactoryData data;
 private static javax.mail.internet.MimeMessage createMimeMessage(SmtpManager$FactoryData, javax.mail.Session, org.apache.logging.log4j.core.LogEvent) throws javax.mail.MessagingException;
 protected void SmtpManager(String, javax.mail.Session, javax.mail.internet.MimeMessage, SmtpManager$FactoryData);
 public void add(org.apache.logging.log4j.core.LogEvent);
 public static SmtpManager getSmtpManager(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String, String, String, int, String, String, boolean, String, int, ssl.SslConfiguration);
 static String createManagerName(String, String, String, String, String, String, String, String, int, String, boolean, String);
 public void sendEvents(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent);
 org.apache.logging.log4j.core.LogEvent[] removeAllBufferedEvents();
 protected byte[] formatContentToBytes(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout) throws java.io.IOException;
 private void writeContent(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout, java.io.ByteArrayOutputStream) throws java.io.IOException;
 protected void writeHeader(org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected void writeBuffer(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected void writeFooter(org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected String getEncoding(byte[], String);
 protected byte[] encodeContentToBytes(byte[], String) throws javax.mail.MessagingException, java.io.IOException;
 protected void encodeContent(byte[], String, java.io.ByteArrayOutputStream) throws javax.mail.MessagingException, java.io.IOException;
 protected javax.mail.internet.InternetHeaders getHeaders(String, String);
 protected javax.mail.internet.MimeMultipart getMimeMultipart(byte[], javax.mail.internet.InternetHeaders) throws javax.mail.MessagingException;
 protected void sendMultipartMessage(javax.mail.internet.MimeMessage, javax.mail.internet.MimeMultipart) throws javax.mail.MessagingException;
 protected void sendMultipartMessage(javax.mail.internet.MimeMessage, javax.mail.internet.MimeMultipart, String) throws javax.mail.MessagingException;
 private synchronized void connect(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SmtpManager$SMTPManagerFactory$1.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$SMTPManagerFactory$1 extends javax.mail.Authenticator {
 private final javax.mail.PasswordAuthentication passwordAuthentication;
 void SmtpManager$SMTPManagerFactory$1(SmtpManager$SMTPManagerFactory, String, String);
 protected javax.mail.PasswordAuthentication getPasswordAuthentication();
}

org/apache/logging/log4j/core/net/SmtpManager$SMTPManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$SMTPManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void SmtpManager$SMTPManagerFactory();
 public SmtpManager createManager(String, SmtpManager$FactoryData);
 private javax.mail.Authenticator buildAuthenticator(String, String);
}

org/apache/logging/log4j/core/net/DatagramSocketManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$FactoryData {
 private final String host;
 private final int port;
 private final org.apache.logging.log4j.core.Layout layout;
 private final int bufferSize;
 public void DatagramSocketManager$FactoryData(String, int, org.apache.logging.log4j.core.Layout, int);
}

org/apache/logging/log4j/core/util/ObjectArrayIterator.class

package org.apache.logging.log4j.core.util;
public synchronized class ObjectArrayIterator implements java.util.Iterator {
 final Object[] array;
 final int startIndex;
 final int endIndex;
 int index;
 public transient void ObjectArrayIterator(Object[]);
 public void ObjectArrayIterator(Object[], int);
 public void ObjectArrayIterator(Object[], int, int);
 public boolean hasNext();
 public Object next();
 public void remove();
 public Object[] getArray();
 public int getStartIndex();
 public int getEndIndex();
 public void reset();
}

org/apache/logging/log4j/core/util/datetime/DatePrinter.class

package org.apache.logging.log4j.core.util.datetime;
public abstract interface DatePrinter {
 public abstract String format(long);
 public abstract String format(java.util.Date);
 public abstract String format(java.util.Calendar);
 public abstract Appendable format(long, Appendable);
 public abstract Appendable format(java.util.Date, Appendable);
 public abstract Appendable format(java.util.Calendar, Appendable);
 public abstract String getPattern();
 public abstract java.util.TimeZone getTimeZone();
 public abstract java.util.Locale getLocale();
 public abstract StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$NumberRule.class

package org.apache.logging.log4j.core.util.datetime;
abstract interface FastDatePrinter$NumberRule extends FastDatePrinter$Rule {
 public abstract void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$CaseInsensitiveTextStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$CaseInsensitiveTextStrategy extends FastDateParser$PatternStrategy {
 private final int field;
 final java.util.Locale locale;
 private final java.util.Map lKeyValues;
 void FastDateParser$CaseInsensitiveTextStrategy(int, java.util.Calendar, java.util.Locale);
 void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneDisplayKey.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneDisplayKey {
 private final java.util.TimeZone mTimeZone;
 private final int mStyle;
 private final java.util.Locale mLocale;
 void FastDatePrinter$TimeZoneDisplayKey(java.util.TimeZone, boolean, int, java.util.Locale);
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$TimeZoneStrategy$TzInfo.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$TimeZoneStrategy$TzInfo {
 java.util.TimeZone zone;
 int dstOffset;
 void FastDateParser$TimeZoneStrategy$TzInfo(java.util.TimeZone, boolean);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitYearField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitYearField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$TwoDigitYearField INSTANCE;
 void FastDatePrinter$TwoDigitYearField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TextField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TextField implements FastDatePrinter$Rule {
 private final int mField;
 private final String[] mValues;
 void FastDatePrinter$TextField(int, String[]);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$ISO8601TimeZoneStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$ISO8601TimeZoneStrategy extends FastDateParser$PatternStrategy {
 private static final FastDateParser$Strategy ISO_8601_1_STRATEGY;
 private static final FastDateParser$Strategy ISO_8601_2_STRATEGY;
 private static final FastDateParser$Strategy ISO_8601_3_STRATEGY;
 void FastDateParser$ISO8601TimeZoneStrategy(String);
 void setCalendar(FastDateParser, java.util.Calendar, String);
 static FastDateParser$Strategy getStrategy(int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/KeyValuePair.class

package org.apache.logging.log4j.core.util;
public final synchronized class KeyValuePair {
 public static final KeyValuePair[] EMPTY_ARRAY;
 private final String key;
 private final String value;
 public void KeyValuePair(String, String);
 public String getKey();
 public String getValue();
 public String toString();
 public static KeyValuePair$Builder newBuilder();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Loader.class

package org.apache.logging.log4j.core.util;
public final synchronized class Loader {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String TSTR = Caught Exception while in Loader.getResource. This may be innocuous.;
 private void Loader();
 public static ClassLoader getClassLoader();
 public static ClassLoader getThreadContextClassLoader();
 public static ClassLoader getClassLoader(Class, Class);
 public static java.net.URL getResource(String, ClassLoader);
 public static java.io.InputStream getResourceAsStream(String, ClassLoader);
 private static boolean isChild(ClassLoader, ClassLoader);
 public static Class initializeClass(String, ClassLoader) throws ClassNotFoundException;
 public static Class loadClass(String, ClassLoader) throws ClassNotFoundException;
 public static Class loadSystemClass(String) throws ClassNotFoundException;
 public static Object newInstanceOf(String) throws ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, reflect.InvocationTargetException;
 public static Object newCheckedInstanceOf(String, Class) throws ClassNotFoundException, NoSuchMethodException, IllegalAccessException, reflect.InvocationTargetException, InstantiationException;
 public static Object newCheckedInstanceOfProperty(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 public static boolean isClassAvailable(String);
 public static boolean isJansiAvailable();
 public static Class loadClass(String) throws ClassNotFoundException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatchManager$1.class

package org.apache.logging.log4j.core.util;
synchronized class WatchManager$1 {
}

org/apache/logging/log4j/core/util/CoarseCachedClock$1.class

package org.apache.logging.log4j.core.util;
synchronized class CoarseCachedClock$1 extends Log4jThread {
 void CoarseCachedClock$1(CoarseCachedClock, String);
 public void run();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginCache.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginCache {
 private final java.util.Map categories;
 public void PluginCache();
 public java.util.Map getAllCategories();
 public java.util.Map getCategory(String);
 public void writeCache(java.io.OutputStream) throws java.io.IOException;
 public void loadCacheFiles(java.util.Enumeration) throws java.io.IOException;
 public int size();
}

org/apache/logging/log4j/core/config/plugins/validation/validators/RequiredValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class RequiredValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.Required annotation;
 public void RequiredValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.Required);
 public boolean isValid(String, Object);
 private boolean err(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$IntegerConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$IntegerConverter implements TypeConverter {
 public void TypeConverters$IntegerConverter();
 public Integer convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BooleanConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BooleanConverter implements TypeConverter {
 public void TypeConverters$BooleanConverter();
 public Boolean convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharacterConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharacterConverter implements TypeConverter {
 public void TypeConverters$CharacterConverter();
 public Character convert(String);
}

org/apache/logging/log4j/core/config/OrderComparator.class

package org.apache.logging.log4j.core.config;
public synchronized class OrderComparator implements java.util.Comparator, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private static final java.util.Comparator INSTANCE;
 public void OrderComparator();
 public static java.util.Comparator getInstance();
 public int compare(Class, Class);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/HttpWatcher.class

package org.apache.logging.log4j.core.config;
public synchronized class HttpWatcher extends org.apache.logging.log4j.core.util.AbstractWatcher {
 private org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private java.net.URL url;
 private volatile long lastModifiedMillis;
 private static final int NOT_MODIFIED = 304;
 private static final int OK = 200;
 private static final int BUF_SIZE = 1024;
 private static final String HTTP = http;
 private static final String HTTPS = https;
 public void HttpWatcher(Configuration, Reconfigurable, java.util.List, long);
 public long getLastModified();
 public boolean isModified();
 public void watching(org.apache.logging.log4j.core.util.Source);
 public org.apache.logging.log4j.core.util.Watcher newWatcher(Reconfigurable, java.util.List, long);
 private boolean refreshConfiguration();
 private byte[] readStream(java.io.InputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/config/composite/MergeStrategy.class

package org.apache.logging.log4j.core.config.composite;
public abstract interface MergeStrategy {
 public abstract void mergeRootProperties(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.AbstractConfiguration);
 public abstract void mergConfigurations(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
}

org/apache/logging/log4j/core/config/composite/CompositeConfiguration.class

package org.apache.logging.log4j.core.config.composite;
public synchronized class CompositeConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 public static final String MERGE_STRATEGY_PROPERTY = log4j.mergeStrategy;
 private static final String[] VERBOSE_CLASSES;
 private final java.util.List configurations;
 private MergeStrategy mergeStrategy;
 public void CompositeConfiguration(java.util.List);
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private void staffChildConfiguration(org.apache.logging.log4j.core.config.AbstractConfiguration);
 private void printNodes(String, org.apache.logging.log4j.core.config.Node, StringBuilder);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/CronScheduledFuture.class

package org.apache.logging.log4j.core.config;
public synchronized class CronScheduledFuture implements java.util.concurrent.ScheduledFuture {
 private volatile CronScheduledFuture$FutureData futureData;
 public void CronScheduledFuture(java.util.concurrent.ScheduledFuture, java.util.Date);
 public java.util.Date getFireTime();
 void reset(java.util.concurrent.ScheduledFuture, java.util.Date);
 public long getDelay(java.util.concurrent.TimeUnit);
 public int compareTo(java.util.concurrent.Delayed);
 public boolean cancel(boolean);
 public boolean isCancelled();
 public boolean isDone();
 public Object get() throws InterruptedException, java.util.concurrent.ExecutionException;
 public Object get(long, java.util.concurrent.TimeUnit) throws InterruptedException, java.util.concurrent.ExecutionException, java.util.concurrent.TimeoutException;
}

org/apache/logging/log4j/core/config/ScriptsPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class ScriptsPlugin {
 private void ScriptsPlugin();
 public static org.apache.logging.log4j.core.script.AbstractScript[] createScripts(org.apache.logging.log4j.core.script.AbstractScript[]);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultScriptFileComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultScriptFileComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder {
 public void DefaultScriptFileComponentBuilder(DefaultConfigurationBuilder, String, String);
 public DefaultScriptFileComponentBuilder addLanguage(String);
 public DefaultScriptFileComponentBuilder addIsWatched(boolean);
 public DefaultScriptFileComponentBuilder addIsWatched(String);
 public DefaultScriptFileComponentBuilder addCharset(String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultFilterComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder {
 public void DefaultFilterComponentBuilder(DefaultConfigurationBuilder, String, String, String);
}

org/apache/logging/log4j/core/config/AppendersPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class AppendersPlugin {
 private void AppendersPlugin();
 public static java.util.concurrent.ConcurrentMap createAppenders(org.apache.logging.log4j.core.Appender[]);
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$2.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$2 {
 void LoggerConfig$LoggerConfigPredicate$2(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate.class

package org.apache.logging.log4j.core.config;
public abstract synchronized enum LoggerConfig$LoggerConfigPredicate {
 public static final LoggerConfig$LoggerConfigPredicate ALL;
 public static final LoggerConfig$LoggerConfigPredicate ASYNCHRONOUS_ONLY;
 public static final LoggerConfig$LoggerConfigPredicate SYNCHRONOUS_ONLY;
 public static LoggerConfig$LoggerConfigPredicate[] values();
 public static LoggerConfig$LoggerConfigPredicate valueOf(String);
 private void LoggerConfig$LoggerConfigPredicate(String, int);
 abstract boolean allow(LoggerConfig);
 static void <clinit>();
}

org/apache/logging/log4j/core/jmx/LoggerContextAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class LoggerContextAdmin extends javax.management.NotificationBroadcasterSupport implements LoggerContextAdminMBean, java.beans.PropertyChangeListener {
 private static final int PAGE = 4096;
 private static final int TEXT_BUFFER = 65536;
 private static final int BUFFER_SIZE = 2048;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final java.util.concurrent.atomic.AtomicLong sequenceNo;
 private final javax.management.ObjectName objectName;
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 public void LoggerContextAdmin(org.apache.logging.log4j.core.LoggerContext, java.util.concurrent.Executor);
 private static javax.management.MBeanNotificationInfo createNotificationInfo();
 public String getStatus();
 public String getName();
 private org.apache.logging.log4j.core.config.Configuration getConfig();
 public String getConfigLocationUri();
 public void setConfigLocationUri(String) throws java.net.URISyntaxException, java.io.IOException;
 public void propertyChange(java.beans.PropertyChangeEvent);
 public String getConfigText() throws java.io.IOException;
 public String getConfigText(String) throws java.io.IOException;
 private String readContents(java.io.InputStream, java.nio.charset.Charset) throws java.io.IOException;
 public void setConfigText(String, String);
 public String getConfigName();
 public String getConfigClassName();
 public String getConfigFilter();
 public java.util.Map getConfigProperties();
 public javax.management.ObjectName getObjectName();
 private long nextSeqNo();
 private long now();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSerializerWithReplacement.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternSerializerWithReplacement implements AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
 private final PatternLayout$PatternSerializer delegate;
 private final org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private void PatternLayout$PatternSerializerWithReplacement(PatternLayout$PatternSerializer, org.apache.logging.log4j.core.pattern.RegexReplacement);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/JacksonFactory$Log4jXmlPrettyPrinter.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$Log4jXmlPrettyPrinter extends com.fasterxml.jackson.dataformat.xml.util.DefaultXmlPrettyPrinter {
 private static final long serialVersionUID = 1;
 void JacksonFactory$Log4jXmlPrettyPrinter(int);
 public void writePrologLinefeed(org.codehaus.stax2.XMLStreamWriter2) throws javax.xml.stream.XMLStreamException;
 public com.fasterxml.jackson.dataformat.xml.util.DefaultXmlPrettyPrinter createInstance();
}

org/apache/logging/log4j/core/layout/JsonLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class JsonLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout.class

package org.apache.logging.log4j.core.layout;
abstract synchronized class AbstractJacksonLayout extends AbstractStringLayout {
 protected static final String DEFAULT_EOL =

;
 protected static final String COMPACT_EOL = ;
 protected final String eol;
 protected final com.fasterxml.jackson.databind.ObjectWriter objectWriter;
 protected final boolean compact;
 protected final boolean complete;
 protected final boolean includeNullDelimiter;
 protected final AbstractJacksonLayout$ResolvableKeyValuePair[] additionalFields;
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer);
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer, boolean);
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, String, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 protected static boolean valueNeedsLookup(String);
 private static AbstractJacksonLayout$ResolvableKeyValuePair[] prepareAdditionalFields(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private static org.apache.logging.log4j.core.LogEvent convertMutableToLog4jEvent(org.apache.logging.log4j.core.LogEvent);
 protected Object wrapLogEvent(org.apache.logging.log4j.core.LogEvent);
 private java.util.Map resolveAdditionalFields(org.apache.logging.log4j.core.LogEvent);
 public void toSerializable(org.apache.logging.log4j.core.LogEvent, java.io.Writer) throws com.fasterxml.jackson.core.JsonGenerationException, com.fasterxml.jackson.databind.JsonMappingException, java.io.IOException;
}

org/apache/logging/log4j/core/layout/YamlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class YamlLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void YamlLayout$Builder();
 public YamlLayout build();
}

org/apache/logging/log4j/core/layout/GelfLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class GelfLayout$Builder extends AbstractStringLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String host;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 private GelfLayout$CompressionType compressionType;
 private int compressionThreshold;
 private boolean includeStacktrace;
 private boolean includeThreadContext;
 private boolean includeNullDelimiter;
 private boolean includeNewLineDelimiter;
 private String threadContextIncludes;
 private String threadContextExcludes;
 private String mapMessageIncludes;
 private String mapMessageExcludes;
 private boolean includeMapMessage;
 private boolean omitEmptyFields;
 private String messagePattern;
 private String threadContextPrefix;
 private String mapPrefix;
 private PatternSelector patternSelector;
 public void GelfLayout$Builder();
 public GelfLayout build();
 private internal.ListChecker createChecker(String, String);
 public String getHost();
 public GelfLayout$CompressionType getCompressionType();
 public int getCompressionThreshold();
 public boolean isIncludeStacktrace();
 public boolean isIncludeThreadContext();
 public boolean isIncludeNullDelimiter();
 public boolean isIncludeNewLineDelimiter();
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public GelfLayout$Builder setHost(String);
 public GelfLayout$Builder setCompressionType(GelfLayout$CompressionType);
 public GelfLayout$Builder setCompressionThreshold(int);
 public GelfLayout$Builder setIncludeStacktrace(boolean);
 public GelfLayout$Builder setIncludeThreadContext(boolean);
 public GelfLayout$Builder setIncludeNullDelimiter(boolean);
 public GelfLayout$Builder setIncludeNewLineDelimiter(boolean);
 public GelfLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
 public GelfLayout$Builder setMessagePattern(String);
 public GelfLayout$Builder setPatternSelector(PatternSelector);
 public GelfLayout$Builder setMdcIncludes(String);
 public GelfLayout$Builder setMdcExcludes(String);
 public GelfLayout$Builder setIncludeMapMessage(boolean);
 public GelfLayout$Builder setMapMessageIncludes(String);
 public GelfLayout$Builder setMapMessageExcludes(String);
 public GelfLayout$Builder setThreadContextPrefix(String);
 public GelfLayout$Builder setMapPrefix(String);
}

org/apache/logging/log4j/core/layout/MessageLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class MessageLayout extends AbstractLayout {
 public void MessageLayout();
 public void MessageLayout(org.apache.logging.log4j.core.config.Configuration, byte[], byte[]);
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.message.Message toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String getContentType();
 public static org.apache.logging.log4j.core.Layout createLayout();
}

org/apache/logging/log4j/core/layout/SyslogLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class SyslogLayout$Builder extends AbstractStringLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.net.Facility facility;
 private boolean includeNewLine;
 private String escapeNL;
 public void SyslogLayout$Builder();
 public SyslogLayout build();
 public org.apache.logging.log4j.core.net.Facility getFacility();
 public boolean isIncludeNewLine();
 public String getEscapeNL();
 public SyslogLayout$Builder setFacility(org.apache.logging.log4j.core.net.Facility);
 public SyslogLayout$Builder setIncludeNewLine(boolean);
 public SyslogLayout$Builder setEscapeNL(String);
}

org/apache/logging/log4j/core/layout/JacksonFactory$JSON.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$JSON extends JacksonFactory {
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 private final boolean objectMessageAsJsonObject;
 public void JacksonFactory$JSON(boolean, boolean, boolean, boolean);
 protected String getPropertNameForContextMap();
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/GelfLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class GelfLayout extends AbstractStringLayout {
 private static final char C = 44;
 private static final int COMPRESSION_THRESHOLD = 1024;
 private static final char Q = 34;
 private static final String QC = ",;
 private static final String QU = "_;
 private final org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 private final int compressionThreshold;
 private final GelfLayout$CompressionType compressionType;
 private final String host;
 private final boolean includeStacktrace;
 private final boolean includeThreadContext;
 private final boolean includeMapMessage;
 private final boolean includeNullDelimiter;
 private final boolean includeNewLineDelimiter;
 private final boolean omitEmptyFields;
 private final PatternLayout layout;
 private final GelfLayout$FieldWriter mdcWriter;
 private final GelfLayout$FieldWriter mapWriter;
 private static final ThreadLocal messageStringBuilder;
 private static final ThreadLocal timestampStringBuilder;
 public void GelfLayout(String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean);
 private void GelfLayout(org.apache.logging.log4j.core.config.Configuration, String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean, boolean, boolean, boolean, boolean, boolean, internal.ListChecker, internal.ListChecker, PatternLayout, String, String);
 public String toString();
 public static GelfLayout createLayout(String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean);
 public static GelfLayout$Builder newBuilder();
 public java.util.Map getContentFormat();
 public String getContentType();
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 public boolean requiresLocation();
 private byte[] compress(byte[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private StringBuilder toText(org.apache.logging.log4j.core.LogEvent, StringBuilder, boolean);
 private static boolean valueNeedsLookup(String);
 private static StringBuilder getMessageStringBuilder();
 private static CharSequence toNullSafeString(CharSequence);
 static CharSequence formatTimestamp(long);
 private static StringBuilder getTimestampStringBuilder();
 private int formatLevel(org.apache.logging.log4j.Level);
 static CharSequence formatThrowable(Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String pattern;
 private PatternSelector patternSelector;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.pattern.RegexReplacement regexReplacement;
 private java.nio.charset.Charset charset;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private String header;
 private String footer;
 private void PatternLayout$Builder();
 private boolean useAnsiEscapeCodes();
 public PatternLayout$Builder withPattern(String);
 public PatternLayout$Builder withPatternSelector(PatternSelector);
 public PatternLayout$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PatternLayout$Builder withRegexReplacement(org.apache.logging.log4j.core.pattern.RegexReplacement);
 public PatternLayout$Builder withCharset(java.nio.charset.Charset);
 public PatternLayout$Builder withAlwaysWriteExceptions(boolean);
 public PatternLayout$Builder withDisableAnsi(boolean);
 public PatternLayout$Builder withNoConsoleNoAnsi(boolean);
 public PatternLayout$Builder withHeader(String);
 public PatternLayout$Builder withFooter(String);
 public PatternLayout build();
}

org/apache/logging/log4j/core/async/RingBufferLogEvent$Factory.class

package org.apache.logging.log4j.core.async;
synchronized class RingBufferLogEvent$Factory implements com.lmax.disruptor.EventFactory {
 private void RingBufferLogEvent$Factory();
 public RingBufferLogEvent newInstance();
}

org/apache/logging/log4j/core/async/DiscardingAsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public synchronized class DiscardingAsyncQueueFullPolicy extends DefaultAsyncQueueFullPolicy {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.Level thresholdLevel;
 private final java.util.concurrent.atomic.AtomicLong discardCount;
 public void DiscardingAsyncQueueFullPolicy(org.apache.logging.log4j.Level);
 public EventRoute getRoute(long, org.apache.logging.log4j.Level);
 public static long getDiscardCount(AsyncQueueFullPolicy);
 public org.apache.logging.log4j.Level getThresholdLevel();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDisruptor extends org.apache.logging.log4j.core.AbstractLifeCycle implements AsyncLoggerConfigDelegate {
 private static final int MAX_DRAIN_ATTEMPTS_BEFORE_SHUTDOWN = 200;
 private static final int SLEEP_MILLIS_BETWEEN_DRAIN_ATTEMPTS = 50;
 private static final com.lmax.disruptor.EventFactory FACTORY;
 private static final com.lmax.disruptor.EventFactory MUTABLE_FACTORY;
 private static final com.lmax.disruptor.EventTranslatorTwoArg TRANSLATOR;
 private static final com.lmax.disruptor.EventTranslatorTwoArg MUTABLE_TRANSLATOR;
 private int ringBufferSize;
 private AsyncQueueFullPolicy asyncQueueFullPolicy;
 private Boolean mutable;
 private volatile com.lmax.disruptor.dsl.Disruptor disruptor;
 private long backgroundThreadId;
 private com.lmax.disruptor.EventFactory factory;
 private com.lmax.disruptor.EventTranslatorTwoArg translator;
 private volatile boolean alreadyLoggedWarning;
 private final Object queueFullEnqueueLock;
 public void AsyncLoggerConfigDisruptor();
 public void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
 public synchronized void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private static boolean hasBacklog(com.lmax.disruptor.dsl.Disruptor);
 public EventRoute getEventRoute(org.apache.logging.log4j.Level);
 private int remainingDisruptorCapacity();
 private boolean hasLog4jBeenShutDown(com.lmax.disruptor.dsl.Disruptor);
 public void enqueueEvent(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private org.apache.logging.log4j.core.LogEvent prepareEvent(org.apache.logging.log4j.core.LogEvent);
 private void showWarningAboutCustomLogEventWithReusableMessage(org.apache.logging.log4j.core.LogEvent);
 private void enqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private boolean synchronizeEnqueueWhenQueueFull();
 public boolean tryEnqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private org.apache.logging.log4j.core.LogEvent ensureImmutable(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/DisruptorBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class DisruptorBlockingQueueFactory implements BlockingQueueFactory {
 private final com.conversantmedia.util.concurrent.SpinPolicy spinPolicy;
 private void DisruptorBlockingQueueFactory(com.conversantmedia.util.concurrent.SpinPolicy);
 public java.util.concurrent.BlockingQueue create(int);
 public static DisruptorBlockingQueueFactory createFactory(com.conversantmedia.util.concurrent.SpinPolicy);
}

org/apache/logging/log4j/core/async/AbstractAsyncExceptionHandler.class

package org.apache.logging.log4j.core.async;
abstract synchronized class AbstractAsyncExceptionHandler implements com.lmax.disruptor.ExceptionHandler {
 void AbstractAsyncExceptionHandler();
 public void handleEventException(Throwable, long, Object);
 public void handleOnStartException(Throwable);
 public void handleOnShutdownException(Throwable);
}

org/apache/logging/log4j/core/async/EventRoute.class

package org.apache.logging.log4j.core.async;
public abstract synchronized enum EventRoute {
 public static final EventRoute ENQUEUE;
 public static final EventRoute SYNCHRONOUS;
 public static final EventRoute DISCARD;
 public static EventRoute[] values();
 public static EventRoute valueOf(String);
 private void EventRoute(String, int);
 public abstract void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public abstract void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/EventLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class EventLookup extends AbstractLookup {
 public void EventLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/AbstractConfigurationAwareLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class AbstractConfigurationAwareLookup extends AbstractLookup implements org.apache.logging.log4j.core.config.ConfigurationAware {
 protected org.apache.logging.log4j.core.config.Configuration configuration;
 public void AbstractConfigurationAwareLookup();
 public void setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/lookup/SystemPropertiesLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class SystemPropertiesLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void SystemPropertiesLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$CharSetMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$CharSetMatcher extends StrMatcher {
 private final char[] chars;
 void StrMatcher$CharSetMatcher(char[]);
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/LowerLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class LowerLookup implements StrLookup {
 public void LowerLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/MapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MapLookup implements StrLookup {
 private final java.util.Map map;
 public void MapLookup();
 public void MapLookup(java.util.Map);
 static java.util.Map initMap(String[], java.util.Map);
 static java.util.HashMap newMap(int);
 public static transient void setMainArguments(String[]);
 static java.util.Map toMap(java.util.List);
 static java.util.Map toMap(String[]);
 protected java.util.Map getMap();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
}

org/apache/logging/log4j/core/ErrorHandler.class

package org.apache.logging.log4j.core;
public abstract interface ErrorHandler {
 public abstract void error(String);
 public abstract void error(String, Throwable);
 public abstract void error(String, LogEvent, Throwable);
}

org/apache/logging/log4j/core/script/ScriptRef.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptRef extends AbstractScript {
 private final ScriptManager scriptManager;
 public void ScriptRef(String, ScriptManager);
 public String getLanguage();
 public String getScriptText();
 public static ScriptRef createReference(String, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/Filter.class

package org.apache.logging.log4j.core;
public abstract interface Filter extends LifeCycle {
 public static final Filter[] EMPTY_ARRAY;
 public static final String ELEMENT_TYPE = filter;
 public abstract Filter$Result getOnMismatch();
 public abstract Filter$Result getOnMatch();
 public abstract transient Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract Filter$Result filter(LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/BurstFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class BurstFilter$1 {
}

org/apache/logging/log4j/core/filter/BurstFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class BurstFilter extends AbstractFilter {
 private static final long NANOS_IN_SECONDS = 1000000000;
 private static final int DEFAULT_RATE = 10;
 private static final int DEFAULT_RATE_MULTIPLE = 100;
 private static final int HASH_SHIFT = 32;
 private final org.apache.logging.log4j.Level level;
 private final long burstInterval;
 private final java.util.concurrent.DelayQueue history;
 private final java.util.Queue available;
 static BurstFilter$LogDelay createLogDelay(long);
 private void BurstFilter(org.apache.logging.log4j.Level, float, long, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public int getAvailable();
 public void clear();
 public String toString();
 public static BurstFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/RootThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RootThrowablePatternConverter extends ThrowablePatternConverter {
 private void RootThrowablePatternConverter(org.apache.logging.log4j.core.config.Configuration, String[]);
 public static RootThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/PatternParser$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class PatternParser$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/RepeatPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RepeatPatternConverter extends LogEventPatternConverter {
 private final String result;
 public static RepeatPatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void RepeatPatternConverter(String);
 public void format(Object, StringBuilder);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void format(StringBuilder);
}

org/apache/logging/log4j/core/pattern/MaxLengthConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MaxLengthConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final int maxLength;
 public static MaxLengthConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void MaxLengthConverter(java.util.List, int);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NanoTimePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NanoTimePatternConverter extends LogEventPatternConverter {
 private void NanoTimePatternConverter(String[]);
 public static NanoTimePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy$1.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy$1 {
 void NameAbbreviator$MaxElementAbbreviator$Strategy$1(String, int, int);
 void abbreviate(int, String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$FormattedMessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$FormattedMessagePatternConverter extends MessagePatternConverter {
 private final String[] formats;
 void MessagePatternConverter$FormattedMessagePatternConverter(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$Formatter.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized class DatePatternConverter$Formatter {
 long previousTime;
 int nanos;
 private void DatePatternConverter$Formatter();
 abstract String format(org.apache.logging.log4j.core.time.Instant);
 abstract void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/jackson/MarkerMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class MarkerMixIn implements org.apache.logging.log4j.Marker {
 private static final long serialVersionUID = 1;
 void MarkerMixIn(String);
 public abstract String getName();
 public abstract org.apache.logging.log4j.Marker[] getParents();
}

org/apache/logging/log4j/core/jackson/Log4jJsonModule.class

package org.apache.logging.log4j.core.jackson;
synchronized class Log4jJsonModule extends com.fasterxml.jackson.databind.module.SimpleModule {
 private static final long serialVersionUID = 1;
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 private final boolean objectMessageAsJsonObject;
 void Log4jJsonModule(boolean, boolean, boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/MutableThreadContextStackDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class MutableThreadContextStackDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void MutableThreadContextStackDeserializer$1(MutableThreadContextStackDeserializer);
}

org/apache/logging/log4j/core/jackson/ExtendedStackTraceElementMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ExtendedStackTraceElementMixIn implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 public void ExtendedStackTraceElementMixIn(String, String, String, int, boolean, String, String);
 public abstract String getClassName();
 public abstract boolean getExact();
 public abstract org.apache.logging.log4j.core.impl.ExtendedClassInfo getExtraClassInfo();
 public abstract String getFileName();
 public abstract int getLineNumber();
 public abstract String getLocation();
 public abstract String getMethodName();
 abstract StackTraceElement getStackTraceElement();
 public abstract String getVersion();
 public abstract boolean isNativeMethod();
}

org/apache/logging/log4j/core/jackson/Initializers$SimpleModuleInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SimpleModuleInitializer {
 void Initializers$SimpleModuleInitializer();
 void initialize(com.fasterxml.jackson.databind.module.SimpleModule, boolean);
}

org/apache/logging/log4j/core/jackson/LogEventWithContextListMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LogEventWithContextListMixIn implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = 1;
 void LogEventWithContextListMixIn();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerFqcn();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract StackTraceElement getSource();
 public abstract long getThreadId();
 public abstract String getThreadName();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public abstract long getTimeMillis();
 public abstract org.apache.logging.log4j.core.time.Instant getInstant();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
}

org/apache/logging/log4j/core/appender/FileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class FileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private boolean locking;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void FileAppender$Builder();
 public FileAppender build();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public FileAppender$Builder withAdvertise(boolean);
 public FileAppender$Builder withAdvertiseUri(String);
 public FileAppender$Builder withAppend(boolean);
 public FileAppender$Builder withFileName(String);
 public FileAppender$Builder withCreateOnDemand(boolean);
 public FileAppender$Builder withLocking(boolean);
 public FileAppender$Builder withFilePermissions(String);
 public FileAppender$Builder withFileOwner(String);
 public FileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class MapRewritePolicy implements RewritePolicy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map map;
 private final MapRewritePolicy$Mode mode;
 private void MapRewritePolicy(java.util.Map, MapRewritePolicy$Mode);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static MapRewritePolicy createPolicy(String, org.apache.logging.log4j.core.util.KeyValuePair[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$MemoryMappedFileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$MemoryMappedFileManagerFactory implements ManagerFactory {
 private void MemoryMappedFileManager$MemoryMappedFileManagerFactory();
 public MemoryMappedFileManager createManager(String, MemoryMappedFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class TimeBasedTriggeringPolicy$1 {
}

org/apache/logging/log4j/core/appender/rolling/SizeBasedTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class SizeBasedTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final long MAX_FILE_SIZE = 10485760;
 private final long maxFileSize;
 private RollingFileManager manager;
 protected void SizeBasedTriggeringPolicy();
 protected void SizeBasedTriggeringPolicy(long);
 public long getMaxFileSize();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static SizeBasedTriggeringPolicy createPolicy(String);
}

org/apache/logging/log4j/core/appender/rolling/action/PathSorter.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface PathSorter extends java.util.Comparator {
}

org/apache/logging/log4j/core/appender/rolling/action/IfLastModified.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfLastModified implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private final Duration age;
 private final PathCondition[] nestedConditions;
 private void IfLastModified(Duration, PathCondition[]);
 public Duration getAge();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfLastModified createAgeCondition(Duration, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAccumulatedFileSize.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAccumulatedFileSize implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final long thresholdBytes;
 private long accumulatedSize;
 private final PathCondition[] nestedConditions;
 private transient void IfAccumulatedFileSize(long, PathCondition[]);
 public long getThresholdBytes();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAccumulatedFileSize createFileSizeCondition(String, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathCondition.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface PathCondition {
 public static final PathCondition[] EMPTY_ARRAY;
 public static transient PathCondition[] copy(PathCondition[]);
 public abstract void beforeFileTreeWalk();
 public abstract boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction$1.class

package org.apache.logging.log4j.core.appender.rolling.action;
synchronized class PosixViewAttributeAction$1 extends java.nio.file.SimpleFileVisitor {
 void PosixViewAttributeAction$1(PosixViewAttributeAction, java.util.List, java.nio.file.Path);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/rolling/action/DeletingVisitor.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class DeletingVisitor extends java.nio.file.SimpleFileVisitor {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.nio.file.Path basePath;
 private final boolean testMode;
 private final java.util.List pathConditions;
 public void DeletingVisitor(java.nio.file.Path, java.util.List, boolean);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
 public java.nio.file.FileVisitResult visitFileFailed(java.nio.file.Path, java.io.IOException) throws java.io.IOException;
 protected void delete(java.nio.file.Path) throws java.io.IOException;
 public boolean isTestMode();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$1 {
}

org/apache/logging/log4j/core/appender/rolling/TriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface TriggeringPolicy {
 public abstract void initialize(RollingFileManager);
 public abstract boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RollingRandomAccessFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private String filePattern;
 private boolean append;
 private rolling.TriggeringPolicy policy;
 private rolling.RolloverStrategy strategy;
 private boolean advertise;
 private String advertiseURI;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void RollingRandomAccessFileAppender$Builder();
 public RollingRandomAccessFileAppender build();
 public RollingRandomAccessFileAppender$Builder withFileName(String);
 public RollingRandomAccessFileAppender$Builder withFilePattern(String);
 public RollingRandomAccessFileAppender$Builder withAppend(boolean);
 public RollingRandomAccessFileAppender$Builder withPolicy(rolling.TriggeringPolicy);
 public RollingRandomAccessFileAppender$Builder withStrategy(rolling.RolloverStrategy);
 public RollingRandomAccessFileAppender$Builder withAdvertise(boolean);
 public RollingRandomAccessFileAppender$Builder withAdvertiseURI(String);
 public RollingRandomAccessFileAppender$Builder withFilePermissions(String);
 public RollingRandomAccessFileAppender$Builder withFileOwner(String);
 public RollingRandomAccessFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/SyslogAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class SyslogAppender extends SocketAppender {
 protected static final String RFC5424 = RFC5424;
 protected void SyslogAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.net.AbstractSocketManager, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 protected void SyslogAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.net.AbstractSocketManager, org.apache.logging.log4j.core.net.Advertiser);
 public static SyslogAppender createAppender(String, int, String, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, int, boolean, String, boolean, boolean, org.apache.logging.log4j.core.net.Facility, String, int, boolean, String, String, String, boolean, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, String, org.apache.logging.log4j.core.layout.LoggerFields[], boolean);
 public static SyslogAppender$Builder newSyslogAppenderBuilder();
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RandomAccessFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private boolean advertise;
 private String advertiseURI;
 public void RandomAccessFileAppender$Builder();
 public RandomAccessFileAppender build();
 public RandomAccessFileAppender$Builder setFileName(String);
 public RandomAccessFileAppender$Builder setAppend(boolean);
 public RandomAccessFileAppender$Builder setAdvertise(boolean);
 public RandomAccessFileAppender$Builder setAdvertiseURI(String);
}

org/apache/logging/log4j/core/appender/ConfigurationFactoryData.class

package org.apache.logging.log4j.core.appender;
public synchronized class ConfigurationFactoryData {
 public final org.apache.logging.log4j.core.config.Configuration configuration;
 public void ConfigurationFactoryData(org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class ConsoleAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private ConsoleAppender$Target target;
 private boolean follow;
 private boolean direct;
 public void ConsoleAppender$Builder();
 public ConsoleAppender$Builder setTarget(ConsoleAppender$Target);
 public ConsoleAppender$Builder setFollow(boolean);
 public ConsoleAppender$Builder setDirect(boolean);
 public ConsoleAppender build();
}

org/apache/logging/log4j/core/appender/DefaultErrorHandler.class

package org.apache.logging.log4j.core.appender;
public synchronized class DefaultErrorHandler implements org.apache.logging.log4j.core.ErrorHandler {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int MAX_EXCEPTION_COUNT = 3;
 private static final long EXCEPTION_INTERVAL_NANOS;
 private int exceptionCount;
 private long lastExceptionInstantNanos;
 private final org.apache.logging.log4j.core.Appender appender;
 public void DefaultErrorHandler(org.apache.logging.log4j.core.Appender);
 public void error(String);
 public void error(String, Throwable);
 public void error(String, org.apache.logging.log4j.core.LogEvent, Throwable);
 private boolean acquirePermit();
 public org.apache.logging.log4j.core.Appender getAppender();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class JdbcDatabaseManager extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager {
 private static final JdbcDatabaseManager$JdbcDatabaseManagerFactory INSTANCE;
 private final java.util.List columnConfigs;
 private final String sqlStatement;
 private final JdbcDatabaseManager$FactoryData factoryData;
 private volatile java.sql.Connection connection;
 private volatile java.sql.PreparedStatement statement;
 private volatile JdbcDatabaseManager$Reconnector reconnector;
 private volatile boolean isBatchSupported;
 private volatile java.util.Map columnMetaData;
 private static void appendColumnName(int, String, StringBuilder);
 private static void appendColumnNames(String, JdbcDatabaseManager$FactoryData, StringBuilder);
 private static JdbcDatabaseManager$JdbcDatabaseManagerFactory getFactory();
 public static JdbcDatabaseManager getJDBCDatabaseManager(String, int, ConnectionSource, String, ColumnConfig[]);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[]);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long, boolean);
 private void JdbcDatabaseManager(String, String, java.util.List, JdbcDatabaseManager$FactoryData);
 private void checkConnection();
 protected void closeResources(boolean);
 protected boolean commitAndClose();
 private boolean commitAndCloseAll();
 private void connectAndPrepare() throws java.sql.SQLException;
 protected void connectAndStart();
 private JdbcDatabaseManager$Reconnector createReconnector();
 private String createSqlSelect();
 private String fieldsToString();
 public ConnectionSource getConnectionSource();
 public String getSqlStatement();
 public String getTableName();
 private void initColumnMetaData() throws java.sql.SQLException;
 private boolean isClosed(java.sql.Statement) throws java.sql.SQLException;
 private boolean isClosed(java.sql.Connection) throws java.sql.SQLException;
 private void reconnectOn(Exception);
 private void setFields(org.apache.logging.log4j.message.MapMessage) throws java.sql.SQLException;
 private void setStatementObject(int, String, Object) throws java.sql.SQLException;
 protected boolean shutdownInternal();
 protected void startupInternal() throws Exception;
 private Object truncate(String, Object);
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeThrough(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/routing/IdlePurgePolicy.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class IdlePurgePolicy extends org.apache.logging.log4j.core.AbstractLifeCycle implements PurgePolicy, Runnable {
 private final long timeToLive;
 private final long checkInterval;
 private final java.util.concurrent.ConcurrentMap appendersUsage;
 private RoutingAppender routingAppender;
 private final org.apache.logging.log4j.core.config.ConfigurationScheduler scheduler;
 private volatile java.util.concurrent.ScheduledFuture future;
 public void IdlePurgePolicy(long, long, org.apache.logging.log4j.core.config.ConfigurationScheduler);
 public void initialize(RoutingAppender);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void purge();
 public void update(String, org.apache.logging.log4j.core.LogEvent);
 public void run();
 private void scheduleNext();
 public static PurgePolicy createPurgePolicy(String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/appender/AsyncAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class AsyncAppender$Builder extends org.apache.logging.log4j.core.filter.AbstractFilterable$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private String errorRef;
 private boolean blocking;
 private long shutdownTimeout;
 private int bufferSize;
 private String name;
 private boolean includeLocation;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private boolean ignoreExceptions;
 private org.apache.logging.log4j.core.async.BlockingQueueFactory blockingQueueFactory;
 public void AsyncAppender$Builder();
 public AsyncAppender$Builder setAppenderRefs(org.apache.logging.log4j.core.config.AppenderRef[]);
 public AsyncAppender$Builder setErrorRef(String);
 public AsyncAppender$Builder setBlocking(boolean);
 public AsyncAppender$Builder setShutdownTimeout(long);
 public AsyncAppender$Builder setBufferSize(int);
 public AsyncAppender$Builder setName(String);
 public AsyncAppender$Builder setIncludeLocation(boolean);
 public AsyncAppender$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AsyncAppender$Builder setIgnoreExceptions(boolean);
 public AsyncAppender$Builder setBlockingQueueFactory(org.apache.logging.log4j.core.async.BlockingQueueFactory);
 public AsyncAppender build();
}

org/apache/logging/log4j/core/appender/mom/JmsManager$JmsManagerFactory.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$JmsManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JmsManager$JmsManagerFactory();
 public JmsManager createManager(String, JmsManager$JmsManagerConfiguration);
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class KafkaManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 public static final String DEFAULT_TIMEOUT_MILLIS = 30000;
 static KafkaProducerFactory producerFactory;
 private final java.util.Properties config;
 private org.apache.kafka.clients.producer.Producer producer;
 private final int timeoutMillis;
 private final String topic;
 private final String key;
 private final boolean syncSend;
 private static final KafkaManager$KafkaManagerFactory factory;
 public void KafkaManager(org.apache.logging.log4j.core.LoggerContext, String, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 private void closeProducer(long, java.util.concurrent.TimeUnit);
 public void send(byte[]) throws java.util.concurrent.ExecutionException, InterruptedException, java.util.concurrent.TimeoutException;
 public void startup();
 public String getTopic();
 public static KafkaManager getManager(org.apache.logging.log4j.core.LoggerContext, String, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$1.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$1 {
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
public synchronized class JeroMqManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 public static final String SYS_PROPERTY_ENABLE_SHUTDOWN_HOOK = log4j.jeromq.enableShutdownHook;
 public static final String SYS_PROPERTY_IO_THREADS = log4j.jeromq.ioThreads;
 private static final JeroMqManager$JeroMqManagerFactory FACTORY;
 private static final org.zeromq.ZMQ$Context CONTEXT;
 private static final org.apache.logging.log4j.core.util.Cancellable SHUTDOWN_HOOK;
 private final org.zeromq.ZMQ$Socket publisher;
 private void JeroMqManager(String, JeroMqManager$JeroMqConfiguration);
 public boolean send(byte[]);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public static JeroMqManager getJeroMqManager(String, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, java.util.List);
 public static org.zeromq.ZMQ$Context getContext();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LocationAware.class

package org.apache.logging.log4j.core.impl;
public abstract interface LocationAware {
 public abstract boolean requiresLocation();
}

org/apache/logging/log4j/core/impl/MementoMessage.class

package org.apache.logging.log4j.core.impl;
public final synchronized class MementoMessage implements org.apache.logging.log4j.message.Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private final String formattedMessage;
 private final String format;
 private final Object[] parameters;
 public void MementoMessage(String, String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public String toString();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$Builder.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jLogEvent$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String loggerFqcn;
 private org.apache.logging.log4j.Marker marker;
 private org.apache.logging.log4j.Level level;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private Throwable thrown;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement source;
 private boolean includeLocation;
 private boolean endOfBatch;
 private long nanoTime;
 public void Log4jLogEvent$Builder();
 public void Log4jLogEvent$Builder(org.apache.logging.log4j.core.LogEvent);
 public Log4jLogEvent$Builder setLevel(org.apache.logging.log4j.Level);
 public Log4jLogEvent$Builder setLoggerFqcn(String);
 public Log4jLogEvent$Builder setLoggerName(String);
 public Log4jLogEvent$Builder setMarker(org.apache.logging.log4j.Marker);
 public Log4jLogEvent$Builder setMessage(org.apache.logging.log4j.message.Message);
 public Log4jLogEvent$Builder setThrown(Throwable);
 public Log4jLogEvent$Builder setTimeMillis(long);
 public Log4jLogEvent$Builder setInstant(org.apache.logging.log4j.core.time.Instant);
 public Log4jLogEvent$Builder setThrownProxy(ThrowableProxy);
 public Log4jLogEvent$Builder setContextMap(java.util.Map);
 public Log4jLogEvent$Builder setContextData(org.apache.logging.log4j.util.StringMap);
 public Log4jLogEvent$Builder setContextStack(org.apache.logging.log4j.ThreadContext$ContextStack);
 public Log4jLogEvent$Builder setThreadId(long);
 public Log4jLogEvent$Builder setThreadName(String);
 public Log4jLogEvent$Builder setThreadPriority(int);
 public Log4jLogEvent$Builder setSource(StackTraceElement);
 public Log4jLogEvent$Builder setIncludeLocation(boolean);
 public Log4jLogEvent$Builder setEndOfBatch(boolean);
 public Log4jLogEvent$Builder setNanoTime(long);
 public Log4jLogEvent build();
 private void initTimeFields();
}

org/apache/logging/log4j/core/impl/ContextDataInjectorFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ContextDataInjectorFactory {
 public void ContextDataInjectorFactory();
 public static org.apache.logging.log4j.core.ContextDataInjector createInjector();
 private static org.apache.logging.log4j.core.ContextDataInjector createDefaultInjector();
}

org/apache/logging/log4j/core/selector/ContextSelector.class

package org.apache.logging.log4j.core.selector;
public abstract interface ContextSelector {
 public static final long DEFAULT_STOP_TIMEOUT = 50;
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public abstract org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean);
 public abstract org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI);
 public abstract java.util.List getLoggerContexts();
 public abstract void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
}

org/apache/logging/log4j/core/tools/Generate$Type$1.class

package org.apache.logging.log4j.core.tools;
final synchronized enum Generate$Type$1 {
 void Generate$Type$1(String, int);
 String imports();
 String declaration();
 String constructor();
 Class generator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$TypeConversionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$TypeConversionException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 4251973913816346114;
 public void CommandLine$TypeConversionException(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$SortByOptionArityAndNameAlphabetically.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$SortByOptionArityAndNameAlphabetically extends CommandLine$Help$SortByShortestOptionNameAlphabetically {
 void CommandLine$Help$SortByOptionArityAndNameAlphabetically();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ByteConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ByteConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ByteConverter();
 public Byte convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ISO8601DateConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ISO8601DateConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ISO8601DateConverter();
 public java.util.Date convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$DoubleConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$DoubleConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$DoubleConverter();
 public Double convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Tracer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Tracer {
 CommandLine$TraceLevel level;
 java.io.PrintStream stream;
 private void CommandLine$Tracer();
 transient void warn(String, Object[]);
 transient void info(String, Object[]);
 transient void debug(String, Object[]);
 boolean isWarn();
 boolean isInfo();
 boolean isDebug();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MissingTypeConverterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MissingTypeConverterException extends CommandLine$ParameterException {
 private static final long serialVersionUID = -6050931703233083760;
 public void CommandLine$MissingTypeConverterException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$SortByShortestOptionNameAlphabetically.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$SortByShortestOptionNameAlphabetically implements java.util.Comparator {
 void CommandLine$Help$SortByShortestOptionNameAlphabetically();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/net/ssl/LaxHostnameVerifier.class

package org.apache.logging.log4j.core.net.ssl;
public final synchronized class LaxHostnameVerifier implements javax.net.ssl.HostnameVerifier {
 public static final javax.net.ssl.HostnameVerifier INSTANCE;
 private void LaxHostnameVerifier();
 public boolean verify(String, javax.net.ssl.SSLSession);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/KeyStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class KeyStoreConfiguration extends AbstractKeyStoreConfiguration {
 private final String keyManagerFactoryAlgorithm;
 public void KeyStoreConfiguration(String, PasswordProvider, String, String) throws StoreConfigurationException;
 public void KeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public void KeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, char[], String, String, String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public javax.net.ssl.KeyManagerFactory initKeyManagerFactory() throws java.security.NoSuchAlgorithmException, java.security.UnrecoverableKeyException, java.security.KeyStoreException;
 public int hashCode();
 public boolean equals(Object);
 public String getKeyManagerFactoryAlgorithm();
}

org/apache/logging/log4j/core/net/ssl/StoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class StoreConfigurationException extends Exception {
 private static final long serialVersionUID = 1;
 public void StoreConfigurationException(Exception);
 public void StoreConfigurationException(String);
 public void StoreConfigurationException(String, Exception);
}

org/apache/logging/log4j/core/net/JndiManager.class

package org.apache.logging.log4j.core.net;
public synchronized class JndiManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 private static final JndiManager$JndiManagerFactory FACTORY;
 private static final String PREFIX = log4j2.enableJndi;
 private static final String JAVA_SCHEME = java;
 private static final boolean JNDI_CONTEXT_SELECTOR_ENABLED;
 private static final boolean JNDI_JDBC_ENABLED;
 private static final boolean JNDI_JMS_ENABLED;
 private static final boolean JNDI_LOOKUP_ENABLED;
 private final javax.naming.InitialContext context;
 private static boolean isJndiEnabled(String);
 public static boolean isJndiEnabled();
 public static boolean isJndiContextSelectorEnabled();
 public static boolean isJndiJdbcEnabled();
 public static boolean isJndiJmsEnabled();
 public static boolean isJndiLookupEnabled();
 private void JndiManager(String, javax.naming.InitialContext);
 public static JndiManager getDefaultManager();
 public static JndiManager getDefaultManager(String);
 public static JndiManager getJndiManager(String, String, String, String, String, java.util.Properties);
 public static JndiManager getJndiManager(java.util.Properties);
 private static String createManagerName();
 public static java.util.Properties createProperties(String, String, String, String, String, java.util.Properties);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public Object lookup(String) throws javax.naming.NamingException;
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/MulticastDnsAdvertiser.class

package org.apache.logging.log4j.core.net;
public synchronized class MulticastDnsAdvertiser implements Advertiser {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final int MAX_LENGTH = 255;
 private static final int DEFAULT_PORT = 4555;
 private static Object jmDNS;
 private static Class jmDNSClass;
 private static Class serviceInfoClass;
 public void MulticastDnsAdvertiser();
 public Object advertise(java.util.Map);
 public void unadvertise(Object);
 private static Object createJmDnsVersion1();
 private static Object createJmDnsVersion3();
 private static Object buildServiceInfoVersion1(String, int, String, java.util.Map);
 private static Object buildServiceInfoVersion3(String, int, String, java.util.Map);
 private static Object initializeJmDns();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SocketAddress.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketAddress {
 private final java.net.InetSocketAddress socketAddress;
 public static SocketAddress getLoopback();
 private void SocketAddress(java.net.InetAddress, int);
 public java.net.InetSocketAddress getSocketAddress();
 public int getPort();
 public java.net.InetAddress getAddress();
 public String getHostName();
 public static SocketAddress$Builder newBuilder();
 public String toString();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$DayInWeekField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$DayInWeekField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$DayInWeekField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 void FastDatePrinter$TwoDigitNumberField(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$UnpaddedMonthField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$UnpaddedMonthField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$UnpaddedMonthField INSTANCE;
 void FastDatePrinter$UnpaddedMonthField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$Strategy.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FastDateParser$Strategy {
 private void FastDateParser$Strategy();
 boolean isNumber();
 abstract boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
}

org/apache/logging/log4j/core/util/ArrayUtils.class

package org.apache.logging.log4j.core.util;
public synchronized class ArrayUtils {
 public void ArrayUtils();
 public static boolean isEmpty(byte[]);
 public static int getLength(Object);
 private static Object remove(Object, int);
 public static Object[] remove(Object[], int);
}

org/apache/logging/log4j/core/util/NullOutputStream.class

package org.apache.logging.log4j.core.util;
public synchronized class NullOutputStream extends java.io.OutputStream {
 private static final NullOutputStream INSTANCE;
 public static final NullOutputStream NULL_OUTPUT_STREAM;
 public static NullOutputStream getInstance();
 private void NullOutputStream();
 public void write(byte[], int, int);
 public void write(int);
 public void write(byte[]) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DefaultShutdownCallbackRegistry.class

package org.apache.logging.log4j.core.util;
public synchronized class DefaultShutdownCallbackRegistry implements ShutdownCallbackRegistry, org.apache.logging.log4j.core.LifeCycle2, Runnable {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.concurrent.atomic.AtomicReference state;
 private final java.util.concurrent.ThreadFactory threadFactory;
 private final java.util.Collection hooks;
 private ref.Reference shutdownHookRef;
 public void DefaultShutdownCallbackRegistry();
 protected void DefaultShutdownCallbackRegistry(java.util.concurrent.ThreadFactory);
 public void run();
 public Cancellable addShutdownCallback(Runnable);
 public void initialize();
 public void start();
 private void addShutdownHook(Thread);
 public void stop();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private void removeShutdownHook();
 public org.apache.logging.log4j.core.LifeCycle$State getState();
 public boolean isStarted();
 public boolean isStopped();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/UuidUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class UuidUtil {
 private static final long[] EMPTY_LONG_ARRAY;
 public static final String UUID_SEQUENCE = org.apache.logging.log4j.uuidSequence;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String ASSIGNED_SEQUENCES = org.apache.logging.log4j.assignedSequences;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private static final long TYPE1 = 4096;
 private static final byte VARIANT = -128;
 private static final int SEQUENCE_MASK = 16383;
 private static final long NUM_100NS_INTERVALS_SINCE_UUID_EPOCH = 122192928000000000;
 private static final long INITIAL_UUID_SEQNO;
 private static final long LOW_MASK = 4294967295;
 private static final long MID_MASK = 281470681743360;
 private static final long HIGH_MASK = 1152640029630136320;
 private static final int NODE_SIZE = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_4 = 32;
 private static final int SHIFT_6 = 48;
 private static final int HUNDRED_NANOS_PER_MILLI = 10000;
 private static final long LEAST;
 private void UuidUtil();
 static long initialize(byte[]);
 public static java.util.UUID getTimeBasedUuid();
 static void <clinit>();
}

org/apache/logging/log4j/core/AbstractLogEvent.class

package org.apache.logging.log4j.core;
public abstract synchronized class AbstractLogEvent implements LogEvent {
 private static final long serialVersionUID = 1;
 private volatile time.MutableInstant instant;
 public void AbstractLogEvent();
 public LogEvent toImmutable();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerFqcn();
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public org.apache.logging.log4j.message.Message getMessage();
 public StackTraceElement getSource();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public Throwable getThrown();
 public impl.ThrowableProxy getThrownProxy();
 public long getTimeMillis();
 public time.Instant getInstant();
 protected final time.MutableInstant getMutableInstant();
 public boolean isEndOfBatch();
 public boolean isIncludeLocation();
 public void setEndOfBatch(boolean);
 public void setIncludeLocation(boolean);
 public long getNanoTime();
}

org/apache/logging/log4j/core/config/arbiters/SelectArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SelectArbiter {
 public void SelectArbiter();
 public Arbiter evaluateConditions(java.util.List);
 public static SelectArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/DefaultArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class DefaultArbiter implements Arbiter {
 public void DefaultArbiter();
 public boolean isCondition();
 public static DefaultArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/plugins/PluginFactory.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginFactory extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/PluginBuilderFactory.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginBuilderFactory extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/util/PluginType.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginType {
 private final org.apache.logging.log4j.core.config.plugins.processor.PluginEntry pluginEntry;
 private final Class pluginClass;
 private final String elementName;
 public void PluginType(org.apache.logging.log4j.core.config.plugins.processor.PluginEntry, Class, String);
 public Class getPluginClass();
 public String getElementName();
 public String getKey();
 public boolean isObjectPrintable();
 public boolean isDeferChildren();
 public String getCategory();
 public String toString();
}

org/apache/logging/log4j/core/config/plugins/util/PluginBuilder.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginBuilder implements org.apache.logging.log4j.core.util.Builder {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final PluginType pluginType;
 private final Class clazz;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.config.Node node;
 private org.apache.logging.log4j.core.LogEvent event;
 public void PluginBuilder(PluginType);
 public PluginBuilder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PluginBuilder withConfigurationNode(org.apache.logging.log4j.core.config.Node);
 public PluginBuilder forLogEvent(org.apache.logging.log4j.core.LogEvent);
 public Object build();
 private void verify();
 private static org.apache.logging.log4j.core.util.Builder createBuilder(Class) throws reflect.InvocationTargetException, IllegalAccessException;
 private void injectFields(org.apache.logging.log4j.core.util.Builder) throws IllegalAccessException;
 private static String simpleName(Object);
 private static reflect.Method findFactoryMethod(Class);
 private Object[] generateParameters(reflect.Method);
 private static transient String[] extractPluginAliases(annotation.Annotation[]);
 private void checkForRemainingAttributes();
 private void verifyNodeChildrenUsed();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$1.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$1 {
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UriConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UriConverter implements TypeConverter {
 public void TypeConverters$UriConverter();
 public java.net.URI convert(String) throws java.net.URISyntaxException;
}

org/apache/logging/log4j/core/config/DefaultConfiguration.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultConfiguration extends AbstractConfiguration {
 public static final String DEFAULT_NAME = Default;
 public static final String DEFAULT_LEVEL = org.apache.logging.log4j.level;
 public static final String DEFAULT_PATTERN = %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n;
 public void DefaultConfiguration();
 protected void doConfigure();
}

org/apache/logging/log4j/core/config/ConfigurationFactory.class

package org.apache.logging.log4j.core.config;
public abstract synchronized class ConfigurationFactory extends builder.api.ConfigurationBuilderFactory {
 public static final String CONFIGURATION_FACTORY_PROPERTY = log4j.configurationFactory;
 public static final String CONFIGURATION_FILE_PROPERTY = log4j.configurationFile;
 public static final String LOG4J1_CONFIGURATION_FILE_PROPERTY = log4j.configuration;
 public static final String LOG4J1_EXPERIMENTAL = log4j1.compatibility;
 public static final String AUTHORIZATION_PROVIDER = log4j2.authorizationProvider;
 public static final String CATEGORY = ConfigurationFactory;
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected static final String TEST_PREFIX = log4j2-test;
 protected static final String DEFAULT_PREFIX = log4j2;
 protected static final String LOG4J1_VERSION = 1;
 protected static final String LOG4J2_VERSION = 2;
 private static final String CLASS_LOADER_SCHEME = classloader;
 private static final String CLASS_PATH_SCHEME = classpath;
 private static final String OVERRIDE_PARAM = override;
 private static volatile java.util.List factories;
 private static ConfigurationFactory configFactory;
 protected final org.apache.logging.log4j.core.lookup.StrSubstitutor substitutor;
 private static final java.util.concurrent.locks.Lock LOCK;
 private static final String HTTPS = https;
 private static final String HTTP = http;
 private static volatile org.apache.logging.log4j.core.util.AuthorizationProvider authorizationProvider;
 public void ConfigurationFactory();
 public static ConfigurationFactory getInstance();
 public static org.apache.logging.log4j.core.util.AuthorizationProvider authorizationProvider(org.apache.logging.log4j.util.PropertiesUtil);
 public static org.apache.logging.log4j.core.util.AuthorizationProvider getAuthorizationProvider();
 private static void addFactory(java.util.Collection, String);
 private static void addFactory(java.util.Collection, Class);
 public static void setConfigurationFactory(ConfigurationFactory);
 public static void resetConfigurationFactory();
 public static void removeConfigurationFactory(ConfigurationFactory);
 protected abstract String[] getSupportedTypes();
 protected String getTestPrefix();
 protected String getDefaultPrefix();
 protected String getVersion();
 protected boolean isActive();
 public abstract Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI);
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI, ClassLoader);
 static boolean isClassLoaderUri(java.net.URI);
 static String extractClassLoaderUriPath(java.net.URI);
 protected ConfigurationSource getInputFromString(String, ClassLoader);
 static java.util.List getFactories();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/ConfigurationScheduler.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationScheduler extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String SIMPLE_NAME;
 private static final int MAX_SCHEDULED_ITEMS = 5;
 private volatile java.util.concurrent.ScheduledExecutorService executorService;
 private int scheduledItems;
 private final String name;
 public void ConfigurationScheduler();
 public void ConfigurationScheduler(String);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public boolean isExecutorServiceSet();
 public void incrementScheduledItems();
 public void decrementScheduledItems();
 public java.util.concurrent.ScheduledFuture schedule(java.util.concurrent.Callable, long, java.util.concurrent.TimeUnit);
 public java.util.concurrent.ScheduledFuture schedule(Runnable, long, java.util.concurrent.TimeUnit);
 public CronScheduledFuture scheduleWithCron(org.apache.logging.log4j.core.util.CronExpression, Runnable);
 public CronScheduledFuture scheduleWithCron(org.apache.logging.log4j.core.util.CronExpression, java.util.Date, Runnable);
 public java.util.concurrent.ScheduledFuture scheduleAtFixedRate(Runnable, long, long, java.util.concurrent.TimeUnit);
 public java.util.concurrent.ScheduledFuture scheduleWithFixedDelay(Runnable, long, long, java.util.concurrent.TimeUnit);
 public long nextFireInterval(java.util.Date);
 private java.util.concurrent.ScheduledExecutorService getExecutorService();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultAppenderComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultAppenderComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder {
 public void DefaultAppenderComponentBuilder(DefaultConfigurationBuilder, String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/ConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ConfigurationBuilder extends org.apache.logging.log4j.core.util.Builder {
 public abstract ConfigurationBuilder add(ScriptComponentBuilder);
 public abstract ConfigurationBuilder add(ScriptFileComponentBuilder);
 public abstract ConfigurationBuilder add(AppenderComponentBuilder);
 public abstract ConfigurationBuilder add(CustomLevelComponentBuilder);
 public abstract ConfigurationBuilder add(FilterComponentBuilder);
 public abstract ConfigurationBuilder add(LoggerComponentBuilder);
 public abstract ConfigurationBuilder add(RootLoggerComponentBuilder);
 public abstract ConfigurationBuilder addProperty(String, String);
 public abstract ScriptComponentBuilder newScript(String, String, String);
 public abstract ScriptFileComponentBuilder newScriptFile(String);
 public abstract ScriptFileComponentBuilder newScriptFile(String, String);
 public abstract AppenderComponentBuilder newAppender(String, String);
 public abstract AppenderRefComponentBuilder newAppenderRef(String);
 public abstract LoggerComponentBuilder newAsyncLogger(String);
 public abstract LoggerComponentBuilder newAsyncLogger(String, boolean);
 public abstract LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level);
 public abstract LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level, boolean);
 public abstract LoggerComponentBuilder newAsyncLogger(String, String);
 public abstract LoggerComponentBuilder newAsyncLogger(String, String, boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger();
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level, boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(String);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(String, boolean);
 public abstract ComponentBuilder newComponent(String);
 public abstract ComponentBuilder newComponent(String, String);
 public abstract ComponentBuilder newComponent(String, String, String);
 public abstract PropertyComponentBuilder newProperty(String, String);
 public abstract KeyValuePairComponentBuilder newKeyValuePair(String, String);
 public abstract CustomLevelComponentBuilder newCustomLevel(String, int);
 public abstract FilterComponentBuilder newFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public abstract FilterComponentBuilder newFilter(String, String, String);
 public abstract LayoutComponentBuilder newLayout(String);
 public abstract LoggerComponentBuilder newLogger(String);
 public abstract LoggerComponentBuilder newLogger(String, boolean);
 public abstract LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level);
 public abstract LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level, boolean);
 public abstract LoggerComponentBuilder newLogger(String, String);
 public abstract LoggerComponentBuilder newLogger(String, String, boolean);
 public abstract RootLoggerComponentBuilder newRootLogger();
 public abstract RootLoggerComponentBuilder newRootLogger(boolean);
 public abstract RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level);
 public abstract RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level, boolean);
 public abstract RootLoggerComponentBuilder newRootLogger(String);
 public abstract RootLoggerComponentBuilder newRootLogger(String, boolean);
 public abstract ConfigurationBuilder setAdvertiser(String);
 public abstract ConfigurationBuilder setConfigurationName(String);
 public abstract ConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public abstract ConfigurationBuilder setMonitorInterval(String);
 public abstract ConfigurationBuilder setPackages(String);
 public abstract ConfigurationBuilder setShutdownHook(String);
 public abstract ConfigurationBuilder setShutdownTimeout(long, java.util.concurrent.TimeUnit);
 public abstract ConfigurationBuilder setStatusLevel(org.apache.logging.log4j.Level);
 public abstract ConfigurationBuilder setVerbosity(String);
 public abstract ConfigurationBuilder setDestination(String);
 public abstract void setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public abstract ConfigurationBuilder addRootProperty(String, String);
 public abstract org.apache.logging.log4j.core.config.Configuration build(boolean);
 public abstract void writeXmlConfiguration(java.io.OutputStream) throws java.io.IOException;
 public abstract String toXmlConfiguration();
}

org/apache/logging/log4j/core/jmx/ContextSelectorAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class ContextSelectorAdmin implements ContextSelectorAdminMBean {
 private final javax.management.ObjectName objectName;
 private final org.apache.logging.log4j.core.selector.ContextSelector selector;
 public void ContextSelectorAdmin(String, org.apache.logging.log4j.core.selector.ContextSelector);
 public javax.management.ObjectName getObjectName();
 public String getImplementationClassName();
}

org/apache/logging/log4j/core/jmx/Server.class

package org.apache.logging.log4j.core.jmx;
public final synchronized class Server {
 private static final String CONTEXT_NAME_ALL = *;
 public static final String DOMAIN = org.apache.logging.log4j2;
 private static final String PROPERTY_DISABLE_JMX = log4j2.disable.jmx;
 private static final String PROPERTY_ASYNC_NOTIF = log4j2.jmx.notify.async;
 private static final String THREAD_NAME_PREFIX = jmx.notif;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 static final java.util.concurrent.Executor executor;
 private void Server();
 private static java.util.concurrent.ExecutorService createExecutor();
 public static String escape(String);
 private static boolean isJmxDisabled();
 public static void reregisterMBeansAfterReconfigure();
 public static void reregisterMBeansAfterReconfigure(javax.management.MBeanServer);
 public static void unregisterMBeans();
 public static void unregisterMBeans(javax.management.MBeanServer);
 private static org.apache.logging.log4j.core.selector.ContextSelector getContextSelector();
 public static void unregisterLoggerContext(String);
 public static void unregisterLoggerContext(String, javax.management.MBeanServer);
 private static void registerStatusLogger(String, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void registerContextSelector(String, org.apache.logging.log4j.core.selector.ContextSelector, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void unregisterStatusLogger(String, javax.management.MBeanServer);
 private static void unregisterContextSelector(String, javax.management.MBeanServer);
 private static void unregisterLoggerConfigs(String, javax.management.MBeanServer);
 private static void unregisterContexts(javax.management.MBeanServer);
 private static void unregisterAppenders(String, javax.management.MBeanServer);
 private static void unregisterAsyncAppenders(String, javax.management.MBeanServer);
 private static void unregisterAsyncLoggerRingBufferAdmins(String, javax.management.MBeanServer);
 private static void unregisterAsyncLoggerConfigRingBufferAdmins(String, javax.management.MBeanServer);
 private static void unregisterAllMatching(String, javax.management.MBeanServer);
 private static void registerLoggerConfigs(org.apache.logging.log4j.core.LoggerContext, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void registerAppenders(org.apache.logging.log4j.core.LoggerContext, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void register(javax.management.MBeanServer, Object, javax.management.ObjectName) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternMatch$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternMatch$Builder implements org.apache.logging.log4j.core.util.Builder, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private String key;
 private String pattern;
 public void PatternMatch$Builder();
 public PatternMatch$Builder setKey(String);
 public PatternMatch$Builder setPattern(String);
 public PatternMatch build();
 protected Object readResolve() throws java.io.ObjectStreamException;
}

org/apache/logging/log4j/core/layout/JacksonFactory$YAML.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$YAML extends JacksonFactory {
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 public void JacksonFactory$YAML(boolean, boolean);
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForContextMap();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/CsvParameterLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class CsvParameterLayout extends AbstractCsvLayout {
 public static AbstractCsvLayout createDefaultLayout();
 public static AbstractCsvLayout createLayout(org.apache.commons.csv.CSVFormat);
 public static AbstractCsvLayout createLayout(org.apache.logging.log4j.core.config.Configuration, String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String, java.nio.charset.Charset, String, String);
 public void CsvParameterLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/internal/ListChecker$NoopChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class ListChecker$NoopChecker implements ListChecker {
 public void ListChecker$NoopChecker();
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/AbstractStringLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractStringLayout extends AbstractLayout implements org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.impl.LocationAware {
 protected static final int DEFAULT_STRING_BUILDER_SIZE = 1024;
 protected static final int MAX_STRING_BUILDER_SIZE;
 private static final ThreadLocal threadLocal;
 private Encoder textEncoder;
 private final java.nio.charset.Charset charset;
 private final AbstractStringLayout$Serializer footerSerializer;
 private final AbstractStringLayout$Serializer headerSerializer;
 public boolean requiresLocation();
 protected static StringBuilder getStringBuilder();
 private static int size(String, int);
 protected static void trimToMaxSize(StringBuilder);
 protected void AbstractStringLayout(java.nio.charset.Charset);
 protected void AbstractStringLayout(java.nio.charset.Charset, byte[], byte[]);
 protected void AbstractStringLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer);
 protected byte[] getBytes(String);
 public java.nio.charset.Charset getCharset();
 public String getContentType();
 public byte[] getFooter();
 public AbstractStringLayout$Serializer getFooterSerializer();
 public byte[] getHeader();
 public AbstractStringLayout$Serializer getHeaderSerializer();
 private org.apache.logging.log4j.core.impl.DefaultLogEventFactory getLogEventFactory();
 protected Encoder getStringBuilderEncoder();
 protected byte[] serializeToBytes(AbstractStringLayout$Serializer, byte[]);
 protected String serializeToString(AbstractStringLayout$Serializer);
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy$1.class

package org.apache.logging.log4j.core.async;
final synchronized enum ThreadNameCachingStrategy$1 {
 void ThreadNameCachingStrategy$1(String, int);
 public String getThreadName();
}

org/apache/logging/log4j/core/async/AsyncLoggerContextSelector.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerContextSelector extends org.apache.logging.log4j.core.selector.ClassLoaderContextSelector {
 public void AsyncLoggerContextSelector();
 public static boolean isSelected();
 protected org.apache.logging.log4j.core.LoggerContext createContext(String, java.net.URI);
 protected String toContextMapKey(ClassLoader);
 protected String defaultContextName();
}

org/apache/logging/log4j/core/async/AsyncLogger.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLogger extends org.apache.logging.log4j.core.Logger implements com.lmax.disruptor.EventTranslatorVararg {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final org.apache.logging.log4j.core.ContextDataInjector CONTEXT_DATA_INJECTOR;
 private static final ThreadNameCachingStrategy THREAD_NAME_CACHING_STRATEGY;
 private final ThreadLocal threadLocalTranslator;
 private final AsyncLoggerDisruptor loggerDisruptor;
 private volatile boolean includeLocation;
 private volatile org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private final AsyncLogger$TranslatorType threadLocalTranslatorType;
 private final AsyncLogger$TranslatorType varargTranslatorType;
 public void AsyncLogger(org.apache.logging.log4j.core.LoggerContext, String, org.apache.logging.log4j.message.MessageFactory, AsyncLoggerDisruptor);
 protected void updateConfiguration(org.apache.logging.log4j.core.config.Configuration);
 org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 private RingBufferLogEventTranslator getCachedTranslator();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 private AsyncLogger$TranslatorType getTranslatorType();
 private boolean isReused(org.apache.logging.log4j.message.Message);
 private void logWithThreadLocalTranslator(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logWithThreadLocalTranslator(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void publish(RingBufferLogEventTranslator);
 private void handleRingBufferFull(RingBufferLogEventTranslator);
 private void initTranslator(RingBufferLogEventTranslator, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void initTranslator(RingBufferLogEventTranslator, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void initTranslatorThreadValues(RingBufferLogEventTranslator);
 private StackTraceElement calcLocationIfRequested(String);
 private void logWithVarargTranslator(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logWithVarargTranslator(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public transient void translateTo(RingBufferLogEvent, long, Object[]);
 void logMessageInCurrentThread(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void handleRingBufferFull(StackTraceElement, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void actualAsyncLog(RingBufferLogEvent);
 private void onPropertiesPresent(RingBufferLogEvent, java.util.List);
 private static org.apache.logging.log4j.util.StringMap getContextData(RingBufferLogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerDisruptor.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerDisruptor extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static final int SLEEP_MILLIS_BETWEEN_DRAIN_ATTEMPTS = 50;
 private static final int MAX_DRAIN_ATTEMPTS_BEFORE_SHUTDOWN = 200;
 private final Object queueFullEnqueueLock;
 private volatile com.lmax.disruptor.dsl.Disruptor disruptor;
 private String contextName;
 private boolean useThreadLocalTranslator;
 private long backgroundThreadId;
 private AsyncQueueFullPolicy asyncQueueFullPolicy;
 private int ringBufferSize;
 void AsyncLoggerDisruptor(String);
 public String getContextName();
 public void setContextName(String);
 com.lmax.disruptor.dsl.Disruptor getDisruptor();
 public synchronized void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private static boolean hasBacklog(com.lmax.disruptor.dsl.Disruptor);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String);
 EventRoute getEventRoute(org.apache.logging.log4j.Level);
 private int remainingDisruptorCapacity();
 private boolean hasLog4jBeenShutDown(com.lmax.disruptor.dsl.Disruptor);
 boolean tryPublish(RingBufferLogEventTranslator);
 void enqueueLogMessageWhenQueueFull(RingBufferLogEventTranslator);
 void enqueueLogMessageWhenQueueFull(com.lmax.disruptor.EventTranslatorVararg, AsyncLogger, StackTraceElement, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private boolean synchronizeEnqueueWhenQueueFull();
 private void logWarningOnNpeFromDisruptorPublish(RingBufferLogEventTranslator);
 private void logWarningOnNpeFromDisruptorPublish(org.apache.logging.log4j.Level, String, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isUseThreadLocals();
 public void setUseThreadLocals(boolean);
}

org/apache/logging/log4j/core/LifeCycle$State.class

package org.apache.logging.log4j.core;
public final synchronized enum LifeCycle$State {
 public static final LifeCycle$State INITIALIZING;
 public static final LifeCycle$State INITIALIZED;
 public static final LifeCycle$State STARTING;
 public static final LifeCycle$State STARTED;
 public static final LifeCycle$State STOPPING;
 public static final LifeCycle$State STOPPED;
 public static LifeCycle$State[] values();
 public static LifeCycle$State valueOf(String);
 private void LifeCycle$State(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/DateLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class DateLookup implements StrLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void DateLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 private String formatDate(long, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/message/ExtendedThreadInformation.class

package org.apache.logging.log4j.core.message;
synchronized class ExtendedThreadInformation implements org.apache.logging.log4j.message.ThreadInformation {
 private final management.ThreadInfo threadInfo;
 void ExtendedThreadInformation(management.ThreadInfo);
 public void printThreadInfo(StringBuilder);
 public void printStack(StringBuilder, StackTraceElement[]);
 private void formatLock(StringBuilder, management.LockInfo);
 private void formatState(StringBuilder, management.ThreadInfo);
}

org/apache/logging/log4j/core/LifeCycle.class

package org.apache.logging.log4j.core;
public abstract interface LifeCycle {
 public abstract LifeCycle$State getState();
 public abstract void initialize();
 public abstract void start();
 public abstract void stop();
 public abstract boolean isStarted();
 public abstract boolean isStopped();
}

org/apache/logging/log4j/core/Logger$LoggerProxy.class

package org.apache.logging.log4j.core;
public synchronized class Logger$LoggerProxy implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final String name;
 private final org.apache.logging.log4j.message.MessageFactory messageFactory;
 public void Logger$LoggerProxy(String, org.apache.logging.log4j.message.MessageFactory);
 protected Object readResolve() throws java.io.ObjectStreamException;
}

org/apache/logging/log4j/core/LoggerContext.class

package org.apache.logging.log4j.core;
public synchronized class LoggerContext extends AbstractLifeCycle implements org.apache.logging.log4j.spi.LoggerContext, AutoCloseable, org.apache.logging.log4j.spi.Terminable, config.ConfigurationListener, org.apache.logging.log4j.spi.LoggerContextShutdownEnabled {
 public static final String PROPERTY_CONFIG = config;
 private static final config.Configuration NULL_CONFIGURATION;
 private final org.apache.logging.log4j.spi.LoggerRegistry loggerRegistry;
 private final java.util.concurrent.CopyOnWriteArrayList propertyChangeListeners;
 private volatile java.util.List listeners;
 private volatile config.Configuration configuration;
 private static final String EXTERNAL_CONTEXT_KEY = __EXTERNAL_CONTEXT_KEY__;
 private java.util.concurrent.ConcurrentMap externalMap;
 private String contextName;
 private volatile java.net.URI configLocation;
 private util.Cancellable shutdownCallback;
 private final java.util.concurrent.locks.Lock configLock;
 public void LoggerContext(String);
 public void LoggerContext(String, Object);
 public void LoggerContext(String, Object, java.net.URI);
 public void LoggerContext(String, Object, String);
 public void addShutdownListener(org.apache.logging.log4j.spi.LoggerContextShutdownAware);
 public java.util.List getListeners();
 public static LoggerContext getContext();
 public static LoggerContext getContext(boolean);
 public static LoggerContext getContext(ClassLoader, boolean, java.net.URI);
 public void start();
 public void start(config.Configuration);
 private void setUpShutdownHook();
 public void close();
 public void terminate();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getName();
 public Logger getRootLogger();
 public void setName(String);
 public Object getObject(String);
 public Object putObject(String, Object);
 public Object putObjectIfAbsent(String, Object);
 public Object removeObject(String);
 public boolean removeObject(String, Object);
 public void setExternalContext(Object);
 public Object getExternalContext();
 public Logger getLogger(String);
 public java.util.Collection getLoggers();
 public Logger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public config.Configuration getConfiguration();
 public void addFilter(Filter);
 public void removeFilter(Filter);
 public config.Configuration setConfiguration(config.Configuration);
 private void firePropertyChangeEvent(java.beans.PropertyChangeEvent);
 public void addPropertyChangeListener(java.beans.PropertyChangeListener);
 public void removePropertyChangeListener(java.beans.PropertyChangeListener);
 public java.net.URI getConfigLocation();
 public void setConfigLocation(java.net.URI);
 private void reconfigure(java.net.URI);
 public void reconfigure();
 public void reconfigure(config.Configuration);
 public void updateLoggers();
 public void updateLoggers(config.Configuration);
 public synchronized void onChange(config.Reconfigurable);
 private void initApiModule();
 protected Logger newInstance(LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/TimeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class TimeFilter extends AbstractFilter {
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final java.time.format.DateTimeFormatter FORMATTER;
 private static final long HOUR_MS = 3600000;
 private static final long DAY_MS = 86400000;
 private volatile long start;
 private final java.time.LocalTime startTime;
 private volatile long end;
 private final java.time.LocalTime endTime;
 private final long duration;
 private final java.time.ZoneId timeZone;
 void TimeFilter(java.time.LocalTime, java.time.LocalTime, java.time.ZoneId, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result, java.time.LocalDate);
 private void TimeFilter(java.time.LocalTime, java.time.LocalTime, java.time.ZoneId, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private synchronized void adjustTimes(long);
 org.apache.logging.log4j.core.Filter$Result filter(long);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static TimeFilter createFilter(String, String, String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private static java.time.LocalTime parseTimestamp(String, java.time.LocalTime);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/TextRenderer.class

package org.apache.logging.log4j.core.pattern;
public abstract interface TextRenderer {
 public abstract void render(String, StringBuilder, String);
 public abstract void render(StringBuilder, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ThreadNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadNamePatternConverter extends LogEventPatternConverter {
 private static final ThreadNamePatternConverter INSTANCE;
 private void ThreadNamePatternConverter();
 public static ThreadNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$PatternFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$PatternFormatter extends DatePatternConverter$Formatter {
 private final org.apache.logging.log4j.core.util.datetime.FastDateFormat fastDateFormat;
 private final StringBuilder cachedBuffer;
 void DatePatternConverter$PatternFormatter(org.apache.logging.log4j.core.util.datetime.FastDateFormat);
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Cyan.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Cyan extends AbstractStyleNameConverter {
 protected static final String NAME = cyan;
 public void AbstractStyleNameConverter$Cyan(java.util.List, String);
 public static AbstractStyleNameConverter$Cyan newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/ThreadIdPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadIdPatternConverter extends LogEventPatternConverter {
 private static final ThreadIdPatternConverter INSTANCE;
 private void ThreadIdPatternConverter();
 public static ThreadIdPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AnsiEscape.class

package org.apache.logging.log4j.core.pattern;
public final synchronized enum AnsiEscape {
 public static final AnsiEscape CSI;
 public static final AnsiEscape SUFFIX;
 public static final AnsiEscape SEPARATOR;
 public static final AnsiEscape NORMAL;
 public static final AnsiEscape BRIGHT;
 public static final AnsiEscape DIM;
 public static final AnsiEscape UNDERLINE;
 public static final AnsiEscape BLINK;
 public static final AnsiEscape REVERSE;
 public static final AnsiEscape HIDDEN;
 public static final AnsiEscape BLACK;
 public static final AnsiEscape FG_BLACK;
 public static final AnsiEscape RED;
 public static final AnsiEscape FG_RED;
 public static final AnsiEscape GREEN;
 public static final AnsiEscape FG_GREEN;
 public static final AnsiEscape YELLOW;
 public static final AnsiEscape FG_YELLOW;
 public static final AnsiEscape BLUE;
 public static final AnsiEscape FG_BLUE;
 public static final AnsiEscape MAGENTA;
 public static final AnsiEscape FG_MAGENTA;
 public static final AnsiEscape CYAN;
 public static final AnsiEscape FG_CYAN;
 public static final AnsiEscape WHITE;
 public static final AnsiEscape FG_WHITE;
 public static final AnsiEscape DEFAULT;
 public static final AnsiEscape FG_DEFAULT;
 public static final AnsiEscape BG_BLACK;
 public static final AnsiEscape BG_RED;
 public static final AnsiEscape BG_GREEN;
 public static final AnsiEscape BG_YELLOW;
 public static final AnsiEscape BG_BLUE;
 public static final AnsiEscape BG_MAGENTA;
 public static final AnsiEscape BG_CYAN;
 public static final AnsiEscape BG_WHITE;
 private static final String DEFAULT_STYLE;
 private final String code;
 public static AnsiEscape[] values();
 public static AnsiEscape valueOf(String);
 private void AnsiEscape(String, int, String);
 public static String getDefaultStyle();
 public String getCode();
 public static java.util.Map createMap(String, String[]);
 public static java.util.Map createMap(String[], String[]);
 public static transient String createSequence(String[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/HtmlTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class HtmlTextRenderer implements TextRenderer {
 public void HtmlTextRenderer(String[]);
 public void render(String, StringBuilder, String);
 public void render(StringBuilder, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class MessagePatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/ClassNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ClassNamePatternConverter extends NamePatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final String NA = ?;
 private void ClassNamePatternConverter(String[]);
 public static ClassNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$4.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$4 {
 void EncodingPatternConverter$EscapeFormat$4(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class LevelPatternConverter extends LogEventPatternConverter {
 private static final String OPTION_LENGTH = length;
 private static final String OPTION_LOWER = lowerCase;
 private static final LevelPatternConverter INSTANCE;
 private void LevelPatternConverter();
 public static LevelPatternConverter newInstance(String[]);
 private static String left(org.apache.logging.log4j.Level, int);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public String getStyleClass(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntryDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ListOfMapEntryDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ListOfMapEntryDeserializer();
 public java.util.Map deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/ObjectMessageSerializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class ObjectMessageSerializer extends com.fasterxml.jackson.databind.ser.std.StdScalarSerializer {
 private static final long serialVersionUID = 1;
 void ObjectMessageSerializer();
 public void serialize(org.apache.logging.log4j.message.ObjectMessage, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

Log4j-config.xsd

org/apache/logging/log4j/core/appender/AppenderSet$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderSet$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Node node;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void AppenderSet$Builder();
 public AppenderSet build();
 public org.apache.logging.log4j.core.config.Node getNode();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public AppenderSet$Builder withNode(org.apache.logging.log4j.core.config.Node);
 public AppenderSet$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/appender/rewrite/LoggerNameLevelRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public synchronized class LoggerNameLevelRewritePolicy implements RewritePolicy {
 private final String loggerName;
 private final java.util.Map map;
 public static LoggerNameLevelRewritePolicy createPolicy(String, org.apache.logging.log4j.core.util.KeyValuePair[]);
 private static org.apache.logging.log4j.Level getLevel(String);
 private void LoggerNameLevelRewritePolicy(String, java.util.Map);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/HttpAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class HttpAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private java.net.URL url;
 private String method;
 private int connectTimeoutMillis;
 private int readTimeoutMillis;
 private org.apache.logging.log4j.core.config.Property[] headers;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private boolean verifyHostname;
 public void HttpAppender$Builder();
 public HttpAppender build();
 public java.net.URL getUrl();
 public String getMethod();
 public int getConnectTimeoutMillis();
 public int getReadTimeoutMillis();
 public org.apache.logging.log4j.core.config.Property[] getHeaders();
 public org.apache.logging.log4j.core.net.ssl.SslConfiguration getSslConfiguration();
 public boolean isVerifyHostname();
 public HttpAppender$Builder setUrl(java.net.URL);
 public HttpAppender$Builder setMethod(String);
 public HttpAppender$Builder setConnectTimeoutMillis(int);
 public HttpAppender$Builder setReadTimeoutMillis(int);
 public HttpAppender$Builder setHeaders(org.apache.logging.log4j.core.config.Property[]);
 public HttpAppender$Builder setSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public HttpAppender$Builder setVerifyHostname(boolean);
}

org/apache/logging/log4j/core/appender/rolling/action/GzCompressAction$ConfigurableLevelGZIPOutputStream.class

package org.apache.logging.log4j.core.appender.rolling.action;
final synchronized class GzCompressAction$ConfigurableLevelGZIPOutputStream extends java.util.zip.GZIPOutputStream {
 void GzCompressAction$ConfigurableLevelGZIPOutputStream(java.io.OutputStream, int, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/rolling/action/FileRenameAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class FileRenameAction extends AbstractAction {
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean renameEmptyFiles;
 public void FileRenameAction(java.io.File, java.io.File, boolean);
 public boolean execute();
 public java.io.File getDestination();
 public java.io.File getSource();
 public boolean isRenameEmptyFiles();
 public static boolean execute(java.io.File, java.io.File, boolean);
 private static boolean moveFile(java.nio.file.Path, java.nio.file.Path) throws java.io.IOException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAny.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAny implements PathCondition {
 private final PathCondition[] components;
 private transient void IfAny(PathCondition[]);
 public PathCondition[] getDeleteFilters();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAny createOrCondition(PathCondition[]);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$EmptyQueue.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$EmptyQueue extends java.util.concurrent.ArrayBlockingQueue {
 private static final long serialVersionUID = 1;
 void RollingFileManager$EmptyQueue();
 public int remainingCapacity();
 public boolean add(Runnable);
 public void put(Runnable) throws InterruptedException;
 public boolean offer(Runnable, long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public boolean addAll(java.util.Collection);
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy$CronTrigger.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class CronTriggeringPolicy$CronTrigger implements Runnable {
 private void CronTriggeringPolicy$CronTrigger(CronTriggeringPolicy);
 public void run();
}

org/apache/logging/log4j/core/appender/rolling/AbstractRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized class AbstractRolloverStrategy implements RolloverStrategy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 public static final java.util.regex.Pattern PATTERN_COUNTER;
 protected final org.apache.logging.log4j.core.lookup.StrSubstitutor strSubstitutor;
 protected void AbstractRolloverStrategy(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 protected action.Action merge(action.Action, java.util.List, boolean);
 protected int suffixLength(String);
 protected java.util.SortedMap getEligibleFiles(RollingFileManager);
 protected java.util.SortedMap getEligibleFiles(RollingFileManager, boolean);
 protected java.util.SortedMap getEligibleFiles(String, String);
 protected java.util.SortedMap getEligibleFiles(String, String, boolean);
 protected java.util.SortedMap getEligibleFiles(String, String, String, boolean);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AsyncAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class AsyncAppender extends AbstractAppender {
 private static final int DEFAULT_QUEUE_SIZE = 1024;
 private final java.util.concurrent.BlockingQueue queue;
 private final int queueSize;
 private final boolean blocking;
 private final long shutdownTimeout;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private final String errorRef;
 private final boolean includeLocation;
 private org.apache.logging.log4j.core.config.AppenderControl errorAppender;
 private AsyncAppenderEventDispatcher dispatcher;
 private org.apache.logging.log4j.core.async.AsyncQueueFullPolicy asyncQueueFullPolicy;
 private void AsyncAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.AppenderRef[], String, int, boolean, boolean, long, org.apache.logging.log4j.core.config.Configuration, boolean, org.apache.logging.log4j.core.async.BlockingQueueFactory, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private boolean transfer(org.apache.logging.log4j.core.LogEvent);
 public void logMessageInCurrentThread(org.apache.logging.log4j.core.LogEvent);
 public void logMessageInBackgroundThread(org.apache.logging.log4j.core.LogEvent);
 private boolean handleInterruptedException(org.apache.logging.log4j.core.LogEvent);
 private void logToErrorAppenderIfNecessary(boolean, org.apache.logging.log4j.core.LogEvent);
 public static AsyncAppender createAppender(org.apache.logging.log4j.core.config.AppenderRef[], String, boolean, long, int, String, boolean, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Configuration, boolean);
 public static AsyncAppender$Builder newBuilder();
 public String[] getAppenderRefStrings();
 public boolean isIncludeLocation();
 public boolean isBlocking();
 public String getErrorRef();
 public int getQueueCapacity();
 public int getQueueRemainingCapacity();
 public int getQueueSize();
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$OutputStreamManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$OutputStreamManagerFactory implements ManagerFactory {
 private void OutputStreamAppender$OutputStreamManagerFactory();
 public OutputStreamManager createManager(String, OutputStreamAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/AbstractWriterAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractWriterAppender extends AbstractAppender {
 protected final boolean immediateFlush;
 private final WriterManager manager;
 private final java.util.concurrent.locks.ReadWriteLock readWriteLock;
 private final java.util.concurrent.locks.Lock readLock;
 protected void AbstractWriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.config.Property[], WriterManager);
 protected void AbstractWriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, boolean, boolean, WriterManager);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public WriterManager getManager();
 public org.apache.logging.log4j.core.StringLayout getStringLayout();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/db/ColumnMapping$1.class

package org.apache.logging.log4j.core.appender.db;
synchronized class ColumnMapping$1 {
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class ColumnConfig$1 {
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractDriverManagerConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class AbstractDriverManagerConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String actualConnectionString;
 private final String connectionString;
 private final String driverClassName;
 private final char[] password;
 private final org.apache.logging.log4j.core.config.Property[] properties;
 private final char[] userName;
 public static org.apache.logging.log4j.Logger getLogger();
 public void AbstractDriverManagerConnectionSource(String, String, String, char[], char[], org.apache.logging.log4j.core.config.Property[]);
 public String getActualConnectionString();
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String getConnectionString();
 public String getDriverClassName();
 public char[] getPassword();
 public org.apache.logging.log4j.core.config.Property[] getProperties();
 public char[] getUserName();
 protected void loadDriver() throws java.sql.SQLException;
 protected void loadDriver(String) throws java.sql.SQLException;
 protected java.util.Properties toProperties(org.apache.logging.log4j.core.config.Property[]);
 public String toString();
 protected String toString(char[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/DriverManagerConnectionSource$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class DriverManagerConnectionSource$Builder extends AbstractDriverManagerConnectionSource$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void DriverManagerConnectionSource$Builder();
 public DriverManagerConnectionSource build();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$Reconnector.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private volatile boolean shutdown;
 private void JdbcDatabaseManager$Reconnector(JdbcDatabaseManager);
 public void latch();
 void reconnect() throws java.sql.SQLException;
 public void run();
 public void shutdown();
 public String toString();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class RoutingAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 public static final String STATIC_VARIABLES_KEY = staticVariables;
 private static final String DEFAULT_KEY = ROUTING_APPENDER_DEFAULT;
 private final Routes routes;
 private Route defaultRoute;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final java.util.concurrent.ConcurrentMap createdAppenders;
 private final java.util.Map createdAppendersUnmodifiableView;
 private final java.util.concurrent.ConcurrentMap referencedAppenders;
 private final org.apache.logging.log4j.core.appender.rewrite.RewritePolicy rewritePolicy;
 private final PurgePolicy purgePolicy;
 private final org.apache.logging.log4j.core.script.AbstractScript defaultRouteScript;
 private final java.util.concurrent.ConcurrentMap scriptStaticVariables;
 public static RoutingAppender$Builder newBuilder();
 private void RoutingAppender(String, org.apache.logging.log4j.core.Filter, boolean, Routes, org.apache.logging.log4j.core.appender.rewrite.RewritePolicy, org.apache.logging.log4j.core.config.Configuration, PurgePolicy, org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void updatePurgePolicy(String, org.apache.logging.log4j.core.LogEvent);
 private synchronized RoutingAppender$RouteAppenderControl getControl(String, org.apache.logging.log4j.core.LogEvent);
 private RoutingAppender$RouteAppenderControl getAppender(String);
 private org.apache.logging.log4j.core.Appender createAppender(Route, org.apache.logging.log4j.core.LogEvent);
 public java.util.Map getAppenders();
 public void deleteAppender(String);
 public static RoutingAppender createAppender(String, String, Routes, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.appender.rewrite.RewritePolicy, PurgePolicy, org.apache.logging.log4j.core.Filter);
 public Route getDefaultRoute();
 public org.apache.logging.log4j.core.script.AbstractScript getDefaultRouteScript();
 public PurgePolicy getPurgePolicy();
 public org.apache.logging.log4j.core.appender.rewrite.RewritePolicy getRewritePolicy();
 public Routes getRoutes();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public java.util.concurrent.ConcurrentMap getScriptStaticVariables();
}

org/apache/logging/log4j/core/appender/routing/Routes.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class Routes {
 private static final String LOG_EVENT_KEY = logEvent;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final String pattern;
 private final org.apache.logging.log4j.core.script.AbstractScript patternScript;
 private final Route[] routes;
 public static transient Routes createRoutes(String, Route[]);
 public static Routes$Builder newBuilder();
 private transient void Routes(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.script.AbstractScript, String, Route[]);
 public String getPattern(org.apache.logging.log4j.core.LogEvent, java.util.concurrent.ConcurrentMap);
 public org.apache.logging.log4j.core.script.AbstractScript getPatternScript();
 public Route getRoute(String);
 public Route[] getRoutes();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender.class

package org.apache.logging.log4j.core.appender.nosql;
public final synchronized class NoSqlAppender extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender {
 private final String description;
 public static NoSqlAppender createAppender(String, String, org.apache.logging.log4j.core.Filter, String, NoSqlProvider);
 public static NoSqlAppender$Builder newBuilder();
 private void NoSqlAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], NoSqlDatabaseManager);
 public String toString();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$SystemOutStream.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$SystemOutStream extends java.io.OutputStream {
 public void ConsoleAppender$SystemOutStream();
 public void close();
 public void flush();
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/mom/JmsManager.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 static final JmsManager$JmsManagerFactory FACTORY;
 private final JmsManager$JmsManagerConfiguration configuration;
 private volatile JmsManager$Reconnector reconnector;
 private volatile org.apache.logging.log4j.core.net.JndiManager jndiManager;
 private volatile javax.jms.Connection connection;
 private volatile javax.jms.Session session;
 private volatile javax.jms.Destination destination;
 private volatile javax.jms.MessageProducer messageProducer;
 public static JmsManager getJmsManager(String, java.util.Properties, String, String, String, char[], boolean, long);
 private void JmsManager(String, JmsManager$JmsManagerConfiguration);
 private boolean closeConnection();
 private boolean closeJndiManager();
 private boolean closeMessageProducer();
 private boolean closeSession();
 private javax.jms.Connection createConnection(org.apache.logging.log4j.core.net.JndiManager) throws javax.naming.NamingException, javax.jms.JMSException;
 private javax.jms.Destination createDestination(org.apache.logging.log4j.core.net.JndiManager) throws javax.naming.NamingException;
 public javax.jms.Message createMessage(java.io.Serializable) throws javax.jms.JMSException;
 private void createMessageAndSend(org.apache.logging.log4j.core.LogEvent, java.io.Serializable) throws javax.jms.JMSException;
 public javax.jms.MessageConsumer createMessageConsumer() throws javax.jms.JMSException;
 public javax.jms.MessageProducer createMessageProducer(javax.jms.Session, javax.jms.Destination) throws javax.jms.JMSException;
 private JmsManager$Reconnector createReconnector();
 private javax.jms.Session createSession(javax.jms.Connection) throws javax.jms.JMSException;
 public JmsManager$JmsManagerConfiguration getJmsManagerConfiguration();
 org.apache.logging.log4j.core.net.JndiManager getJndiManager();
 Object lookup(String) throws javax.naming.NamingException;
 private javax.jms.MapMessage map(org.apache.logging.log4j.message.MapMessage, javax.jms.MapMessage);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 void send(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/kafka/DefaultKafkaProducerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class DefaultKafkaProducerFactory implements KafkaProducerFactory {
 public void DefaultKafkaProducerFactory();
 public org.apache.kafka.clients.producer.Producer newKafkaProducer(java.util.Properties);
}

org/apache/logging/log4j/core/appender/mom/JmsManager$JmsManagerConfiguration.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsManager$JmsManagerConfiguration {
 private final java.util.Properties jndiProperties;
 private final String connectionFactoryName;
 private final String destinationName;
 private final String userName;
 private final char[] password;
 private final boolean immediateFail;
 private final boolean retry;
 private final long reconnectIntervalMillis;
 void JmsManager$JmsManagerConfiguration(java.util.Properties, String, String, String, char[], boolean, long);
 public String getConnectionFactoryName();
 public String getDestinationName();
 public org.apache.logging.log4j.core.net.JndiManager getJndiManager();
 public java.util.Properties getJndiProperties();
 public char[] getPassword();
 public long getReconnectIntervalMillis();
 public String getUserName();
 public boolean isImmediateFail();
 public boolean isRetry();
 public String toString();
}

org/apache/logging/log4j/core/impl/ExtendedClassInfo.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ExtendedClassInfo implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final boolean exact;
 private final String location;
 private final String version;
 public void ExtendedClassInfo(boolean, String, String);
 public boolean equals(Object);
 public boolean getExact();
 public String getLocation();
 public String getVersion();
 public int hashCode();
 public void renderOn(StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 public String toString();
}

org/apache/logging/log4j/core/impl/Log4jContextFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jContextFactory implements org.apache.logging.log4j.spi.LoggerContextFactory, org.apache.logging.log4j.core.util.ShutdownCallbackRegistry {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final boolean SHUTDOWN_HOOK_ENABLED;
 private final org.apache.logging.log4j.core.selector.ContextSelector selector;
 private final org.apache.logging.log4j.core.util.ShutdownCallbackRegistry shutdownCallbackRegistry;
 public void Log4jContextFactory();
 public void Log4jContextFactory(org.apache.logging.log4j.core.selector.ContextSelector);
 public void Log4jContextFactory(org.apache.logging.log4j.core.util.ShutdownCallbackRegistry);
 public void Log4jContextFactory(org.apache.logging.log4j.core.selector.ContextSelector, org.apache.logging.log4j.core.util.ShutdownCallbackRegistry);
 private static org.apache.logging.log4j.core.selector.ContextSelector createContextSelector();
 private static org.apache.logging.log4j.core.util.ShutdownCallbackRegistry createShutdownCallbackRegistry();
 private void initializeShutdownCallbackRegistry();
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI, String);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, java.util.List, String);
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.selector.ContextSelector getSelector();
 public org.apache.logging.log4j.core.util.ShutdownCallbackRegistry getShutdownCallbackRegistry();
 public void removeContext(org.apache.logging.log4j.spi.LoggerContext);
 public boolean isClassLoaderDependent();
 public org.apache.logging.log4j.core.util.Cancellable addShutdownCallback(Runnable);
 public boolean isShutdownHookEnabled();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/BasicContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class BasicContextSelector implements ContextSelector {
 private static final org.apache.logging.log4j.core.LoggerContext CONTEXT;
 public void BasicContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext locateContext(String, String);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/CoreContextSelectors.class

package org.apache.logging.log4j.core.selector;
public synchronized class CoreContextSelectors {
 public static final Class[] CLASSES;
 public void CoreContextSelectors();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/BasicCommandLineArguments.class

package org.apache.logging.log4j.core.tools;
public synchronized class BasicCommandLineArguments {
 private boolean help;
 public void BasicCommandLineArguments();
 public boolean isHelp();
 public void setHelp(boolean);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultOptionRenderer implements CommandLine$Help$IOptionRenderer {
 public String requiredMarker;
 public Object command;
 private String sep;
 private boolean showDefault;
 void CommandLine$Help$DefaultOptionRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
 private Object createDefaultValue(reflect.Field);
 private CommandLine$Help$Ansi$Text createLongOptionText(reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme, String);
 private CommandLine$Help$Ansi$Text[][] renderDescriptionLines(CommandLine$Option, CommandLine$Help$ColorScheme, String, String, CommandLine$Help$Ansi$Text, Object);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$URLConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$URLConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$URLConverter();
 public java.net.URL convert(String) throws java.net.MalformedURLException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$URIConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$URIConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$URIConverter();
 public java.net.URI convert(String) throws java.net.URISyntaxException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$TextTable$Cell.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$TextTable$Cell {
 public final int column;
 public final int row;
 public void CommandLine$Help$TextTable$Cell(int, int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$FloatConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$FloatConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$FloatConverter();
 public Float convert(String);
}

org/apache/logging/log4j/core/net/ssl/MemoryPasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class MemoryPasswordProvider implements PasswordProvider {
 private final char[] password;
 public void MemoryPasswordProvider(char[]);
 public char[] getPassword();
 public void clearSecrets();
}

org/apache/logging/log4j/core/net/SocketPerformancePreferences.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketPerformancePreferences implements org.apache.logging.log4j.core.util.Builder, Cloneable {
 private int bandwidth;
 private int connectionTime;
 private int latency;
 public void SocketPerformancePreferences();
 public static SocketPerformancePreferences newBuilder();
 public void apply(java.net.Socket);
 public SocketPerformancePreferences build();
 public int getBandwidth();
 public int getConnectionTime();
 public int getLatency();
 public void setBandwidth(int);
 public void setConnectionTime(int);
 public void setLatency(int);
 public String toString();
}

org/apache/logging/log4j/core/net/SocketAddress$Builder.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketAddress$Builder implements org.apache.logging.log4j.core.util.Builder {
 private java.net.InetAddress host;
 private int port;
 public void SocketAddress$Builder();
 public SocketAddress$Builder setHost(java.net.InetAddress);
 public SocketAddress$Builder setPort(int);
 public SocketAddress build();
}

org/apache/logging/log4j/core/net/TcpSocketManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class TcpSocketManager$FactoryData {
 protected final String host;
 protected final int port;
 protected final int connectTimeoutMillis;
 protected final int reconnectDelayMillis;
 protected final boolean immediateFail;
 protected final org.apache.logging.log4j.core.Layout layout;
 protected final int bufferSize;
 protected final SocketOptions socketOptions;
 public void TcpSocketManager$FactoryData(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public String toString();
}

org/apache/logging/log4j/core/net/DatagramSocketManager$DatagramSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$DatagramSocketManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void DatagramSocketManager$DatagramSocketManagerFactory();
 public DatagramSocketManager createManager(String, DatagramSocketManager$FactoryData);
}

org/apache/logging/log4j/core/util/Constants.class

package org.apache.logging.log4j.core.util;
public final synchronized class Constants {
 public static final String LOG4J_LOG_EVENT_FACTORY = Log4jLogEventFactory;
 public static final String LOG4J_CONTEXT_SELECTOR = Log4jContextSelector;
 public static final String LOG4J_DEFAULT_STATUS_LEVEL = Log4jDefaultStatusLevel;
 public static final String JNDI_CONTEXT_NAME = java:comp/env/log4j/context-name;
 public static final int MILLIS_IN_SECONDS = 1000;
 public static final boolean FORMAT_MESSAGES_IN_BACKGROUND;
 public static final boolean FORMAT_MESSAGES_PATTERN_DISABLE_LOOKUPS;
 public static final boolean IS_WEB_APP;
 public static final boolean ENABLE_THREADLOCALS;
 public static final boolean ENABLE_DIRECT_ENCODERS;
 public static final int INITIAL_REUSABLE_MESSAGE_SIZE;
 public static final int MAX_REUSABLE_MESSAGE_SIZE;
 public static final int ENCODER_CHAR_BUFFER_SIZE;
 public static final int ENCODER_BYTE_BUFFER_SIZE;
 private static int size(String, int);
 private void Constants();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat$FixedFormat.class

package org.apache.logging.log4j.core.util.datetime;
public final synchronized enum FixedDateFormat$FixedFormat {
 public static final FixedDateFormat$FixedFormat ABSOLUTE;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_MICROS;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_NANOS;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_PERIOD;
 public static final FixedDateFormat$FixedFormat COMPACT;
 public static final FixedDateFormat$FixedFormat DATE;
 public static final FixedDateFormat$FixedFormat DATE_PERIOD;
 public static final FixedDateFormat$FixedFormat DEFAULT;
 public static final FixedDateFormat$FixedFormat DEFAULT_MICROS;
 public static final FixedDateFormat$FixedFormat DEFAULT_NANOS;
 public static final FixedDateFormat$FixedFormat DEFAULT_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601_BASIC;
 public static final FixedDateFormat$FixedFormat ISO8601_BASIC_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HH;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HHMM;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HHCMM;
 public static final FixedDateFormat$FixedFormat ISO8601_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601_PERIOD_MICROS;
 public static final FixedDateFormat$FixedFormat US_MONTH_DAY_YEAR2_TIME;
 public static final FixedDateFormat$FixedFormat US_MONTH_DAY_YEAR4_TIME;
 private static final String DEFAULT_SECOND_FRACTION_PATTERN = SSS;
 private static final int MILLI_FRACTION_DIGITS;
 private static final char SECOND_FRACTION_PATTERN = 110;
 private final String pattern;
 private final String datePattern;
 private final int escapeCount;
 private final char timeSeparatorChar;
 private final int timeSeparatorLength;
 private final char millisSeparatorChar;
 private final int millisSeparatorLength;
 private final int secondFractionDigits;
 private final FixedDateFormat$FixedTimeZoneFormat fixedTimeZoneFormat;
 private static final int[] EMPTY_RANGE;
 public static FixedDateFormat$FixedFormat[] values();
 public static FixedDateFormat$FixedFormat valueOf(String);
 private void FixedDateFormat$FixedFormat(String, int, String, String, int, char, int, char, int, int, FixedDateFormat$FixedTimeZoneFormat);
 public String getPattern();
 public String getDatePattern();
 public static FixedDateFormat$FixedFormat lookup(String);
 static FixedDateFormat$FixedFormat lookupIgnoringNanos(String);
 private static int[] nanoRange(String);
 public int getLength();
 public int getDatePatternLength();
 public FastDateFormat getFastDateFormat();
 public FastDateFormat getFastDateFormat(java.util.TimeZone);
 public int getSecondFractionDigits();
 public FixedDateFormat$FixedTimeZoneFormat getFixedTimeZoneFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$StrategyAndWidth.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$StrategyAndWidth {
 final FastDateParser$Strategy strategy;
 final int width;
 void FastDateParser$StrategyAndWidth(FastDateParser$Strategy, int);
 int getMaxWidth(java.util.ListIterator);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitMonthField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitMonthField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$TwoDigitMonthField INSTANCE;
 void FastDatePrinter$TwoDigitMonthField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneNumberRule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneNumberRule implements FastDatePrinter$Rule {
 static final FastDatePrinter$TimeZoneNumberRule INSTANCE_COLON;
 static final FastDatePrinter$TimeZoneNumberRule INSTANCE_NO_COLON;
 final boolean mColon;
 void FastDatePrinter$TimeZoneNumberRule(boolean);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Booleans.class

package org.apache.logging.log4j.core.util;
public final synchronized class Booleans {
 private void Booleans();
 public static boolean parseBoolean(String, boolean);
}

org/apache/logging/log4j/core/util/Builder.class

package org.apache.logging.log4j.core.util;
public abstract interface Builder {
 public abstract Object build();
}

org/apache/logging/log4j/core/util/WatchManager$LocalUUID.class

package org.apache.logging.log4j.core.util;
synchronized class WatchManager$LocalUUID {
 private static final long LOW_MASK = 4294967295;
 private static final long MID_MASK = 281470681743360;
 private static final long HIGH_MASK = 1152640029630136320;
 private static final int NODE_SIZE = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_4 = 32;
 private static final int SHIFT_6 = 48;
 private static final int HUNDRED_NANOS_PER_MILLI = 10000;
 private static final long NUM_100NS_INTERVALS_SINCE_UUID_EPOCH = 122192928000000000;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private static final long TYPE1 = 4096;
 private static final byte VARIANT = -128;
 private static final int SEQUENCE_MASK = 16383;
 private void WatchManager$LocalUUID();
 public static java.util.UUID get();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ContextDataProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface ContextDataProvider {
 public abstract java.util.Map supplyContextData();
 public org.apache.logging.log4j.util.StringMap supplyStringMap();
}

org/apache/logging/log4j/core/util/SecretKeyProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface SecretKeyProvider {
 public abstract javax.crypto.SecretKey getSecretKey();
}

org/apache/logging/log4j/core/util/Log4jThread.class

package org.apache.logging.log4j.core.util;
public synchronized class Log4jThread extends Thread {
 static final String PREFIX = Log4j2-;
 private static final java.util.concurrent.atomic.AtomicLong threadInitNumber;
 private static long nextThreadNum();
 private static String toThreadName(Object);
 public void Log4jThread();
 public void Log4jThread(Runnable);
 public void Log4jThread(Runnable, String);
 public void Log4jThread(String);
 public void Log4jThread(ThreadGroup, Runnable);
 public void Log4jThread(ThreadGroup, Runnable, String);
 public void Log4jThread(ThreadGroup, Runnable, String, long);
 public void Log4jThread(ThreadGroup, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/AbstractLifeCycle.class

package org.apache.logging.log4j.core;
public synchronized class AbstractLifeCycle implements LifeCycle2 {
 public static final int DEFAULT_STOP_TIMEOUT = 0;
 public static final java.util.concurrent.TimeUnit DEFAULT_STOP_TIMEUNIT;
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private volatile LifeCycle$State state;
 public void AbstractLifeCycle();
 protected static org.apache.logging.log4j.Logger getStatusLogger();
 protected boolean equalsImpl(Object);
 public LifeCycle$State getState();
 protected int hashCodeImpl();
 public boolean isInitialized();
 public boolean isStarted();
 public boolean isStarting();
 public boolean isStopped();
 public boolean isStopping();
 protected void setStarted();
 protected void setStarting();
 protected void setState(LifeCycle$State);
 protected void setStopped();
 protected void setStopping();
 public void initialize();
 public void start();
 public void stop();
 protected boolean stop(java.util.concurrent.Future);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/ConfigurationFileWatcher.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationFileWatcher extends org.apache.logging.log4j.core.util.AbstractWatcher implements org.apache.logging.log4j.core.util.FileWatcher {
 private java.io.File file;
 private long lastModifiedMillis;
 public void ConfigurationFileWatcher(Configuration, Reconfigurable, java.util.List, long);
 public long getLastModified();
 public void fileModified(java.io.File);
 public void watching(org.apache.logging.log4j.core.util.Source);
 public boolean isModified();
 public org.apache.logging.log4j.core.util.Watcher newWatcher(Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/config/AppenderRef.class

package org.apache.logging.log4j.core.config;
public final synchronized class AppenderRef {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String ref;
 private final org.apache.logging.log4j.Level level;
 private final org.apache.logging.log4j.core.Filter filter;
 private void AppenderRef(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public String getRef();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.core.Filter getFilter();
 public String toString();
 public static AppenderRef createAppenderRef(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ScriptArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.AbstractConfiguration configuration;
 private org.apache.logging.log4j.core.config.Node node;
 public void ScriptArbiter$Builder();
 public ScriptArbiter$Builder setConfiguration(org.apache.logging.log4j.core.config.AbstractConfiguration);
 public ScriptArbiter$Builder setNode(org.apache.logging.log4j.core.config.Node);
 public ScriptArbiter$Builder asBuilder();
 public ScriptArbiter build();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/ResolverUtil$Test.class

package org.apache.logging.log4j.core.config.plugins.util;
public abstract interface ResolverUtil$Test {
 public abstract boolean matches(Class);
 public abstract boolean matches(java.net.URI);
 public abstract boolean doesMatchClass();
 public abstract boolean doesMatchResource();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharsetConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharsetConverter implements TypeConverter {
 public void TypeConverters$CharsetConverter();
 public java.nio.charset.Charset convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BigDecimalConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BigDecimalConverter implements TypeConverter {
 public void TypeConverters$BigDecimalConverter();
 public java.math.BigDecimal convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ShortConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ShortConverter implements TypeConverter {
 public void TypeConverters$ShortConverter();
 public Short convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/DateTypeConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public final synchronized class DateTypeConverter {
 private static final java.util.Map CONSTRUCTORS;
 public static java.util.Date fromMillis(long, Class);
 private void DateTypeConverter();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UrlConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UrlConverter implements TypeConverter {
 public void TypeConverters$UrlConverter();
 public java.net.URL convert(String) throws java.net.MalformedURLException;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CronExpressionConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CronExpressionConverter implements TypeConverter {
 public void TypeConverters$CronExpressionConverter();
 public org.apache.logging.log4j.core.util.CronExpression convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$PatternConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$PatternConverter implements TypeConverter {
 public void TypeConverters$PatternConverter();
 public java.util.regex.Pattern convert(String);
}

org/apache/logging/log4j/core/config/Order.class

package org.apache.logging.log4j.core.config;
public abstract interface Order extends annotation.Annotation {
 public abstract int value();
}

org/apache/logging/log4j/core/config/status/StatusConfiguration.class

package org.apache.logging.log4j.core.config.status;
public synchronized class StatusConfiguration {
 private static final java.io.PrintStream DEFAULT_STREAM;
 private static final org.apache.logging.log4j.Level DEFAULT_STATUS;
 private static final StatusConfiguration$Verbosity DEFAULT_VERBOSITY;
 private final java.util.Collection errorMessages;
 private final org.apache.logging.log4j.status.StatusLogger logger;
 private volatile boolean initialized;
 private java.io.PrintStream destination;
 private org.apache.logging.log4j.Level status;
 private StatusConfiguration$Verbosity verbosity;
 private String[] verboseClasses;
 public void StatusConfiguration();
 public void error(String);
 public StatusConfiguration withDestination(String);
 private java.io.PrintStream parseStreamName(String) throws java.net.URISyntaxException, java.io.FileNotFoundException;
 public StatusConfiguration withStatus(String);
 public StatusConfiguration withStatus(org.apache.logging.log4j.Level);
 public StatusConfiguration withVerbosity(String);
 public transient StatusConfiguration withVerboseClasses(String[]);
 public void initialize();
 private boolean configureExistingStatusConsoleListener();
 private void registerNewStatusConsoleListener();
 private void migrateSavedLogMessages();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfigurationFactory.class

package org.apache.logging.log4j.core.config.xml;
public synchronized class XmlConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 public static final String[] SUFFIXES;
 public void XmlConfigurationFactory();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/json/JsonConfiguration$Status.class

package org.apache.logging.log4j.core.config.json;
synchronized class JsonConfiguration$Status {
 private final com.fasterxml.jackson.databind.JsonNode node;
 private final String name;
 private final JsonConfiguration$ErrorType errorType;
 public void JsonConfiguration$Status(String, com.fasterxml.jackson.databind.JsonNode, JsonConfiguration$ErrorType);
 public String toString();
}

org/apache/logging/log4j/core/config/properties/PropertiesConfigurationFactory.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 public void PropertiesConfigurationFactory();
 protected String[] getSupportedTypes();
 public PropertiesConfiguration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
}

org/apache/logging/log4j/core/config/ConfigurationListener.class

package org.apache.logging.log4j.core.config;
public abstract interface ConfigurationListener {
 public abstract void onChange(Reconfigurable);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultRootLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultRootLoggerComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder {
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, boolean);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultLayoutComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultLayoutComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder {
 public void DefaultLayoutComponentBuilder(DefaultConfigurationBuilder, String);
}

org/apache/logging/log4j/core/config/builder/api/CustomLevelComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface CustomLevelComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/KeyValuePairComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface KeyValuePairComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/Component.class

package org.apache.logging.log4j.core.config.builder.api;
public synchronized class Component {
 private final java.util.Map attributes;
 private final java.util.List components;
 private final String pluginType;
 private final String value;
 public void Component(String);
 public void Component(String, String);
 public void Component(String, String, String);
 public void Component();
 public String addAttribute(String, String);
 public void addComponent(Component);
 public java.util.Map getAttributes();
 public java.util.List getComponents();
 public String getPluginType();
 public String getValue();
}

org/apache/logging/log4j/core/config/Node.class

package org.apache.logging.log4j.core.config;
public synchronized class Node {
 public static final String CATEGORY = Core;
 private Node parent;
 private final String name;
 private String value;
 private final plugins.util.PluginType type;
 private final java.util.Map attributes;
 private final java.util.List children;
 private Object object;
 public void Node(Node, String, plugins.util.PluginType);
 public void Node();
 public void Node(Node);
 public void setParent(Node);
 public java.util.Map getAttributes();
 public java.util.List getChildren();
 public boolean hasChildren();
 public String getValue();
 public void setValue(String);
 public Node getParent();
 public String getName();
 public boolean isRoot();
 public void setObject(Object);
 public Object getObject();
 public Object getObject(Class);
 public boolean isInstanceOf(Class);
 public plugins.util.PluginType getType();
 public String toString();
}

org/apache/logging/log4j/core/jmx/LoggerContextAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface LoggerContextAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s;
 public static final String NOTIF_TYPE_RECONFIGURED = com.apache.logging.log4j.core.jmx.config.reconfigured;
 public abstract javax.management.ObjectName getObjectName();
 public abstract String getStatus();
 public abstract String getName();
 public abstract String getConfigLocationUri();
 public abstract void setConfigLocationUri(String) throws java.net.URISyntaxException, java.io.IOException;
 public abstract String getConfigText() throws java.io.IOException;
 public abstract String getConfigText(String) throws java.io.IOException;
 public abstract void setConfigText(String, String);
 public abstract String getConfigName();
 public abstract String getConfigClassName();
 public abstract String getConfigFilter();
 public abstract java.util.Map getConfigProperties();
}

org/apache/logging/log4j/core/jmx/LoggerConfigAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class LoggerConfigAdmin implements LoggerConfigAdminMBean {
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 private final org.apache.logging.log4j.core.config.LoggerConfig loggerConfig;
 private final javax.management.ObjectName objectName;
 public void LoggerConfigAdmin(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.LoggerConfig);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLevel();
 public void setLevel(String);
 public boolean isAdditive();
 public void setAdditive(boolean);
 public boolean isIncludeLocation();
 public String getFilter();
 public String[] getAppenderRefs();
}

org/apache/logging/log4j/core/layout/PatternMatch.class

package org.apache.logging.log4j.core.layout;
public final synchronized class PatternMatch {
 private final String key;
 private final String pattern;
 public void PatternMatch(String, String);
 public String getKey();
 public String getPattern();
 public String toString();
 public static PatternMatch$Builder newBuilder();
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/layout/HtmlLayout$FontSize.class

package org.apache.logging.log4j.core.layout;
public final synchronized enum HtmlLayout$FontSize {
 public static final HtmlLayout$FontSize SMALLER;
 public static final HtmlLayout$FontSize XXSMALL;
 public static final HtmlLayout$FontSize XSMALL;
 public static final HtmlLayout$FontSize SMALL;
 public static final HtmlLayout$FontSize MEDIUM;
 public static final HtmlLayout$FontSize LARGE;
 public static final HtmlLayout$FontSize XLARGE;
 public static final HtmlLayout$FontSize XXLARGE;
 public static final HtmlLayout$FontSize LARGER;
 private final String size;
 public static HtmlLayout$FontSize[] values();
 public static HtmlLayout$FontSize valueOf(String);
 private void HtmlLayout$FontSize(String, int, String);
 public String getFontSize();
 public static HtmlLayout$FontSize getFontSize(String);
 public HtmlLayout$FontSize larger();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/XmlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class XmlLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void XmlLayout$Builder();
 public XmlLayout build();
}

org/apache/logging/log4j/core/layout/internal/IncludeChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class IncludeChecker implements ListChecker {
 private final java.util.List list;
 public void IncludeChecker(java.util.List);
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/XmlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class XmlLayout extends AbstractJacksonLayout {
 private static final String ROOT_TAG = Events;
 protected void XmlLayout(boolean, boolean, boolean, boolean, java.nio.charset.Charset, boolean);
 private void XmlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static XmlLayout createLayout(boolean, boolean, boolean, boolean, java.nio.charset.Charset, boolean);
 public static XmlLayout$Builder newBuilder();
 public static XmlLayout createDefaultLayout();
}

org/apache/logging/log4j/core/layout/XmlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class XmlLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractJacksonLayout$Builder extends AbstractStringLayout$Builder {
 private boolean eventEol;
 private String endOfLine;
 private boolean compact;
 private boolean complete;
 private boolean locationInfo;
 private boolean properties;
 private boolean includeStacktrace;
 private boolean stacktraceAsString;
 private boolean includeNullDelimiter;
 private boolean includeTimeMillis;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 public void AbstractJacksonLayout$Builder();
 protected String toStringOrNull(byte[]);
 public boolean getEventEol();
 public String getEndOfLine();
 public boolean isCompact();
 public boolean isComplete();
 public boolean isLocationInfo();
 public boolean isProperties();
 public boolean isIncludeStacktrace();
 public boolean isStacktraceAsString();
 public boolean isIncludeNullDelimiter();
 public boolean isIncludeTimeMillis();
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public AbstractJacksonLayout$Builder setEventEol(boolean);
 public AbstractJacksonLayout$Builder setEndOfLine(String);
 public AbstractJacksonLayout$Builder setCompact(boolean);
 public AbstractJacksonLayout$Builder setComplete(boolean);
 public AbstractJacksonLayout$Builder setLocationInfo(boolean);
 public AbstractJacksonLayout$Builder setProperties(boolean);
 public AbstractJacksonLayout$Builder setIncludeStacktrace(boolean);
 public AbstractJacksonLayout$Builder setStacktraceAsString(boolean);
 public AbstractJacksonLayout$Builder setIncludeNullDelimiter(boolean);
 public AbstractJacksonLayout$Builder setIncludeTimeMillis(boolean);
 public AbstractJacksonLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
}

org/apache/logging/log4j/core/layout/HtmlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class HtmlLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean locationInfo;
 private String title;
 private String contentType;
 private java.nio.charset.Charset charset;
 private HtmlLayout$FontSize fontSize;
 private String fontName;
 private String datePattern;
 private String timezone;
 private void HtmlLayout$Builder();
 public HtmlLayout$Builder withLocationInfo(boolean);
 public HtmlLayout$Builder withTitle(String);
 public HtmlLayout$Builder withContentType(String);
 public HtmlLayout$Builder withCharset(java.nio.charset.Charset);
 public HtmlLayout$Builder withFontSize(HtmlLayout$FontSize);
 public HtmlLayout$Builder withFontName(String);
 public HtmlLayout$Builder setDatePattern(String);
 public HtmlLayout$Builder setTimezone(String);
 public HtmlLayout build();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSelectorSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternSelectorSerializer implements AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
 private final PatternSelector patternSelector;
 private final org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private void PatternLayout$PatternSelectorSerializer(PatternSelector, org.apache.logging.log4j.core.pattern.RegexReplacement);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/osgi/BundleContextSelector.class

package org.apache.logging.log4j.core.osgi;
public synchronized class BundleContextSelector extends org.apache.logging.log4j.core.selector.ClassLoaderContextSelector {
 public void BundleContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 private org.apache.logging.log4j.core.LoggerContext getLoggerContext(org.osgi.framework.Bundle);
 private void removeLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 private static boolean hasContext(org.osgi.framework.Bundle);
 private static org.apache.logging.log4j.core.LoggerContext locateContext(org.osgi.framework.Bundle, java.net.URI);
}

org/apache/logging/log4j/core/async/AsyncLoggerDefaultExceptionHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerDefaultExceptionHandler extends AbstractAsyncExceptionHandler {
 public void AsyncLoggerDefaultExceptionHandler();
}

org/apache/logging/log4j/core/async/AsyncLoggerDisruptor$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerDisruptor$1 extends org.apache.logging.log4j.core.util.Log4jThreadFactory {
 void AsyncLoggerDisruptor$1(AsyncLoggerDisruptor, String, boolean, int);
 public Thread newThread(Runnable);
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$Idle.class

package org.apache.logging.log4j.core.async;
abstract interface JCToolsBlockingQueueFactory$Idle {
 public abstract int idle(int);
}

org/apache/logging/log4j/core/async/AsyncLoggerContext.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerContext extends org.apache.logging.log4j.core.LoggerContext {
 private final AsyncLoggerDisruptor loggerDisruptor;
 public void AsyncLoggerContext(String);
 public void AsyncLoggerContext(String, Object);
 public void AsyncLoggerContext(String, Object, java.net.URI);
 public void AsyncLoggerContext(String, Object, String);
 protected org.apache.logging.log4j.core.Logger newInstance(org.apache.logging.log4j.core.LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 public void setName(String);
 public void start();
 public void start(org.apache.logging.log4j.core.config.Configuration);
 private void maybeStartHelper(org.apache.logging.log4j.core.config.Configuration);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin();
 public void setUseThreadLocals(boolean);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDelegate.class

package org.apache.logging.log4j.core.async;
public abstract interface AsyncLoggerConfigDelegate {
 public abstract org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String, String);
 public abstract EventRoute getEventRoute(org.apache.logging.log4j.Level);
 public abstract void enqueueEvent(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 public abstract boolean tryEnqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 public abstract void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
}

org/apache/logging/log4j/core/lookup/UpperLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class UpperLookup implements StrLookup {
 public void UpperLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/parser/JsonLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class JsonLogEventParser extends AbstractJacksonLogEventParser {
 public void JsonLogEventParser();
}

org/apache/logging/log4j/core/script/ScriptManager$ThreadLocalScriptRunner.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$ThreadLocalScriptRunner extends ScriptManager$AbstractScriptRunner {
 private final AbstractScript script;
 private final ThreadLocal runners;
 public void ScriptManager$ThreadLocalScriptRunner(ScriptManager, AbstractScript);
 public Object execute(javax.script.Bindings);
 public AbstractScript getScript();
 public javax.script.ScriptEngine getScriptEngine();
}

org/apache/logging/log4j/core/script/Script.class

package org.apache.logging.log4j.core.script;
public synchronized class Script extends AbstractScript {
 private static final String ATTR_LANGUAGE = language;
 private static final String ATTR_SCRIPT_TEXT = scriptText;
 static final String PLUGIN_NAME = Script;
 public void Script(String, String, String);
 public static Script createScript(String, String, String);
 public String toString();
}

org/apache/logging/log4j/core/script/ScriptManager$ScriptRunner.class

package org.apache.logging.log4j.core.script;
abstract interface ScriptManager$ScriptRunner {
 public abstract javax.script.Bindings createBindings();
 public abstract Object execute(javax.script.Bindings);
 public abstract AbstractScript getScript();
 public abstract javax.script.ScriptEngine getScriptEngine();
}

org/apache/logging/log4j/core/DefaultLoggerContextAccessor.class

package org.apache.logging.log4j.core;
public synchronized class DefaultLoggerContextAccessor implements LoggerContextAccessor {
 public static DefaultLoggerContextAccessor INSTANCE;
 public void DefaultLoggerContextAccessor();
 public LoggerContext getLoggerContext();
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/DenyAllFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class DenyAllFilter extends AbstractFilter {
 private void DenyAllFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static DenyAllFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/filter/ThreadContextMapFilter.class

package org.apache.logging.log4j.core.filter;
public synchronized class ThreadContextMapFilter extends MapFilter {
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 private final String key;
 private final String value;
 private final boolean useMap;
 public void ThreadContextMapFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private org.apache.logging.log4j.core.Filter$Result filter();
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public static ThreadContextMapFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/AbstractFilterable$Builder.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilterable$Builder {
 private org.apache.logging.log4j.core.Filter filter;
 private org.apache.logging.log4j.core.config.Property[] propertyArray;
 public void AbstractFilterable$Builder();
 public AbstractFilterable$Builder asBuilder();
 public org.apache.logging.log4j.core.Filter getFilter();
 public org.apache.logging.log4j.core.config.Property[] getPropertyArray();
 public AbstractFilterable$Builder setFilter(org.apache.logging.log4j.core.Filter);
 public AbstractFilterable$Builder setPropertyArray(org.apache.logging.log4j.core.config.Property[]);
 public AbstractFilterable$Builder withFilter(org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/filter/BurstFilter$LogDelay.class

package org.apache.logging.log4j.core.filter;
synchronized class BurstFilter$LogDelay implements java.util.concurrent.Delayed {
 private long expireTime;
 void BurstFilter$LogDelay(long);
 public void setDelay(long);
 public long getDelay(java.util.concurrent.TimeUnit);
 public int compareTo(java.util.concurrent.Delayed);
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class NameAbbreviator {
 private static final NameAbbreviator DEFAULT;
 public void NameAbbreviator();
 public static NameAbbreviator getAbbreviator(String);
 public static NameAbbreviator getDefaultAbbreviator();
 public abstract void abbreviate(String, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ThreadPriorityPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadPriorityPatternConverter extends LogEventPatternConverter {
 private static final ThreadPriorityPatternConverter INSTANCE;
 private void ThreadPriorityPatternConverter();
 public static ThreadPriorityPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MdcPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MdcPatternConverter extends LogEventPatternConverter {
 private final String key;
 private final String[] keys;
 private final boolean full;
 private static final org.apache.logging.log4j.util.TriConsumer WRITE_KEY_VALUES_INTO;
 private void MdcPatternConverter(String[]);
 public static MdcPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private static void appendFully(org.apache.logging.log4j.util.ReadOnlyStringMap, StringBuilder);
 private static void appendSelectedKeys(String[], org.apache.logging.log4j.util.ReadOnlyStringMap, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$UnixMillisFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$UnixMillisFormatter extends DatePatternConverter$Formatter {
 private void DatePatternConverter$UnixMillisFormatter();
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class AbstractStyleNameConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final String style;
 protected void AbstractStyleNameConverter(String, java.util.List, String);
 protected static AbstractStyleNameConverter newInstance(Class, String, org.apache.logging.log4j.core.config.Configuration, String[]);
 private static java.util.List toPatternFormatterList(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class DatePatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private static final String UNIX_FORMAT = UNIX;
 private static final String UNIX_MILLIS_FORMAT = UNIX_MILLIS;
 private final String[] options;
 private final ThreadLocal threadLocalMutableInstant;
 private final ThreadLocal threadLocalFormatter;
 private final java.util.concurrent.atomic.AtomicReference cachedTime;
 private final DatePatternConverter$Formatter formatter;
 private void DatePatternConverter(String[]);
 private DatePatternConverter$CachedTime fromEpochMillis(long);
 private DatePatternConverter$Formatter createFormatter(String[]);
 public static DatePatternConverter newInstance(String[]);
 private static DatePatternConverter$Formatter createFixedFormatter(org.apache.logging.log4j.core.util.datetime.FixedDateFormat);
 private static DatePatternConverter$Formatter createNonFixedFormatter(String[]);
 public void format(java.util.Date, StringBuilder);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(long, StringBuilder);
 private org.apache.logging.log4j.core.time.MutableInstant getMutableInstant();
 public void format(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 private void formatWithoutAllocation(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 private DatePatternConverter$Formatter getThreadLocalFormatter();
 private void formatWithoutThreadLocals(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public void format(Object, StringBuilder);
 public transient void format(StringBuilder, Object[]);
 public String getPattern();
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$LevelMapLevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class LevelPatternConverter$LevelMapLevelPatternConverter extends LevelPatternConverter {
 private final java.util.Map levelMap;
 private void LevelPatternConverter$LevelMapLevelPatternConverter(java.util.Map);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$SimpleLevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class LevelPatternConverter$SimpleLevelPatternConverter extends LevelPatternConverter {
 private void LevelPatternConverter$SimpleLevelPatternConverter();
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized enum EncodingPatternConverter$EscapeFormat {
 public static final EncodingPatternConverter$EscapeFormat HTML;
 public static final EncodingPatternConverter$EscapeFormat JSON;
 public static final EncodingPatternConverter$EscapeFormat CRLF;
 public static final EncodingPatternConverter$EscapeFormat XML;
 public static EncodingPatternConverter$EscapeFormat[] values();
 public static EncodingPatternConverter$EscapeFormat valueOf(String);
 private void EncodingPatternConverter$EscapeFormat(String, int);
 abstract void escape(StringBuilder, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class ThrowablePatternConverter extends LogEventPatternConverter {
 protected final java.util.List formatters;
 private String rawOption;
 private final boolean subShortOption;
 private final boolean nonStandardLineSeparator;
 protected final org.apache.logging.log4j.core.impl.ThrowableFormatOptions options;
 protected void ThrowablePatternConverter(String, String, String[]);
 protected void ThrowablePatternConverter(String, String, String[], org.apache.logging.log4j.core.config.Configuration);
 public static ThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void formatSubShortOption(Throwable, String, StringBuilder);
 private void formatOption(Throwable, String, StringBuilder);
 public boolean handlesThrowable();
 protected String getSuffix(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.impl.ThrowableFormatOptions getOptions();
}

org/apache/logging/log4j/core/pattern/FileDatePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FileDatePatternConverter {
 private void FileDatePatternConverter();
 public static PatternConverter newInstance(String[]);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Black.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Black extends AbstractStyleNameConverter {
 protected static final String NAME = black;
 public void AbstractStyleNameConverter$Black(java.util.List, String);
 public static AbstractStyleNameConverter$Black newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/LogEventPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class LogEventPatternConverter extends AbstractPatternConverter {
 protected void LogEventPatternConverter(String, String);
 public abstract void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public boolean handlesThrowable();
 public boolean isVariable();
}

org/apache/logging/log4j/core/jackson/Initializers$SetupContextJsonInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SetupContextJsonInitializer {
 void Initializers$SetupContextJsonInitializer();
 void setupModule(com.fasterxml.jackson.databind.Module$SetupContext, boolean, boolean);
}

org/apache/logging/log4j/core/jackson/ContextDataDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ContextDataDeserializer();
 public org.apache.logging.log4j.util.StringMap deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jYamlModule.class

package org.apache.logging.log4j.core.jackson;
final synchronized class Log4jYamlModule extends com.fasterxml.jackson.databind.module.SimpleModule {
 private static final long serialVersionUID = 1;
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 void Log4jYamlModule(boolean, boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/LevelMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LevelMixIn {
 void LevelMixIn();
 public static org.apache.logging.log4j.Level getLevel(String);
 public abstract String name();
}

org/apache/logging/log4j/core/appender/NullAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class NullAppender extends AbstractAppender {
 public static final String PLUGIN_NAME = Null;
 public static NullAppender createAppender(String);
 private void NullAppender(String);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/rewrite/PropertiesRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class PropertiesRewritePolicy implements RewritePolicy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map properties;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private void PropertiesRewritePolicy(org.apache.logging.log4j.core.config.Configuration, java.util.List);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static PropertiesRewritePolicy createPolicy(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized enum ConsoleAppender$Target {
 public static final ConsoleAppender$Target SYSTEM_OUT;
 public static final ConsoleAppender$Target SYSTEM_ERR;
 public static ConsoleAppender$Target[] values();
 public static ConsoleAppender$Target valueOf(String);
 private void ConsoleAppender$Target(String, int);
 public abstract java.nio.charset.Charset getDefaultCharset();
 protected java.nio.charset.Charset getCharset(String, java.nio.charset.Charset);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/AbstractTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized class AbstractTriggeringPolicy extends org.apache.logging.log4j.core.AbstractLifeCycle implements TriggeringPolicy {
 public void AbstractTriggeringPolicy();
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class CronTriggeringPolicy$1 {
}

org/apache/logging/log4j/core/appender/rolling/action/AbstractAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract synchronized class AbstractAction implements Action {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private boolean complete;
 private boolean interrupted;
 protected void AbstractAction();
 public abstract boolean execute() throws java.io.IOException;
 public synchronized void run();
 public synchronized void close();
 public boolean isComplete();
 public boolean isInterrupted();
 protected void reportException(Exception);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized enum FileExtension {
 public static final FileExtension ZIP;
 public static final FileExtension GZ;
 public static final FileExtension BZIP2;
 public static final FileExtension DEFLATE;
 public static final FileExtension PACK200;
 public static final FileExtension XZ;
 private final String extension;
 public static FileExtension[] values();
 public static FileExtension valueOf(String);
 public static FileExtension lookup(String);
 public static FileExtension lookupForFile(String);
 private void FileExtension(String, int, String);
 abstract action.Action createCompressAction(String, String, boolean, int);
 String getExtension();
 boolean isExtensionFor(String);
 int length();
 java.io.File source(String);
 java.io.File target(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$FactoryData extends org.apache.logging.log4j.core.appender.ConfigurationFactoryData {
 private final String fileName;
 private final String pattern;
 private final boolean append;
 private final boolean bufferedIO;
 private final int bufferSize;
 private final boolean immediateFlush;
 private final boolean createOnDemand;
 private final TriggeringPolicy policy;
 private final RolloverStrategy strategy;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void RollingFileManager$FactoryData(String, String, boolean, boolean, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean, boolean, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public TriggeringPolicy getTriggeringPolicy();
 public RolloverStrategy getRolloverStrategy();
 public String getPattern();
 public String toString();
}

org/apache/logging/log4j/core/appender/WriterAppender$WriterManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$WriterManagerFactory implements ManagerFactory {
 private void WriterAppender$WriterManagerFactory();
 public WriterManager createManager(String, WriterAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/SocketAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class SocketAppender extends AbstractOutputStreamAppender {
 private final Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 public static SocketAppender$Builder newBuilder();
 protected void SocketAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.net.AbstractSocketManager, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 protected void SocketAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.net.AbstractSocketManager, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public static SocketAppender createAppender(String, int, org.apache.logging.log4j.core.net.Protocol, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, int, boolean, String, boolean, boolean, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, org.apache.logging.log4j.core.config.Configuration);
 public static SocketAppender createAppender(String, String, String, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, org.apache.logging.log4j.core.config.Configuration);
 protected static org.apache.logging.log4j.core.net.AbstractSocketManager createSocketManager(String, org.apache.logging.log4j.core.net.Protocol, String, int, int, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, boolean, org.apache.logging.log4j.core.Layout, int);
 protected static org.apache.logging.log4j.core.net.AbstractSocketManager createSocketManager(String, org.apache.logging.log4j.core.net.Protocol, String, int, int, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, boolean, org.apache.logging.log4j.core.Layout, int, org.apache.logging.log4j.core.net.SocketOptions);
 protected void directEncodeEvent(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/AbstractAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractAppender extends org.apache.logging.log4j.core.filter.AbstractFilterable implements org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.core.impl.LocationAware {
 private final String name;
 private final boolean ignoreExceptions;
 private final org.apache.logging.log4j.core.Layout layout;
 private org.apache.logging.log4j.core.ErrorHandler handler;
 public static int parseInt(String, int);
 public boolean requiresLocation();
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout);
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean);
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[]);
 public void error(String);
 public void error(String, org.apache.logging.log4j.core.LogEvent, Throwable);
 public void error(String, Throwable);
 public org.apache.logging.log4j.core.ErrorHandler getHandler();
 public org.apache.logging.log4j.core.Layout getLayout();
 public String getName();
 public boolean ignoreExceptions();
 public void setHandler(org.apache.logging.log4j.core.ErrorHandler);
 protected java.io.Serializable toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String toString();
}

org/apache/logging/log4j/core/appender/FileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$FactoryData extends ConfigurationFactoryData {
 private final boolean append;
 private final boolean locking;
 private final boolean bufferedIo;
 private final int bufferSize;
 private final boolean createOnDemand;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void FileManager$FactoryData(boolean, boolean, boolean, int, boolean, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$FactoryData {
 private final boolean append;
 private final boolean immediateFlush;
 private final int regionLength;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 public void MemoryMappedFileManager$FactoryData(boolean, boolean, int, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$FactoryData.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$FactoryData extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager$AbstractFactoryData {
 private final ConnectionSource connectionSource;
 private final String tableName;
 private final ColumnConfig[] columnConfigs;
 private final org.apache.logging.log4j.core.appender.db.ColumnMapping[] columnMappings;
 private final boolean immediateFail;
 private final boolean retry;
 private final long reconnectIntervalMillis;
 private final boolean truncateStrings;
 protected void JdbcDatabaseManager$FactoryData(int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long, boolean);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class JdbcAppender$1 {
}

org/apache/logging/log4j/core/appender/AppenderSet$1.class

package org.apache.logging.log4j.core.appender;
synchronized class AppenderSet$1 {
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileAppender$1 {
}

org/apache/logging/log4j/core/appender/ScriptAppenderSelector$Builder.class

package org.apache.logging.log4j.core.appender;
public final synchronized class ScriptAppenderSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private AppenderSet appenderSet;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String name;
 private org.apache.logging.log4j.core.script.AbstractScript script;
 public void ScriptAppenderSelector$Builder();
 public org.apache.logging.log4j.core.Appender build();
 public AppenderSet getAppenderSet();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public String getName();
 public org.apache.logging.log4j.core.script.AbstractScript getScript();
 public ScriptAppenderSelector$Builder withAppenderNodeSet(AppenderSet);
 public ScriptAppenderSelector$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ScriptAppenderSelector$Builder withName(String);
 public ScriptAppenderSelector$Builder withScript(org.apache.logging.log4j.core.script.AbstractScript);
}

org/apache/logging/log4j/core/appender/mom/JmsAppender$Builder.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final int DEFAULT_RECONNECT_INTERVAL_MILLIS = 5000;
 private String factoryName;
 private String providerUrl;
 private String urlPkgPrefixes;
 private String securityPrincipalName;
 private String securityCredentials;
 private String factoryBindingName;
 private String destinationBindingName;
 private String userName;
 private char[] password;
 private long reconnectIntervalMillis;
 private boolean immediateFail;
 private JmsManager jmsManager;
 private void JmsAppender$Builder();
 public JmsAppender build();
 public JmsAppender$Builder setDestinationBindingName(String);
 public JmsAppender$Builder setFactoryBindingName(String);
 public JmsAppender$Builder setFactoryName(String);
 public JmsAppender$Builder setImmediateFail(boolean);
 public JmsAppender$Builder setJmsManager(JmsManager);
 public JmsAppender$Builder setPassword(char[]);
 public JmsAppender$Builder setPassword(String);
 public JmsAppender$Builder setProviderUrl(String);
 public JmsAppender$Builder setReconnectIntervalMillis(long);
 public JmsAppender$Builder setSecurityCredentials(String);
 public JmsAppender$Builder setSecurityPrincipalName(String);
 public JmsAppender$Builder setUrlPkgPrefixes(String);
 public JmsAppender$Builder setUsername(String);
 public JmsAppender$Builder setUserName(String);
 public String toString();
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$JeroMqManagerFactory.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$JeroMqManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JeroMqManager$JeroMqManagerFactory();
 public JeroMqManager createManager(String, JeroMqManager$JeroMqConfiguration);
}

org/apache/logging/log4j/core/impl/ThrowableProxyRenderer.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyRenderer {
 private static final String TAB = 	;
 private static final String CAUSED_BY_LABEL = Caused by: ;
 private static final String SUPPRESSED_LABEL = Suppressed: ;
 private static final String WRAPPED_BY_LABEL = Wrapped by: ;
 private void ThrowableProxyRenderer();
 static void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatCause(StringBuilder, String, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatThrowableProxy(StringBuilder, String, String, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatSuppressed(StringBuilder, String, ThrowableProxy[], java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatElements(StringBuilder, String, int, StackTraceElement[], ExtendedStackTraceElement[], java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void renderSuffix(String, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 private static void appendSuppressedCount(StringBuilder, String, int, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatEntry(ExtendedStackTraceElement, StringBuilder, String, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static boolean ignoreElement(StackTraceElement, java.util.List);
 static void formatExtendedStackTraceTo(ThrowableProxy, StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 static void formatCauseStackTrace(ThrowableProxy, StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void renderOn(ThrowableProxy, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyHelper {
 private void ThrowableProxyHelper();
 static ExtendedStackTraceElement[] toExtendedStackTrace(ThrowableProxy, java.util.Stack, java.util.Map, StackTraceElement[], StackTraceElement[]);
 static ThrowableProxy[] toSuppressedProxies(Throwable, java.util.Set);
 private static ThrowableProxyHelper$CacheEntry toCacheEntry(Class, boolean);
 private static Class loadClass(ClassLoader, String);
 private static Class loadClass(String);
}

org/apache/logging/log4j/core/impl/ExtendedStackTraceElement.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ExtendedStackTraceElement implements java.io.Serializable {
 static final ExtendedStackTraceElement[] EMPTY_ARRAY;
 private static final long serialVersionUID = -2171069569241280505;
 private final ExtendedClassInfo extraClassInfo;
 private final StackTraceElement stackTraceElement;
 public void ExtendedStackTraceElement(StackTraceElement, ExtendedClassInfo);
 public void ExtendedStackTraceElement(String, String, String, int, boolean, String, String);
 public boolean equals(Object);
 public String getClassName();
 public boolean getExact();
 public ExtendedClassInfo getExtraClassInfo();
 public String getFileName();
 public int getLineNumber();
 public String getLocation();
 public String getMethodName();
 public StackTraceElement getStackTraceElement();
 public String getVersion();
 public int hashCode();
 public boolean isNativeMethod();
 void renderOn(StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 private void render(StackTraceElement, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/NamedContextSelector.class

package org.apache.logging.log4j.core.selector;
public abstract interface NamedContextSelector extends ContextSelector {
 public abstract org.apache.logging.log4j.core.LoggerContext locateContext(String, Object, java.net.URI);
 public abstract org.apache.logging.log4j.core.LoggerContext removeContext(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$InetAddressConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$InetAddressConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$InetAddressConverter();
 public java.net.InetAddress convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$1.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized class CommandLine$Help$1 implements CommandLine$Help$IParamLabelRenderer {
 void CommandLine$Help$1();
 public CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 public String separator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharacterConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharacterConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharacterConverter();
 public Character convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Assert.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized class CommandLine$Assert {
 static Object notNull(Object, String);
 private void CommandLine$Assert();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$FileConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$FileConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$FileConverter();
 public java.io.File convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ISO8601TimeConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ISO8601TimeConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ISO8601TimeConverter();
 public java.sql.Time convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Interpreter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Interpreter {
 private final java.util.Map commands;
 private final java.util.Map converterRegistry;
 private final java.util.Map optionName2Field;
 private final java.util.Map singleCharOption2Field;
 private final java.util.List requiredFields;
 private final java.util.List positionalParametersFields;
 private final Object command;
 private boolean isHelpRequested;
 private String separator;
 private int position;
 void CommandLine$Interpreter(CommandLine, Object);
 transient java.util.List parse(String[]);
 private void parse(java.util.List, java.util.Stack, String[]);
 private void processArguments(java.util.List, java.util.Stack, java.util.Collection, java.util.Set, String[]) throws Exception;
 private boolean resemblesOption(String);
 private void handleUnmatchedArguments(String);
 private void handleUnmatchedArguments(java.util.Stack);
 private void processRemainderAsPositionalParameters(java.util.Collection, java.util.Set, java.util.Stack) throws Exception;
 private void processPositionalParameter(java.util.Collection, java.util.Set, java.util.Stack) throws Exception;
 private void processStandaloneOption(java.util.Collection, java.util.Set, String, java.util.Stack, boolean) throws Exception;
 private void processClusteredShortOptions(java.util.Collection, java.util.Set, String, java.util.Stack) throws Exception;
 private int applyOption(reflect.Field, Class, CommandLine$Range, boolean, java.util.Stack, java.util.Set, String) throws Exception;
 private int applyValueToSingleValuedField(reflect.Field, CommandLine$Range, java.util.Stack, Class, java.util.Set, String) throws Exception;
 private int applyValuesToMapField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private void consumeMapArguments(reflect.Field, CommandLine$Range, java.util.Stack, Class[], CommandLine$ITypeConverter, CommandLine$ITypeConverter, java.util.Map, String) throws Exception;
 private void consumeOneMapArgument(reflect.Field, CommandLine$Range, java.util.Stack, Class[], CommandLine$ITypeConverter, CommandLine$ITypeConverter, java.util.Map, int, String) throws Exception;
 private void checkMaxArityExceeded(CommandLine$Range, int, reflect.Field, String[]);
 private int applyValuesToArrayField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private int applyValuesToCollectionField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private java.util.List consumeArguments(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, int, String) throws Exception;
 private int consumeOneArgument(reflect.Field, CommandLine$Range, java.util.Stack, Class, java.util.List, int, int, String) throws Exception;
 private String splitRegex(reflect.Field);
 private String[] split(String, reflect.Field);
 private boolean isOption(String);
 private Object tryConvert(reflect.Field, int, CommandLine$ITypeConverter, String, Class) throws Exception;
 private String optionDescription(String, reflect.Field, int);
 private boolean isAnyHelpRequested();
 private void updateHelpRequested(reflect.Field);
 private boolean is(reflect.Field, String, boolean);
 private java.util.Collection createCollection(Class) throws Exception;
 private java.util.Map createMap(Class) throws Exception;
 private CommandLine$ITypeConverter getTypeConverter(Class, reflect.Field);
 private void assertNoMissingParameters(reflect.Field, int, java.util.Stack);
 private String trim(String);
 private String unquote(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IParamLabelRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IParamLabelRenderer {
 public abstract CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 public abstract String separator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IParameterRenderer {
 public abstract CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/net/TcpSocketManager$HostResolver.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager$HostResolver {
 public void TcpSocketManager$HostResolver();
 public java.util.List resolveHost(String, int) throws java.net.UnknownHostException;
}

org/apache/logging/log4j/core/net/ssl/SslConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfiguration {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final KeyStoreConfiguration keyStoreConfig;
 private final TrustStoreConfiguration trustStoreConfig;
 private final javax.net.ssl.SSLContext sslContext;
 private final String protocol;
 private final boolean verifyHostName;
 private void SslConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration, boolean);
 public void clearSecrets();
 public javax.net.ssl.SSLSocketFactory getSslSocketFactory();
 public javax.net.ssl.SSLServerSocketFactory getSslServerSocketFactory();
 private javax.net.ssl.SSLContext createSslContext();
 private javax.net.ssl.SSLContext createSslContextWithTrustStoreFailure();
 private javax.net.ssl.SSLContext createSslContextWithKeyStoreFailure();
 private javax.net.ssl.SSLContext createSslContextBasedOnConfiguration() throws KeyStoreConfigurationException, TrustStoreConfigurationException;
 private javax.net.ssl.SSLContext createSslContextWithDefaultKeyManagerFactory() throws TrustStoreConfigurationException;
 private javax.net.ssl.SSLContext createSslContextWithDefaultTrustManagerFactory() throws KeyStoreConfigurationException;
 private javax.net.ssl.SSLContext createDefaultSslContext();
 private javax.net.ssl.SSLContext createSslContext(boolean, boolean) throws KeyStoreConfigurationException, TrustStoreConfigurationException;
 private javax.net.ssl.TrustManagerFactory loadTrustManagerFactory() throws TrustStoreConfigurationException;
 private javax.net.ssl.KeyManagerFactory loadKeyManagerFactory() throws KeyStoreConfigurationException;
 public static SslConfiguration createSSLConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration);
 public static SslConfiguration createSSLConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration, boolean);
 public int hashCode();
 public boolean equals(Object);
 public KeyStoreConfiguration getKeyStoreConfig();
 public TrustStoreConfiguration getTrustStoreConfig();
 public javax.net.ssl.SSLContext getSslContext();
 public String getProtocol();
 public boolean isVerifyHostName();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Advertiser.class

package org.apache.logging.log4j.core.net;
public abstract interface Advertiser {
 public abstract Object advertise(java.util.Map);
 public abstract void unadvertise(Object);
}

org/apache/logging/log4j/core/net/SocketAddress$1.class

package org.apache.logging.log4j.core.net;
synchronized class SocketAddress$1 {
}

org/apache/logging/log4j/core/net/TcpSocketManager$TcpSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager$TcpSocketManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 static TcpSocketManager$HostResolver resolver;
 protected void TcpSocketManager$TcpSocketManagerFactory();
 public TcpSocketManager createManager(String, TcpSocketManager$FactoryData);
 TcpSocketManager createManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, TcpSocketManager$FactoryData);
 java.net.Socket createSocket(TcpSocketManager$FactoryData) throws java.io.IOException;
 protected String errorMessage(TcpSocketManager$FactoryData, java.util.List);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/Format.class

package org.apache.logging.log4j.core.util.datetime;
public abstract synchronized class Format {
 public void Format();
 public final String format(Object);
 public abstract StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 public abstract Object parseObject(String, java.text.ParsePosition);
 public Object parseObject(String) throws java.text.ParseException;
}

org/apache/logging/log4j/core/util/datetime/FormatCache.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FormatCache {
 static final int NONE = -1;
 private final java.util.concurrent.ConcurrentMap cInstanceCache;
 private static final java.util.concurrent.ConcurrentMap cDateTimeInstanceCache;
 void FormatCache();
 public Format getInstance();
 public Format getInstance(String, java.util.TimeZone, java.util.Locale);
 protected abstract Format createInstance(String, java.util.TimeZone, java.util.Locale);
 private Format getDateTimeInstance(Integer, Integer, java.util.TimeZone, java.util.Locale);
 Format getDateTimeInstance(int, int, java.util.TimeZone, java.util.Locale);
 Format getDateInstance(int, java.util.TimeZone, java.util.Locale);
 Format getTimeInstance(int, java.util.TimeZone, java.util.Locale);
 static String getPatternForStyle(Integer, Integer, java.util.Locale);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat$FixedTimeZoneFormat.class

package org.apache.logging.log4j.core.util.datetime;
public final synchronized enum FixedDateFormat$FixedTimeZoneFormat {
 public static final FixedDateFormat$FixedTimeZoneFormat HH;
 public static final FixedDateFormat$FixedTimeZoneFormat HHMM;
 public static final FixedDateFormat$FixedTimeZoneFormat HHCMM;
 private final char timeSeparatorChar;
 private final int timeSeparatorCharLen;
 private final boolean useMinutes;
 private final int length;
 public static FixedDateFormat$FixedTimeZoneFormat[] values();
 public static FixedDateFormat$FixedTimeZoneFormat valueOf(String);
 private void FixedDateFormat$FixedTimeZoneFormat(String, int);
 private void FixedDateFormat$FixedTimeZoneFormat(String, int, char, boolean, int);
 public int getLength();
 private int write(int, char[], int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$Iso8601_Rule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$Iso8601_Rule implements FastDatePrinter$Rule {
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS;
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS_MINUTES;
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS_COLON_MINUTES;
 final int length;
 static FastDatePrinter$Iso8601_Rule getRule(int);
 void FastDatePrinter$Iso8601_Rule(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$CopyQuotedStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$CopyQuotedStrategy extends FastDateParser$Strategy {
 private final String formatField;
 void FastDateParser$CopyQuotedStrategy(String);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
}

org/apache/logging/log4j/core/util/CloseShieldWriter.class

package org.apache.logging.log4j.core.util;
public synchronized class CloseShieldWriter extends java.io.Writer {
 private final java.io.Writer delegate;
 public void CloseShieldWriter(java.io.Writer);
 public void close() throws java.io.IOException;
 public void flush() throws java.io.IOException;
 public void write(char[], int, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/Cancellable.class

package org.apache.logging.log4j.core.util;
public abstract interface Cancellable extends Runnable {
 public abstract void cancel();
}

org/apache/logging/log4j/core/util/StringBuilderWriter.class

package org.apache.logging.log4j.core.util;
public synchronized class StringBuilderWriter extends java.io.Writer implements java.io.Serializable {
 private static final long serialVersionUID = -146927496096066153;
 private final StringBuilder builder;
 public void StringBuilderWriter();
 public void StringBuilderWriter(int);
 public void StringBuilderWriter(StringBuilder);
 public java.io.Writer append(char);
 public java.io.Writer append(CharSequence);
 public java.io.Writer append(CharSequence, int, int);
 public void close();
 public void flush();
 public void write(String);
 public void write(char[], int, int);
 public StringBuilder getBuilder();
 public String toString();
}

org/apache/logging/log4j/core/Logger$PrivateConfig.class

package org.apache.logging.log4j.core;
public synchronized class Logger$PrivateConfig {
 public final config.LoggerConfig loggerConfig;
 public final config.Configuration config;
 private final org.apache.logging.log4j.Level loggerConfigLevel;
 private final int intLevel;
 private final Logger logger;
 private final boolean requiresLocation;
 public void Logger$PrivateConfig(Logger, config.Configuration, Logger);
 public void Logger$PrivateConfig(Logger, Logger$PrivateConfig, org.apache.logging.log4j.Level);
 public void Logger$PrivateConfig(Logger, Logger$PrivateConfig, config.LoggerConfig);
 public void logEvent(LogEvent);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 transient boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public String toString();
}

org/apache/logging/log4j/core/config/Property.class

package org.apache.logging.log4j.core.config;
public final synchronized class Property {
 public static final Property[] EMPTY_ARRAY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String name;
 private final String value;
 private final boolean valueNeedsLookup;
 private void Property(String, String);
 public String getName();
 public String getValue();
 public boolean isValueNeedsLookup();
 public static Property createProperty(String, String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ClassArbiter implements Arbiter {
 private final String className;
 private void ClassArbiter(String);
 public boolean isCondition();
 public static SystemPropertyArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/DefaultArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class DefaultArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void DefaultArbiter$Builder();
 public DefaultArbiter$Builder asBuilder();
 public DefaultArbiter build();
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class SystemPropertyArbiter$1 {
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginNodeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginNodeVisitor extends AbstractPluginVisitor {
 public void PluginNodeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public abstract interface PluginVisitor {
 public abstract PluginVisitor setAnnotation(annotation.Annotation);
 public abstract transient PluginVisitor setAliases(String[]);
 public abstract PluginVisitor setConversionType(Class);
 public abstract PluginVisitor setStrSubstitutor(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public abstract PluginVisitor setMember(reflect.Member);
 public abstract Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginEntry.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginEntry implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private String key;
 private String className;
 private String name;
 private boolean printable;
 private boolean defer;
 private transient String category;
 public void PluginEntry();
 public String getKey();
 public void setKey(String);
 public String getClassName();
 public void setClassName(String);
 public String getName();
 public void setName(String);
 public boolean isPrintable();
 public void setPrintable(boolean);
 public boolean isDefer();
 public void setDefer(boolean);
 public String getCategory();
 public void setCategory(String);
 public String toString();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$PluginAliasesElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$PluginAliasesElementVisitor extends javax.lang.model.util.SimpleElementVisitor7 {
 private final javax.lang.model.util.Elements elements;
 private void PluginProcessor$PluginAliasesElementVisitor(javax.lang.model.util.Elements);
 public java.util.Collection visitType(javax.lang.model.element.TypeElement, org.apache.logging.log4j.core.config.plugins.Plugin);
}

org/apache/logging/log4j/core/config/plugins/PluginAttribute.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginAttribute extends annotation.Annotation {
 public abstract boolean defaultBoolean();
 public abstract byte defaultByte();
 public abstract char defaultChar();
 public abstract Class defaultClass();
 public abstract double defaultDouble();
 public abstract float defaultFloat();
 public abstract int defaultInt();
 public abstract long defaultLong();
 public abstract short defaultShort();
 public abstract String defaultString();
 public abstract String value();
 public abstract boolean sensitive();
}

org/apache/logging/log4j/core/config/plugins/PluginNode.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginNode extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters.class

package org.apache.logging.log4j.core.config.plugins.convert;
public final synchronized class TypeConverters {
 public static final String CATEGORY = TypeConverter;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void TypeConverters();
 public static Object convert(String, Class, Object);
 private static Object parseDefaultValue(TypeConverter, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ByteArrayConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ByteArrayConverter implements TypeConverter {
 private static final String PREFIX_0x = 0x;
 private static final String PREFIX_BASE64 = Base64:;
 public void TypeConverters$ByteArrayConverter();
 public byte[] convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharArrayConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharArrayConverter implements TypeConverter {
 public void TypeConverters$CharArrayConverter();
 public char[] convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ClassConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ClassConverter implements TypeConverter {
 public void TypeConverters$ClassConverter();
 public Class convert(String) throws ClassNotFoundException;
}

org/apache/logging/log4j/core/config/plugins/convert/EnumConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class EnumConverter implements TypeConverter {
 private final Class clazz;
 public void EnumConverter(Class);
 public Enum convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ByteConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ByteConverter implements TypeConverter {
 public void TypeConverters$ByteConverter();
 public Byte convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverterRegistry.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverterRegistry {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile TypeConverterRegistry INSTANCE;
 private static final Object INSTANCE_LOCK;
 private final java.util.concurrent.ConcurrentMap registry;
 public static TypeConverterRegistry getInstance();
 public TypeConverter findCompatibleConverter(reflect.Type);
 private void TypeConverterRegistry();
 private void loadKnownTypeConverters(java.util.Collection);
 private TypeConverter registerConverter(reflect.Type, TypeConverter);
 private static reflect.Type getTypeConverterSupportedType(Class);
 private void registerPrimitiveTypes();
 private void registerTypeAlias(reflect.Type, reflect.Type);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/PropertiesPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class PropertiesPlugin {
 private void PropertiesPlugin();
 public static org.apache.logging.log4j.core.lookup.StrLookup configureSubstitutor(Property[], Configuration);
}

org/apache/logging/log4j/core/config/Scheduled.class

package org.apache.logging.log4j.core.config;
public abstract interface Scheduled extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/json/JsonConfiguration$ErrorType.class

package org.apache.logging.log4j.core.config.json;
final synchronized enum JsonConfiguration$ErrorType {
 public static final JsonConfiguration$ErrorType CLASS_NOT_FOUND;
 public static JsonConfiguration$ErrorType[] values();
 public static JsonConfiguration$ErrorType valueOf(String);
 private void JsonConfiguration$ErrorType(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/properties/PropertiesConfigurationBuilder.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfigurationBuilder extends org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilderFactory implements org.apache.logging.log4j.core.util.Builder {
 private static final String ADVERTISER_KEY = advertiser;
 private static final String STATUS_KEY = status;
 private static final String SHUTDOWN_HOOK = shutdownHook;
 private static final String SHUTDOWN_TIMEOUT = shutdownTimeout;
 private static final String VERBOSE = verbose;
 private static final String DEST = dest;
 private static final String PACKAGES = packages;
 private static final String CONFIG_NAME = name;
 private static final String MONITOR_INTERVAL = monitorInterval;
 private static final String CONFIG_TYPE = type;
 private final org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder builder;
 private org.apache.logging.log4j.core.LoggerContext loggerContext;
 private java.util.Properties rootProperties;
 public void PropertiesConfigurationBuilder();
 public PropertiesConfigurationBuilder setRootProperties(java.util.Properties);
 public PropertiesConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public PropertiesConfiguration build();
 private org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder createScript(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder createScriptFile(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder createAppender(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder createFilter(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder createAppenderRef(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder createLogger(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder createRootLogger(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder createLayout(String, java.util.Properties);
 private static org.apache.logging.log4j.core.config.builder.api.ComponentBuilder createComponent(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder, String, java.util.Properties);
 private static org.apache.logging.log4j.core.config.builder.api.ComponentBuilder processRemainingProperties(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.FilterableComponentBuilder addFiltersToComponent(org.apache.logging.log4j.core.config.builder.api.FilterableComponentBuilder, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LoggableComponentBuilder addLoggersToComponent(org.apache.logging.log4j.core.config.builder.api.LoggableComponentBuilder, java.util.Properties);
 public PropertiesConfigurationBuilder setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/config/builder/api/AppenderRefComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface AppenderRefComponentBuilder extends FilterableComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/ScriptFileComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ScriptFileComponentBuilder extends ComponentBuilder {
 public abstract ScriptFileComponentBuilder addLanguage(String);
 public abstract ScriptFileComponentBuilder addIsWatched(boolean);
 public abstract ScriptFileComponentBuilder addIsWatched(String);
 public abstract ScriptFileComponentBuilder addCharset(String);
}

org/apache/logging/log4j/core/jmx/AppenderAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface AppenderAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=Appenders,name=%s;
 public abstract String getName();
 public abstract String getLayout();
 public abstract boolean isIgnoreExceptions();
 public abstract String getErrorHandler();
 public abstract String getFilter();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized enum GelfLayout$CompressionType {
 public static final GelfLayout$CompressionType GZIP;
 public static final GelfLayout$CompressionType ZLIB;
 public static final GelfLayout$CompressionType OFF;
 public static GelfLayout$CompressionType[] values();
 public static GelfLayout$CompressionType valueOf(String);
 private void GelfLayout$CompressionType(String, int);
 public abstract java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class LevelPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final boolean requiresLocation;
 public void LevelPatternSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 private void LevelPatternSelector(PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static LevelPatternSelector$Builder newBuilder();
 public static LevelPatternSelector createSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/ByteBufferDestination.class

package org.apache.logging.log4j.core.layout;
public abstract interface ByteBufferDestination {
 public abstract java.nio.ByteBuffer getByteBuffer();
 public abstract java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 public abstract void writeBytes(java.nio.ByteBuffer);
 public abstract void writeBytes(byte[], int, int);
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$1.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$1 {
 void GelfLayout$CompressionType$1(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/AbstractCsvLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractCsvLayout extends AbstractStringLayout {
 protected static final String DEFAULT_CHARSET = UTF-8;
 protected static final String DEFAULT_FORMAT = Default;
 private static final String CONTENT_TYPE = text/csv;
 private final org.apache.commons.csv.CSVFormat format;
 protected static org.apache.commons.csv.CSVFormat createFormat(String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String);
 private static boolean isNotNul(Character);
 protected void AbstractCsvLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String getContentType();
 public org.apache.commons.csv.CSVFormat getFormat();
}

org/apache/logging/log4j/core/layout/PatternLayout$NoFormatPatternSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$NoFormatPatternSerializer implements PatternLayout$PatternSerializer {
 private final org.apache.logging.log4j.core.pattern.LogEventPatternConverter[] converters;
 private void PatternLayout$NoFormatPatternSerializer(org.apache.logging.log4j.core.pattern.PatternFormatter[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/PatternLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class PatternLayout$1 {
}

org/apache/logging/log4j/core/layout/GelfLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class GelfLayout$1 {
}

org/apache/logging/log4j/core/layout/LoggerFields.class

package org.apache.logging.log4j.core.layout;
public final synchronized class LoggerFields {
 private final java.util.Map map;
 private final String sdId;
 private final String enterpriseId;
 private final boolean discardIfAllFieldsAreEmpty;
 private void LoggerFields(java.util.Map, String, String, boolean);
 public java.util.Map getMap();
 public String toString();
 public static LoggerFields createLoggerFields(org.apache.logging.log4j.core.util.KeyValuePair[], String, String, boolean);
 public org.apache.logging.log4j.message.StructuredDataId getSdId();
 public boolean getDiscardIfAllFieldsAreEmpty();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerConfigDisruptor$1 extends org.apache.logging.log4j.core.util.Log4jThreadFactory {
 void AsyncLoggerConfigDisruptor$1(AsyncLoggerConfigDisruptor, String, boolean, int);
 public Thread newThread(Runnable);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig$RootLogger.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfig$RootLogger extends org.apache.logging.log4j.core.config.LoggerConfig {
 public void AsyncLoggerConfig$RootLogger();
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/lookup/JavaLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JavaLookup extends AbstractLookup {
 private final SystemPropertiesLookup spLookup;
 public void JavaLookup();
 public String getHardware();
 public String getLocale();
 public String getOperatingSystem();
 public String getRuntime();
 private String getSystemProperty(String);
 private String getSystemProperty(String, String);
 public String getVirtualMachine();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/StrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public synchronized class StrSubstitutor implements org.apache.logging.log4j.core.config.ConfigurationAware {
 public static final char DEFAULT_ESCAPE = 36;
 public static final StrMatcher DEFAULT_PREFIX;
 public static final StrMatcher DEFAULT_SUFFIX;
 public static final String DEFAULT_VALUE_DELIMITER_STRING = :-;
 public static final StrMatcher DEFAULT_VALUE_DELIMITER;
 public static final String ESCAPE_DELIMITER_STRING = :\-;
 public static final StrMatcher DEFAULT_VALUE_ESCAPE_DELIMITER;
 private static final int BUF_SIZE = 256;
 private char escapeChar;
 private StrMatcher prefixMatcher;
 private StrMatcher suffixMatcher;
 private String valueDelimiterString;
 private StrMatcher valueDelimiterMatcher;
 private StrMatcher valueEscapeDelimiterMatcher;
 private StrLookup variableResolver;
 private boolean enableSubstitutionInVariables;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private boolean recursiveEvaluationAllowed;
 public void StrSubstitutor();
 public void StrSubstitutor(java.util.Map);
 public void StrSubstitutor(java.util.Map, String, String);
 public void StrSubstitutor(java.util.Map, String, String, char);
 public void StrSubstitutor(java.util.Map, String, String, char, String);
 public void StrSubstitutor(java.util.Properties);
 public void StrSubstitutor(StrLookup);
 public void StrSubstitutor(StrLookup, String, String, char);
 public void StrSubstitutor(StrLookup, String, String, char, String);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char, StrMatcher);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char, StrMatcher, StrMatcher);
 void StrSubstitutor(StrSubstitutor);
 public static String replace(Object, java.util.Map);
 public static String replace(Object, java.util.Map, String, String);
 public static String replace(Object, java.util.Properties);
 private static java.util.Map toTypeSafeMap(java.util.Properties);
 private static String handleFailedReplacement(String, Throwable);
 public String replace(String);
 public String replace(org.apache.logging.log4j.core.LogEvent, String);
 public String replace(String, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, String, int, int);
 public String replace(char[]);
 public String replace(org.apache.logging.log4j.core.LogEvent, char[]);
 public String replace(char[], int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, char[], int, int);
 public String replace(StringBuffer);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuffer);
 public String replace(StringBuffer, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuffer, int, int);
 public String replace(StringBuilder);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public String replace(StringBuilder, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 public String replace(Object);
 public String replace(org.apache.logging.log4j.core.LogEvent, Object);
 public boolean replaceIn(StringBuffer);
 public boolean replaceIn(StringBuffer, int, int);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuffer, int, int);
 public boolean replaceIn(StringBuilder);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean replaceIn(StringBuilder, int, int);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 protected boolean substitute(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 private int substitute(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int, java.util.List);
 private boolean isCyclicSubstitution(String, java.util.List);
 protected String resolveVariable(org.apache.logging.log4j.core.LogEvent, String, StringBuilder, int, int);
 public char getEscapeChar();
 public void setEscapeChar(char);
 public StrMatcher getVariablePrefixMatcher();
 public StrSubstitutor setVariablePrefixMatcher(StrMatcher);
 public StrSubstitutor setVariablePrefix(char);
 public StrSubstitutor setVariablePrefix(String);
 public StrMatcher getVariableSuffixMatcher();
 public StrSubstitutor setVariableSuffixMatcher(StrMatcher);
 public StrSubstitutor setVariableSuffix(char);
 public StrSubstitutor setVariableSuffix(String);
 public StrMatcher getValueDelimiterMatcher();
 public StrSubstitutor setValueDelimiterMatcher(StrMatcher);
 public StrSubstitutor setValueDelimiter(char);
 public StrSubstitutor setValueDelimiter(String);
 public StrLookup getVariableResolver();
 public void setVariableResolver(StrLookup);
 public boolean isEnableSubstitutionInVariables();
 public void setEnableSubstitutionInVariables(boolean);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 private char[] getChars(StringBuilder);
 public void appendWithSeparators(StringBuilder, Iterable, String);
 public String toString();
 public void setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/ParseException.class

package org.apache.logging.log4j.core.parser;
public synchronized class ParseException extends Exception {
 private static final long serialVersionUID = -2739649998196663857;
 public void ParseException(String);
 public void ParseException(String, Throwable);
 public void ParseException(Throwable);
}

org/apache/logging/log4j/core/parser/AbstractJacksonLogEventParser.class

package org.apache.logging.log4j.core.parser;
synchronized class AbstractJacksonLogEventParser implements TextLogEventParser {
 private final com.fasterxml.jackson.databind.ObjectReader objectReader;
 void AbstractJacksonLogEventParser(com.fasterxml.jackson.databind.ObjectMapper);
 public org.apache.logging.log4j.core.LogEvent parseFrom(String) throws ParseException;
 public org.apache.logging.log4j.core.LogEvent parseFrom(byte[]) throws ParseException;
 public org.apache.logging.log4j.core.LogEvent parseFrom(byte[], int, int) throws ParseException;
}

org/apache/logging/log4j/core/script/ScriptManager$ThreadLocalScriptRunner$1.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$ThreadLocalScriptRunner$1 extends ThreadLocal {
 void ScriptManager$ThreadLocalScriptRunner$1(ScriptManager$ThreadLocalScriptRunner);
 protected ScriptManager$MainScriptRunner initialValue();
}

org/apache/logging/log4j/core/script/ScriptManager.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptManager implements org.apache.logging.log4j.core.util.FileWatcher, java.io.Serializable {
 private static final long serialVersionUID = -2534169384971965196;
 private static final String KEY_THREADING = THREADING;
 private static final org.apache.logging.log4j.Logger logger;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final javax.script.ScriptEngineManager manager;
 private final java.util.concurrent.ConcurrentMap scriptRunners;
 private final String languages;
 private final org.apache.logging.log4j.core.util.WatchManager watchManager;
 public void ScriptManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.util.WatchManager);
 public void addScript(AbstractScript);
 public javax.script.Bindings createBindings(AbstractScript);
 public AbstractScript getScript(String);
 public void fileModified(java.io.File);
 public Object execute(String, javax.script.Bindings);
 private ScriptManager$ScriptRunner getScriptRunner(AbstractScript);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class NoMarkerFilter$1 {
}

org/apache/logging/log4j/core/filter/CompositeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class CompositeFilter extends org.apache.logging.log4j.core.AbstractLifeCycle implements Iterable, org.apache.logging.log4j.core.Filter {
 private final org.apache.logging.log4j.core.Filter[] filters;
 private void CompositeFilter();
 private void CompositeFilter(org.apache.logging.log4j.core.Filter[]);
 public CompositeFilter addFilter(org.apache.logging.log4j.core.Filter);
 public CompositeFilter removeFilter(org.apache.logging.log4j.core.Filter);
 public java.util.Iterator iterator();
 public java.util.List getFilters();
 public org.apache.logging.log4j.core.Filter[] getFiltersArray();
 public boolean isEmpty();
 public int size();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 public org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static CompositeFilter createFilters(org.apache.logging.log4j.core.Filter[]);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$FixedFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$FixedFormatter extends DatePatternConverter$Formatter {
 private final org.apache.logging.log4j.core.util.datetime.FixedDateFormat fixedDateFormat;
 private final char[] cachedBuffer;
 private int length;
 void DatePatternConverter$FixedFormatter(org.apache.logging.log4j.core.util.datetime.FixedDateFormat);
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/pattern/PatternFormatter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class PatternFormatter {
 public static final PatternFormatter[] EMPTY_ARRAY;
 private final LogEventPatternConverter converter;
 private final FormattingInfo field;
 private final boolean skipFormattingInfo;
 public void PatternFormatter(LogEventPatternConverter, FormattingInfo);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void formatWithInfo(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public LogEventPatternConverter getConverter();
 public FormattingInfo getFormattingInfo();
 public boolean handlesThrowable();
 public boolean requiresLocation();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$NOPAbbreviator.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$NOPAbbreviator extends NameAbbreviator {
 public void NameAbbreviator$NOPAbbreviator();
 public void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy {
 public static final NameAbbreviator$MaxElementAbbreviator$Strategy DROP;
 public static final NameAbbreviator$MaxElementAbbreviator$Strategy RETAIN;
 final int minCount;
 public static NameAbbreviator$MaxElementAbbreviator$Strategy[] values();
 public static NameAbbreviator$MaxElementAbbreviator$Strategy valueOf(String);
 private void NameAbbreviator$MaxElementAbbreviator$Strategy(String, int, int);
 abstract void abbreviate(int, String, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$PatternAbbreviatorFragment.class

package org.apache.logging.log4j.core.pattern;
final synchronized class NameAbbreviator$PatternAbbreviatorFragment {
 private final int charCount;
 private final char ellipsis;
 void NameAbbreviator$PatternAbbreviatorFragment(int, char);
 int abbreviate(String, int, StringBuilder);
}

org/apache/logging/log4j/core/pattern/RegexReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RegexReplacementConverter extends LogEventPatternConverter {
 private final java.util.regex.Pattern pattern;
 private final String substitution;
 private final java.util.List formatters;
 private void RegexReplacementConverter(java.util.List, java.util.regex.Pattern, String);
 public static RegexReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/SequenceNumberPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class SequenceNumberPatternConverter extends LogEventPatternConverter {
 private static final java.util.concurrent.atomic.AtomicLong SEQUENCE;
 private static final SequenceNumberPatternConverter INSTANCE;
 private void SequenceNumberPatternConverter();
 public static SequenceNumberPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/FileLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FileLocationPatternConverter extends LogEventPatternConverter {
 private static final FileLocationPatternConverter INSTANCE;
 private void FileLocationPatternConverter();
 public static FileLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class SimpleLiteralPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$3.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$3 {
 void EncodingPatternConverter$EscapeFormat$3(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$RenderingPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$RenderingPatternConverter extends MessagePatternConverter {
 private final MessagePatternConverter delegate;
 private final TextRenderer textRenderer;
 void MessagePatternConverter$RenderingPatternConverter(MessagePatternConverter, TextRenderer);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/JAnsiTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class JAnsiTextRenderer implements TextRenderer {
 public static final java.util.Map DefaultExceptionStyleMap;
 static final java.util.Map DefaultMessageStyleMap;
 private static final java.util.Map PrefedinedStyleMaps;
 private final String beginToken;
 private final int beginTokenLen;
 private final String endToken;
 private final int endTokenLen;
 private final java.util.Map styleMap;
 private static transient void put(java.util.Map, String, org.fusesource.jansi.AnsiRenderer$Code[]);
 public void JAnsiTextRenderer(String[], java.util.Map);
 public java.util.Map getStyleMap();
 private void render(org.fusesource.jansi.Ansi, org.fusesource.jansi.AnsiRenderer$Code);
 private transient void render(org.fusesource.jansi.Ansi, org.fusesource.jansi.AnsiRenderer$Code[]);
 private transient String render(String, String[]);
 public void render(String, StringBuilder, String) throws IllegalArgumentException;
 public void render(StringBuilder, StringBuilder) throws IllegalArgumentException;
 private org.fusesource.jansi.AnsiRenderer$Code toCode(String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/IntegerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class IntegerPatternConverter extends AbstractPatternConverter implements ArrayPatternConverter {
 private static final IntegerPatternConverter INSTANCE;
 private void IntegerPatternConverter();
 public static IntegerPatternConverter newInstance(String[]);
 public transient void format(StringBuilder, Object[]);
 public void format(Object, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LineLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LineLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final LineLocationPatternConverter INSTANCE;
 private void LineLocationPatternConverter();
 public static LineLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/LogEventListener.class

package org.apache.logging.log4j.core;
public synchronized class LogEventListener implements java.util.EventListener {
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final LoggerContext context;
 protected void LogEventListener();
 public void log(LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ThrowableProxyMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyMixIn {
 private ThrowableProxyMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntrySerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ListOfMapEntrySerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 protected void ListOfMapEntrySerializer();
 public void serialize(java.util.Map, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

org/apache/logging/log4j/core/jackson/StackTraceElementMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class StackTraceElementMixIn {
 void StackTraceElementMixIn(String, String, String, int);
 abstract String getClassName();
 abstract String getFileName();
 abstract int getLineNumber();
 abstract String getMethodName();
}

org/apache/logging/log4j/core/jackson/InstantMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class InstantMixIn {
 void InstantMixIn(long, int);
 abstract long getEpochSecond();
 abstract int getNanoOfSecond();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntryDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ListOfMapEntryDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void ListOfMapEntryDeserializer$1(ListOfMapEntryDeserializer);
}

org/apache/logging/log4j/core/jackson/XmlConstants.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class XmlConstants {
 public static final String ELT_CAUSE = Cause;
 public static final String ELT_CONTEXT_MAP = ContextMap;
 public static final String ELT_CONTEXT_STACK = ContextStack;
 public static final String ELT_CONTEXT_STACK_ITEM = ContextStackItem;
 public static final String ELT_EVENT = Event;
 public static final String ELT_EXTENDED_STACK_TRACE = ExtendedStackTrace;
 public static final String ELT_EXTENDED_STACK_TRACE_ITEM = ExtendedStackTraceItem;
 public static final String ELT_TIME_MILLIS = TimeMillis;
 public static final String ELT_INSTANT = Instant;
 public static final String ELT_MARKER = Marker;
 public static final String ELT_MESSAGE = Message;
 public static final String ELT_PARENTS = Parents;
 public static final String ELT_SOURCE = Source;
 public static final String ELT_SUPPRESSED = Suppressed;
 public static final String ELT_SUPPRESSED_ITEM = SuppressedItem;
 public static final String ELT_THROWN = Thrown;
 public static final String XML_NAMESPACE = http://logging.apache.org/log4j/2.0/events;
 public void XmlConstants();
}

org/apache/logging/log4j/core/jackson/SimpleMessageDeserializer.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class SimpleMessageDeserializer extends com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer {
 private static final long serialVersionUID = 1;
 void SimpleMessageDeserializer();
 public org.apache.logging.log4j.message.SimpleMessage deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jXmlObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jXmlObjectMapper extends com.fasterxml.jackson.dataformat.xml.XmlMapper {
 private static final long serialVersionUID = 1;
 public void Log4jXmlObjectMapper();
 public void Log4jXmlObjectMapper(boolean, boolean);
}

META-INF/org/apache/logging/log4j/core/config/plugins/Log4j2Plugins.dat

META-INF/maven/org.apache.logging.log4j/log4j-core/pom.xml

 4.0.0

 org.apache.logging.log4j
 log4j
 2.17.1
 ../

 log4j-core
 jar
 Apache Log4j Core
 The Apache Log4j Implementation

 ${basedir}/..
 Core Documentation
 /core
 true

 org.apache.logging.log4j
 log4j-api

 org.osgi
 org.osgi.core
 provided

 com.lmax
 disruptor
 true

 com.conversantmedia
 disruptor
 true

 org.jctools
 jctools-core
 true

 com.fasterxml.jackson.core
 jackson-core
 true

 com.fasterxml.jackson.core
 jackson-databind
 true

 com.fasterxml.jackson.dataformat
 jackson-dataformat-yaml
 true

 com.fasterxml.jackson.dataformat
 jackson-dataformat-xml
 true

 com.fasterxml.woodstox
 woodstox-core
 ${woodstox.version}
 true

 org.fusesource.jansi
 jansi
 true

 com.sun.mail
 javax.mail
 true

 org.jboss.spec.javax.jms
 jboss-jms-api_1.1_spec
 provided
 true

 org.apache.kafka
 kafka-clients
 true

 org.zeromq
 jeromq
 true

 org.apache.commons
 commons-compress
 true

 org.apache.commons
 commons-csv
 true

 org.slf4j
 slf4j-api
 true

 org.apache.logging.log4j
 log4j-api
 test-jar
 test

 org.tukaani
 xz
 test

 org.jmdns
 jmdns
 3.5.7
 test

 log4j
 log4j
 1.2.17
 test

 org.slf4j
 slf4j-ext
 test

 org.junit.vintage
 junit-vintage-engine

 org.junit.jupiter
 junit-jupiter-engine

 org.junit.jupiter
 junit-jupiter-params

 org.hamcrest
 hamcrest
 test

 org.mockito
 mockito-core

 org.mockito
 mockito-junit-jupiter

 org.hsqldb
 hsqldb
 test

 com.h2database
 h2
 test

 org.springframework
 spring-test
 test

 org.apache.activemq
 activemq-broker
 test

 org.apache.geronimo.specs
 geronimo-jms_1.1_spec

 commons-logging
 commons-logging
 test

 ch.qos.logback
 logback-core
 test

 ch.qos.logback
 logback-classic
 test

 org.eclipse.tycho
 org.eclipse.osgi
 test

 org.apache.felix
 org.apache.felix.framework
 test

 org.codehaus.plexus
 plexus-utils
 test

 org.apache.maven
 maven-core
 test

 net.javacrumbs.json-unit
 json-unit
 test

 org.xmlunit
 xmlunit-core
 test

 org.xmlunit
 xmlunit-matchers
 test

 commons-io
 commons-io
 test

 commons-codec
 commons-codec
 test

 org.apache.commons
 commons-lang3
 test

 org.apache-extras.beanshell
 bsh
 test

 org.codehaus.groovy
 groovy-jsr223
 test

 org.codehaus.groovy
 groovy-dateutil
 test

 com.github.tomakehurst
 wiremock
 test

 com.google.code.java-allocation-instrumenter
 java-allocation-instrumenter
 test

 org.hdrhistogram
 HdrHistogram
 test

 org.awaitility
 awaitility
 test

 org.zapodot
 embedded-ldap-junit
 test

 org.apache.maven.plugins
 maven-dependency-plugin
 3.0.2

 unpack-classes
 prepare-package

 unpack

 org.apache.logging.log4j
 log4j-core-java9
 ${project.version}
 zip
 false

 **/*.class
 **/*.java
 ${project.build.directory}
 false
 true

 org.codehaus.mojo
 build-helper-maven-plugin
 1.7

 add-source
 generate-sources

 add-source

 ${project.build.directory}/log4j-core-java9

 maven-compiler-plugin

 default-compile

 module-info.java

 none

 process-plugins

 compile

 process-classes

 module-info.java

 only

 maven-surefire-plugin

 org.apache.logging.log4j.categories.PerformanceTests

 *

 org.apache.maven.plugins
 maven-failsafe-plugin

 true

 org.apache.maven.plugins
 maven-jar-plugin

 default-jar

 jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}
 org.apache.logging.log4j.core
 true

 default

 test-jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}

 org.apache.felix
 maven-bundle-plugin

 org.apache.logging.log4j.core

 org.apache.logging.log4j.core.*

 sun.reflect;resolution:=optional,
 *

 org.apache.logging.log4j.core.osgi.Activator

 org.apache.maven.plugins
 maven-changes-plugin
 ${changes.plugin.version}

 changes-report

 %URL%/show_bug.cgi?id=%ISSUE%
 true

 org.apache.maven.plugins
 maven-checkstyle-plugin
 ${checkstyle.plugin.version}

 ${log4jParentDir}/checkstyle.xml
 ${log4jParentDir}/checkstyle-suppressions.xml
 false
 basedir=${basedir}
 licensedir=${log4jParentDir}/checkstyle-header.txt

 org.apache.maven.plugins
 maven-javadoc-plugin
 ${javadoc.plugin.version}

 false
 <p align="center">Copyright © {inceptionYear}-{currentYear} {organizationName}. All Rights Reserved.

 Apache Logging, Apache Log4j, Log4j, Apache, the Apache feather logo, the Apache Logging project logo,
 and the Apache Log4j logo are trademarks of The Apache Software Foundation.</p>

 false
 true

 http://docs.oracle.com/javaee/6/api/
 http://www.osgi.org/javadoc/r4v43/core/
 https://commons.apache.org/proper/commons-lang/javadocs/api-release/

 Core API
 org.apache.logging.log4j.core

 Configuration
 org.apache.logging.log4j.core.config*:org.apache.logging.log4j.core.selector

 Core Plugins
 org.apache.logging.log4j.core.appender*:org.apache.logging.log4j.core.filter:org.apache.logging.log4j.core.layout:org.apache.logging.log4j.core.lookup:org.apache.logging.log4j.core.pattern:org.apache.logging.log4j.core.script

 Tools
 org.apache.logging.log4j.core.net*:org.apache.logging.log4j.core.tools

 Internals
 org.apache.logging.log4j.core.async:org.apache.logging.log4j.core.impl:org.apache.logging.log4j.core.util*:org.apache.logging.log4j.core.osgi:org.apache.logging.log4j.core.jackson:org.apache.logging.log4j.core.jmx

 non-aggregate

 javadoc

 com.github.spotbugs
 spotbugs-maven-plugin

 org.apache.maven.plugins
 maven-jxr-plugin
 ${jxr.plugin.version}

 non-aggregate

 jxr

 aggregate

 aggregate

 org.apache.maven.plugins
 maven-pmd-plugin
 ${pmd.plugin.version}

 ${maven.compiler.target}

org/apache/logging/log4j/core/appender/FileManager$FileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$FileManagerFactory implements ManagerFactory {
 private void FileManager$FileManagerFactory();
 public FileManager createManager(String, FileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/ScriptAppenderSelector.class

package org.apache.logging.log4j.core.appender;
public synchronized class ScriptAppenderSelector extends AbstractAppender {
 public static ScriptAppenderSelector$Builder newBuilder();
 private void ScriptAppenderSelector(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Property[]);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$ConsoleManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$ConsoleManagerFactory implements ManagerFactory {
 private void ConsoleAppender$ConsoleManagerFactory();
 public OutputStreamManager createManager(String, ConsoleAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/OnStartupTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class OnStartupTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final long JVM_START_TIME;
 private final long minSize;
 private void OnStartupTriggeringPolicy(long);
 private static long initStartTime();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static OnStartupTriggeringPolicy createPolicy(long);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathSortByModificationTime.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PathSortByModificationTime implements PathSorter, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final boolean recentFirst;
 private final int multiplier;
 public void PathSortByModificationTime(boolean);
 public static PathSorter createSorter(boolean);
 public boolean isRecentFirst();
 public int compare(PathWithAttributes, PathWithAttributes);
}

org/apache/logging/log4j/core/appender/rolling/action/IfFileName.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfFileName implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.nio.file.PathMatcher pathMatcher;
 private final String syntaxAndPattern;
 private final PathCondition[] nestedConditions;
 private transient void IfFileName(String, String, PathCondition[]);
 static String createSyntaxAndPatternString(String, String);
 public String getSyntaxAndPattern();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfFileName createNameCondition(String, String, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/Duration.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class Duration implements java.io.Serializable, Comparable {
 private static final long serialVersionUID = -3756810052716342061;
 public static final Duration ZERO;
 private static final int HOURS_PER_DAY = 24;
 private static final int MINUTES_PER_HOUR = 60;
 private static final int SECONDS_PER_MINUTE = 60;
 private static final int SECONDS_PER_HOUR = 3600;
 private static final int SECONDS_PER_DAY = 86400;
 private static final java.util.regex.Pattern PATTERN;
 private final long seconds;
 private void Duration(long);
 public static Duration parse(CharSequence);
 private static long parseNumber(CharSequence, String, int, String);
 private static Duration create(long, long, long, long);
 private static Duration create(long);
 public long toMillis();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public int compareTo(Duration);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$5.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$5 {
 void FileExtension$5(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$1.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$1 {
 void FileExtension$1(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/DefaultRolloverStrategy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DefaultRolloverStrategy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String max;
 private String min;
 private String fileIndex;
 private String compressionLevelStr;
 private action.Action[] customActions;
 private boolean stopCustomActionsOnError;
 private String tempCompressedFilePattern;
 private org.apache.logging.log4j.core.config.Configuration config;
 public void DefaultRolloverStrategy$Builder();
 public DefaultRolloverStrategy build();
 public String getMax();
 public DefaultRolloverStrategy$Builder withMax(String);
 public String getMin();
 public DefaultRolloverStrategy$Builder withMin(String);
 public String getFileIndex();
 public DefaultRolloverStrategy$Builder withFileIndex(String);
 public String getCompressionLevelStr();
 public DefaultRolloverStrategy$Builder withCompressionLevelStr(String);
 public action.Action[] getCustomActions();
 public DefaultRolloverStrategy$Builder withCustomActions(action.Action[]);
 public boolean isStopCustomActionsOnError();
 public DefaultRolloverStrategy$Builder withStopCustomActionsOnError(boolean);
 public String getTempCompressedFilePattern();
 public DefaultRolloverStrategy$Builder withTempCompressedFilePattern(String);
 public org.apache.logging.log4j.core.config.Configuration getConfig();
 public DefaultRolloverStrategy$Builder withConfig(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/FailoverAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FailoverAppender extends AbstractAppender {
 private static final int DEFAULT_INTERVAL_SECONDS = 60;
 private final String primaryRef;
 private final String[] failovers;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private org.apache.logging.log4j.core.config.AppenderControl primary;
 private final java.util.List failoverAppenders;
 private final long intervalNanos;
 private volatile long nextCheckNanos;
 private void FailoverAppender(String, org.apache.logging.log4j.core.Filter, String, String[], int, org.apache.logging.log4j.core.config.Configuration, boolean, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void callAppender(org.apache.logging.log4j.core.LogEvent);
 private void failover(org.apache.logging.log4j.core.LogEvent, Exception);
 public String toString();
 public static FailoverAppender createAppender(String, String, String[], String, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter, String);
}

org/apache/logging/log4j/core/appender/FileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class FileManager extends OutputStreamManager {
 private static final FileManager$FileManagerFactory FACTORY;
 private final boolean isAppend;
 private final boolean createOnDemand;
 private final boolean isLocking;
 private final String advertiseURI;
 private final int bufferSize;
 private final java.util.Set filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 private final boolean attributeViewEnabled;
 protected void FileManager(String, java.io.OutputStream, boolean, boolean, String, org.apache.logging.log4j.core.Layout, int, boolean);
 protected void FileManager(String, java.io.OutputStream, boolean, boolean, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void FileManager(org.apache.logging.log4j.core.LoggerContext, String, java.io.OutputStream, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void FileManager(org.apache.logging.log4j.core.LoggerContext, String, java.io.OutputStream, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean, java.nio.ByteBuffer);
 public static FileManager getFileManager(String, boolean, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, int, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 protected java.io.OutputStream createOutputStream() throws java.io.IOException;
 protected void createParentDir(java.io.File);
 protected void defineAttributeView(java.nio.file.Path);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 public String getFileName();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public int getBufferSize();
 public java.util.Set getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public boolean isAttributeViewEnabled();
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractManager.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractManager implements AutoCloseable {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final java.util.Map MAP;
 private static final java.util.concurrent.locks.Lock LOCK;
 protected int count;
 private final String name;
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 protected void AbstractManager(org.apache.logging.log4j.core.LoggerContext, String);
 public void close();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public static AbstractManager getManager(String, ManagerFactory, Object);
 public void updateData(Object);
 public static boolean hasManager(String);
 protected static AbstractManager narrow(Class, AbstractManager);
 protected static org.apache.logging.log4j.status.StatusLogger logger();
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected int getCount();
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
 public void release();
 public String getName();
 public java.util.Map getContentFormat();
 protected void log(org.apache.logging.log4j.Level, String, Throwable);
 protected void logDebug(String, Throwable);
 protected void logError(String, Throwable);
 protected void logWarn(String, Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/HttpURLConnectionManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class HttpURLConnectionManager extends HttpManager {
 private static final java.nio.charset.Charset CHARSET;
 private final java.net.URL url;
 private final boolean isHttps;
 private final String method;
 private final int connectTimeoutMillis;
 private final int readTimeoutMillis;
 private final org.apache.logging.log4j.core.config.Property[] headers;
 private final org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private final boolean verifyHostname;
 public void HttpURLConnectionManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.LoggerContext, String, java.net.URL, String, int, int, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.net.ssl.SslConfiguration, boolean);
 public void send(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager$RandomAccessFileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$RandomAccessFileManagerFactory implements ManagerFactory {
 private void RandomAccessFileManager$RandomAccessFileManagerFactory();
 public RandomAccessFileManager createManager(String, RandomAccessFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$1 {
}

org/apache/logging/log4j/core/appender/RollingFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RollingFileAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = RollingFile;
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private final String fileName;
 private final String filePattern;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RollingFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, rolling.RollingFileManager, String, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public String getFileName();
 public String getFilePattern();
 public rolling.TriggeringPolicy getTriggeringPolicy();
 public static RollingFileAppender createAppender(String, String, String, String, String, String, String, rolling.TriggeringPolicy, rolling.RolloverStrategy, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RollingFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/FileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$1 {
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseAppender.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 public static final int DEFAULT_RECONNECT_INTERVAL_MILLIS = 5000;
 private final java.util.concurrent.locks.ReadWriteLock lock;
 private final java.util.concurrent.locks.Lock readLock;
 private final java.util.concurrent.locks.Lock writeLock;
 private AbstractDatabaseManager manager;
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, boolean, AbstractDatabaseManager);
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], AbstractDatabaseManager);
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, AbstractDatabaseManager);
 public final void append(org.apache.logging.log4j.core.LogEvent);
 public final org.apache.logging.log4j.core.Layout getLayout();
 public final AbstractDatabaseManager getManager();
 protected final void replaceManager(AbstractDatabaseManager);
 public final void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$JdbcDatabaseManagerFactory.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$JdbcDatabaseManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private static final char PARAMETER_MARKER = 63;
 private void JdbcDatabaseManager$JdbcDatabaseManagerFactory();
 public JdbcDatabaseManager createManager(String, JdbcDatabaseManager$FactoryData);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target$2.class

package org.apache.logging.log4j.core.appender;
final synchronized enum ConsoleAppender$Target$2 {
 void ConsoleAppender$Target$2(String, int);
 public java.nio.charset.Charset getDefaultCharset();
}

org/apache/logging/log4j/core/appender/FileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FileAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = File;
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private final String fileName;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private final Object advertisement;
 public static FileAppender createAppender(String, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static FileAppender$Builder newBuilder();
 private void FileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, FileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public String getFileName();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/RollingFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RollingFileAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/JmsManager$Reconnector.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private volatile boolean shutdown;
 private final Object owner;
 private void JmsManager$Reconnector(JmsManager, Object);
 public void latch();
 void reconnect() throws javax.naming.NamingException, javax.jms.JMSException;
 public void run();
 public void shutdown();
}

org/apache/logging/log4j/core/appender/mom/JmsAppender$1.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$FactoryData.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$FactoryData {
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 private final String topic;
 private final boolean syncSend;
 private final org.apache.logging.log4j.core.config.Property[] properties;
 private final String key;
 public void KafkaManager$FactoryData(org.apache.logging.log4j.core.LoggerContext, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
}

org/apache/logging/log4j/core/impl/ThreadContextDataProvider.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataProvider implements org.apache.logging.log4j.core.util.ContextDataProvider {
 public void ThreadContextDataProvider();
 public java.util.Map supplyContextData();
 public org.apache.logging.log4j.util.StringMap supplyStringMap();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$LogEventProxy.class

package org.apache.logging.log4j.core.impl;
synchronized class Log4jLogEvent$LogEventProxy implements java.io.Serializable {
 private static final long serialVersionUID = -8634075037355293699;
 private final String loggerFQCN;
 private final org.apache.logging.log4j.Marker marker;
 private final org.apache.logging.log4j.Level level;
 private final String loggerName;
 private final transient org.apache.logging.log4j.message.Message message;
 private java.rmi.MarshalledObject marshalledMessage;
 private String messageString;
 private final long timeMillis;
 private final int nanoOfMillisecond;
 private final transient Throwable thrown;
 private final ThrowableProxy thrownProxy;
 private final org.apache.logging.log4j.util.StringMap contextData;
 private final org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private final long threadId;
 private final String threadName;
 private final int threadPriority;
 private final StackTraceElement source;
 private final boolean isLocationRequired;
 private final boolean isEndOfBatch;
 private final transient long nanoTime;
 public void Log4jLogEvent$LogEventProxy(Log4jLogEvent, boolean);
 public void Log4jLogEvent$LogEventProxy(org.apache.logging.log4j.core.LogEvent, boolean);
 private static org.apache.logging.log4j.message.Message memento(org.apache.logging.log4j.message.ReusableMessage);
 private static org.apache.logging.log4j.util.StringMap memento(org.apache.logging.log4j.util.ReadOnlyStringMap);
 private static java.rmi.MarshalledObject marshall(org.apache.logging.log4j.message.Message);
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 protected Object readResolve();
 private org.apache.logging.log4j.message.Message message();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForCopyOnWriteThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForCopyOnWriteThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForCopyOnWriteThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/Log4jProvider.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jProvider extends org.apache.logging.log4j.spi.Provider {
 public void Log4jProvider();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForDefaultThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForDefaultThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForDefaultThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 private static JdkMapAdapterStringMap frozenStringMap(java.util.Map);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper$CacheEntry.class

package org.apache.logging.log4j.core.impl;
final synchronized class ThrowableProxyHelper$CacheEntry {
 private final ExtendedClassInfo element;
 private final ClassLoader loader;
 private void ThrowableProxyHelper$CacheEntry(ExtendedClassInfo, ClassLoader);
}

org/apache/logging/log4j/core/tools/Generate$LevelInfo.class

package org.apache.logging.log4j.core.tools;
synchronized class Generate$LevelInfo {
 final String name;
 final int intLevel;
 void Generate$LevelInfo(String);
 public static java.util.List parse(java.util.List, Class);
}

org/apache/logging/log4j/core/tools/Generate$Type.class

package org.apache.logging.log4j.core.tools;
abstract synchronized enum Generate$Type {
 public static final Generate$Type CUSTOM;
 public static final Generate$Type EXTEND;
 public static Generate$Type[] values();
 public static Generate$Type valueOf(String);
 private void Generate$Type(String, int);
 abstract String imports();
 abstract String declaration();
 abstract String constructor();
 abstract Class generator();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate$CustomLogger.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate$CustomLogger {
 public static void main(String[]);
 private void Generate$CustomLogger();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MissingParameterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MissingParameterException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 5075678535706338753;
 public void CommandLine$MissingParameterException(CommandLine, String);
 private static CommandLine$MissingParameterException create(CommandLine, java.util.Collection, String);
 private static String describe(reflect.Field, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BigIntegerConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BigIntegerConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BigIntegerConverter();
 public java.math.BigInteger convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Command.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Command extends annotation.Annotation {
 public abstract String name();
 public abstract Class[] subcommands();
 public abstract String separator();
 public abstract String[] version();
 public abstract String headerHeading();
 public abstract String[] header();
 public abstract String synopsisHeading();
 public abstract boolean abbreviateSynopsis();
 public abstract String[] customSynopsis();
 public abstract String descriptionHeading();
 public abstract String[] description();
 public abstract String parameterListHeading();
 public abstract String optionListHeading();
 public abstract boolean sortOptions();
 public abstract char requiredOptionMarker();
 public abstract boolean showDefaultValues();
 public abstract String commandListHeading();
 public abstract String footerHeading();
 public abstract String[] footer();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultParamLabelRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultParamLabelRenderer implements CommandLine$Help$IParamLabelRenderer {
 public final String separator;
 public void CommandLine$Help$DefaultParamLabelRenderer(String);
 public String separator();
 public CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 private static String renderParameterName(reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$ColorScheme.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$ColorScheme {
 public final java.util.List commandStyles;
 public final java.util.List optionStyles;
 public final java.util.List parameterStyles;
 public final java.util.List optionParamStyles;
 private final CommandLine$Help$Ansi ansi;
 public void CommandLine$Help$ColorScheme();
 public void CommandLine$Help$ColorScheme(CommandLine$Help$Ansi);
 public transient CommandLine$Help$ColorScheme commands(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme options(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme parameters(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme optionParams(CommandLine$Help$Ansi$IStyle[]);
 public CommandLine$Help$Ansi$Text commandText(String);
 public CommandLine$Help$Ansi$Text optionText(String);
 public CommandLine$Help$Ansi$Text parameterText(String);
 public CommandLine$Help$Ansi$Text optionParamText(String);
 public CommandLine$Help$ColorScheme applySystemProperties();
 private void replace(java.util.List, String);
 private transient CommandLine$Help$ColorScheme addAll(java.util.List, CommandLine$Help$Ansi$IStyle[]);
 public CommandLine$Help$Ansi ansi();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ITypeConverter.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$ITypeConverter {
 public abstract Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$MinimalOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$MinimalOptionRenderer implements CommandLine$Help$IOptionRenderer {
 void CommandLine$Help$MinimalOptionRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$PicocliException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$PicocliException extends RuntimeException {
 private static final long serialVersionUID = -2574128880125050818;
 public void CommandLine$PicocliException(String);
 public void CommandLine$PicocliException(String, Exception);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$1.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Column$Overflow.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Column$Overflow {
 public static final CommandLine$Help$Column$Overflow TRUNCATE;
 public static final CommandLine$Help$Column$Overflow SPAN;
 public static final CommandLine$Help$Column$Overflow WRAP;
 public static CommandLine$Help$Column$Overflow[] values();
 public static CommandLine$Help$Column$Overflow valueOf(String);
 private void CommandLine$Help$Column$Overflow(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$UUIDConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$UUIDConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$UUIDConverter();
 public java.util.UUID convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Ansi {
 public static final CommandLine$Help$Ansi AUTO;
 public static final CommandLine$Help$Ansi ON;
 public static final CommandLine$Help$Ansi OFF;
 static CommandLine$Help$Ansi$Text EMPTY_TEXT;
 static final boolean isWindows;
 static final boolean isXterm;
 static final boolean ISATTY;
 public static CommandLine$Help$Ansi[] values();
 public static CommandLine$Help$Ansi valueOf(String);
 private void CommandLine$Help$Ansi(String, int);
 static final boolean calcTTY();
 private static boolean ansiPossible();
 public boolean enabled();
 public CommandLine$Help$Ansi$Text apply(String, java.util.List);
 private static Object[] reverse(Object[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate {
 static final String PACKAGE_DECLARATION = package %s;%n%n;
 static final String FQCN_FIELD = private static final String FQCN = %s.class.getName();%n;
 static final String LEVEL_FIELD = private static final Level %s = Level.forName("%s", %d);%n;
 static final String FACTORY_METHODS = %n /**%n * Returns a custom Logger with the name of the calling class.%n * %n * @return The custom Logger for the calling class.%n */%n public static CLASSNAME create() {%n final Logger wrapped = LogManager.getLogger();%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified name of the Class as%n * the Logger name.%n * %n * @param loggerName The Class whose name should be used as the Logger name.%n * If null it will default to the calling class.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Class<?> loggerName) {%n final Logger wrapped = LogManager.getLogger(loggerName);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified name of the Class as%n * the Logger name.%n * %n * @param loggerName The Class whose name should be used as the Logger name.%n * If null it will default to the calling class.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Class<?> loggerName, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(loggerName, messageFactory);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified class name of the value%n * as the Logger name.%n * %n * @param value The value whose class name should be used as the Logger%n * name. If null the name of the calling class will be used as%n * the logger name.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Object value) {%n final Logger wrapped = LogManager.getLogger(value);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified class name of the value%n * as the Logger name.%n * %n * @param value The value whose class name should be used as the Logger%n * name. If null the name of the calling class will be used as%n * the logger name.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Object value, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(value, messageFactory);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger with the specified name.%n * %n * @param name The logger name. If null the name of the calling class will%n * be used.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final String name) {%n final Logger wrapped = LogManager.getLogger(name);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger with the specified name.%n * %n * @param name The logger name. If null the name of the calling class will%n * be used.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final String name, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(name, messageFactory);%n return new CLASSNAME(wrapped);%n }%n;
 static final String METHODS = %n /**%n * Logs a message with the specific Marker at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param msg the message string to be logged%n */%n public void methodName(final Marker marker, final Message msg) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msg, (Throwable) null);%n }%n%n /**%n * Logs a message with the specific Marker at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param msg the message string to be logged%n * @param t A Throwable or null.%n */%n public void methodName(final Marker marker, final Message msg, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msg, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message object to log.%n */%n public void methodName(final Marker marker, final Object message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message CharSequence with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message CharSequence to log.%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final CharSequence message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Marker marker, final Object message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the CharSequence to log.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final CharSequence message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message object to log.%n */%n public void methodName(final Marker marker, final String message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param params parameters to the message.%n * @see #getMessageFactory()%n */%n public void methodName(final Marker marker, final String message, final Object... params) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, params);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7, p8);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @param p9 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8, final Object p9) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Marker marker, final String message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs the specified Message at the {@code CUSTOM_LEVEL} level.%n * %n * @param msg the message string to be logged%n */%n public void methodName(final Message msg) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msg, (Throwable) null);%n }%n%n /**%n * Logs the specified Message at the {@code CUSTOM_LEVEL} level.%n * %n * @param msg the message string to be logged%n * @param t A Throwable or null.%n */%n public void methodName(final Message msg, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msg, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message object to log.%n */%n public void methodName(final Object message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Object message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message CharSequence with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message CharSequence to log.%n * @since Log4j-2.6%n */%n public void methodName(final CharSequence message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a CharSequence at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the CharSequence to log.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.6%n */%n public void methodName(final CharSequence message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message object to log.%n */%n public void methodName(final String message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param params parameters to the message.%n * @see #getMessageFactory()%n */%n public void methodName(final String message, final Object... params) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, params);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7, p8);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @param p9 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8, final Object p9) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final String message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the {@code CUSTOM_LEVEL}level.%n *%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @since Log4j-2.4%n */%n public void methodName(final Supplier<?> msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) including the stack trace of the {@link Throwable} <code>t</code> passed as parameter.%n *%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.4%n */%n public void methodName(final Supplier<?> msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level with the specified Marker.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final Supplier<?> msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters which are only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level.%n *%n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param paramSuppliers An array of functions, which when called, produce the desired log message parameters.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final String message, final Supplier<?>... paramSuppliers) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, paramSuppliers);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) with the specified Marker and including the stack trace of the {@link Throwable}%n * <code>t</code> passed as parameter.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @param t A Throwable or null.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final Supplier<?> msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, t);%n }%n%n /**%n * Logs a message with parameters which are only to be constructed if the logging level is%n * the {@code CUSTOM_LEVEL} level.%n *%n * @param message the message to log; the format depends on the message factory.%n * @param paramSuppliers An array of functions, which when called, produce the desired log message parameters.%n * @since Log4j-2.4%n */%n public void methodName(final String message, final Supplier<?>... paramSuppliers) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, paramSuppliers);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level with the specified Marker. The {@code MessageSupplier} may or may%n * not use the {@link MessageFactory} to construct the {@code Message}.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final MessageSupplier msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) with the specified Marker and including the stack trace of the {@link Throwable}%n * <code>t</code> passed as parameter. The {@code MessageSupplier} may or may not use the%n * {@link MessageFactory} to construct the {@code Message}.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @param t A Throwable or null.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final MessageSupplier msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level. The {@code MessageSupplier} may or may not use the%n * {@link MessageFactory} to construct the {@code Message}.%n *%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @since Log4j-2.4%n */%n public void methodName(final MessageSupplier msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) including the stack trace of the {@link Throwable} <code>t</code> passed as parameter.%n * The {@code MessageSupplier} may or may not use the {@link MessageFactory} to construct the%n * {@code Message}.%n *%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.4%n */%n public void methodName(final MessageSupplier msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, t);%n }%n;
 private void Generate();
 private static void generate(String[], Generate$Type);
 static void generate(String[], Generate$Type, java.io.PrintStream);
 static boolean validate(String[]);
 private static void usage(java.io.PrintStream, Class);
 static String generateSource(String, java.util.List, Generate$Type);
 static String javadocDescription(java.util.List);
 static String camelCase(String);
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationDefaults.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationDefaults {
 public static final String KEYSTORE_TYPE = JKS;
 public static final String PROTOCOL = SSL;
 public void SslConfigurationDefaults();
}

org/apache/logging/log4j/core/net/SslSocketManager$SslFactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$SslFactoryData extends TcpSocketManager$FactoryData {
 protected ssl.SslConfiguration sslConfiguration;
 public void SslSocketManager$SslFactoryData(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public String toString();
}

org/apache/logging/log4j/core/net/Severity.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Severity {
 public static final Severity EMERG;
 public static final Severity ALERT;
 public static final Severity CRITICAL;
 public static final Severity ERROR;
 public static final Severity WARNING;
 public static final Severity NOTICE;
 public static final Severity INFO;
 public static final Severity DEBUG;
 private final int code;
 public static Severity[] values();
 public static Severity valueOf(String);
 private void Severity(String, int, int);
 public int getCode();
 public boolean isEqual(String);
 public static Severity getSeverity(org.apache.logging.log4j.Level);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/DatagramSocketManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$1 {
}

org/apache/logging/log4j/core/net/Severity$1.class

package org.apache.logging.log4j.core.net;
synchronized class Severity$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SmtpManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$FactoryData {
 private final String to;
 private final String cc;
 private final String bcc;
 private final String from;
 private final String replyto;
 private final org.apache.logging.log4j.core.layout.AbstractStringLayout$Serializer subject;
 private final String protocol;
 private final String host;
 private final int port;
 private final String username;
 private final String password;
 private final boolean isDebug;
 private final int numElements;
 private final ssl.SslConfiguration sslConfiguration;
 public void SmtpManager$FactoryData(String, String, String, String, String, org.apache.logging.log4j.core.layout.AbstractStringLayout$Serializer, String, String, int, String, String, boolean, int, ssl.SslConfiguration);
}

org/apache/logging/log4j/core/net/DatagramSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class DatagramSocketManager extends AbstractSocketManager {
 private static final DatagramSocketManager$DatagramSocketManagerFactory FACTORY;
 protected void DatagramSocketManager(String, java.io.OutputStream, java.net.InetAddress, String, int, org.apache.logging.log4j.core.Layout, int);
 public static DatagramSocketManager getSocketManager(String, int, org.apache.logging.log4j.core.Layout, int);
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SocketOptions.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketOptions implements org.apache.logging.log4j.core.util.Builder, Cloneable {
 private Boolean keepAlive;
 private Boolean oobInline;
 private SocketPerformancePreferences performancePreferences;
 private Integer receiveBufferSize;
 private Boolean reuseAddress;
 private Rfc1349TrafficClass rfc1349TrafficClass;
 private Integer sendBufferSize;
 private Integer soLinger;
 private Integer soTimeout;
 private Boolean tcpNoDelay;
 private Integer trafficClass;
 public void SocketOptions();
 public static SocketOptions newBuilder();
 public void apply(java.net.Socket) throws java.net.SocketException;
 public SocketOptions build();
 public Integer getActualTrafficClass();
 public SocketPerformancePreferences getPerformancePreferences();
 public Integer getReceiveBufferSize();
 public Rfc1349TrafficClass getRfc1349TrafficClass();
 public Integer getSendBufferSize();
 public Integer getSoLinger();
 public Integer getSoTimeout();
 public Integer getTrafficClass();
 public Boolean isKeepAlive();
 public Boolean isOobInline();
 public Boolean isReuseAddress();
 public Boolean isTcpNoDelay();
 public SocketOptions setKeepAlive(boolean);
 public SocketOptions setOobInline(boolean);
 public SocketOptions setPerformancePreferences(SocketPerformancePreferences);
 public SocketOptions setReceiveBufferSize(int);
 public SocketOptions setReuseAddress(boolean);
 public SocketOptions setRfc1349TrafficClass(Rfc1349TrafficClass);
 public SocketOptions setSendBufferSize(int);
 public SocketOptions setSoLinger(int);
 public SocketOptions setSoTimeout(int);
 public SocketOptions setTcpNoDelay(boolean);
 public SocketOptions setTrafficClass(int);
 public String toString();
}

org/apache/logging/log4j/core/util/Log4jThreadFactory.class

package org.apache.logging.log4j.core.util;
public synchronized class Log4jThreadFactory implements java.util.concurrent.ThreadFactory {
 private static final String PREFIX = TF-;
 private static final java.util.concurrent.atomic.AtomicInteger FACTORY_NUMBER;
 private static final java.util.concurrent.atomic.AtomicInteger THREAD_NUMBER;
 private final boolean daemon;
 private final ThreadGroup group;
 private final int priority;
 private final String threadNamePrefix;
 public static Log4jThreadFactory createDaemonThreadFactory(String);
 public static Log4jThreadFactory createThreadFactory(String);
 public void Log4jThreadFactory(String, boolean, int);
 public Thread newThread(Runnable);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemMillisClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemMillisClock implements Clock {
 public void SystemMillisClock();
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/util/datetime/FastDateFormat.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDateFormat extends Format implements DateParser, DatePrinter {
 private static final long serialVersionUID = 2;
 public static final int FULL = 0;
 public static final int LONG = 1;
 public static final int MEDIUM = 2;
 public static final int SHORT = 3;
 private static final FormatCache cache;
 private final FastDatePrinter printer;
 private final FastDateParser parser;
 public static FastDateFormat getInstance();
 public static FastDateFormat getInstance(String);
 public static FastDateFormat getInstance(String, java.util.TimeZone);
 public static FastDateFormat getInstance(String, java.util.Locale);
 public static FastDateFormat getInstance(String, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getDateInstance(int);
 public static FastDateFormat getDateInstance(int, java.util.Locale);
 public static FastDateFormat getDateInstance(int, java.util.TimeZone);
 public static FastDateFormat getDateInstance(int, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getTimeInstance(int);
 public static FastDateFormat getTimeInstance(int, java.util.Locale);
 public static FastDateFormat getTimeInstance(int, java.util.TimeZone);
 public static FastDateFormat getTimeInstance(int, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getDateTimeInstance(int, int);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.Locale);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.TimeZone);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.TimeZone, java.util.Locale);
 protected void FastDateFormat(String, java.util.TimeZone, java.util.Locale);
 protected void FastDateFormat(String, java.util.TimeZone, java.util.Locale, java.util.Date);
 public StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 public String format(long);
 public String format(java.util.Date);
 public String format(java.util.Calendar);
 public Appendable format(long, Appendable);
 public Appendable format(java.util.Date, Appendable);
 public Appendable format(java.util.Calendar, Appendable);
 public java.util.Date parse(String) throws java.text.ParseException;
 public java.util.Date parse(String, java.text.ParsePosition);
 public boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 public Object parseObject(String, java.text.ParsePosition);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public int getMaxLengthEstimate();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwentyFourHourField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwentyFourHourField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$TwentyFourHourField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/OptionConverter.class

package org.apache.logging.log4j.core.util;
public final synchronized class OptionConverter {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int ONE_K = 1024;
 private void OptionConverter();
 public static String[] concatenateArrays(String[], String[]);
 public static String convertSpecialChars(String);
 public static Object instantiateByKey(java.util.Properties, String, Class, Object);
 public static boolean toBoolean(String, boolean);
 public static int toInt(String, int);
 public static org.apache.logging.log4j.Level toLevel(String, org.apache.logging.log4j.Level);
 public static long toFileSize(String, long);
 public static String findAndSubst(String, java.util.Properties);
 public static Object instantiateByClassName(String, Class, Object);
 public static String substVars(String, java.util.Properties) throws IllegalArgumentException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Transform.class

package org.apache.logging.log4j.core.util;
public final synchronized class Transform {
 private static final String CDATA_START = <![CDATA[;
 private static final String CDATA_END =]]>;
 private static final String CDATA_PSEUDO_END =]]>;
 private static final String CDATA_EMBEDED_END =]]>]]><![CDATA[;
 private static final int CDATA_END_LEN;
 private void Transform();
 public static String escapeHtmlTags(String);
 public static void appendEscapingCData(StringBuilder, String);
 public static String escapeJsonControlCharacters(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemNanoClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemNanoClock implements NanoClock {
 public void SystemNanoClock();
 public long nanoTime();
}

org/apache/logging/log4j/core/util/FileUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class FileUtils {
 private static final String PROTOCOL_FILE = file;
 private static final String JBOSS_FILE = vfsfile;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void FileUtils();
 public static java.io.File fileFromUri(java.net.URI);
 public static boolean isFile(java.net.URL);
 public static String getFileExtension(java.io.File);
 public static void mkdir(java.io.File, boolean) throws java.io.IOException;
 public static void makeParentDirs(java.io.File) throws java.io.IOException;
 public static void defineFilePosixAttributeView(java.nio.file.Path, java.util.Set, String, String) throws java.io.IOException;
 public static boolean isFilePosixAttributeViewSupported();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Throwables.class

package org.apache.logging.log4j.core.util;
public final synchronized class Throwables {
 private void Throwables();
 public static Throwable getRootCause(Throwable);
 public static java.util.List toStringList(Throwable);
 public static void rethrow(Throwable);
 private static void rethrow0(Throwable) throws Throwable;
}

org/apache/logging/log4j/core/util/AbstractWatcher.class

package org.apache.logging.log4j.core.util;
public abstract synchronized class AbstractWatcher implements Watcher {
 private final org.apache.logging.log4j.core.config.Reconfigurable reconfigurable;
 private final java.util.List configurationListeners;
 private final Log4jThreadFactory threadFactory;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private Source source;
 public void AbstractWatcher(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List);
 public java.util.List getListeners();
 public void modified();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public abstract long getLastModified();
 public abstract boolean isModified();
 public void watching(Source);
 public Source getSource();
}

org/apache/logging/log4j/core/config/LockingReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class LockingReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private final LoggerConfig loggerConfig;
 private final java.util.concurrent.locks.ReadWriteLock reconfigureLock;
 private volatile boolean isStopping;
 public void LockingReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 private boolean beforeLogEvent();
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ClassArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final String ATTR_CLASS_NAME = className;
 private String className;
 public void ClassArbiter$Builder();
 public ClassArbiter$Builder setClassName(String);
 public ClassArbiter$Builder asBuilder();
 public ClassArbiter build();
}

org/apache/logging/log4j/core/config/plugins/PluginBuilderAttribute.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginBuilderAttribute extends annotation.Annotation {
 public abstract String value();
 public abstract boolean sensitive();
}

org/apache/logging/log4j/core/config/plugins/util/PluginUtil.class

package org.apache.logging.log4j.core.config.plugins.util;
public final synchronized class PluginUtil {
 private void PluginUtil();
 public static java.util.Map collectPluginsByCategory(String);
 public static java.util.Map collectPluginsByCategoryAndPackage(String, java.util.List);
 public static Object instantiatePlugin(Class);
 public static reflect.Method findPluginFactoryMethod(Class);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$PluginElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$PluginElementVisitor extends javax.lang.model.util.SimpleElementVisitor7 {
 private final javax.lang.model.util.Elements elements;
 private void PluginProcessor$PluginElementVisitor(javax.lang.model.util.Elements);
 public PluginEntry visitType(javax.lang.model.element.TypeElement, org.apache.logging.log4j.core.config.plugins.Plugin);
}

org/apache/logging/log4j/core/config/plugins/PluginElement.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginElement extends annotation.Annotation {
 public abstract String value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BigIntegerConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BigIntegerConverter implements TypeConverter {
 public void TypeConverters$BigIntegerConverter();
 public java.math.BigInteger convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public abstract interface TypeConverter {
 public abstract Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$SecurityProviderConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$SecurityProviderConverter implements TypeConverter {
 public void TypeConverters$SecurityProviderConverter();
 public java.security.Provider convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$StringConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$StringConverter implements TypeConverter {
 public void TypeConverters$StringConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/config/Reconfigurable.class

package org.apache.logging.log4j.core.config;
public abstract interface Reconfigurable {
 public abstract Configuration reconfigure();
}

org/apache/logging/log4j/core/config/ConfigurationException.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationException extends RuntimeException {
 private static final long serialVersionUID = -2413951820300775294;
 public void ConfigurationException(String);
 public void ConfigurationException(String, Throwable);
 public void ConfigurationException(Throwable);
}

org/apache/logging/log4j/core/config/status/StatusConfiguration$Verbosity.class

package org.apache.logging.log4j.core.config.status;
public final synchronized enum StatusConfiguration$Verbosity {
 public static final StatusConfiguration$Verbosity QUIET;
 public static final StatusConfiguration$Verbosity VERBOSE;
 public static StatusConfiguration$Verbosity[] values();
 public static StatusConfiguration$Verbosity valueOf(String);
 private void StatusConfiguration$Verbosity(String, int);
 public static StatusConfiguration$Verbosity toVerbosity(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration$ErrorType.class

package org.apache.logging.log4j.core.config.xml;
final synchronized enum XmlConfiguration$ErrorType {
 public static final XmlConfiguration$ErrorType CLASS_NOT_FOUND;
 public static XmlConfiguration$ErrorType[] values();
 public static XmlConfiguration$ErrorType valueOf(String);
 private void XmlConfiguration$ErrorType(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration$Status.class

package org.apache.logging.log4j.core.config.xml;
synchronized class XmlConfiguration$Status {
 private final org.w3c.dom.Element element;
 private final String name;
 private final XmlConfiguration$ErrorType errorType;
 public void XmlConfiguration$Status(String, org.w3c.dom.Element, XmlConfiguration$ErrorType);
 public String toString();
}

org/apache/logging/log4j/core/config/json/JsonConfigurationFactory.class

package org.apache.logging.log4j.core.config.json;
public synchronized class JsonConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 private static final String[] SUFFIXES;
 private static final String[] dependencies;
 private final boolean isActive;
 public void JsonConfigurationFactory();
 protected boolean isActive();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$1.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$1 {
 void LoggerConfig$LoggerConfigPredicate$1(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/ConfigurationAware.class

package org.apache.logging.log4j.core.config;
public abstract interface ConfigurationAware {
 public abstract void setConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/ReliabilityStrategyFactory.class

package org.apache.logging.log4j.core.config;
public final synchronized class ReliabilityStrategyFactory {
 private void ReliabilityStrategyFactory();
 public static ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultLoggerComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder {
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, boolean);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, String);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultPropertyComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultPropertyComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.PropertyComponentBuilder {
 public void DefaultPropertyComponentBuilder(DefaultConfigurationBuilder, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
public synchronized class DefaultConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder {
 private static final String INDENT = ;
 private final org.apache.logging.log4j.core.config.builder.api.Component root;
 private org.apache.logging.log4j.core.config.builder.api.Component loggers;
 private org.apache.logging.log4j.core.config.builder.api.Component appenders;
 private org.apache.logging.log4j.core.config.builder.api.Component filters;
 private org.apache.logging.log4j.core.config.builder.api.Component properties;
 private org.apache.logging.log4j.core.config.builder.api.Component customLevels;
 private org.apache.logging.log4j.core.config.builder.api.Component scripts;
 private final Class clazz;
 private org.apache.logging.log4j.core.config.ConfigurationSource source;
 private int monitorInterval;
 private org.apache.logging.log4j.Level level;
 private String verbosity;
 private String destination;
 private String packages;
 private String shutdownFlag;
 private long shutdownTimeoutMillis;
 private String advertiser;
 private org.apache.logging.log4j.core.LoggerContext loggerContext;
 private String name;
 public static void formatXml(javax.xml.transform.Source, javax.xml.transform.Result) throws javax.xml.transform.TransformerConfigurationException, javax.xml.transform.TransformerFactoryConfigurationError, javax.xml.transform.TransformerException;
 public void DefaultConfigurationBuilder();
 public void DefaultConfigurationBuilder(Class);
 protected org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.Component, org.apache.logging.log4j.core.config.builder.api.ComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder addProperty(String, String);
 public BuiltConfiguration build();
 public BuiltConfiguration build(boolean);
 private String formatXml(String) throws javax.xml.transform.TransformerConfigurationException, javax.xml.transform.TransformerException, javax.xml.transform.TransformerFactoryConfigurationError;
 public void writeXmlConfiguration(java.io.OutputStream) throws java.io.IOException;
 public String toXmlConfiguration();
 private void writeXmlConfiguration(javax.xml.stream.XMLStreamWriter) throws javax.xml.stream.XMLStreamException;
 private void writeXmlSection(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 private void writeXmlComponent(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 private void writeXmlAttributes(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 public org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder newScript(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder newScriptFile(String);
 public org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder newScriptFile(String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder newAppender(String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder newAppenderRef(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger();
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.PropertyComponentBuilder newProperty(String, String);
 public org.apache.logging.log4j.core.config.builder.api.KeyValuePairComponentBuilder newKeyValuePair(String, String);
 public org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder newCustomLevel(String, int);
 public org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder newFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder newFilter(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder newLayout(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger();
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setAdvertiser(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setConfigurationName(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setMonitorInterval(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setPackages(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setShutdownHook(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setShutdownTimeout(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setStatusLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setVerbosity(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setDestination(String);
 public void setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder addRootProperty(String, String);
}

org/apache/logging/log4j/core/layout/JacksonFactory$XML.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$XML extends JacksonFactory {
 static final int DEFAULT_INDENT = 1;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 public void JacksonFactory$XML(boolean, boolean);
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForContextMap();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/TextEncoderHelper.class

package org.apache.logging.log4j.core.layout;
public synchronized class TextEncoderHelper {
 private void TextEncoderHelper();
 static void encodeTextFallBack(java.nio.charset.Charset, StringBuilder, ByteBufferDestination);
 static void encodeText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, StringBuilder, ByteBufferDestination) throws java.nio.charset.CharacterCodingException;
 private static void writeEncodedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, ByteBufferDestination, java.nio.charset.CoderResult);
 private static void writeChunkedEncodedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void encodeChunkedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, StringBuilder, ByteBufferDestination);
 public static void encodeText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, ByteBufferDestination);
 private static java.nio.ByteBuffer writeAndEncodeAsMuchAsPossible(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, boolean, ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void throwException(java.nio.charset.CoderResult);
 private static java.nio.ByteBuffer encodeAsMuchAsPossible(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, boolean, ByteBufferDestination, java.nio.ByteBuffer);
 private static java.nio.ByteBuffer drainIfByteBufferFull(ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void flushRemainingBytes(java.nio.charset.CharsetEncoder, ByteBufferDestination, java.nio.ByteBuffer);
 static int copy(StringBuilder, int, java.nio.CharBuffer);
}

org/apache/logging/log4j/core/layout/internal/ListChecker.class

package org.apache.logging.log4j.core.layout.internal;
public abstract interface ListChecker {
 public static final ListChecker$NoopChecker NOOP_CHECKER;
 public abstract boolean check(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/internal/ExcludeChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class ExcludeChecker implements ListChecker {
 private final java.util.List list;
 public void ExcludeChecker(java.util.List);
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/LockingStringBuilderEncoder.class

package org.apache.logging.log4j.core.layout;
public synchronized class LockingStringBuilderEncoder implements Encoder {
 private final java.nio.charset.Charset charset;
 private final java.nio.charset.CharsetEncoder charsetEncoder;
 private final java.nio.CharBuffer cachedCharBuffer;
 public void LockingStringBuilderEncoder(java.nio.charset.Charset);
 public void LockingStringBuilderEncoder(java.nio.charset.Charset, int);
 private java.nio.CharBuffer getCharBuffer();
 public void encode(StringBuilder, ByteBufferDestination);
 private void logEncodeTextException(Exception, StringBuilder, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$LogEventWithAdditionalFields.class

package org.apache.logging.log4j.core.layout;
public synchronized class AbstractJacksonLayout$LogEventWithAdditionalFields {
 private final Object logEvent;
 private final java.util.Map additionalFields;
 public void AbstractJacksonLayout$LogEventWithAdditionalFields(Object, java.util.Map);
 public Object getLogEvent();
 public java.util.Map getAdditionalFields();
}

org/apache/logging/log4j/core/layout/JsonLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class JsonLayout extends AbstractJacksonLayout {
 private static final String DEFAULT_FOOTER =];
 private static final String DEFAULT_HEADER = [;
 static final String CONTENT_TYPE = application/json;
 protected void JsonLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean);
 private void JsonLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[], boolean);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static JsonLayout createLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 public static JsonLayout$Builder newBuilder();
 public static JsonLayout createDefaultLayout();
 public void toSerializable(org.apache.logging.log4j.core.LogEvent, java.io.Writer) throws java.io.IOException;
}

org/apache/logging/log4j/core/Version.class

package org.apache.logging.log4j.core;
public synchronized class Version {
 public void Version();
 public static void main(String[]);
 public static String getProductString();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfig extends org.apache.logging.log4j.core.config.LoggerConfig {
 private static final ThreadLocal ASYNC_LOGGER_ENTERED;
 private final AsyncLoggerConfigDelegate delegate;
 protected void AsyncLoggerConfig(String, java.util.List, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.Level, boolean, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, boolean);
 protected void log(org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.config.LoggerConfig$LoggerConfigPredicate);
 protected void callAppenders(org.apache.logging.log4j.core.LogEvent);
 private void logToAsyncDelegate(org.apache.logging.log4j.core.LogEvent);
 private void handleQueueFull(org.apache.logging.log4j.core.LogEvent);
 private void populateLazilyInitializedFields(org.apache.logging.log4j.core.LogEvent);
 void logInBackgroundThread(org.apache.logging.log4j.core.LogEvent);
 void logToAsyncLoggerConfigsOnCurrentThread(org.apache.logging.log4j.core.LogEvent);
 private String displayName();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, String, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(boolean, org.apache.logging.log4j.Level, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 protected static boolean includeLocation(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$Log4jEventWrapper.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDisruptor$Log4jEventWrapper {
 private AsyncLoggerConfig loggerConfig;
 private org.apache.logging.log4j.core.LogEvent event;
 public void AsyncLoggerConfigDisruptor$Log4jEventWrapper();
 public void AsyncLoggerConfigDisruptor$Log4jEventWrapper(org.apache.logging.log4j.core.impl.MutableLogEvent);
 public void clear();
 public String toString();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy$2.class

package org.apache.logging.log4j.core.async;
final synchronized enum ThreadNameCachingStrategy$2 {
 void ThreadNameCachingStrategy$2(String, int);
 public String getThreadName();
}

org/apache/logging/log4j/core/async/LinkedTransferQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class LinkedTransferQueueFactory implements BlockingQueueFactory {
 public void LinkedTransferQueueFactory();
 public java.util.concurrent.BlockingQueue create(int);
 public static LinkedTransferQueueFactory createFactory();
}

org/apache/logging/log4j/core/async/AsyncLogger$2.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$2 extends AsyncLogger$TranslatorType {
 void AsyncLogger$2(AsyncLogger);
 void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/ArrayBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class ArrayBlockingQueueFactory implements BlockingQueueFactory {
 public void ArrayBlockingQueueFactory();
 public java.util.concurrent.BlockingQueue create(int);
 public static ArrayBlockingQueueFactory createFactory();
}

org/apache/logging/log4j/core/lookup/AbstractLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class AbstractLookup implements StrLookup {
 public void AbstractLookup();
 public String lookup(String);
}

org/apache/logging/log4j/core/lookup/Log4jLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class Log4jLookup extends AbstractConfigurationAwareLookup {
 public static final String KEY_CONFIG_LOCATION = configLocation;
 public static final String KEY_CONFIG_PARENT_LOCATION = configParentLocation;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void Log4jLookup();
 private static String asPath(java.net.URI);
 private static java.net.URI getParent(java.net.URI) throws java.net.URISyntaxException;
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/XmlLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class XmlLogEventParser extends AbstractJacksonLogEventParser {
 public void XmlLogEventParser();
}

org/apache/logging/log4j/core/time/MutableInstant.class

package org.apache.logging.log4j.core.time;
public synchronized class MutableInstant implements Instant, java.io.Serializable, java.time.temporal.TemporalAccessor {
 private static final int MILLIS_PER_SECOND = 1000;
 private static final int NANOS_PER_MILLI = 1000000;
 private static final int NANOS_PER_SECOND = 1000000000;
 private long epochSecond;
 private int nanoOfSecond;
 public void MutableInstant();
 public long getEpochSecond();
 public int getNanoOfSecond();
 public long getEpochMillisecond();
 public int getNanoOfMillisecond();
 public void initFrom(Instant);
 public void initFromEpochMilli(long, int);
 private void validateNanoOfMillisecond(int);
 public void initFrom(org.apache.logging.log4j.core.util.Clock);
 public void initFromEpochSecond(long, int);
 private void validateNanoOfSecond(int);
 public static void instantToMillisAndNanos(long, int, long[]);
 public boolean isSupported(java.time.temporal.TemporalField);
 public long getLong(java.time.temporal.TemporalField);
 public java.time.temporal.ValueRange range(java.time.temporal.TemporalField);
 public int get(java.time.temporal.TemporalField);
 public Object query(java.time.temporal.TemporalQuery);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public void formatTo(StringBuilder);
}

org/apache/logging/log4j/core/Core.class

package org.apache.logging.log4j.core;
public synchronized class Core {
 public static final String CATEGORY_NAME = Core;
 public void Core();
}

org/apache/logging/log4j/core/LogEvent.class

package org.apache.logging.log4j.core;
public abstract interface LogEvent extends java.io.Serializable {
 public abstract LogEvent toImmutable();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract String getLoggerFqcn();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract long getTimeMillis();
 public abstract time.Instant getInstant();
 public abstract StackTraceElement getSource();
 public abstract String getThreadName();
 public abstract long getThreadId();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract impl.ThrowableProxy getThrownProxy();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
 public abstract long getNanoTime();
}

org/apache/logging/log4j/core/filter/MapFilter.class

package org.apache.logging.log4j.core.filter;
public synchronized class MapFilter extends AbstractFilter {
 private final org.apache.logging.log4j.util.IndexedStringMap map;
 private final boolean isAnd;
 protected void MapFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 protected boolean filter(org.apache.logging.log4j.message.MapMessage);
 protected boolean filter(java.util.Map);
 protected boolean filter(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 protected boolean isAnd();
 protected java.util.Map getMap();
 protected org.apache.logging.log4j.util.IndexedReadOnlyStringMap getStringMap();
 public static MapFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/DenyAllFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class DenyAllFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void DenyAllFilter$Builder();
 public DenyAllFilter build();
}

org/apache/logging/log4j/core/filter/AbstractFilter.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilter extends org.apache.logging.log4j.core.AbstractLifeCycle implements org.apache.logging.log4j.core.Filter {
 protected final org.apache.logging.log4j.core.Filter$Result onMatch;
 protected final org.apache.logging.log4j.core.Filter$Result onMismatch;
 protected void AbstractFilter();
 protected void AbstractFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 protected boolean equalsImpl(Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public final org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public final org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 protected int hashCodeImpl();
 public String toString();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class NoMarkerFilter extends AbstractFilter {
 private void NoMarkerFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public static NoMarkerFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/filter/DynamicThresholdFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class DynamicThresholdFilter extends AbstractFilter {
 private org.apache.logging.log4j.Level defaultThreshold;
 private final String key;
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 private java.util.Map levelMap;
 public static DynamicThresholdFilter createFilter(String, org.apache.logging.log4j.core.util.KeyValuePair[], org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private void DynamicThresholdFilter(String, java.util.Map, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public boolean equals(Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.ReadOnlyStringMap);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String getKey();
 public java.util.Map getLevelMap();
 public int hashCode();
 public String toString();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$UnixFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$UnixFormatter extends DatePatternConverter$Formatter {
 private void DatePatternConverter$UnixFormatter();
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ArrayPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract interface ArrayPatternConverter extends PatternConverter {
 public abstract transient void format(StringBuilder, Object[]);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EncodingPatternConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final EncodingPatternConverter$EscapeFormat escapeFormat;
 private void EncodingPatternConverter(java.util.List, EncodingPatternConverter$EscapeFormat);
 public boolean handlesThrowable();
 public static EncodingPatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EqualsBaseReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class EqualsBaseReplacementConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final java.util.List substitutionFormatters;
 private final String substitution;
 private final String testString;
 protected void EqualsBaseReplacementConverter(String, String, java.util.List, String, String, PatternParser);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 protected abstract boolean equals(String, StringBuilder, int, int);
 void parseSubstitution(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/LoggerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LoggerPatternConverter extends NamePatternConverter {
 private static final LoggerPatternConverter INSTANCE;
 private void LoggerPatternConverter(String[]);
 public static LoggerPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class LevelPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class MessagePatternConverter extends LogEventPatternConverter {
 private static final String LOOKUPS = lookups;
 private static final String NOLOOKUPS = nolookups;
 private void MessagePatternConverter();
 private static TextRenderer loadMessageRenderer(String[]);
 public static MessagePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private static String[] withoutLookupOptions(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy$2.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy$2 {
 void NameAbbreviator$MaxElementAbbreviator$Strategy$2(String, int, int);
 void abbreviate(int, String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$MaxElementAbbreviator extends NameAbbreviator {
 private final int count;
 private final NameAbbreviator$MaxElementAbbreviator$Strategy strategy;
 public void NameAbbreviator$MaxElementAbbreviator(int, NameAbbreviator$MaxElementAbbreviator$Strategy);
 public void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/VariablesNotEmptyReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class VariablesNotEmptyReplacementConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private void VariablesNotEmptyReplacementConverter(java.util.List);
 public static VariablesNotEmptyReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/jackson/ContextDataSerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataSerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 private static final org.apache.logging.log4j.util.TriConsumer WRITE_STRING_FIELD_INTO;
 protected void ContextDataSerializer();
 public void serialize(org.apache.logging.log4j.util.ReadOnlyStringMap, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListSerializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ContextDataAsEntryListSerializer$1 implements org.apache.logging.log4j.util.BiConsumer {
 int i;
 void ContextDataAsEntryListSerializer$1(ContextDataAsEntryListSerializer, MapEntry[]);
 public void accept(String, Object);
}

META-INF/versions/9/org/apache/logging/log4j/core/util/SystemClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemClock implements Clock, org.apache.logging.log4j.core.time.PreciseClock {
 public void SystemClock();
 public long currentTimeMillis();
 public void init(org.apache.logging.log4j.core.time.MutableInstant);
}

META-INF/NOTICE

Apache Log4j Core
Copyright 1999-2012 Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).

ResolverUtil.java
Copyright 2005-2006 Tim Fennell

org/apache/logging/log4j/core/appender/rewrite/RewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public abstract interface RewritePolicy {
 public abstract org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/OutputStreamManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class OutputStreamManager extends AbstractManager implements org.apache.logging.log4j.core.layout.ByteBufferDestination {
 protected final org.apache.logging.log4j.core.Layout layout;
 protected java.nio.ByteBuffer byteBuffer;
 private volatile java.io.OutputStream outputStream;
 private boolean skipFooter;
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean);
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean, int);
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void OutputStreamManager(org.apache.logging.log4j.core.LoggerContext, java.io.OutputStream, String, boolean, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 public static OutputStreamManager getManager(String, Object, ManagerFactory);
 protected java.io.OutputStream createOutputStream() throws java.io.IOException;
 public void skipFooter(boolean);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected void writeHeader(java.io.OutputStream);
 protected void writeFooter();
 public boolean isOpen();
 public boolean hasOutputStream();
 protected java.io.OutputStream getOutputStream() throws java.io.IOException;
 protected void setOutputStream(java.io.OutputStream);
 protected void write(byte[]);
 protected void write(byte[], boolean);
 public void writeBytes(byte[], int, int);
 protected void write(byte[], int, int);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 protected synchronized void flushDestination();
 protected synchronized void flushBuffer(java.nio.ByteBuffer);
 public synchronized void flush();
 protected synchronized boolean closeOutputStream();
 public java.nio.ByteBuffer getByteBuffer();
 public java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 public void writeBytes(java.nio.ByteBuffer);
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$1 {
}

org/apache/logging/log4j/core/appender/rolling/RolloverDescription.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverDescription {
 public abstract String getActiveFileName();
 public abstract boolean getAppend();
 public abstract action.Action getSynchronous();
 public abstract action.Action getAsynchronous();
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class TimeBasedTriggeringPolicy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private int interval;
 private boolean modulate;
 private int maxRandomDelay;
 public void TimeBasedTriggeringPolicy$Builder();
 public TimeBasedTriggeringPolicy build();
 public int getInterval();
 public boolean isModulate();
 public int getMaxRandomDelay();
 public TimeBasedTriggeringPolicy$Builder withInterval(int);
 public TimeBasedTriggeringPolicy$Builder withModulate(boolean);
 public TimeBasedTriggeringPolicy$Builder withMaxRandomDelay(int);
}

org/apache/logging/log4j/core/appender/rolling/FileSize.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class FileSize {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long KB = 1024;
 private static final long MB = 1048576;
 private static final long GB = 1073741824;
 private static final java.util.regex.Pattern VALUE_PATTERN;
 private void FileSize();
 public static long parse(String, long);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/DirectWriteRolloverStrategy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DirectWriteRolloverStrategy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String maxFiles;
 private String compressionLevelStr;
 private action.Action[] customActions;
 private boolean stopCustomActionsOnError;
 private String tempCompressedFilePattern;
 private org.apache.logging.log4j.core.config.Configuration config;
 public void DirectWriteRolloverStrategy$Builder();
 public DirectWriteRolloverStrategy build();
 public String getMaxFiles();
 public DirectWriteRolloverStrategy$Builder withMaxFiles(String);
 public String getCompressionLevelStr();
 public DirectWriteRolloverStrategy$Builder withCompressionLevelStr(String);
 public action.Action[] getCustomActions();
 public DirectWriteRolloverStrategy$Builder withCustomActions(action.Action[]);
 public boolean isStopCustomActionsOnError();
 public DirectWriteRolloverStrategy$Builder withStopCustomActionsOnError(boolean);
 public String getTempCompressedFilePattern();
 public DirectWriteRolloverStrategy$Builder withTempCompressedFilePattern(String);
 public org.apache.logging.log4j.core.config.Configuration getConfig();
 public DirectWriteRolloverStrategy$Builder withConfig(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/PatternProcessor.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class PatternProcessor {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final String KEY = FileConverter;
 private static final char YEAR_CHAR = 121;
 private static final char MONTH_CHAR = 77;
 private static final char[] WEEK_CHARS;
 private static final char[] DAY_CHARS;
 private static final char[] HOUR_CHARS;
 private static final char MINUTE_CHAR = 109;
 private static final char SECOND_CHAR = 115;
 private static final char MILLIS_CHAR = 83;
 private final org.apache.logging.log4j.core.pattern.ArrayPatternConverter[] patternConverters;
 private final org.apache.logging.log4j.core.pattern.FormattingInfo[] patternFields;
 private final FileExtension fileExtension;
 private long prevFileTime;
 private long nextFileTime;
 private long currentFileTime;
 private boolean isTimeBased;
 private RolloverFrequency frequency;
 private final String pattern;
 public String getPattern();
 public String toString();
 public void PatternProcessor(String);
 public void PatternProcessor(String, PatternProcessor);
 public void setTimeBased(boolean);
 public long getCurrentFileTime();
 public void setCurrentFileTime(long);
 public long getPrevFileTime();
 public void setPrevFileTime(long);
 public FileExtension getFileExtension();
 public long getNextTime(long, int, boolean);
 public void updateTime();
 private long debugGetNextTime(long);
 private String format(long);
 private void increment(java.util.Calendar, int, int, boolean);
 public final void formatFileName(StringBuilder, boolean, Object);
 public final void formatFileName(org.apache.logging.log4j.core.lookup.StrSubstitutor, StringBuilder, Object);
 public final void formatFileName(org.apache.logging.log4j.core.lookup.StrSubstitutor, StringBuilder, boolean, Object);
 protected final transient void formatFileName(StringBuilder, Object[]);
 private RolloverFrequency calculateFrequency(String);
 private org.apache.logging.log4j.core.pattern.PatternParser createPatternParser();
 private transient boolean patternContains(String, char[]);
 private boolean patternContains(String, char);
 public RolloverFrequency getFrequency();
 public long getNextFileTime();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractOutputStreamAppender$Builder extends AbstractAppender$Builder {
 private boolean bufferedIo;
 private int bufferSize;
 private boolean immediateFlush;
 public void AbstractOutputStreamAppender$Builder();
 public int getBufferSize();
 public boolean isBufferedIo();
 public boolean isImmediateFlush();
 public AbstractOutputStreamAppender$Builder withImmediateFlush(boolean);
 public AbstractOutputStreamAppender$Builder withBufferedIo(boolean);
 public AbstractOutputStreamAppender$Builder withBufferSize(int);
}

org/apache/logging/log4j/core/appender/WriterAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$FactoryData {
 private final org.apache.logging.log4j.core.StringLayout layout;
 private final String name;
 private final java.io.Writer writer;
 public void WriterAppender$FactoryData(java.io.Writer, String, org.apache.logging.log4j.core.StringLayout);
}

org/apache/logging/log4j/core/appender/HttpAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class HttpAppender$1 {
}

org/apache/logging/log4j/core/appender/RollingFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RollingFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private String filePattern;
 private boolean append;
 private boolean locking;
 private rolling.TriggeringPolicy policy;
 private rolling.RolloverStrategy strategy;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void RollingFileAppender$Builder();
 public RollingFileAppender build();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public RollingFileAppender$Builder withAdvertise(boolean);
 public RollingFileAppender$Builder withAdvertiseUri(String);
 public RollingFileAppender$Builder withAppend(boolean);
 public RollingFileAppender$Builder withFileName(String);
 public RollingFileAppender$Builder withCreateOnDemand(boolean);
 public RollingFileAppender$Builder withLocking(boolean);
 public String getFilePattern();
 public rolling.TriggeringPolicy getPolicy();
 public rolling.RolloverStrategy getStrategy();
 public RollingFileAppender$Builder withFilePattern(String);
 public RollingFileAppender$Builder withPolicy(rolling.TriggeringPolicy);
 public RollingFileAppender$Builder withStrategy(rolling.RolloverStrategy);
 public RollingFileAppender$Builder withFilePermissions(String);
 public RollingFileAppender$Builder withFileOwner(String);
 public RollingFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/WriterAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class WriterAppender extends AbstractWriterAppender {
 private static WriterAppender$WriterManagerFactory factory;
 public static WriterAppender createAppender(org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, java.io.Writer, String, boolean, boolean);
 private static WriterManager getManager(java.io.Writer, boolean, org.apache.logging.log4j.core.StringLayout);
 public static WriterAppender$Builder newBuilder();
 private void WriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, WriterManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SocketAppender$AbstractBuilder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class SocketAppender$AbstractBuilder extends AbstractOutputStreamAppender$Builder {
 private boolean advertise;
 private int connectTimeoutMillis;
 private String host;
 private boolean immediateFail;
 private int port;
 private org.apache.logging.log4j.core.net.Protocol protocol;
 private int reconnectDelayMillis;
 private org.apache.logging.log4j.core.net.SocketOptions socketOptions;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 public void SocketAppender$AbstractBuilder();
 public boolean getAdvertise();
 public int getConnectTimeoutMillis();
 public String getHost();
 public int getPort();
 public org.apache.logging.log4j.core.net.Protocol getProtocol();
 public org.apache.logging.log4j.core.net.ssl.SslConfiguration getSslConfiguration();
 public boolean getImmediateFail();
 public SocketAppender$AbstractBuilder withAdvertise(boolean);
 public SocketAppender$AbstractBuilder withConnectTimeoutMillis(int);
 public SocketAppender$AbstractBuilder withHost(String);
 public SocketAppender$AbstractBuilder withImmediateFail(boolean);
 public SocketAppender$AbstractBuilder withPort(int);
 public SocketAppender$AbstractBuilder withProtocol(org.apache.logging.log4j.core.net.Protocol);
 public SocketAppender$AbstractBuilder withReconnectDelayMillis(int);
 public SocketAppender$AbstractBuilder withSocketOptions(org.apache.logging.log4j.core.net.SocketOptions);
 public SocketAppender$AbstractBuilder withSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public int getReconnectDelayMillis();
 public org.apache.logging.log4j.core.net.SocketOptions getSocketOptions();
}

org/apache/logging/log4j/core/appender/db/ColumnMapping$Builder.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class ColumnMapping$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.StringLayout layout;
 private String literal;
 private String name;
 private String parameter;
 private String pattern;
 private String source;
 private Class type;
 public void ColumnMapping$Builder();
 public ColumnMapping build();
 public ColumnMapping$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ColumnMapping$Builder setLayout(org.apache.logging.log4j.core.StringLayout);
 public ColumnMapping$Builder setLiteral(String);
 public ColumnMapping$Builder setName(String);
 public ColumnMapping$Builder setParameter(String);
 public ColumnMapping$Builder setPattern(String);
 public ColumnMapping$Builder setSource(String);
 public ColumnMapping$Builder setType(Class);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class ColumnConfig {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String columnName;
 private final String columnNameKey;
 private final org.apache.logging.log4j.core.layout.PatternLayout layout;
 private final String literalValue;
 private final boolean eventTimestamp;
 private final boolean unicode;
 private final boolean clob;
 public static ColumnConfig createColumnConfig(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String);
 public static ColumnConfig$Builder newBuilder();
 private void ColumnConfig(String, org.apache.logging.log4j.core.layout.PatternLayout, String, boolean, boolean, boolean);
 public String getColumnName();
 public String getColumnNameKey();
 public org.apache.logging.log4j.core.layout.PatternLayout getLayout();
 public String getLiteralValue();
 public boolean isClob();
 public boolean isEventTimestamp();
 public boolean isUnicode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/DataSourceConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class DataSourceConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final javax.sql.DataSource dataSource;
 private final String description;
 private void DataSourceConnectionSource(String, javax.sql.DataSource);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String toString();
 public static DataSourceConnectionSource createConnectionSource(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/ColumnMapping.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class ColumnMapping {
 public static final ColumnMapping[] EMPTY_ARRAY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.StringLayout layout;
 private final String literalValue;
 private final String name;
 private final String nameKey;
 private final String parameter;
 private final String source;
 private final Class type;
 public static ColumnMapping$Builder newBuilder();
 public static String toKey(String);
 private void ColumnMapping(String, String, org.apache.logging.log4j.core.StringLayout, String, String, Class);
 public org.apache.logging.log4j.core.StringLayout getLayout();
 public String getLiteralValue();
 public String getName();
 public String getNameKey();
 public String getParameter();
 public String getSource();
 public Class getType();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/HttpManager.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class HttpManager extends AbstractManager {
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 protected void HttpManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.LoggerContext, String);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public void startup();
 public abstract void send(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent) throws Exception;
}

org/apache/logging/log4j/core/appender/FailoversPlugin.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FailoversPlugin {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void FailoversPlugin();
 public static transient String[] createFailovers(org.apache.logging.log4j.core.config.AppenderRef[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$CreatedRouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
final synchronized class RoutingAppender$CreatedRouteAppenderControl extends RoutingAppender$RouteAppenderControl {
 private volatile boolean pendingDeletion;
 private final java.util.concurrent.atomic.AtomicInteger depth;
 void RoutingAppender$CreatedRouteAppenderControl(org.apache.logging.log4j.core.Appender);
 void checkout();
 void release();
 void tryStopAppender();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$1.class

package org.apache.logging.log4j.core.appender.routing;
synchronized class RoutingAppender$1 {
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$RouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
abstract synchronized class RoutingAppender$RouteAppenderControl extends org.apache.logging.log4j.core.config.AppenderControl {
 void RoutingAppender$RouteAppenderControl(org.apache.logging.log4j.core.Appender);
 abstract void checkout();
 abstract void release();
}

org/apache/logging/log4j/core/appender/routing/Routes$1.class

package org.apache.logging.log4j.core.appender.routing;
synchronized class Routes$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender$Builder.class

package org.apache.logging.log4j.core.appender.nosql;
public synchronized class NoSqlAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private int bufferSize;
 private NoSqlProvider provider;
 public void NoSqlAppender$Builder();
 public NoSqlAppender build();
 public NoSqlAppender$Builder setBufferSize(int);
 public NoSqlAppender$Builder setProvider(NoSqlProvider);
}

org/apache/logging/log4j/core/appender/mom/JmsManager$1.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender$Builder.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class KafkaAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String retryCount;
 private String topic;
 private String key;
 private boolean syncSend;
 public void KafkaAppender$Builder();
 public KafkaAppender build();
 public Integer getRetryCount();
 public String getTopic();
 public boolean isSyncSend();
 public KafkaAppender$Builder setKey(String);
 public KafkaAppender$Builder setSyncSend(boolean);
 public KafkaAppender$Builder setTopic(String);
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqAppender.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
public final synchronized class JeroMqAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private static final int DEFAULT_BACKLOG = 100;
 private static final int DEFAULT_IVL = 100;
 private static final int DEFAULT_RCV_HWM = 1000;
 private static final int DEFAULT_SND_HWM = 1000;
 private final JeroMqManager manager;
 private final java.util.List endpoints;
 private int sendRcFalse;
 private int sendRcTrue;
 private void JeroMqAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, java.util.List, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, org.apache.logging.log4j.core.config.Property[]);
 public static JeroMqAppender createAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Property[], boolean, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean);
 public synchronized void append(org.apache.logging.log4j.core.LogEvent);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 int getSendRcFalse();
 int getSendRcTrue();
 void resetSendRcs();
 public String toString();
}

org/apache/logging/log4j/core/impl/ContextAnchor.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ContextAnchor {
 public static final ThreadLocal THREAD_CONTEXT;
 private void ContextAnchor();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LogEventFactory.class

package org.apache.logging.log4j.core.impl;
public abstract interface LogEventFactory extends LocationAwareLogEventFactory {
 public abstract org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
}

org/apache/logging/log4j/core/impl/ThrowableFormatOptions.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ThrowableFormatOptions {
 private static final int DEFAULT_LINES = 2147483647;
 protected static final ThrowableFormatOptions DEFAULT;
 private static final String FULL = full;
 private static final String NONE = none;
 private static final String SHORT = short;
 private final org.apache.logging.log4j.core.pattern.TextRenderer textRenderer;
 private final int lines;
 private final String separator;
 private final String suffix;
 private final java.util.List ignorePackages;
 public static final String CLASS_NAME = short.className;
 public static final String METHOD_NAME = short.methodName;
 public static final String LINE_NUMBER = short.lineNumber;
 public static final String FILE_NAME = short.fileName;
 public static final String MESSAGE = short.message;
 public static final String LOCALIZED_MESSAGE = short.localizedMessage;
 protected void ThrowableFormatOptions(int, String, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 protected void ThrowableFormatOptions(java.util.List);
 protected void ThrowableFormatOptions();
 public int getLines();
 public String getSeparator();
 public org.apache.logging.log4j.core.pattern.TextRenderer getTextRenderer();
 public java.util.List getIgnorePackages();
 public boolean allLines();
 public boolean anyLines();
 public int minLines(int);
 public boolean hasPackages();
 public String toString();
 public static ThrowableFormatOptions newInstance(String[]);
 public String getSuffix();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate$Type$2.class

package org.apache.logging.log4j.core.tools;
final synchronized enum Generate$Type$2 {
 void Generate$Type$2(String, int);
 String imports();
 String declaration();
 String constructor();
 Class generator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Interpreter$1.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Interpreter$1 implements CommandLine$ITypeConverter {
 void CommandLine$Interpreter$1(CommandLine$Interpreter, Class);
 public Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$TextTable.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$TextTable {
 public final CommandLine$Help$Column[] columns;
 protected final java.util.List columnValues;
 public int indentWrappedLines;
 private final CommandLine$Help$Ansi ansi;
 public void CommandLine$Help$TextTable(CommandLine$Help$Ansi);
 public transient void CommandLine$Help$TextTable(CommandLine$Help$Ansi, int[]);
 public transient void CommandLine$Help$TextTable(CommandLine$Help$Ansi, CommandLine$Help$Column[]);
 public CommandLine$Help$Ansi$Text textAt(int, int);
 public CommandLine$Help$Ansi$Text cellAt(int, int);
 public int rowCount();
 public void addEmptyRow();
 public transient void addRowValues(String[]);
 public transient void addRowValues(CommandLine$Help$Ansi$Text[]);
 public CommandLine$Help$TextTable$Cell putValue(int, int, CommandLine$Help$Ansi$Text);
 private static int length(CommandLine$Help$Ansi$Text);
 private int copy(java.text.BreakIterator, CommandLine$Help$Ansi$Text, CommandLine$Help$Ansi$Text, int);
 private static int copy(CommandLine$Help$Ansi$Text, CommandLine$Help$Ansi$Text, int);
 public StringBuilder toString(StringBuilder);
 public String toString();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BigDecimalConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BigDecimalConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BigDecimalConverter();
 public java.math.BigDecimal convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IOptionRenderer {
 public abstract CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$OverwrittenOptionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$OverwrittenOptionException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 1338029208271055776;
 public void CommandLine$OverwrittenOptionException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Parameters.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Parameters extends annotation.Annotation {
 public abstract String index();
 public abstract String[] description();
 public abstract String arity();
 public abstract String paramLabel();
 public abstract Class[] type();
 public abstract String split();
 public abstract boolean hidden();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$IntegerConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$IntegerConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$IntegerConverter();
 public Integer convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharSequenceConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharSequenceConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharSequenceConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunLast.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunLast implements CommandLine$IParseResultHandler {
 public void CommandLine$RunLast();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/net/TcpSocketManager$Reconnector.class

package org.apache.logging.log4j.core.net;
synchronized class TcpSocketManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private boolean shutdown;
 private final Object owner;
 public void TcpSocketManager$Reconnector(TcpSocketManager, org.apache.logging.log4j.core.appender.OutputStreamManager);
 public void latch();
 public void shutdown();
 public void run();
 void reconnect() throws java.io.IOException;
 private void connect(java.net.InetSocketAddress) throws java.io.IOException;
 public String toString();
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationException extends Exception {
 private static final long serialVersionUID = 1;
 public void SslConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/ssl/FilePasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class FilePasswordProvider implements PasswordProvider {
 private final java.nio.file.Path passwordPath;
 public void FilePasswordProvider(String) throws java.nio.file.NoSuchFileException;
 public char[] getPassword();
}

org/apache/logging/log4j/core/net/ssl/PasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
public abstract interface PasswordProvider {
 public abstract char[] getPassword();
}

org/apache/logging/log4j/core/net/JndiManager$JndiManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class JndiManager$JndiManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JndiManager$JndiManagerFactory();
 public JndiManager createManager(String, java.util.Properties);
}

org/apache/logging/log4j/core/net/UrlConnectionFactory.class

package org.apache.logging.log4j.core.net;
public synchronized class UrlConnectionFactory {
 private static int DEFAULT_TIMEOUT;
 private static int connectTimeoutMillis;
 private static int readTimeoutMillis;
 private static final String JSON = application/json;
 private static final String XML = application/xml;
 private static final String PROPERTIES = text/x-java-properties;
 private static final String TEXT = text/plain;
 private static final String HTTP = http;
 private static final String HTTPS = https;
 public void UrlConnectionFactory();
 public static java.net.HttpURLConnection createConnection(java.net.URL, long, ssl.SslConfiguration) throws java.io.IOException;
 public static java.net.URLConnection createConnection(java.net.URL) throws java.io.IOException;
 private static boolean isXml(String);
 private static boolean isJson(String);
 private static boolean isProperties(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/MimeMessageBuilder.class

package org.apache.logging.log4j.core.net;
public synchronized class MimeMessageBuilder implements org.apache.logging.log4j.core.util.Builder {
 private final javax.mail.internet.MimeMessage message;
 public void MimeMessageBuilder(javax.mail.Session);
 public MimeMessageBuilder setFrom(String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setReplyTo(String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setRecipients(javax.mail.Message$RecipientType, String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setSubject(String) throws javax.mail.MessagingException;
 public javax.mail.internet.MimeMessage getMimeMessage();
 public javax.mail.internet.MimeMessage build();
 private static javax.mail.internet.InternetAddress parseAddress(String) throws javax.mail.internet.AddressException;
 private static javax.mail.internet.InternetAddress[] parseAddresses(String) throws javax.mail.internet.AddressException;
}

org/apache/logging/log4j/core/net/JndiManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class JndiManager$1 {
}

org/apache/logging/log4j/core/util/Clock.class

package org.apache.logging.log4j.core.util;
public abstract interface Clock {
 public abstract long currentTimeMillis();
}

org/apache/logging/log4j/core/util/Integers.class

package org.apache.logging.log4j.core.util;
public final synchronized class Integers {
 private static final int BITS_PER_INT = 32;
 private void Integers();
 public static int parseInt(String, int);
 public static int parseInt(String);
 public static int ceilingNextPowerOfTwo(int);
}

org/apache/logging/log4j/core/util/WatchEventService.class

package org.apache.logging.log4j.core.util;
public abstract interface WatchEventService {
 public abstract void subscribe(WatchManager);
 public abstract void unsubscribe(WatchManager);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneNameRule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneNameRule implements FastDatePrinter$Rule {
 private final java.util.Locale mLocale;
 private final int mStyle;
 private final String mStandard;
 private final String mDaylight;
 void FastDatePrinter$TimeZoneNameRule(java.util.TimeZone, java.util.Locale, int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDateParser implements DateParser, java.io.Serializable {
 private static final long serialVersionUID = 3;
 static final java.util.Locale JAPANESE_IMPERIAL;
 private final String pattern;
 private final java.util.TimeZone timeZone;
 private final java.util.Locale locale;
 private final int century;
 private final int startYear;
 private transient java.util.List patterns;
 private static final java.util.Comparator LONGER_FIRST_LOWERCASE;
 private static final java.util.concurrent.ConcurrentMap[] caches;
 private static final FastDateParser$Strategy ABBREVIATED_YEAR_STRATEGY;
 private static final FastDateParser$Strategy NUMBER_MONTH_STRATEGY;
 private static final FastDateParser$Strategy LITERAL_YEAR_STRATEGY;
 private static final FastDateParser$Strategy WEEK_OF_YEAR_STRATEGY;
 private static final FastDateParser$Strategy WEEK_OF_MONTH_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_YEAR_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_MONTH_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_WEEK_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_WEEK_IN_MONTH_STRATEGY;
 private static final FastDateParser$Strategy HOUR_OF_DAY_STRATEGY;
 private static final FastDateParser$Strategy HOUR24_OF_DAY_STRATEGY;
 private static final FastDateParser$Strategy HOUR12_STRATEGY;
 private static final FastDateParser$Strategy HOUR_STRATEGY;
 private static final FastDateParser$Strategy MINUTE_STRATEGY;
 private static final FastDateParser$Strategy SECOND_STRATEGY;
 private static final FastDateParser$Strategy MILLISECOND_STRATEGY;
 protected void FastDateParser(String, java.util.TimeZone, java.util.Locale);
 protected void FastDateParser(String, java.util.TimeZone, java.util.Locale, java.util.Date);
 private void init(java.util.Calendar);
 private static boolean isFormatLetter(char);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Object parseObject(String) throws java.text.ParseException;
 public java.util.Date parse(String) throws java.text.ParseException;
 public Object parseObject(String, java.text.ParsePosition);
 public java.util.Date parse(String, java.text.ParsePosition);
 public boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 private static StringBuilder simpleQuote(StringBuilder, String);
 private static java.util.Map appendDisplayNames(java.util.Calendar, java.util.Locale, int, StringBuilder);
 private int adjustYear(int);
 private FastDateParser$Strategy getStrategy(char, int, java.util.Calendar);
 private static java.util.concurrent.ConcurrentMap getCache(int);
 private FastDateParser$Strategy getLocaleSpecificStrategy(int, java.util.Calendar);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/JndiCloser.class

package org.apache.logging.log4j.core.util;
public final synchronized class JndiCloser {
 private void JndiCloser();
 public static void close(javax.naming.Context) throws javax.naming.NamingException;
 public static boolean closeSilently(javax.naming.Context);
}

org/apache/logging/log4j/core/util/NanoClock.class

package org.apache.logging.log4j.core.util;
public abstract interface NanoClock {
 public abstract long nanoTime();
}

org/apache/logging/log4j/core/util/ExtensionLanguageMapping.class

package org.apache.logging.log4j.core.util;
public final synchronized enum ExtensionLanguageMapping {
 public static final ExtensionLanguageMapping JS;
 public static final ExtensionLanguageMapping JAVASCRIPT;
 public static final ExtensionLanguageMapping GVY;
 public static final ExtensionLanguageMapping GROOVY;
 public static final ExtensionLanguageMapping BSH;
 public static final ExtensionLanguageMapping BEANSHELL;
 public static final ExtensionLanguageMapping JY;
 public static final ExtensionLanguageMapping JYTHON;
 public static final ExtensionLanguageMapping FTL;
 public static final ExtensionLanguageMapping FREEMARKER;
 public static final ExtensionLanguageMapping VM;
 public static final ExtensionLanguageMapping VELOCITY;
 public static final ExtensionLanguageMapping AWK;
 public static final ExtensionLanguageMapping EJS;
 public static final ExtensionLanguageMapping TCL;
 public static final ExtensionLanguageMapping HS;
 public static final ExtensionLanguageMapping JELLY;
 public static final ExtensionLanguageMapping JEP;
 public static final ExtensionLanguageMapping JEXL;
 public static final ExtensionLanguageMapping JEXL2;
 public static final ExtensionLanguageMapping RB;
 public static final ExtensionLanguageMapping RUBY;
 public static final ExtensionLanguageMapping JUDO;
 public static final ExtensionLanguageMapping JUDI;
 public static final ExtensionLanguageMapping SCALA;
 public static final ExtensionLanguageMapping CLJ;
 private final String extension;
 private final String language;
 public static ExtensionLanguageMapping[] values();
 public static ExtensionLanguageMapping valueOf(String);
 private void ExtensionLanguageMapping(String, int, String, String);
 public String getExtension();
 public String getLanguage();
 public static ExtensionLanguageMapping getByExtension(String);
 public static java.util.List getByLanguage(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DefaultShutdownCallbackRegistry$RegisteredCancellable.class

package org.apache.logging.log4j.core.util;
synchronized class DefaultShutdownCallbackRegistry$RegisteredCancellable implements Cancellable {
 private Runnable callback;
 private java.util.Collection registered;
 void DefaultShutdownCallbackRegistry$RegisteredCancellable(Runnable, java.util.Collection);
 public void cancel();
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/util/TypeUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class TypeUtil {
 private void TypeUtil();
 public static java.util.List getAllDeclaredFields(Class);
 public static boolean isAssignable(reflect.Type, reflect.Type);
 private static boolean isParameterizedAssignable(reflect.ParameterizedType, reflect.ParameterizedType);
 private static boolean isWildcardAssignable(reflect.WildcardType, reflect.Type);
 private static reflect.Type[] getEffectiveUpperBounds(reflect.WildcardType);
 private static reflect.Type[] getEffectiveLowerBounds(reflect.WildcardType);
 private static boolean isBoundAssignable(reflect.Type, reflect.Type);
}

org/apache/logging/log4j/core/config/Loggers.class

package org.apache.logging.log4j.core.config;
public synchronized class Loggers {
 private final java.util.concurrent.ConcurrentMap map;
 private final LoggerConfig root;
 public void Loggers(java.util.concurrent.ConcurrentMap, LoggerConfig);
 public java.util.concurrent.ConcurrentMap getMap();
 public LoggerConfig getRoot();
}

org/apache/logging/log4j/core/config/LoggersPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class LoggersPlugin {
 private void LoggersPlugin();
 public static Loggers createLoggers(LoggerConfig[]);
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SystemPropertyArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final String ATTR_PROPERTY_NAME = propertyName;
 public static final String ATTR_PROPERTY_VALUE = propertyValue;
 private String propertyName;
 private String propertyValue;
 public void SystemPropertyArbiter$Builder();
 public SystemPropertyArbiter$Builder setPropertyName(String);
 public SystemPropertyArbiter$Builder setPropertyValue(String);
 public SystemPropertyArbiter$Builder asBuilder();
 public SystemPropertyArbiter build();
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginBuilderAttributeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginBuilderAttributeVisitor extends AbstractPluginVisitor {
 public void PluginBuilderAttributeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/AbstractPluginVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public abstract synchronized class AbstractPluginVisitor implements PluginVisitor {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected final Class clazz;
 protected annotation.Annotation annotation;
 protected String[] aliases;
 protected Class conversionType;
 protected org.apache.logging.log4j.core.lookup.StrSubstitutor substitutor;
 protected reflect.Member member;
 protected void AbstractPluginVisitor(Class);
 public PluginVisitor setAnnotation(annotation.Annotation);
 public transient PluginVisitor setAliases(String[]);
 public PluginVisitor setConversionType(Class);
 public PluginVisitor setStrSubstitutor(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public PluginVisitor setMember(reflect.Member);
 protected static transient String removeAttributeValue(java.util.Map, String, String[]);
 protected Object convert(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginVisitors.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public final synchronized class PluginVisitors {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void PluginVisitors();
 public static PluginVisitor findVisitor(Class);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/ResolverUtil.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class ResolverUtil {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String VFSZIP = vfszip;
 private static final String VFS = vfs;
 private static final String JAR = jar;
 private static final String BUNDLE_RESOURCE = bundleresource;
 private final java.util.Set classMatches;
 private final java.util.Set resourceMatches;
 private ClassLoader classloader;
 public void ResolverUtil();
 public java.util.Set getClasses();
 public java.util.Set getResources();
 public ClassLoader getClassLoader();
 public void setClassLoader(ClassLoader);
 public transient void find(ResolverUtil$Test, String[]);
 public void findInPackage(ResolverUtil$Test, String);
 String extractPath(java.net.URL) throws java.io.UnsupportedEncodingException, java.net.URISyntaxException;
 private void loadImplementationsInBundle(ResolverUtil$Test, String);
 private void loadImplementationsInDirectory(ResolverUtil$Test, String, java.io.File);
 private boolean isTestApplicable(ResolverUtil$Test, String);
 private void loadImplementationsInJar(ResolverUtil$Test, String, java.net.URL);
 private void loadImplementationsInJar(ResolverUtil$Test, String, java.io.File);
 private void close(java.util.jar.JarInputStream, Object);
 private void loadImplementationsInJar(ResolverUtil$Test, String, String, java.util.jar.JarInputStream);
 protected void addIfMatching(ResolverUtil$Test, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/validation/validators/ValidHostValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class ValidHostValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidHost annotation;
 public void ValidHostValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidHost);
 public boolean isValid(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/validation/Constraint.class

package org.apache.logging.log4j.core.config.plugins.validation;
public abstract interface Constraint extends annotation.Annotation {
 public abstract Class value();
}

org/apache/logging/log4j/core/config/plugins/validation/ConstraintValidator.class

package org.apache.logging.log4j.core.config.plugins.validation;
public abstract interface ConstraintValidator {
 public abstract void initialize(annotation.Annotation);
 public abstract boolean isValid(String, Object);
}

org/apache/logging/log4j/core/config/plugins/PluginValue.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginValue extends annotation.Annotation {
 public abstract String value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$FileConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$FileConverter implements TypeConverter {
 public void TypeConverters$FileConverter();
 public java.io.File convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$LevelConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$LevelConverter implements TypeConverter {
 public void TypeConverters$LevelConverter();
 public org.apache.logging.log4j.Level convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$LongConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$LongConverter implements TypeConverter {
 public void TypeConverters$LongConverter();
 public Long convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$DurationConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$DurationConverter implements TypeConverter {
 public void TypeConverters$DurationConverter();
 public org.apache.logging.log4j.core.appender.rolling.action.Duration convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$InetAddressConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$InetAddressConverter implements TypeConverter {
 public void TypeConverters$InetAddressConverter();
 public java.net.InetAddress convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UuidConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UuidConverter implements TypeConverter {
 public void TypeConverters$UuidConverter();
 public java.util.UUID convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/CustomLevelConfig.class

package org.apache.logging.log4j.core.config;
public final synchronized class CustomLevelConfig {
 static final CustomLevelConfig[] EMPTY_ARRAY;
 private final String levelName;
 private final int intLevel;
 private void CustomLevelConfig(String, int);
 public static CustomLevelConfig createLevel(String, int);
 public String getLevelName();
 public int getIntLevel();
 public int hashCode();
 public boolean equals(Object);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$1.class

package org.apache.logging.log4j.core.config;
synchronized class LoggerConfig$1 {
}

org/apache/logging/log4j/core/config/builder/impl/DefaultScriptComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultScriptComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder {
 public void DefaultScriptComponentBuilder(DefaultConfigurationBuilder, String, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultAppenderRefComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultAppenderRefComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder {
 public void DefaultAppenderRefComponentBuilder(DefaultConfigurationBuilder, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/FilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface FilterComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/ComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ComponentBuilder extends org.apache.logging.log4j.core.util.Builder {
 public abstract ComponentBuilder addAttribute(String, String);
 public abstract ComponentBuilder addAttribute(String, org.apache.logging.log4j.Level);
 public abstract ComponentBuilder addAttribute(String, Enum);
 public abstract ComponentBuilder addAttribute(String, int);
 public abstract ComponentBuilder addAttribute(String, boolean);
 public abstract ComponentBuilder addAttribute(String, Object);
 public abstract ComponentBuilder addComponent(ComponentBuilder);
 public abstract String getName();
 public abstract ConfigurationBuilder getBuilder();
}

org/apache/logging/log4j/core/config/builder/api/LoggableComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LoggableComponentBuilder extends FilterableComponentBuilder {
 public abstract ComponentBuilder add(AppenderRefComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/LayoutComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LayoutComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/CompositeFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface CompositeFilterComponentBuilder extends FilterableComponentBuilder {
}

org/apache/logging/log4j/core/config/CronScheduledFuture$FutureData.class

package org.apache.logging.log4j.core.config;
synchronized class CronScheduledFuture$FutureData {
 private final java.util.concurrent.ScheduledFuture scheduledFuture;
 private final java.util.Date runDate;
 void CronScheduledFuture$FutureData(CronScheduledFuture, java.util.concurrent.ScheduledFuture, java.util.Date);
}

org/apache/logging/log4j/core/jmx/RingBufferAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class RingBufferAdmin implements RingBufferAdminMBean {
 private final com.lmax.disruptor.RingBuffer ringBuffer;
 private final javax.management.ObjectName objectName;
 public static RingBufferAdmin forAsyncLogger(com.lmax.disruptor.RingBuffer, String);
 public static RingBufferAdmin forAsyncLoggerConfig(com.lmax.disruptor.RingBuffer, String, String);
 protected void RingBufferAdmin(com.lmax.disruptor.RingBuffer, String);
 public long getBufferSize();
 public long getRemainingCapacity();
 public javax.management.ObjectName getObjectName();
}

org/apache/logging/log4j/core/layout/Rfc5424Layout$StructuredDataElement.class

package org.apache.logging.log4j.core.layout;
synchronized class Rfc5424Layout$StructuredDataElement {
 private final java.util.Map fields;
 private final boolean discardIfEmpty;
 private final String prefix;
 public void Rfc5424Layout$StructuredDataElement(Rfc5424Layout, java.util.Map, String, boolean);
 boolean discard();
 void union(java.util.Map);
 java.util.Map getFields();
 String getPrefix();
}

org/apache/logging/log4j/core/layout/SerializedLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class SerializedLayout extends AbstractLayout {
 private static byte[] serializedHeader;
 private void SerializedLayout();
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.LogEvent toSerializable(org.apache.logging.log4j.core.LogEvent);
 public static SerializedLayout createLayout();
 public byte[] getHeader();
 public String getContentType();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class PatternLayout extends AbstractStringLayout {
 public static final String DEFAULT_CONVERSION_PATTERN = %m%n;
 public static final String TTCC_CONVERSION_PATTERN = %r [%t] %p %c %notEmpty{%x }- %m%n;
 public static final String SIMPLE_CONVERSION_PATTERN = %d [%t] %p %c - %m%n;
 public static final String KEY = Converter;
 private final String conversionPattern;
 private final PatternSelector patternSelector;
 private final AbstractStringLayout$Serializer eventSerializer;
 private void PatternLayout(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, String, PatternSelector, java.nio.charset.Charset, boolean, boolean, boolean, String, String);
 public static PatternLayout$SerializerBuilder newSerializerBuilder();
 public boolean requiresLocation();
 public static AbstractStringLayout$Serializer createSerializer(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, String, String, PatternSelector, boolean, boolean);
 public String getConversionPattern();
 public java.util.Map getContentFormat();
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public void serialize(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 private StringBuilder toText(AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public static org.apache.logging.log4j.core.pattern.PatternParser createPatternParser(org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 public static PatternLayout createLayout(String, PatternSelector, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, java.nio.charset.Charset, boolean, boolean, String, String);
 public static PatternLayout createDefaultLayout();
 public static PatternLayout createDefaultLayout(org.apache.logging.log4j.core.config.Configuration);
 public static PatternLayout$Builder newBuilder();
 public AbstractStringLayout$Serializer getEventSerializer();
}

org/apache/logging/log4j/core/layout/ByteBufferDestinationHelper.class

package org.apache.logging.log4j.core.layout;
public final synchronized class ByteBufferDestinationHelper {
 private void ByteBufferDestinationHelper();
 public static void writeToUnsynchronized(java.nio.ByteBuffer, ByteBufferDestination);
 public static void writeToUnsynchronized(byte[], int, int, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/PatternSelector.class

package org.apache.logging.log4j.core.layout;
public abstract interface PatternSelector {
 public static final String ELEMENT_TYPE = patternSelector;
 public abstract org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class ScriptPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.script.AbstractScript script;
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptPatternSelector$Builder();
 public ScriptPatternSelector build();
 public ScriptPatternSelector$Builder setScript(org.apache.logging.log4j.core.script.AbstractScript);
 public ScriptPatternSelector$Builder setProperties(PatternMatch[]);
 public ScriptPatternSelector$Builder setDefaultPattern(String);
 public ScriptPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public ScriptPatternSelector$Builder setDisableAnsi(boolean);
 public ScriptPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public ScriptPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/osgi/Activator.class

package org.apache.logging.log4j.core.osgi;
public final synchronized class Activator implements org.osgi.framework.BundleActivator, org.osgi.framework.SynchronousBundleListener {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.concurrent.atomic.AtomicReference contextRef;
 org.osgi.framework.ServiceRegistration provideRegistration;
 org.osgi.framework.ServiceRegistration contextDataRegistration;
 public void Activator();
 public void start(org.osgi.framework.BundleContext) throws Exception;
 private static void scanInstalledBundlesForPlugins(org.osgi.framework.BundleContext);
 private static void scanBundleForPlugins(org.osgi.framework.Bundle);
 private static void loadContextProviders(org.osgi.framework.BundleContext);
 private static void stopBundlePlugins(org.osgi.framework.Bundle);
 public void stop(org.osgi.framework.BundleContext) throws Exception;
 public void bundleChanged(org.osgi.framework.BundleEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler implements com.lmax.disruptor.SequenceReportingEventHandler {
 private static final int NOTIFY_PROGRESS_THRESHOLD = 50;
 private com.lmax.disruptor.Sequence sequenceCallback;
 private int counter;
 private void AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler();
 public void setSequenceCallback(com.lmax.disruptor.Sequence);
 public void onEvent(AsyncLoggerConfigDisruptor$Log4jEventWrapper, long, boolean) throws Exception;
 private void notifyIntermediateProgress(long);
}

org/apache/logging/log4j/core/async/BasicAsyncLoggerContextSelector.class

package org.apache.logging.log4j.core.async;
public synchronized class BasicAsyncLoggerContextSelector implements org.apache.logging.log4j.core.selector.ContextSelector {
 private static final AsyncLoggerContext CONTEXT;
 public void BasicAsyncLoggerContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncQueueFullPolicyFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncQueueFullPolicyFactory {
 static final String PROPERTY_NAME_ASYNC_EVENT_ROUTER = log4j2.AsyncQueueFullPolicy;
 static final String PROPERTY_VALUE_DEFAULT_ASYNC_EVENT_ROUTER = Default;
 static final String PROPERTY_VALUE_DISCARDING_ASYNC_EVENT_ROUTER = Discard;
 static final String PROPERTY_NAME_DISCARDING_THRESHOLD_LEVEL = log4j2.DiscardThreshold;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void AsyncQueueFullPolicyFactory();
 public static AsyncQueueFullPolicy create();
 private static boolean isRouterSelected(String, Class, String);
 private static AsyncQueueFullPolicy createCustomRouter(String);
 private static AsyncQueueFullPolicy createDiscardingAsyncQueueFullPolicy();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/EventRoute$2.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$2 {
 void EventRoute$2(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/async/AsyncLogger$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$1 extends AsyncLogger$TranslatorType {
 void AsyncLogger$1(AsyncLogger);
 void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/RingBufferLogEvent$1.class

package org.apache.logging.log4j.core.async;
synchronized class RingBufferLogEvent$1 {
}

org/apache/logging/log4j/core/async/AsyncLogger$3.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$3 {
 static void <clinit>();
}

org/apache/logging/log4j/core/async/InternalAsyncUtil.class

package org.apache.logging.log4j.core.async;
public synchronized class InternalAsyncUtil {
 public void InternalAsyncUtil();
 public static org.apache.logging.log4j.message.Message makeMessageImmutable(org.apache.logging.log4j.message.Message);
 private static boolean canFormatMessageInBackground(org.apache.logging.log4j.message.Message);
}

org/apache/logging/log4j/core/async/EventRoute$1.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$1 {
 void EventRoute$1(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/lookup/StrMatcher$StringMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$StringMatcher extends StrMatcher {
 private final char[] chars;
 void StrMatcher$StringMatcher(String);
 public int isMatch(char[], int, int, int);
 public String toString();
}

org/apache/logging/log4j/core/lookup/Interpolator.class

package org.apache.logging.log4j.core.lookup;
public synchronized class Interpolator extends AbstractConfigurationAwareLookup {
 public static final char PREFIX_SEPARATOR = 58;
 private static final String LOOKUP_KEY_WEB = web;
 private static final String LOOKUP_KEY_DOCKER = docker;
 private static final String LOOKUP_KEY_KUBERNETES = kubernetes;
 private static final String LOOKUP_KEY_SPRING = spring;
 private static final String LOOKUP_KEY_JNDI = jndi;
 private static final String LOOKUP_KEY_JVMRUNARGS = jvmrunargs;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map strLookupMap;
 private final StrLookup defaultLookup;
 public void Interpolator(StrLookup);
 public void Interpolator(StrLookup, java.util.List);
 public void Interpolator();
 public void Interpolator(java.util.Map);
 public java.util.Map getStrLookupMap();
 private void handleError(String, Throwable);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/RuntimeStrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class RuntimeStrSubstitutor extends StrSubstitutor {
 public void RuntimeStrSubstitutor();
 public void RuntimeStrSubstitutor(java.util.Map);
 public void RuntimeStrSubstitutor(java.util.Properties);
 public void RuntimeStrSubstitutor(StrLookup);
 public void RuntimeStrSubstitutor(StrSubstitutor);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 public String toString();
}

org/apache/logging/log4j/core/lookup/ContextMapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class ContextMapLookup implements StrLookup {
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 public void ContextMapLookup();
 public String lookup(String);
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/message/ExtendedThreadInfoFactory.class

package org.apache.logging.log4j.core.message;
public synchronized class ExtendedThreadInfoFactory implements org.apache.logging.log4j.message.ThreadDumpMessage$ThreadInfoFactory {
 public void ExtendedThreadInfoFactory();
 public java.util.Map createThreadInfo();
}

org/apache/logging/log4j/core/LifeCycle2.class

package org.apache.logging.log4j.core;
public abstract interface LifeCycle2 extends LifeCycle {
 public abstract boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/filter/AbstractFilterable.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilterable extends org.apache.logging.log4j.core.AbstractLifeCycle implements Filterable {
 private volatile org.apache.logging.log4j.core.Filter filter;
 private final org.apache.logging.log4j.core.config.Property[] propertyArray;
 protected void AbstractFilterable();
 protected void AbstractFilterable(org.apache.logging.log4j.core.Filter);
 protected void AbstractFilterable(org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Property[]);
 public synchronized void addFilter(org.apache.logging.log4j.core.Filter);
 public org.apache.logging.log4j.core.Filter getFilter();
 public boolean hasFilter();
 public boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
 public synchronized void removeFilter(org.apache.logging.log4j.core.Filter);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 protected boolean stop(long, java.util.concurrent.TimeUnit, boolean);
 public org.apache.logging.log4j.core.config.Property[] getPropertyArray();
}

org/apache/logging/log4j/core/filter/ScriptFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class ScriptFilter extends AbstractFilter {
 private static org.apache.logging.log4j.Logger logger;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptFilter(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static ScriptFilter createFilter(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/LevelMatchFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class LevelMatchFilter extends AbstractFilter {
 public static final String ATTR_MATCH = match;
 private final org.apache.logging.log4j.Level level;
 private void LevelMatchFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static LevelMatchFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/LineSeparatorPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LineSeparatorPatternConverter extends LogEventPatternConverter {
 private static final LineSeparatorPatternConverter INSTANCE;
 private void LineSeparatorPatternConverter();
 public static LineSeparatorPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public boolean isVariable();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/EndOfBatchPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EndOfBatchPatternConverter extends LogEventPatternConverter {
 private static final EndOfBatchPatternConverter INSTANCE;
 private void EndOfBatchPatternConverter();
 public static EndOfBatchPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MapPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MapPatternConverter extends LogEventPatternConverter {
 private static final String JAVA_UNQUOTED;
 private final String key;
 private final String[] format;
 private transient void MapPatternConverter(String[], String[]);
 public static MapPatternConverter newInstance(String[]);
 public static MapPatternConverter newInstance(String[], org.apache.logging.log4j.message.MapMessage$MapFormat);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$SimpleMessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$SimpleMessagePatternConverter extends MessagePatternConverter {
 private static final MessagePatternConverter INSTANCE;
 private void MessagePatternConverter$SimpleMessagePatternConverter();
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ExtendedThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ExtendedThrowablePatternConverter extends ThrowablePatternConverter {
 private void ExtendedThrowablePatternConverter(org.apache.logging.log4j.core.config.Configuration, String[]);
 public static ExtendedThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$1.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$1 {
 void EncodingPatternConverter$EscapeFormat$1(String, int);
 void escape(StringBuilder, int);
 private String escapeChar(char);
}

org/apache/logging/log4j/core/pattern/NotANumber.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NotANumber {
 public static final NotANumber NAN;
 public static final String VALUE = �;
 private void NotANumber();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$PatternAbbreviator.class

package org.apache.logging.log4j.core.pattern;
final synchronized class NameAbbreviator$PatternAbbreviator extends NameAbbreviator {
 private final NameAbbreviator$PatternAbbreviatorFragment[] fragments;
 void NameAbbreviator$PatternAbbreviator(java.util.List);
 public void abbreviate(String, StringBuilder);
 NameAbbreviator$PatternAbbreviatorFragment fragment(int);
}

org/apache/logging/log4j/core/pattern/PlainTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class PlainTextRenderer implements TextRenderer {
 private static final PlainTextRenderer INSTANCE;
 public void PlainTextRenderer();
 public static PlainTextRenderer getInstance();
 public void render(String, StringBuilder, String);
 public void render(StringBuilder, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/EqualsIgnoreCaseReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EqualsIgnoreCaseReplacementConverter extends EqualsBaseReplacementConverter {
 public static EqualsIgnoreCaseReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void EqualsIgnoreCaseReplacementConverter(java.util.List, String, String, PatternParser);
 protected boolean equals(String, StringBuilder, int, int);
}

org/apache/logging/log4j/core/jackson/Log4jYamlObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jYamlObjectMapper extends com.fasterxml.jackson.dataformat.yaml.YAMLMapper {
 private static final long serialVersionUID = 1;
 public void Log4jYamlObjectMapper();
 public void Log4jYamlObjectMapper(boolean, boolean, boolean);
}

META-INF/LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 1999-2005 The Apache Software Foundation

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy$1.class

package org.apache.logging.log4j.core.appender.rewrite;
synchronized class MapRewritePolicy$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RolloverFrequency.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized enum RolloverFrequency {
 public static final RolloverFrequency ANNUALLY;
 public static final RolloverFrequency MONTHLY;
 public static final RolloverFrequency WEEKLY;
 public static final RolloverFrequency DAILY;
 public static final RolloverFrequency HOURLY;
 public static final RolloverFrequency EVERY_MINUTE;
 public static final RolloverFrequency EVERY_SECOND;
 public static final RolloverFrequency EVERY_MILLISECOND;
 public static RolloverFrequency[] values();
 public static RolloverFrequency valueOf(String);
 private void RolloverFrequency(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory();
 public RollingRandomAccessFileManager createManager(String, RollingRandomAccessFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/RolloverDescriptionImpl.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class RolloverDescriptionImpl implements RolloverDescription {
 private final String activeFileName;
 private final boolean append;
 private final action.Action synchronous;
 private final action.Action asynchronous;
 public void RolloverDescriptionImpl(String, boolean, action.Action, action.Action);
 public String getActiveFileName();
 public boolean getAppend();
 public action.Action getSynchronous();
 public action.Action getAsynchronous();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class RollingRandomAccessFileManager extends RollingFileManager {
 public static final int DEFAULT_BUFFER_SIZE = 262144;
 private static final RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory FACTORY;
 private java.io.RandomAccessFile randomAccessFile;
 public void RollingRandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, String, java.io.OutputStream, boolean, boolean, int, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean);
 public void RollingRandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, String, java.io.OutputStream, boolean, boolean, int, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean);
 private void writeHeader();
 public static RollingRandomAccessFileManager getRollingRandomAccessFileManager(String, String, boolean, boolean, int, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 protected void createFileAfterRollover() throws java.io.IOException;
 private void createFileAfterRollover(String) throws java.io.IOException;
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public int getBufferSize();
 public void updateData(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathWithAttributes.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PathWithAttributes {
 private final java.nio.file.Path path;
 private final java.nio.file.attribute.BasicFileAttributes attributes;
 public void PathWithAttributes(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public String toString();
 public java.nio.file.Path getPath();
 public java.nio.file.attribute.BasicFileAttributes getAttributes();
}

org/apache/logging/log4j/core/appender/rolling/action/GzCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class GzCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 private final int compressionLevel;
 public void GzCompressAction(java.io.File, java.io.File, boolean, int);
 public void GzCompressAction(java.io.File, java.io.File, boolean);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean) throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean, int) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAll.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAll implements PathCondition {
 private final PathCondition[] components;
 private transient void IfAll(PathCondition[]);
 public PathCondition[] getDeleteFilters();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public static boolean accept(PathCondition[], java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static void beforeFileTreeWalk(PathCondition[]);
 public static transient IfAll createAndCondition(PathCondition[]);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/CommonsCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class CommonsCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final String name;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 public void CommonsCompressAction(String, java.io.File, java.io.File, boolean);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(String, java.io.File, java.io.File, boolean) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public String getName();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$6.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$6 {
 void FileExtension$6(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/TlsSyslogFrame.class

package org.apache.logging.log4j.core.appender;
public synchronized class TlsSyslogFrame {
 private final String message;
 private final int byteLength;
 public void TlsSyslogFrame(String);
 public String getMessage();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileAppender$1 {
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class MemoryMappedFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private int regionLength;
 private boolean advertise;
 private String advertiseURI;
 public void MemoryMappedFileAppender$Builder();
 public MemoryMappedFileAppender build();
 public MemoryMappedFileAppender$Builder setFileName(String);
 public MemoryMappedFileAppender$Builder setAppend(boolean);
 public MemoryMappedFileAppender$Builder setRegionLength(int);
 public MemoryMappedFileAppender$Builder setAdvertise(boolean);
 public MemoryMappedFileAppender$Builder setAdvertiseURI(String);
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class RandomAccessFileManager extends OutputStreamManager {
 static final int DEFAULT_BUFFER_SIZE = 262144;
 private static final RandomAccessFileManager$RandomAccessFileManagerFactory FACTORY;
 private final String advertiseURI;
 private final java.io.RandomAccessFile randomAccessFile;
 protected void RandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, java.io.OutputStream, int, String, org.apache.logging.log4j.core.Layout, boolean);
 public static RandomAccessFileManager getFileManager(String, boolean, boolean, int, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Configuration);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected void writeToDestination(byte[], int, int);
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public String getFileName();
 public int getBufferSize();
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$ResultSetColumnMetaData.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$ResultSetColumnMetaData {
 private final String schemaName;
 private final String catalogName;
 private final String tableName;
 private final String name;
 private final String nameKey;
 private final String label;
 private final int displaySize;
 private final int type;
 private final String typeName;
 private final String className;
 private final int precision;
 private final int scale;
 private final boolean isStringType;
 public void JdbcDatabaseManager$ResultSetColumnMetaData(java.sql.ResultSetMetaData, int) throws java.sql.SQLException;
 private void JdbcDatabaseManager$ResultSetColumnMetaData(String, String, String, String, String, int, int, String, String, int, int);
 public String getCatalogName();
 public String getClassName();
 public int getDisplaySize();
 public String getLabel();
 public String getName();
 public String getNameKey();
 public int getPrecision();
 public int getScale();
 public String getSchemaName();
 public String getTableName();
 public int getType();
 public String getTypeName();
 public boolean isStringType();
 public String toString();
 public String truncate(String);
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public abstract synchronized class AbstractConnectionSource extends org.apache.logging.log4j.core.AbstractLifeCycle implements ConnectionSource {
 public void AbstractConnectionSource();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target$1.class

package org.apache.logging.log4j.core.appender;
final synchronized enum ConsoleAppender$Target$1 {
 void ConsoleAppender$Target$1(String, int);
 public java.nio.charset.Charset getDefaultCharset();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForGarbageFreeThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForGarbageFreeThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForGarbageFreeThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/JdkMapAdapterStringMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class JdkMapAdapterStringMap implements org.apache.logging.log4j.util.StringMap {
 private static final long serialVersionUID = -7348247784983193612;
 private static final String FROZEN = Frozen collection cannot be modified;
 private static final java.util.Comparator NULL_FIRST_COMPARATOR;
 private final java.util.Map map;
 private boolean immutable;
 private transient String[] sortedKeys;
 private static org.apache.logging.log4j.util.TriConsumer PUT_ALL;
 public void JdkMapAdapterStringMap();
 public void JdkMapAdapterStringMap(java.util.Map);
 public java.util.Map toMap();
 private void assertNotFrozen();
 public boolean containsKey(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 private String[] getSortedKeys();
 public Object getValue(String);
 public boolean isEmpty();
 public int size();
 public void clear();
 public void freeze();
 public boolean isFrozen();
 public void putAll(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public void putValue(String, Object);
 public void remove(String);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LocationAwareLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public abstract interface LocationAwareLogEventFactory {
 public abstract org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector {
 private static final org.apache.logging.log4j.Logger LOGGER;
 public static java.util.Collection contextDataProviders;
 private static volatile java.util.List serviceProviders;
 private static final java.util.concurrent.locks.Lock providerLock;
 public void ThreadContextDataInjector();
 public static void initServiceProviders();
 private static java.util.List getServiceProviders();
 public static void copyProperties(java.util.List, org.apache.logging.log4j.util.StringMap);
 private static java.util.List getProviders();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ExecutionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ExecutionException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 7764539594267007998;
 private final CommandLine commandLine;
 public void CommandLine$ExecutionException(CommandLine, String);
 public void CommandLine$ExecutionException(CommandLine, String, Exception);
 public CommandLine getCommandLine();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$IStyle.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$Ansi$IStyle {
 public static final String CSI = �[;
 public abstract String on();
 public abstract String off();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$DuplicateOptionAnnotationsException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$DuplicateOptionAnnotationsException extends CommandLine$InitializationException {
 private static final long serialVersionUID = -3355128012575075641;
 public void CommandLine$DuplicateOptionAnnotationsException(String);
 private static CommandLine$DuplicateOptionAnnotationsException create(String, reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$DefaultExceptionHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$DefaultExceptionHandler implements CommandLine$IExceptionHandler {
 public void CommandLine$DefaultExceptionHandler();
 public transient java.util.List handleException(CommandLine$ParameterException, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$PatternConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$PatternConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$PatternConverter();
 public java.util.regex.Pattern convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$StringConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$StringConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$StringConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Style.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Ansi$Style {
 public static final CommandLine$Help$Ansi$Style reset;
 public static final CommandLine$Help$Ansi$Style bold;
 public static final CommandLine$Help$Ansi$Style faint;
 public static final CommandLine$Help$Ansi$Style italic;
 public static final CommandLine$Help$Ansi$Style underline;
 public static final CommandLine$Help$Ansi$Style blink;
 public static final CommandLine$Help$Ansi$Style reverse;
 public static final CommandLine$Help$Ansi$Style fg_black;
 public static final CommandLine$Help$Ansi$Style fg_red;
 public static final CommandLine$Help$Ansi$Style fg_green;
 public static final CommandLine$Help$Ansi$Style fg_yellow;
 public static final CommandLine$Help$Ansi$Style fg_blue;
 public static final CommandLine$Help$Ansi$Style fg_magenta;
 public static final CommandLine$Help$Ansi$Style fg_cyan;
 public static final CommandLine$Help$Ansi$Style fg_white;
 public static final CommandLine$Help$Ansi$Style bg_black;
 public static final CommandLine$Help$Ansi$Style bg_red;
 public static final CommandLine$Help$Ansi$Style bg_green;
 public static final CommandLine$Help$Ansi$Style bg_yellow;
 public static final CommandLine$Help$Ansi$Style bg_blue;
 public static final CommandLine$Help$Ansi$Style bg_magenta;
 public static final CommandLine$Help$Ansi$Style bg_cyan;
 public static final CommandLine$Help$Ansi$Style bg_white;
 private final int startCode;
 private final int endCode;
 public static CommandLine$Help$Ansi$Style[] values();
 public static CommandLine$Help$Ansi$Style valueOf(String);
 private void CommandLine$Help$Ansi$Style(String, int, int, int);
 public String on();
 public String off();
 public static transient String on(CommandLine$Help$Ansi$IStyle[]);
 public static transient String off(CommandLine$Help$Ansi$IStyle[]);
 public static CommandLine$Help$Ansi$IStyle fg(String);
 public static CommandLine$Help$Ansi$IStyle bg(String);
 public static CommandLine$Help$Ansi$IStyle[] parse(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$StyledSection.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$Ansi$StyledSection {
 int startIndex;
 int length;
 String startStyles;
 String endStyles;
 void CommandLine$Help$Ansi$StyledSection(int, int, String, String);
 CommandLine$Help$Ansi$StyledSection withStartIndex(int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Column.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Column {
 public final int width;
 public final int indent;
 public final CommandLine$Help$Column$Overflow overflow;
 public void CommandLine$Help$Column(int, int, CommandLine$Help$Column$Overflow);
}

org/apache/logging/log4j/core/tools/Generate$1.class

package org.apache.logging.log4j.core.tools;
synchronized class Generate$1 {
}

org/apache/logging/log4j/core/net/SslSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class SslSocketManager extends TcpSocketManager {
 public static final int DEFAULT_PORT = 6514;
 private static final SslSocketManager$SslSocketManagerFactory FACTORY;
 private final ssl.SslConfiguration sslConfig;
 public void SslSocketManager(String, java.io.OutputStream, java.net.Socket, ssl.SslConfiguration, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public void SslSocketManager(String, java.io.OutputStream, java.net.Socket, ssl.SslConfiguration, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public static SslSocketManager getSocketManager(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public static SslSocketManager getSocketManager(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 protected java.net.Socket createSocket(java.net.InetSocketAddress) throws java.io.IOException;
 private static javax.net.ssl.SSLSocketFactory createSslSocketFactory(ssl.SslConfiguration);
 static java.net.Socket createSocket(java.net.InetSocketAddress, int, ssl.SslConfiguration, SocketOptions) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ReflectionUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class ReflectionUtil {
 private void ReflectionUtil();
 public static boolean isAccessible(reflect.AccessibleObject);
 public static void makeAccessible(reflect.AccessibleObject);
 public static void makeAccessible(reflect.Field);
 public static Object getFieldValue(reflect.Field, Object);
 public static Object getStaticFieldValue(reflect.Field);
 public static void setFieldValue(reflect.Field, Object, Object);
 public static void setStaticFieldValue(reflect.Field, Object);
 public static reflect.Constructor getDefaultConstructor(Class);
 public static Object instantiate(Class);
}

org/apache/logging/log4j/core/util/Source.class

package org.apache.logging.log4j.core.util;
public synchronized class Source {
 private final java.io.File file;
 private final java.net.URI uri;
 private final String location;
 public void Source(org.apache.logging.log4j.core.config.ConfigurationSource);
 public void Source(java.io.File);
 public void Source(java.net.URI, long);
 public java.io.File getFile();
 public java.net.URI getURI();
 public String getLocation();
 public String toString();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/util/CronExpression$1.class

package org.apache.logging.log4j.core.util;
synchronized class CronExpression$1 {
}

org/apache/logging/log4j/core/util/KeyValuePair$Builder.class

package org.apache.logging.log4j.core.util;
public synchronized class KeyValuePair$Builder implements Builder {
 private String key;
 private String value;
 public void KeyValuePair$Builder();
 public KeyValuePair$Builder setKey(String);
 public KeyValuePair$Builder setValue(String);
 public KeyValuePair build();
}

org/apache/logging/log4j/core/util/JsonUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class JsonUtils {
 private static final char[] HC;
 private static final int[] ESC_CODES;
 private static final ThreadLocal _qbufLocal;
 public void JsonUtils();
 private static char[] getQBuf();
 public static void quoteAsString(CharSequence, StringBuilder);
 private static int _appendNumeric(int, char[]);
 private static int _appendNamed(int, char[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemClock implements Clock {
 public void SystemClock();
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$PaddedNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$PaddedNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 private final int mSize;
 void FastDatePrinter$PaddedNumberField(int, int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$4.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$4 extends FastDateParser$NumberStrategy {
 void FastDateParser$4(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$3.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$3 extends FastDateParser$NumberStrategy {
 void FastDateParser$3(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/Patterns.class

package org.apache.logging.log4j.core.util;
public final synchronized class Patterns {
 public static final String COMMA_SEPARATOR;
 public static final String WHITESPACE = \s*;
 private void Patterns();
 public static String toWhitespaceSeparator(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ClockFactory.class

package org.apache.logging.log4j.core.util;
public final synchronized class ClockFactory {
 public static final String PROPERTY_NAME = log4j.Clock;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private void ClockFactory();
 public static Clock getClock();
 private static java.util.Map aliases();
 private static Clock createClock();
 private static Clock logSupportedPrecision(Clock);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatchManager$ConfigurationMonitor.class

package org.apache.logging.log4j.core.util;
final synchronized class WatchManager$ConfigurationMonitor {
 private final Watcher watcher;
 private volatile long lastModifiedMillis;
 public void WatchManager$ConfigurationMonitor(WatchManager, long, Watcher);
 public Watcher getWatcher();
 private void setLastModifiedMillis(long);
 public String toString();
}

org/apache/logging/log4j/core/util/CachedClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class CachedClock implements Clock {
 private static final int UPDATE_THRESHOLD = 1000;
 private static volatile CachedClock instance;
 private static final Object INSTANCE_LOCK;
 private volatile long millis;
 private short count;
 private void CachedClock();
 public static CachedClock instance();
 public long currentTimeMillis();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CronExpression$ValueSet.class

package org.apache.logging.log4j.core.util;
synchronized class CronExpression$ValueSet {
 public int value;
 public int pos;
 private void CronExpression$ValueSet(CronExpression);
}

org/apache/logging/log4j/core/config/AwaitCompletionReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class AwaitCompletionReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private static final int MAX_RETRIES = 3;
 private final java.util.concurrent.atomic.AtomicInteger counter;
 private final java.util.concurrent.atomic.AtomicBoolean shutdown;
 private final java.util.concurrent.locks.Lock shutdownLock;
 private final java.util.concurrent.locks.Condition noLogEvents;
 private final LoggerConfig loggerConfig;
 public void AwaitCompletionReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 private boolean beforeLogEvent();
 public void afterLogEvent();
 private void signalCompletionIfShutdown();
 public void beforeStopAppenders();
 private void waitForCompletion();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/LocationAwareReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public abstract interface LocationAwareReliabilityStrategy {
 public abstract void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SystemPropertyArbiter implements Arbiter {
 private final String propertyName;
 private final String propertyValue;
 private void SystemPropertyArbiter(String, String);
 public boolean isCondition();
 public static SystemPropertyArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/SelectArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SelectArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void SelectArbiter$Builder();
 public SelectArbiter$Builder asBuilder();
 public SelectArbiter build();
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class ScriptArbiter$1 {
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ScriptArbiter implements Arbiter {
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptArbiter(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.script.AbstractScript);
 public boolean isCondition();
 public static ScriptArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class ClassArbiter$1 {
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginValueVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginValueVisitor extends AbstractPluginVisitor {
 public void PluginValueVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginProcessor extends javax.annotation.processing.AbstractProcessor {
 public static final String PLUGIN_CACHE_FILE = META-INF/org/apache/logging/log4j/core/config/plugins/Log4j2Plugins.dat;
 private final PluginCache pluginCache;
 public void PluginProcessor();
 public javax.lang.model.SourceVersion getSupportedSourceVersion();
 public boolean process(java.util.Set, javax.annotation.processing.RoundEnvironment);
 private void error(CharSequence);
 private void collectPlugins(Iterable);
 private transient void writeCacheFile(javax.lang.model.element.Element[]) throws java.io.IOException;
}

org/apache/logging/log4j/core/config/plugins/PluginAliases.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginAliases extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/core/config/ReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public abstract interface ReliabilityStrategy {
 public abstract void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public abstract LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public abstract void afterLogEvent();
 public abstract void beforeStopAppenders();
 public abstract void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/DefaultAdvertiser.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultAdvertiser implements org.apache.logging.log4j.core.net.Advertiser {
 public void DefaultAdvertiser();
 public Object advertise(java.util.Map);
 public void unadvertise(Object);
}

org/apache/logging/log4j/core/config/json/JsonConfiguration.class

package org.apache.logging.log4j.core.config.json;
public synchronized class JsonConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 private static final String[] VERBOSE_CLASSES;
 private final java.util.List status;
 private com.fasterxml.jackson.databind.JsonNode root;
 public void JsonConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 protected com.fasterxml.jackson.databind.ObjectMapper getObjectMapper();
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private org.apache.logging.log4j.core.config.Node constructNode(String, org.apache.logging.log4j.core.config.Node, com.fasterxml.jackson.databind.JsonNode);
 private String getType(com.fasterxml.jackson.databind.JsonNode, String);
 private void processAttributes(org.apache.logging.log4j.core.config.Node, com.fasterxml.jackson.databind.JsonNode);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultCustomLevelComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultCustomLevelComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder {
 public void DefaultCustomLevelComponentBuilder(DefaultConfigurationBuilder, String, int);
}

org/apache/logging/log4j/core/config/builder/api/RootLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface RootLoggerComponentBuilder extends LoggableComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/AppenderComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface AppenderComponentBuilder extends FilterableComponentBuilder {
 public abstract AppenderComponentBuilder add(LayoutComponentBuilder);
 public abstract String getName();
}

org/apache/logging/log4j/core/config/builder/api/ScriptComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ScriptComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/layout/StringBuilderEncoder.class

package org.apache.logging.log4j.core.layout;
public synchronized class StringBuilderEncoder implements Encoder {
 private static final int DEFAULT_BYTE_BUFFER_SIZE = 8192;
 private final ThreadLocal threadLocal;
 private final java.nio.charset.Charset charset;
 private final int charBufferSize;
 private final int byteBufferSize;
 public void StringBuilderEncoder(java.nio.charset.Charset);
 public void StringBuilderEncoder(java.nio.charset.Charset, int, int);
 public void encode(StringBuilder, ByteBufferDestination);
 private Object[] getThreadLocalState();
 private void logEncodeTextException(Exception, StringBuilder, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class MarkerPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/GelfLayout$FieldWriter.class

package org.apache.logging.log4j.core.layout;
synchronized class GelfLayout$FieldWriter implements org.apache.logging.log4j.util.TriConsumer {
 private final internal.ListChecker checker;
 private final String prefix;
 void GelfLayout$FieldWriter(GelfLayout, internal.ListChecker, String);
 public void accept(String, Object, StringBuilder);
 public internal.ListChecker getChecker();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSerializer.class

package org.apache.logging.log4j.core.layout;
abstract interface PatternLayout$PatternSerializer extends AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
}

org/apache/logging/log4j/core/layout/Rfc5424Layout$FieldFormatter.class

package org.apache.logging.log4j.core.layout;
synchronized class Rfc5424Layout$FieldFormatter {
 private final java.util.Map delegateMap;
 private final boolean discardIfEmpty;
 public void Rfc5424Layout$FieldFormatter(Rfc5424Layout, java.util.Map, boolean);
 public Rfc5424Layout$StructuredDataElement format(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/LoggerContextAccessor.class

package org.apache.logging.log4j.core;
public abstract interface LoggerContextAccessor {
 public abstract LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class JCToolsBlockingQueueFactory implements BlockingQueueFactory {
 private final JCToolsBlockingQueueFactory$WaitStrategy waitStrategy;
 private void JCToolsBlockingQueueFactory(JCToolsBlockingQueueFactory$WaitStrategy);
 public java.util.concurrent.BlockingQueue create(int);
 public static JCToolsBlockingQueueFactory createFactory(JCToolsBlockingQueueFactory$WaitStrategy);
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$MpscBlockingQueue.class

package org.apache.logging.log4j.core.async;
final synchronized class JCToolsBlockingQueueFactory$MpscBlockingQueue extends org.jctools.queues.MpscArrayQueue implements java.util.concurrent.BlockingQueue {
 private final JCToolsBlockingQueueFactory$WaitStrategy waitStrategy;
 void JCToolsBlockingQueueFactory$MpscBlockingQueue(int, JCToolsBlockingQueueFactory$WaitStrategy);
 public int drainTo(java.util.Collection);
 public int drainTo(java.util.Collection, int);
 public boolean offer(Object, long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public Object poll(long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public void put(Object) throws InterruptedException;
 public boolean offer(Object);
 public int remainingCapacity();
 public Object take() throws InterruptedException;
}

org/apache/logging/log4j/core/async/EventRoute$3.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$3 {
 void EventRoute$3(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/Logger.class

package org.apache.logging.log4j.core;
public synchronized class Logger extends org.apache.logging.log4j.spi.AbstractLogger implements org.apache.logging.log4j.util.Supplier {
 private static final long serialVersionUID = 1;
 protected volatile Logger$PrivateConfig privateConfig;
 private final LoggerContext context;
 protected void Logger(LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 protected Object writeReplace() throws java.io.ObjectStreamException;
 public Logger getParent();
 public LoggerContext getContext();
 public synchronized void setLevel(org.apache.logging.log4j.Level);
 public config.LoggerConfig get();
 protected boolean requiresLocation();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 protected void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void addAppender(Appender);
 public void removeAppender(Appender);
 public java.util.Map getAppenders();
 public java.util.Iterator getFilters();
 public org.apache.logging.log4j.Level getLevel();
 public int filterCount();
 public void addFilter(Filter);
 public boolean isAdditive();
 public void setAdditive(boolean);
 protected void updateConfiguration(config.Configuration);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/lookup/ResourceBundleLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class ResourceBundleLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void ResourceBundleLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class StrMatcher {
 private static final StrMatcher COMMA_MATCHER;
 private static final StrMatcher TAB_MATCHER;
 private static final StrMatcher SPACE_MATCHER;
 private static final StrMatcher SPLIT_MATCHER;
 private static final StrMatcher TRIM_MATCHER;
 private static final StrMatcher SINGLE_QUOTE_MATCHER;
 private static final StrMatcher DOUBLE_QUOTE_MATCHER;
 private static final StrMatcher QUOTE_MATCHER;
 private static final StrMatcher NONE_MATCHER;
 protected void StrMatcher();
 public static StrMatcher commaMatcher();
 public static StrMatcher tabMatcher();
 public static StrMatcher spaceMatcher();
 public static StrMatcher splitMatcher();
 public static StrMatcher trimMatcher();
 public static StrMatcher singleQuoteMatcher();
 public static StrMatcher doubleQuoteMatcher();
 public static StrMatcher quoteMatcher();
 public static StrMatcher noneMatcher();
 public static StrMatcher charMatcher(char);
 public static StrMatcher charSetMatcher(char[]);
 public static StrMatcher charSetMatcher(String);
 public static StrMatcher stringMatcher(String);
 public abstract int isMatch(char[], int, int, int);
 public int isMatch(char[], int);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/MarkerLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MarkerLookup extends AbstractLookup {
 static final String MARKER = marker;
 public void MarkerLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
}

org/apache/logging/log4j/core/script/ScriptManager$MainScriptRunner.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$MainScriptRunner extends ScriptManager$AbstractScriptRunner {
 private final AbstractScript script;
 private final javax.script.CompiledScript compiledScript;
 private final javax.script.ScriptEngine scriptEngine;
 public void ScriptManager$MainScriptRunner(ScriptManager, javax.script.ScriptEngine, AbstractScript);
 public javax.script.ScriptEngine getScriptEngine();
 public Object execute(javax.script.Bindings);
 public AbstractScript getScript();
}

org/apache/logging/log4j/core/time/Instant.class

package org.apache.logging.log4j.core.time;
public abstract interface Instant extends org.apache.logging.log4j.util.StringBuilderFormattable {
 public abstract long getEpochSecond();
 public abstract int getNanoOfSecond();
 public abstract long getEpochMillisecond();
 public abstract int getNanoOfMillisecond();
}

org/apache/logging/log4j/core/filter/RegexFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class RegexFilter extends AbstractFilter {
 private static final int DEFAULT_PATTERN_FLAGS = 0;
 private final java.util.regex.Pattern pattern;
 private final boolean useRawMessage;
 private void RegexFilter(boolean, java.util.regex.Pattern, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(String);
 public String toString();
 public static RegexFilter createFilter(String, String[], Boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result) throws IllegalArgumentException, IllegalAccessException;
 private static int toPatternFlags(String[]) throws IllegalArgumentException, IllegalAccessException;
}

org/apache/logging/log4j/core/filter/DenyAllFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class DenyAllFilter$1 {
}

org/apache/logging/log4j/core/filter/StringMatchFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class StringMatchFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private String text;
 public void StringMatchFilter$Builder();
 public StringMatchFilter$Builder setMatchString(String);
 public StringMatchFilter build();
}

org/apache/logging/log4j/core/filter/AbstractFilter$AbstractFilterBuilder.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilter$AbstractFilterBuilder {
 public static final String ATTR_ON_MISMATCH = onMismatch;
 public static final String ATTR_ON_MATCH = onMatch;
 private org.apache.logging.log4j.core.Filter$Result onMatch;
 private org.apache.logging.log4j.core.Filter$Result onMismatch;
 public void AbstractFilter$AbstractFilterBuilder();
 public org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 public AbstractFilter$AbstractFilterBuilder setOnMatch(org.apache.logging.log4j.core.Filter$Result);
 public AbstractFilter$AbstractFilterBuilder setOnMismatch(org.apache.logging.log4j.core.Filter$Result);
 public AbstractFilter$AbstractFilterBuilder asBuilder();
}

org/apache/logging/log4j/core/filter/LevelMatchFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class LevelMatchFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.Level level;
 public void LevelMatchFilter$Builder();
 public LevelMatchFilter$Builder setLevel(org.apache.logging.log4j.Level);
 public LevelMatchFilter build();
}

org/apache/logging/log4j/core/pattern/MarkerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MarkerPatternConverter extends LogEventPatternConverter {
 private void MarkerPatternConverter(String[]);
 public static MarkerPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/FullLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FullLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final FullLocationPatternConverter INSTANCE;
 private void FullLocationPatternConverter();
 public static FullLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NdcPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NdcPatternConverter extends LogEventPatternConverter {
 private static final NdcPatternConverter INSTANCE;
 private void NdcPatternConverter();
 public static NdcPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$White.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$White extends AbstractStyleNameConverter {
 protected static final String NAME = white;
 public void AbstractStyleNameConverter$White(java.util.List, String);
 public static AbstractStyleNameConverter$White newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/PatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract interface PatternConverter {
 public static final String CATEGORY = Converter;
 public abstract void format(Object, StringBuilder);
 public abstract String getName();
 public abstract String getStyleClass(Object);
}

org/apache/logging/log4j/core/pattern/PatternParser.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class PatternParser {
 static final String DISABLE_ANSI = disableAnsi;
 static final String NO_CONSOLE_NO_ANSI = noConsoleNoAnsi;
 private static final char ESCAPE_CHAR = 37;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int BUF_SIZE = 32;
 private static final int DECIMAL = 10;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final java.util.Map converterRules;
 public void PatternParser(String);
 public void PatternParser(org.apache.logging.log4j.core.config.Configuration, String, Class);
 public void PatternParser(org.apache.logging.log4j.core.config.Configuration, String, Class, Class);
 public java.util.List parse(String);
 public java.util.List parse(String, boolean, boolean);
 public java.util.List parse(String, boolean, boolean, boolean);
 private static int extractConverter(char, String, int, StringBuilder, StringBuilder);
 private static int extractOptions(String, int, java.util.List);
 public void parse(String, java.util.List, java.util.List, boolean, boolean);
 public void parse(String, java.util.List, java.util.List, boolean, boolean, boolean);
 private PatternConverter createConverter(String, StringBuilder, java.util.Map, java.util.List, boolean, boolean);
 private static boolean areValidNewInstanceParameters(Class[]);
 private int finalizeConverter(char, String, int, StringBuilder, FormattingInfo, java.util.Map, java.util.List, java.util.List, boolean, boolean, boolean);
 private LogEventPatternConverter literalPattern(String, boolean);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/UuidPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class UuidPatternConverter extends LogEventPatternConverter {
 private final boolean isRandom;
 private void UuidPatternConverter(boolean);
 public static UuidPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ProcessIdPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ProcessIdPatternConverter extends LogEventPatternConverter {
 private static final String DEFAULT_DEFAULT_VALUE = ???;
 private final String pid;
 private transient void ProcessIdPatternConverter(String[]);
 public String getProcessId();
 public static void main(String[]);
 public static ProcessIdPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$2.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$2 {
 void EncodingPatternConverter$EscapeFormat$2(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$CachedTime.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$CachedTime {
 public long epochSecond;
 public int nanoOfSecond;
 public String formatted;
 public void DatePatternConverter$CachedTime(DatePatternConverter, org.apache.logging.log4j.core.time.Instant);
}

org/apache/logging/log4j/core/pattern/MarkerSimpleNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MarkerSimpleNamePatternConverter extends LogEventPatternConverter {
 private void MarkerSimpleNamePatternConverter(String[]);
 public static MarkerSimpleNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListSerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataAsEntryListSerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 protected void ContextDataAsEntryListSerializer();
 public void serialize(org.apache.logging.log4j.util.ReadOnlyStringMap, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

org/apache/logging/log4j/core/jackson/JsonConstants.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class JsonConstants {
 public static final String ELT_CAUSE = cause;
 public static final String ELT_CONTEXT_MAP = contextMap;
 public static final String ELT_CONTEXT_STACK = contextStack;
 public static final String ELT_MARKER = marker;
 public static final String ELT_PARENTS = parents;
 public static final String ELT_SOURCE = source;
 public static final String ELT_SUPPRESSED = suppressed;
 public static final String ELT_THROWN = thrown;
 public static final String ELT_MESSAGE = message;
 public static final String ELT_EXTENDED_STACK_TRACE = extendedStackTrace;
 public static final String ELT_NANO_TIME = nanoTime;
 public static final String ELT_INSTANT = instant;
 public static final String ELT_TIME_MILLIS = timeMillis;
 public void JsonConstants();
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataAsEntryListDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ContextDataAsEntryListDeserializer();
 public org.apache.logging.log4j.util.StringMap deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jJsonObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jJsonObjectMapper extends com.fasterxml.jackson.databind.ObjectMapper {
 private static final long serialVersionUID = 1;
 public void Log4jJsonObjectMapper();
 public void Log4jJsonObjectMapper(boolean, boolean, boolean, boolean);
}

org/apache/logging/log4j/core/jackson/MapEntry.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MapEntry {
 private String key;
 private String value;
 public void MapEntry(String, String);
 public boolean equals(Object);
 public String getKey();
 public String getValue();
 public int hashCode();
 public void setKey(String);
 public void setValue(String);
 public String toString();
}

org/apache/logging/log4j/core/jackson/MutableThreadContextStackDeserializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MutableThreadContextStackDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void MutableThreadContextStackDeserializer();
 public org.apache.logging.log4j.spi.MutableThreadContextStack deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

image1.png

£ Microsoft iSCSI Iniiator
£ Microsoft Software Shad.

e s
=3 s

“rWONTTOR -
% Multimedia Class Schedu... ZF... =
£ nas.exe FE. =3

image2.png

. BE

RETE » AMEE (D) » WEAVER [» Resin

v o] [@m=Resin »

A =8

L java_pids /252 hprot
] java. pid59348 hprof
] java. pid69232 hprof
] java. pid87156.hprof
) ucense

) Makefile.am

e) Makefile.n

monitorX.conf
PermamAle-agent T.07ar
|| ReADME

B resinjar

BHESR
20217971

2021/5/1

2008/8/1

2008/8/1

2008/8/1
2008/11/1

TP REE BRS) WEV SBN S0
BEM TEO) =M EGR EEE) S0W 2

X

SHERGA|+mb/2ela >
5 ccolozyid [moni torX. confEd

T PFintoomonitor
2 #wed Jul 15 19:07:44 CsT 2020

[disable=l
WatchdogPort=/601

5 serverPort=7800
& appBort=s081

image16.emf
运维平台关于log4j漏洞处理.zip

log4j.zip

log4j-core-2.17.1.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Bundle-License: https://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-SymbolicName: org.apache.logging.log4j.core

Log4jSigningUserName: mattsicker@apache.org

Built-By: matt

Bnd-LastModified: 1640647839891

Implementation-Vendor-Id: org.apache.logging.log4j

Specification-Title: Apache Log4j Core

Log4jReleaseManager: Matt Sicker

Bundle-DocURL: https://www.apache.org/

Import-Package: com.conversantmedia.util.concurrent;resolution:=option

 al,com.fasterxml.jackson.annotation;version="[2.12,3)";resolution:=op

 tional,com.fasterxml.jackson.core;version="[2.12,3)";resolution:=opti

 onal,com.fasterxml.jackson.core.type;version="[2.12,3)";resolution:=o

 ptional,com.fasterxml.jackson.core.util;version="[2.12,3)";resolution

 :=optional,com.fasterxml.jackson.databind;version="[2.12,3)";resoluti

 on:=optional,com.fasterxml.jackson.databind.annotation;version="[2.12

 ,3)";resolution:=optional,com.fasterxml.jackson.databind.deser.std;ve

 rsion="[2.12,3)";resolution:=optional,com.fasterxml.jackson.databind.

 module;version="[2.12,3)";resolution:=optional,com.fasterxml.jackson.

 databind.node;version="[2.12,3)";resolution:=optional,com.fasterxml.j

 ackson.databind.ser;version="[2.12,3)";resolution:=optional,com.faste

 rxml.jackson.databind.ser.impl;version="[2.12,3)";resolution:=optiona

 l,com.fasterxml.jackson.databind.ser.std;version="[2.12,3)";resolutio

 n:=optional,com.fasterxml.jackson.dataformat.xml;version="[2.12,3)";r

 esolution:=optional,com.fasterxml.jackson.dataformat.xml.annotation;v

 ersion="[2.12,3)";resolution:=optional,com.fasterxml.jackson.dataform

 at.xml.util;version="[2.12,3)";resolution:=optional,com.fasterxml.jac

 kson.dataformat.yaml;version="[2.12,3)";resolution:=optional,com.lmax

 .disruptor;version="[3.4,4)";resolution:=optional,com.lmax.disruptor.

 dsl;version="[3.4,4)";resolution:=optional,javax.activation;version="

 [1.2,2)";resolution:=optional,javax.annotation.processing,javax.crypt

 o,javax.jms;version="[1.1,2)";resolution:=optional,javax.lang.model,j

 avax.lang.model.element,javax.lang.model.util,javax.mail;version="[1.

 6,2)";resolution:=optional,javax.mail.internet;version="[1.6,2)";reso

 lution:=optional,javax.mail.util;version="[1.6,2)";resolution:=option

 al,javax.management,javax.naming,javax.net,javax.net.ssl,javax.script

 ,javax.sql,javax.tools,javax.xml.parsers,javax.xml.stream,javax.xml.t

 ransform,javax.xml.transform.stream,javax.xml.validation,org.apache.c

 ommons.compress.compressors;version="[1.21,2)";resolution:=optional,o

 rg.apache.commons.compress.utils;version="[1.21,2)";resolution:=optio

 nal,org.apache.commons.csv;version="[1.9,2)";resolution:=optional,org

 .apache.kafka.clients.producer;resolution:=optional,org.apache.loggin

 g.log4j;version="[2.17,3)",org.apache.logging.log4j.core,org.apache.l

 ogging.log4j.core.appender,org.apache.logging.log4j.core.appender.db,

 org.apache.logging.log4j.core.appender.rewrite,org.apache.logging.log

 4j.core.appender.rolling,org.apache.logging.log4j.core.appender.rolli

 ng.action,org.apache.logging.log4j.core.async,org.apache.logging.log4

 j.core.config,org.apache.logging.log4j.core.config.arbiters,org.apach

 e.logging.log4j.core.config.builder.api,org.apache.logging.log4j.core

 .config.builder.impl,org.apache.logging.log4j.core.config.composite,o

 rg.apache.logging.log4j.core.config.json,org.apache.logging.log4j.cor

 e.config.plugins,org.apache.logging.log4j.core.config.plugins.convert

 ,org.apache.logging.log4j.core.config.plugins.processor,org.apache.lo

 gging.log4j.core.config.plugins.util,org.apache.logging.log4j.core.co

 nfig.plugins.validation,org.apache.logging.log4j.core.config.plugins.

 validation.constraints,org.apache.logging.log4j.core.config.plugins.v

 alidation.validators,org.apache.logging.log4j.core.config.plugins.vis

 itors,org.apache.logging.log4j.core.config.status,org.apache.logging.

 log4j.core.filter,org.apache.logging.log4j.core.impl,org.apache.loggi

 ng.log4j.core.jackson,org.apache.logging.log4j.core.jmx,org.apache.lo

 gging.log4j.core.layout,org.apache.logging.log4j.core.layout.internal

 ,org.apache.logging.log4j.core.lookup,org.apache.logging.log4j.core.n

 et,org.apache.logging.log4j.core.net.ssl,org.apache.logging.log4j.cor

 e.pattern,org.apache.logging.log4j.core.script,org.apache.logging.log

 4j.core.selector,org.apache.logging.log4j.core.time,org.apache.loggin

 g.log4j.core.tools.picocli,org.apache.logging.log4j.core.util,org.apa

 che.logging.log4j.core.util.datetime,org.apache.logging.log4j.message

 ;version="[2.17,3)",org.apache.logging.log4j.spi;version="[2.17,3)",o

 rg.apache.logging.log4j.status;version="[2.17,3)",org.apache.logging.

 log4j.util;version="[2.17,3)",org.codehaus.stax2;version="[4.2,5)";re

 solution:=optional,org.fusesource.jansi;version="[2.3,3)";resolution:

 =optional,org.jctools.queues;resolution:=optional,org.osgi.framework;

 version="[1.6,2)",org.osgi.framework.wiring;version="[1.0,2)",org.w3c

 .dom,org.xml.sax,org.zeromq;version="[0.4,1)";resolution:=optional,su

 n.reflect;resolution:=optional

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

Export-Package: org.apache.logging.log4j.core;uses:="org.apache.loggin

 g.log4j,org.apache.logging.log4j.core.config,org.apache.logging.log4j

 .core.impl,org.apache.logging.log4j.core.layout,org.apache.logging.lo

 g4j.core.time,org.apache.logging.log4j.message,org.apache.logging.log

 4j.spi,org.apache.logging.log4j.status,org.apache.logging.log4j.util"

 ;version="2.17.1",org.apache.logging.log4j.core.appender;uses:="org.a

 pache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.

 log4j.core.appender.rolling,org.apache.logging.log4j.core.async,org.a

 pache.logging.log4j.core.config,org.apache.logging.log4j.core.config.

 plugins,org.apache.logging.log4j.core.config.plugins.validation.const

 raints,org.apache.logging.log4j.core.filter,org.apache.logging.log4j.

 core.impl,org.apache.logging.log4j.core.layout,org.apache.logging.log

 4j.core.net,org.apache.logging.log4j.core.net.ssl,org.apache.logging.

 log4j.core.script,org.apache.logging.log4j.core.util,org.apache.loggi

 ng.log4j.status";version="2.17.1",org.apache.logging.log4j.core.appen

 der.db;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.

 core.appender,org.apache.logging.log4j.core.config,org.apache.logging

 .log4j.core.config.plugins,org.apache.logging.log4j.core.util";versio

 n="2.17.1",org.apache.logging.log4j.core.appender.db.jdbc;uses:="org.

 apache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging

 .log4j.core.appender.db,org.apache.logging.log4j.core.config,org.apac

 he.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.co

 nfig.plugins.validation.constraints,org.apache.logging.log4j.core.lay

 out,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.l

 ogging.log4j.core.appender.mom;uses:="javax.jms,org.apache.logging.lo

 g4j.core,org.apache.logging.log4j.core.appender,org.apache.logging.lo

 g4j.core.config,org.apache.logging.log4j.core.config.plugins,org.apac

 he.logging.log4j.core.net,org.apache.logging.log4j.core.util";version

 ="2.17.1",org.apache.logging.log4j.core.appender.mom.jeromq;uses:="or

 g.apache.logging.log4j.core,org.apache.logging.log4j.core.appender,or

 g.apache.logging.log4j.core.config,org.apache.logging.log4j.core.conf

 ig.plugins,org.apache.logging.log4j.core.config.plugins.validation.co

 nstraints,org.zeromq";version="2.17.1",org.apache.logging.log4j.core.

 appender.mom.kafka;uses:="org.apache.kafka.clients.producer,org.apach

 e.logging.log4j.core,org.apache.logging.log4j.core.appender,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.l

 ogging.log4j.core.appender.nosql;uses:="org.apache.logging.log4j.core

 ,org.apache.logging.log4j.core.appender,org.apache.logging.log4j.core

 .appender.db,org.apache.logging.log4j.core.config.plugins,org.apache.

 logging.log4j.core.util";version="2.17.1",org.apache.logging.log4j.co

 re.appender.rewrite;uses:="org.apache.logging.log4j,org.apache.loggin

 g.log4j.core,org.apache.logging.log4j.core.appender,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.config.plugins,org.

 apache.logging.log4j.core.util";version="2.17.1",org.apache.logging.l

 og4j.core.appender.rolling;uses:="org.apache.logging.log4j,org.apache

 .logging.log4j.core,org.apache.logging.log4j.core.appender,org.apache

 .logging.log4j.core.appender.rolling.action,org.apache.logging.log4j.

 core.config,org.apache.logging.log4j.core.config.plugins,org.apache.l

 ogging.log4j.core.lookup,org.apache.logging.log4j.core.util";version=

 "2.17.1",org.apache.logging.log4j.core.appender.rolling.action;uses:=

 "org.apache.logging.log4j,org.apache.logging.log4j.core.config,org.ap

 ache.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.

 lookup,org.apache.logging.log4j.core.script,org.apache.logging.log4j.

 core.util";version="2.17.1",org.apache.logging.log4j.core.appender.ro

 uting;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.c

 ore.appender,org.apache.logging.log4j.core.appender.rewrite,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins,org.apache.logging.log4j.core.script,org.apache.logging.log4j.cor

 e.util";version="2.17.1",org.apache.logging.log4j.core.async;uses:="c

 om.conversantmedia.util.concurrent,com.lmax.disruptor,org.apache.logg

 ing.log4j,org.apache.logging.log4j.core,org.apache.logging.log4j.core

 .appender,org.apache.logging.log4j.core.config,org.apache.logging.log

 4j.core.config.plugins,org.apache.logging.log4j.core.config.plugins.v

 alidation.constraints,org.apache.logging.log4j.core.impl,org.apache.l

 ogging.log4j.core.jmx,org.apache.logging.log4j.core.selector,org.apac

 he.logging.log4j.core.time,org.apache.logging.log4j.core.util,org.apa

 che.logging.log4j.message,org.apache.logging.log4j.util";version="2.1

 7.1",org.apache.logging.log4j.core.config;uses:="org.apache.logging.l

 og4j,org.apache.logging.log4j.core,org.apache.logging.log4j.core.asyn

 c,org.apache.logging.log4j.core.config.builder.api,org.apache.logging

 .log4j.core.config.plugins,org.apache.logging.log4j.core.config.plugi

 ns.util,org.apache.logging.log4j.core.config.plugins.validation.const

 raints,org.apache.logging.log4j.core.filter,org.apache.logging.log4j.

 core.impl,org.apache.logging.log4j.core.lookup,org.apache.logging.log

 4j.core.net,org.apache.logging.log4j.core.script,org.apache.logging.l

 og4j.core.util,org.apache.logging.log4j.message,org.apache.logging.lo

 g4j.util";version="2.17.1",org.apache.logging.log4j.core.config.arbit

 ers;uses:="org.apache.logging.log4j.core.config,org.apache.logging.lo

 g4j.core.config.plugins,org.apache.logging.log4j.core.util";version="

 2.17.1",org.apache.logging.log4j.core.config.builder.api;uses:="org.a

 pache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.

 log4j.core.config,org.apache.logging.log4j.core.config.builder.impl,o

 rg.apache.logging.log4j.core.util";version="2.17.1",org.apache.loggin

 g.log4j.core.config.builder.impl;uses:="javax.xml.transform,org.apach

 e.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.log4

 j.core.config,org.apache.logging.log4j.core.config.builder.api,org.ap

 ache.logging.log4j.core.config.plugins.util,org.apache.logging.log4j.

 core.config.status";version="2.17.1",org.apache.logging.log4j.core.co

 nfig.composite;uses:="org.apache.logging.log4j.core.config,org.apache

 .logging.log4j.core.config.plugins.util";version="2.17.1",org.apache.

 logging.log4j.core.config.json;uses:="com.fasterxml.jackson.databind,

 org.apache.logging.log4j.core,org.apache.logging.log4j.core.config,or

 g.apache.logging.log4j.core.config.plugins";version="2.17.1",org.apac

 he.logging.log4j.core.config.plugins;uses:="org.apache.logging.log4j.

 core.config.plugins.visitors";version="2.17.1",org.apache.logging.log

 4j.core.config.plugins.convert;uses:="org.apache.logging.log4j,org.ap

 ache.logging.log4j.core.appender.rolling.action,org.apache.logging.lo

 g4j.core.config.plugins,org.apache.logging.log4j.core.util";version="

 2.17.1",org.apache.logging.log4j.core.config.plugins.processor;uses:=

 "javax.annotation.processing,javax.lang.model,javax.lang.model.elemen

 t";version="2.17.1",org.apache.logging.log4j.core.config.plugins.util

 ;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.core.c

 onfig,org.apache.logging.log4j.core.config.plugins.processor,org.apac

 he.logging.log4j.core.util";version="2.17.1",org.apache.logging.log4j

 .core.config.plugins.validation;version="2.17.1",org.apache.logging.l

 og4j.core.config.plugins.validation.constraints;uses:="org.apache.log

 ging.log4j.core.config.plugins.validation,org.apache.logging.log4j.co

 re.config.plugins.validation.validators";version="2.17.1",org.apache.

 logging.log4j.core.config.plugins.validation.validators;uses:="org.ap

 ache.logging.log4j.core.config.plugins.validation,org.apache.logging.

 log4j.core.config.plugins.validation.constraints";version="2.17.1",or

 g.apache.logging.log4j.core.config.plugins.visitors;uses:="org.apache

 .logging.log4j,org.apache.logging.log4j.core,org.apache.logging.log4j

 .core.config,org.apache.logging.log4j.core.config.plugins,org.apache.

 logging.log4j.core.lookup";version="2.17.1",org.apache.logging.log4j.

 core.config.properties;uses:="org.apache.logging.log4j.core,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.buil

 der.api,org.apache.logging.log4j.core.config.builder.impl,org.apache.

 logging.log4j.core.config.plugins,org.apache.logging.log4j.core.util"

 ;version="2.17.1",org.apache.logging.log4j.core.config.status;uses:="

 org.apache.logging.log4j";version="2.17.1",org.apache.logging.log4j.c

 ore.config.xml;uses:="org.apache.logging.log4j.core,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.config.plugins";ver

 sion="2.17.1",org.apache.logging.log4j.core.config.yaml;uses:="com.fa

 sterxml.jackson.databind,org.apache.logging.log4j.core,org.apache.log

 ging.log4j.core.config,org.apache.logging.log4j.core.config.json,org.

 apache.logging.log4j.core.config.plugins";version="2.17.1",org.apache

 .logging.log4j.core.filter;uses:="org.apache.logging.log4j,org.apache

 .logging.log4j.core,org.apache.logging.log4j.core.config,org.apache.l

 ogging.log4j.core.config.plugins,org.apache.logging.log4j.core.script

 ,org.apache.logging.log4j.core.util,org.apache.logging.log4j.message,

 org.apache.logging.log4j.util";version="2.17.1",org.apache.logging.lo

 g4j.core.impl;uses:="org.apache.logging.log4j,org.apache.logging.log4

 j.core,org.apache.logging.log4j.core.config,org.apache.logging.log4j.

 core.pattern,org.apache.logging.log4j.core.selector,org.apache.loggin

 g.log4j.core.time,org.apache.logging.log4j.core.util,org.apache.loggi

 ng.log4j.message,org.apache.logging.log4j.spi,org.apache.logging.log4

 j.util";version="2.17.1",org.apache.logging.log4j.core.jackson;uses:=

 "com.fasterxml.jackson.core,com.fasterxml.jackson.databind,com.faster

 xml.jackson.databind.deser.std,com.fasterxml.jackson.databind.ser.std

 ,com.fasterxml.jackson.dataformat.xml,com.fasterxml.jackson.dataforma

 t.yaml,org.apache.logging.log4j.message,org.apache.logging.log4j.util

 ";version="2.17.1",org.apache.logging.log4j.core.jmx;uses:="com.lmax.

 disruptor,javax.management,org.apache.logging.log4j,org.apache.loggin

 g.log4j.core,org.apache.logging.log4j.core.appender,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.selector,org.apache

 .logging.log4j.status";version="2.17.1",org.apache.logging.log4j.core

 .layout;uses:="com.fasterxml.jackson.annotation,com.fasterxml.jackson

 .core,com.fasterxml.jackson.databind,com.fasterxml.jackson.dataformat

 .xml.annotation,org.apache.commons.csv,org.apache.logging.log4j,org.a

 pache.logging.log4j.core,org.apache.logging.log4j.core.config,org.apa

 che.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.i

 mpl,org.apache.logging.log4j.core.net,org.apache.logging.log4j.core.p

 attern,org.apache.logging.log4j.core.script,org.apache.logging.log4j.

 core.util,org.apache.logging.log4j.message";version="2.17.1",org.apac

 he.logging.log4j.core.layout.internal;version="2.17.1",org.apache.log

 ging.log4j.core.lookup;uses:="org.apache.logging.log4j.core,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins";version="2.17.1",org.apache.logging.log4j.core.message;uses:="or

 g.apache.logging.log4j.message";version="2.17.1",org.apache.logging.l

 og4j.core.net;uses:="javax.mail,javax.mail.internet,javax.naming,org.

 apache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging

 .log4j.core.appender,org.apache.logging.log4j.core.config,org.apache.

 logging.log4j.core.config.plugins,org.apache.logging.log4j.core.net.s

 sl,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.lo

 gging.log4j.core.net.ssl;uses:="javax.net.ssl,org.apache.logging.log4

 j.core.config.plugins,org.apache.logging.log4j.status";version="2.17.

 1",org.apache.logging.log4j.core.osgi;uses:="org.apache.logging.log4j

 .core,org.apache.logging.log4j.core.selector,org.osgi.framework";vers

 ion="2.17.1",org.apache.logging.log4j.core.parser;uses:="org.apache.l

 ogging.log4j.core";version="2.17.1",org.apache.logging.log4j.core.pat

 tern;uses:="org.apache.logging.log4j,org.apache.logging.log4j.core,or

 g.apache.logging.log4j.core.config,org.apache.logging.log4j.core.conf

 ig.plugins,org.apache.logging.log4j.core.impl,org.apache.logging.log4

 j.core.time,org.apache.logging.log4j.message,org.fusesource.jansi";ve

 rsion="2.17.1",org.apache.logging.log4j.core.script;uses:="javax.scri

 pt,org.apache.logging.log4j,org.apache.logging.log4j.core.config,org.

 apache.logging.log4j.core.config.plugins,org.apache.logging.log4j.cor

 e.util";version="2.17.1",org.apache.logging.log4j.core.selector;uses:

 ="org.apache.logging.log4j.core,org.apache.logging.log4j.spi,org.apac

 he.logging.log4j.status";version="2.17.1",org.apache.logging.log4j.co

 re.time;uses:="org.apache.logging.log4j.core.util,org.apache.logging.

 log4j.util";version="2.17.1",org.apache.logging.log4j.core.time.inter

 nal;uses:="org.apache.logging.log4j.core.time";version="2.17.1",org.a

 pache.logging.log4j.core.tools;version="2.17.1",org.apache.logging.lo

 g4j.core.tools.picocli;version="2.17.1",org.apache.logging.log4j.core

 .util;uses:="javax.crypto,javax.naming,org.apache.logging.log4j,org.a

 pache.logging.log4j.core,org.apache.logging.log4j.core.config,org.apa

 che.logging.log4j.core.config.plugins,org.apache.logging.log4j.util";

 version="2.17.1",org.apache.logging.log4j.core.util.datetime;uses:="o

 rg.apache.logging.log4j.core.time";version="2.17.1"

Bundle-Name: Apache Log4j Core

Log4jReleaseVersionJava6: 2.3.1

Multi-Release: true

Bundle-Activator: org.apache.logging.log4j.core.osgi.Activator

Log4jReleaseVersionJava7: 2.12.3

Log4jReleaseVersion: 2.17.1

Implementation-Title: Apache Log4j Core

Bundle-Description: The Apache Log4j Implementation

Automatic-Module-Name: org.apache.logging.log4j.core

Implementation-Version: 2.17.1

Specification-Vendor: The Apache Software Foundation

Bundle-ManifestVersion: 2

Bundle-Vendor: The Apache Software Foundation

Tool: Bnd-3.5.0.201709291849

Implementation-Vendor: The Apache Software Foundation

Bundle-Version: 2.17.1

X-Compile-Target-JDK: 1.8

X-Compile-Source-JDK: 1.8

Created-By: Apache Maven Bundle Plugin

Build-Jdk: 1.8.0_312

Specification-Version: 2.17.1

Implementation-URL: https://logging.apache.org/log4j/2.x/log4j-core/

Log4jReleaseKey: D7C92B70FA1C814D

Log4j-levels.xsd

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy$Mode.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized enum MapRewritePolicy$Mode {
 public static final MapRewritePolicy$Mode Add;
 public static final MapRewritePolicy$Mode Update;
 public static MapRewritePolicy$Mode[] values();
 public static MapRewritePolicy$Mode valueOf(String);
 private void MapRewritePolicy$Mode(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rewrite/RewriteAppender.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class RewriteAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final java.util.concurrent.ConcurrentMap appenders;
 private final RewritePolicy rewritePolicy;
 private final org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private void RewriteAppender(String, org.apache.logging.log4j.core.Filter, boolean, org.apache.logging.log4j.core.config.AppenderRef[], RewritePolicy, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public static RewriteAppender createAppender(String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Configuration, RewritePolicy, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class OutputStreamAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean follow;
 private final boolean ignoreExceptions;
 private java.io.OutputStream target;
 public void OutputStreamAppender$Builder();
 public OutputStreamAppender build();
 public OutputStreamAppender$Builder setFollow(boolean);
 public OutputStreamAppender$Builder setTarget(java.io.OutputStream);
}

org/apache/logging/log4j/core/appender/rolling/RolloverListener.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverListener {
 public abstract void rolloverTriggered(String);
 public abstract void rolloverComplete(String);
}

org/apache/logging/log4j/core/appender/rolling/NoOpTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class NoOpTriggeringPolicy extends AbstractTriggeringPolicy {
 public static final NoOpTriggeringPolicy INSTANCE;
 public void NoOpTriggeringPolicy();
 public static NoOpTriggeringPolicy createPolicy();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$AsyncAction.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$AsyncAction extends action.AbstractAction {
 private final action.Action action;
 private final RollingFileManager manager;
 public void RollingFileManager$AsyncAction(action.Action, RollingFileManager);
 public boolean execute() throws java.io.IOException;
 public void close();
 public boolean isComplete();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/SortingVisitor.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class SortingVisitor extends java.nio.file.SimpleFileVisitor {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final PathSorter sorter;
 private final java.util.List collected;
 public void SortingVisitor(PathSorter);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
 public java.nio.file.FileVisitResult visitFileFailed(java.nio.file.Path, java.io.IOException) throws java.io.IOException;
 public java.util.List getSortedPaths();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class RollingFileManager extends org.apache.logging.log4j.core.appender.FileManager {
 private static RollingFileManager$RollingFileManagerFactory factory;
 private static final int MAX_TRIES = 3;
 private static final int MIN_DURATION = 100;
 private static final java.nio.file.attribute.FileTime EPOCH;
 protected long size;
 private long initialTime;
 private volatile PatternProcessor patternProcessor;
 private final java.util.concurrent.Semaphore semaphore;
 private final org.apache.logging.log4j.core.util.Log4jThreadFactory threadFactory;
 private volatile TriggeringPolicy triggeringPolicy;
 private volatile RolloverStrategy rolloverStrategy;
 private volatile boolean renameEmptyFiles;
 private volatile boolean initialized;
 private volatile String fileName;
 private final boolean directWrite;
 private final java.util.concurrent.CopyOnWriteArrayList rolloverListeners;
 private final java.util.concurrent.ExecutorService asyncExecutor;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater triggeringPolicyUpdater;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater rolloverStrategyUpdater;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater patternProcessorUpdater;
 protected void RollingFileManager(String, String, java.io.OutputStream, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean);
 protected void RollingFileManager(String, String, java.io.OutputStream, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void RollingFileManager(org.apache.logging.log4j.core.LoggerContext, String, String, java.io.OutputStream, boolean, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void RollingFileManager(org.apache.logging.log4j.core.LoggerContext, String, String, java.io.OutputStream, boolean, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean, java.nio.ByteBuffer);
 public void initialize();
 public static RollingFileManager getFileManager(String, String, boolean, boolean, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean, boolean, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public void addRolloverListener(RolloverListener);
 public void removeRolloverListener(RolloverListener);
 public String getFileName();
 protected void createParentDir(java.io.File);
 public boolean isDirectWrite();
 public FileExtension getFileExtension();
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 public boolean isRenameEmptyFiles();
 public void setRenameEmptyFiles(boolean);
 public long getFileSize();
 public long getFileTime();
 public synchronized void checkRollover(org.apache.logging.log4j.core.LogEvent);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public synchronized void rollover(java.util.Date, java.util.Date);
 public synchronized void rollover();
 protected void createFileAfterRollover() throws java.io.IOException;
 public PatternProcessor getPatternProcessor();
 public void setTriggeringPolicy(TriggeringPolicy);
 public void setRolloverStrategy(RolloverStrategy);
 public void setPatternProcessor(PatternProcessor);
 public TriggeringPolicy getTriggeringPolicy();
 java.util.concurrent.Semaphore getSemaphore();
 public RolloverStrategy getRolloverStrategy();
 private boolean rollover(RolloverStrategy);
 public void updateData(Object);
 private static long initialFileTime(java.io.File);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/OutputStreamAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class OutputStreamAppender extends AbstractOutputStreamAppender {
 private static OutputStreamAppender$OutputStreamManagerFactory factory;
 public static OutputStreamAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, java.io.OutputStream, String, boolean, boolean);
 private static OutputStreamManager getManager(java.io.OutputStream, boolean, org.apache.logging.log4j.core.Layout);
 public static OutputStreamAppender$Builder newBuilder();
 private void OutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/WriterAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$1 {
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RandomAccessFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RandomAccessFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, RandomAccessFileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getFileName();
 public int getBufferSize();
 public static RandomAccessFileAppender createAppender(String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RandomAccessFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/db/DbAppenderLoggingException.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class DbAppenderLoggingException extends org.apache.logging.log4j.core.appender.AppenderLoggingException {
 private static final long serialVersionUID = 1;
 public transient void DbAppenderLoggingException(String, Object[]);
 public void DbAppenderLoggingException(String, Throwable);
 public transient void DbAppenderLoggingException(Throwable, String, Object[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class JdbcDatabaseManager$1 {
}

org/apache/logging/log4j/core/appender/ConsoleAppender$SystemErrStream.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$SystemErrStream extends java.io.OutputStream {
 public void ConsoleAppender$SystemErrStream();
 public void close();
 public void flush();
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int);
}

org/apache/logging/log4j/core/appender/routing/Routes$Builder.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class Routes$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String pattern;
 private org.apache.logging.log4j.core.script.AbstractScript patternScript;
 private Route[] routes;
 public void Routes$Builder();
 public Routes build();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public String getPattern();
 public org.apache.logging.log4j.core.script.AbstractScript getPatternScript();
 public Route[] getRoutes();
 public Routes$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public Routes$Builder withPattern(String);
 public Routes$Builder withPatternScript(org.apache.logging.log4j.core.script.AbstractScript);
 public Routes$Builder withRoutes(Route[]);
}

org/apache/logging/log4j/core/appender/routing/Route.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class Route {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.Node node;
 private final String appenderRef;
 private final String key;
 private void Route(org.apache.logging.log4j.core.config.Node, String, String);
 public org.apache.logging.log4j.core.config.Node getNode();
 public String getAppenderRef();
 public String getKey();
 public String toString();
 public static Route createRoute(String, String, org.apache.logging.log4j.core.config.Node);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SmtpAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class SmtpAppender$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$1.class

package org.apache.logging.log4j.core.appender.nosql;
synchronized class NoSqlDatabaseManager$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$NoSQLDatabaseManagerFactory.class

package org.apache.logging.log4j.core.appender.nosql;
final synchronized class NoSqlDatabaseManager$NoSQLDatabaseManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void NoSqlDatabaseManager$NoSQLDatabaseManagerFactory();
 public NoSqlDatabaseManager createManager(String, NoSqlDatabaseManager$FactoryData);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$KafkaManagerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$KafkaManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void KafkaManager$KafkaManagerFactory();
 public KafkaManager createManager(String, KafkaManager$FactoryData);
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$1.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$1 {
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper$1.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyHelper$1 {
}

org/apache/logging/log4j/core/impl/ReusableLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ReusableLogEventFactory implements LogEventFactory, LocationAwareLogEventFactory {
 private static final org.apache.logging.log4j.core.async.ThreadNameCachingStrategy THREAD_NAME_CACHING_STRATEGY;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final ThreadLocal mutableLogEventThreadLocal;
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 public void ReusableLogEventFactory();
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 private static MutableLogEvent getOrCreateMutableLogEvent();
 private static MutableLogEvent createInstance(MutableLogEvent);
 public static void release(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/ClassLoaderContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class ClassLoaderContextSelector implements ContextSelector, org.apache.logging.log4j.spi.LoggerContextShutdownAware {
 private static final java.util.concurrent.atomic.AtomicReference DEFAULT_CONTEXT;
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 protected static final java.util.concurrent.ConcurrentMap CONTEXT_MAP;
 public void ClassLoaderContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public void contextShutdown(org.apache.logging.log4j.spi.LoggerContext);
 public boolean hasContext(String, ClassLoader, boolean);
 private org.apache.logging.log4j.core.LoggerContext findContext(ClassLoader);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 private org.apache.logging.log4j.core.LoggerContext locateContext(ClassLoader, java.util.Map$Entry, java.net.URI);
 protected org.apache.logging.log4j.core.LoggerContext createContext(String, java.net.URI);
 protected String toContextMapKey(ClassLoader);
 protected org.apache.logging.log4j.core.LoggerContext getDefault();
 protected String defaultContextName();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunAll.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunAll implements CommandLine$IParseResultHandler {
 public void CommandLine$RunAll();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$PositionalParametersSorter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$PositionalParametersSorter implements java.util.Comparator {
 private void CommandLine$PositionalParametersSorter();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Range.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Range implements Comparable {
 public final int min;
 public final int max;
 public final boolean isVariable;
 private final boolean isUnspecified;
 private final String originalValue;
 public void CommandLine$Range(int, int, boolean, boolean, String);
 public static CommandLine$Range optionArity(reflect.Field);
 public static CommandLine$Range parameterArity(reflect.Field);
 public static CommandLine$Range parameterIndex(reflect.Field);
 static CommandLine$Range adjustForType(CommandLine$Range, reflect.Field);
 public static CommandLine$Range defaultArity(reflect.Field);
 public static CommandLine$Range defaultArity(Class);
 private int size();
 static CommandLine$Range parameterCapacity(reflect.Field);
 public static CommandLine$Range valueOf(String);
 private static int parseInt(String, int);
 public CommandLine$Range min(int);
 public CommandLine$Range max(int);
 public boolean contains(int);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public int compareTo(CommandLine$Range);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$IParseResultHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$IParseResultHandler {
 public abstract java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi) throws CommandLine$ExecutionException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunFirst.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunFirst implements CommandLine$IParseResultHandler {
 public void CommandLine$RunFirst();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/net/Protocol.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Protocol {
 public static final Protocol TCP;
 public static final Protocol SSL;
 public static final Protocol UDP;
 public static Protocol[] values();
 public static Protocol valueOf(String);
 private void Protocol(String, int);
 public boolean isEqual(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/StoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class StoreConfiguration {
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private String location;
 private PasswordProvider passwordProvider;
 public void StoreConfiguration(String, PasswordProvider);
 public void StoreConfiguration(String, char[]);
 public void StoreConfiguration(String, String);
 public void clearSecrets();
 public String getLocation();
 public void setLocation(String);
 public String getPassword();
 public char[] getPasswordAsCharArray();
 public void setPassword(char[]);
 public void setPassword(String);
 protected Object load() throws StoreConfigurationException;
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/TrustStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class TrustStoreConfiguration extends AbstractKeyStoreConfiguration {
 private final String trustManagerFactoryAlgorithm;
 public void TrustStoreConfiguration(String, PasswordProvider, String, String) throws StoreConfigurationException;
 public void TrustStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public void TrustStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, char[], String, String, String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public javax.net.ssl.TrustManagerFactory initTrustManagerFactory() throws java.security.NoSuchAlgorithmException, java.security.KeyStoreException;
 public int hashCode();
 public boolean equals(Object);
 public String getTrustManagerFactoryAlgorithm();
}

org/apache/logging/log4j/core/net/DatagramOutputStream.class

package org.apache.logging.log4j.core.net;
public synchronized class DatagramOutputStream extends java.io.OutputStream {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final int SHIFT_1 = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_3 = 24;
 private java.net.DatagramSocket datagramSocket;
 private final java.net.InetAddress inetAddress;
 private final int port;
 private byte[] data;
 private final byte[] header;
 private final byte[] footer;
 public void DatagramOutputStream(String, int, byte[], byte[]);
 public synchronized void write(byte[], int, int) throws java.io.IOException;
 public synchronized void write(int) throws java.io.IOException;
 public synchronized void write(byte[]) throws java.io.IOException;
 public synchronized void flush() throws java.io.IOException;
 public synchronized void close() throws java.io.IOException;
 private void copy(byte[], int, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Rfc1349TrafficClass.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Rfc1349TrafficClass {
 public static final Rfc1349TrafficClass IPTOS_NORMAL;
 public static final Rfc1349TrafficClass IPTOS_LOWCOST;
 public static final Rfc1349TrafficClass IPTOS_LOWDELAY;
 public static final Rfc1349TrafficClass IPTOS_RELIABILITY;
 public static final Rfc1349TrafficClass IPTOS_THROUGHPUT;
 private final int trafficClass;
 public static Rfc1349TrafficClass[] values();
 public static Rfc1349TrafficClass valueOf(String);
 private void Rfc1349TrafficClass(String, int, int);
 public int value();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CloseShieldOutputStream.class

package org.apache.logging.log4j.core.util;
public synchronized class CloseShieldOutputStream extends java.io.OutputStream {
 private final java.io.OutputStream delegate;
 public void CloseShieldOutputStream(java.io.OutputStream);
 public void close();
 public void flush() throws java.io.IOException;
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/BasicAuthorizationProvider.class

package org.apache.logging.log4j.core.util;
public synchronized class BasicAuthorizationProvider implements AuthorizationProvider {
 private static final String[] PREFIXES;
 private static final String AUTH_USER_NAME = username;
 private static final String AUTH_PASSWORD = password;
 private static final String AUTH_PASSWORD_DECRYPTOR = passwordDecryptor;
 public static final String CONFIG_USER_NAME = log4j2.configurationUserName;
 public static final String CONFIG_PASSWORD = log4j2.configurationPassword;
 public static final String PASSWORD_DECRYPTOR = log4j2.passwordDecryptor;
 private static org.apache.logging.log4j.Logger LOGGER;
 private String authString;
 public void BasicAuthorizationProvider(org.apache.logging.log4j.util.PropertiesUtil);
 public void addAuthorization(java.net.URLConnection);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Assert.class

package org.apache.logging.log4j.core.util;
public final synchronized class Assert {
 private void Assert();
 public static boolean isEmpty(Object);
 public static boolean isNonEmpty(Object);
 public static Object requireNonEmpty(Object);
 public static Object requireNonEmpty(Object, String);
 public static int valueIsAtLeast(int, int);
}

org/apache/logging/log4j/core/util/datetime/FormatCache$MultipartKey.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FormatCache$MultipartKey {
 private final Object[] keys;
 private int hashCode;
 public transient void FormatCache$MultipartKey(Object[]);
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$PatternStrategy.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FastDateParser$PatternStrategy extends FastDateParser$Strategy {
 private java.util.regex.Pattern pattern;
 private void FastDateParser$PatternStrategy();
 void createPattern(StringBuilder);
 void createPattern(String);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
 abstract void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$WeekYear.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$WeekYear implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$WeekYear(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwelveHourField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwelveHourField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$TwelveHourField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$CharacterLiteral.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$CharacterLiteral implements FastDatePrinter$Rule {
 private final char mValue;
 void FastDatePrinter$CharacterLiteral(char);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/CronExpression.class

package org.apache.logging.log4j.core.util;
public final synchronized class CronExpression {
 protected static final int SECOND = 0;
 protected static final int MINUTE = 1;
 protected static final int HOUR = 2;
 protected static final int DAY_OF_MONTH = 3;
 protected static final int MONTH = 4;
 protected static final int DAY_OF_WEEK = 5;
 protected static final int YEAR = 6;
 protected static final int ALL_SPEC_INT = 99;
 protected static final int NO_SPEC_INT = 98;
 protected static final Integer ALL_SPEC;
 protected static final Integer NO_SPEC;
 protected static final java.util.Map monthMap;
 protected static final java.util.Map dayMap;
 private final String cronExpression;
 private java.util.TimeZone timeZone;
 protected transient java.util.TreeSet seconds;
 protected transient java.util.TreeSet minutes;
 protected transient java.util.TreeSet hours;
 protected transient java.util.TreeSet daysOfMonth;
 protected transient java.util.TreeSet months;
 protected transient java.util.TreeSet daysOfWeek;
 protected transient java.util.TreeSet years;
 protected transient boolean lastdayOfWeek;
 protected transient int nthdayOfWeek;
 protected transient boolean lastdayOfMonth;
 protected transient boolean nearestWeekday;
 protected transient int lastdayOffset;
 protected transient boolean expressionParsed;
 public static final int MAX_YEAR;
 public static final java.util.Calendar MIN_CAL;
 public static final java.util.Date MIN_DATE;
 public void CronExpression(String) throws java.text.ParseException;
 public boolean isSatisfiedBy(java.util.Date);
 public java.util.Date getNextValidTimeAfter(java.util.Date);
 public java.util.Date getNextInvalidTimeAfter(java.util.Date);
 public java.util.TimeZone getTimeZone();
 public void setTimeZone(java.util.TimeZone);
 public String toString();
 public static boolean isValidExpression(String);
 public static void validateExpression(String) throws java.text.ParseException;
 protected void buildExpression(String) throws java.text.ParseException;
 protected int storeExpressionVals(int, String, int) throws java.text.ParseException;
 protected int checkNext(int, String, int, int) throws java.text.ParseException;
 public String getCronExpression();
 public String getExpressionSummary();
 protected String getExpressionSetSummary(java.util.Set);
 protected String getExpressionSetSummary(java.util.ArrayList);
 protected int skipWhiteSpace(int, String);
 protected int findNextWhiteSpace(int, String);
 protected void addToSet(int, int, int, int) throws java.text.ParseException;
 java.util.TreeSet getSet(int);
 protected CronExpression$ValueSet getValue(int, String, int);
 protected int getNumericValue(String, int);
 protected int getMonthNumber(String);
 protected int getDayOfWeekNumber(String);
 public java.util.Date getTimeAfter(java.util.Date);
 protected void setCalendarHour(java.util.Calendar, int);
 protected java.util.Date getTimeBefore(java.util.Date);
 public java.util.Date getPrevFireTime(java.util.Date);
 private long findMinIncrement();
 private int minInSet(java.util.TreeSet);
 public java.util.Date getFinalFireTime();
 protected boolean isLeapYear(int);
 protected int getLastDayOfMonth(int, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/IOUtils.class

package org.apache.logging.log4j.core.util;
public synchronized class IOUtils {
 private static final int DEFAULT_BUFFER_SIZE = 4096;
 public static final int EOF = -1;
 public void IOUtils();
 public static int copy(java.io.Reader, java.io.Writer) throws java.io.IOException;
 public static long copyLarge(java.io.Reader, java.io.Writer) throws java.io.IOException;
 public static long copyLarge(java.io.Reader, java.io.Writer, char[]) throws java.io.IOException;
 public static String toString(java.io.Reader) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/NetUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class NetUtils {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String UNKNOWN_LOCALHOST = UNKNOWN_LOCALHOST;
 private void NetUtils();
 public static String getLocalHostname();
 public static byte[] getMacAddress();
 public static String getMacAddressString();
 private static boolean isUpAndNotLoopback(java.net.NetworkInterface) throws java.net.SocketException;
 public static java.net.URI toURI(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/FileWatcher.class

package org.apache.logging.log4j.core.util;
public abstract interface FileWatcher {
 public abstract void fileModified(java.io.File);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginConfigurationVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginConfigurationVisitor extends AbstractPluginVisitor {
 public void PluginConfigurationVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginAttributeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginAttributeVisitor extends AbstractPluginVisitor {
 public void PluginAttributeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private Object findDefaultValue(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/config/plugins/util/PluginRegistry$PluginTest.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginRegistry$PluginTest implements ResolverUtil$Test {
 public void PluginRegistry$PluginTest();
 public boolean matches(Class);
 public String toString();
 public boolean matches(java.net.URI);
 public boolean doesMatchClass();
 public boolean doesMatchResource();
}

org/apache/logging/log4j/core/config/plugins/PluginVisitorStrategy.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginVisitorStrategy extends annotation.Annotation {
 public abstract Class value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$PathConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$PathConverter implements TypeConverter {
 public void TypeConverters$PathConverter();
 public java.nio.file.Path convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$DoubleConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$DoubleConverter implements TypeConverter {
 public void TypeConverters$DoubleConverter();
 public Double convert(String);
}

org/apache/logging/log4j/core/config/ConfigurationScheduler$CronRunnable.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationScheduler$CronRunnable implements Runnable {
 private final org.apache.logging.log4j.core.util.CronExpression cronExpression;
 private final Runnable runnable;
 private CronScheduledFuture scheduledFuture;
 public void ConfigurationScheduler$CronRunnable(ConfigurationScheduler, Runnable, org.apache.logging.log4j.core.util.CronExpression);
 public void setScheduledFuture(CronScheduledFuture);
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/config/ConfigurationSource.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationSource {
 public static final ConfigurationSource NULL_SOURCE;
 public static final ConfigurationSource COMPOSITE_SOURCE;
 private static final String HTTPS = https;
 private final java.io.File file;
 private final java.net.URL url;
 private final String location;
 private final java.io.InputStream stream;
 private volatile byte[] data;
 private volatile org.apache.logging.log4j.core.util.Source source;
 private final long lastModified;
 private volatile long modifiedMillis;
 public void ConfigurationSource(java.io.InputStream, java.io.File);
 public void ConfigurationSource(java.io.InputStream, java.net.URL);
 public void ConfigurationSource(java.io.InputStream, java.net.URL, long);
 public void ConfigurationSource(java.io.InputStream) throws java.io.IOException;
 public void ConfigurationSource(org.apache.logging.log4j.core.util.Source, byte[], long) throws java.io.IOException;
 private void ConfigurationSource(byte[], java.net.URL, long);
 private static byte[] toByteArray(java.io.InputStream) throws java.io.IOException;
 public java.io.File getFile();
 public java.net.URL getURL();
 public void setSource(org.apache.logging.log4j.core.util.Source);
 public void setData(byte[]);
 public void setModifiedMillis(long);
 public java.net.URI getURI();
 public long getLastModified();
 public String getLocation();
 public java.io.InputStream getInputStream();
 public ConfigurationSource resetInputStream() throws java.io.IOException;
 public String toString();
 public static ConfigurationSource fromUri(java.net.URI);
 public static ConfigurationSource fromResource(String, ClassLoader);
 private static ConfigurationSource getConfigurationSource(java.net.URL);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration.class

package org.apache.logging.log4j.core.config.xml;
public synchronized class XmlConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 private static final String XINCLUDE_FIXUP_LANGUAGE = http://apache.org/xml/features/xinclude/fixup-language;
 private static final String XINCLUDE_FIXUP_BASE_URIS = http://apache.org/xml/features/xinclude/fixup-base-uris;
 private static final String[] VERBOSE_CLASSES;
 private static final String LOG4J_XSD = Log4j-config.xsd;
 private final java.util.List status;
 private org.w3c.dom.Element rootElement;
 private boolean strict;
 private String schemaResource;
 public void XmlConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 static javax.xml.parsers.DocumentBuilder newDocumentBuilder(boolean) throws javax.xml.parsers.ParserConfigurationException;
 private static void disableDtdProcessing(javax.xml.parsers.DocumentBuilderFactory);
 private static void setFeature(javax.xml.parsers.DocumentBuilderFactory, String, boolean);
 private static void enableXInclude(javax.xml.parsers.DocumentBuilderFactory);
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private void constructHierarchy(org.apache.logging.log4j.core.config.Node, org.w3c.dom.Element);
 private String getType(org.w3c.dom.Element);
 private java.util.Map processAttributes(org.apache.logging.log4j.core.config.Node, org.w3c.dom.Element);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/DefaultReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private final LoggerConfig loggerConfig;
 public void DefaultReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/AwaitUnconditionallyReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class AwaitUnconditionallyReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private static final long DEFAULT_SLEEP_MILLIS = 5000;
 private static final long SLEEP_MILLIS;
 private final LoggerConfig loggerConfig;
 public void AwaitUnconditionallyReliabilityStrategy(LoggerConfig);
 private static long sleepMillis();
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/yaml/YamlConfiguration.class

package org.apache.logging.log4j.core.config.yaml;
public synchronized class YamlConfiguration extends org.apache.logging.log4j.core.config.json.JsonConfiguration {
 public void YamlConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 protected com.fasterxml.jackson.databind.ObjectMapper getObjectMapper();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
}

org/apache/logging/log4j/core/config/LoggerConfig.class

package org.apache.logging.log4j.core.config;
public synchronized class LoggerConfig extends org.apache.logging.log4j.core.filter.AbstractFilterable implements org.apache.logging.log4j.core.impl.LocationAware {
 public static final String ROOT = root;
 private static org.apache.logging.log4j.core.impl.LogEventFactory LOG_EVENT_FACTORY;
 private java.util.List appenderRefs;
 private final AppenderControlArraySet appenders;
 private final String name;
 private org.apache.logging.log4j.core.impl.LogEventFactory logEventFactory;
 private org.apache.logging.log4j.Level level;
 private boolean additive;
 private boolean includeLocation;
 private LoggerConfig parent;
 private java.util.Map propertiesMap;
 private final java.util.List properties;
 private final boolean propertiesRequireLookup;
 private final Configuration config;
 private final ReliabilityStrategy reliabilityStrategy;
 public void LoggerConfig();
 public void LoggerConfig(String, org.apache.logging.log4j.Level, boolean);
 protected void LoggerConfig(String, java.util.List, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.Level, boolean, Property[], Configuration, boolean);
 private static boolean containsPropertyRequiringLookup(Property[]);
 public org.apache.logging.log4j.core.Filter getFilter();
 public String getName();
 public void setParent(LoggerConfig);
 public LoggerConfig getParent();
 public void addAppender(org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public void removeAppender(String);
 public java.util.Map getAppenders();
 protected void clearAppenders();
 private void cleanupFilter(AppenderControl);
 public java.util.List getAppenderRefs();
 public void setLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.core.impl.LogEventFactory getLogEventFactory();
 public void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
 public boolean isAdditive();
 public void setAdditive(boolean);
 public boolean isIncludeLocation();
 public java.util.Map getProperties();
 public java.util.List getPropertyList();
 public boolean isPropertiesRequireLookup();
 public void log(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement location(String);
 public void log(String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private java.util.List getProperties(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private java.util.List getPropertiesWithLookups(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, java.util.List);
 public void log(org.apache.logging.log4j.core.LogEvent);
 protected void log(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 public ReliabilityStrategy getReliabilityStrategy();
 private void processLogEvent(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 public boolean requiresLocation();
 private void logParent(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 protected void callAppenders(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
 public static LoggerConfig createLogger(boolean, org.apache.logging.log4j.Level, String, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
 protected static boolean includeLocation(String);
 protected static boolean includeLocation(String, Configuration);
 protected final boolean hasAppenders();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/BuiltConfiguration.class

package org.apache.logging.log4j.core.config.builder.impl;
public synchronized class BuiltConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration {
 private static final String[] VERBOSE_CLASSES;
 private final org.apache.logging.log4j.core.config.status.StatusConfiguration statusConfig;
 protected org.apache.logging.log4j.core.config.builder.api.Component rootComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component loggersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component appendersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component filtersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component propertiesComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component customLevelsComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component scriptsComponent;
 private String contentType;
 public void BuiltConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource, org.apache.logging.log4j.core.config.builder.api.Component);
 public void setup();
 public String getContentType();
 public void setContentType(String);
 public void createAdvertiser(String, org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.config.status.StatusConfiguration getStatusConfiguration();
 public void setPluginPackages(String);
 public void setShutdownHook(String);
 public void setShutdownTimeoutMillis(long);
 public void setMonitorInterval(int);
 public org.apache.logging.log4j.core.config.plugins.util.PluginManager getPluginManager();
 protected org.apache.logging.log4j.core.config.Node convertToNode(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.builder.api.Component);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultComponentBuilder implements org.apache.logging.log4j.core.config.builder.api.ComponentBuilder {
 private final org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder builder;
 private final String type;
 private final java.util.Map attributes;
 private final java.util.List components;
 private final String name;
 private final String value;
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String);
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String, String);
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, Enum);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, int);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, Object);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addComponent(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.Component build();
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder getBuilder();
 public String getName();
 protected org.apache.logging.log4j.core.config.builder.api.ComponentBuilder put(String, String);
}

org/apache/logging/log4j/core/LoggerContext$ThreadContextDataTask.class

package org.apache.logging.log4j.core;
synchronized class LoggerContext$ThreadContextDataTask implements Runnable {
 private void LoggerContext$ThreadContextDataTask(LoggerContext);
 public void run();
}

org/apache/logging/log4j/core/jmx/ContextSelectorAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface ContextSelectorAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=ContextSelector;
 public abstract String getImplementationClassName();
}

org/apache/logging/log4j/core/layout/Rfc5424Layout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class Rfc5424Layout extends AbstractStringLayout {
 public static final int DEFAULT_ENTERPRISE_NUMBER = 18060;
 public static final String DEFAULT_ID = Audit;
 public static final java.util.regex.Pattern NEWLINE_PATTERN;
 public static final java.util.regex.Pattern PARAM_VALUE_ESCAPE_PATTERN;
 public static final String DEFAULT_MDCID = mdc;
 private static final String LF =
;
 private static final int TWO_DIGITS = 10;
 private static final int THREE_DIGITS = 100;
 private static final int MILLIS_PER_MINUTE = 60000;
 private static final int MINUTES_PER_HOUR = 60;
 private static final String COMPONENT_KEY = RFC5424-Converter;
 private final org.apache.logging.log4j.core.net.Facility facility;
 private final String defaultId;
 private final int enterpriseNumber;
 private final boolean includeMdc;
 private final String mdcId;
 private final org.apache.logging.log4j.message.StructuredDataId mdcSdId;
 private final String localHostName;
 private final String appName;
 private final String messageId;
 private final String configName;
 private final String mdcPrefix;
 private final String eventPrefix;
 private final java.util.List mdcExcludes;
 private final java.util.List mdcIncludes;
 private final java.util.List mdcRequired;
 private final internal.ListChecker listChecker;
 private final boolean includeNewLine;
 private final String escapeNewLine;
 private final boolean useTlsMessageFormat;
 private long lastTimestamp;
 private String timestamppStr;
 private final java.util.List exceptionFormatters;
 private final java.util.Map fieldFormatters;
 private final String procId;
 private void Rfc5424Layout(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.net.Facility, String, int, boolean, boolean, String, String, String, String, String, String, String, String, String, java.nio.charset.Charset, String, boolean, LoggerFields[]);
 private java.util.Map createFieldFormatters(LoggerFields[], org.apache.logging.log4j.core.config.Configuration);
 private static org.apache.logging.log4j.core.pattern.PatternParser createPatternParser(org.apache.logging.log4j.core.config.Configuration, Class);
 public java.util.Map getContentFormat();
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private void appendPriority(StringBuilder, org.apache.logging.log4j.Level);
 private void appendTimestamp(StringBuilder, long);
 private void appendSpace(StringBuilder);
 private void appendHostName(StringBuilder);
 private void appendAppName(StringBuilder);
 private void appendProcessId(StringBuilder);
 private void appendMessageId(StringBuilder, org.apache.logging.log4j.message.Message);
 private void appendMessage(StringBuilder, org.apache.logging.log4j.core.LogEvent);
 private void appendStructuredElements(StringBuilder, org.apache.logging.log4j.core.LogEvent);
 private void addStructuredData(java.util.Map, org.apache.logging.log4j.message.StructuredDataMessage);
 private String escapeNewlines(String, String);
 protected String getProcId();
 protected java.util.List getMdcExcludes();
 protected java.util.List getMdcIncludes();
 private String computeTimeStampString(long);
 private void pad(int, int, StringBuilder);
 private void formatStructuredElement(String, Rfc5424Layout$StructuredDataElement, StringBuilder, internal.ListChecker);
 private String getId(org.apache.logging.log4j.message.StructuredDataId);
 private void checkRequired(java.util.Map);
 private void appendMap(String, java.util.Map, StringBuilder, internal.ListChecker);
 private String escapeSDParams(String);
 public String toString();
 public static Rfc5424Layout createLayout(org.apache.logging.log4j.core.net.Facility, String, int, boolean, String, String, String, boolean, String, String, String, String, String, String, String, boolean, LoggerFields[], org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.net.Facility getFacility();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Serializer2.class

package org.apache.logging.log4j.core.layout;
public abstract interface AbstractStringLayout$Serializer2 {
 public abstract StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/layout/HtmlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class HtmlLayout extends AbstractStringLayout {
 public static final String DEFAULT_FONT_FAMILY = arial,sans-serif;
 private static final String TRACE_PREFIX =
 ;
 private static final String REGEXP;
 private static final String DEFAULT_TITLE = Log4j Log Messages;
 private static final String DEFAULT_CONTENT_TYPE = text/html;
 private static final String DEFAULT_DATE_PATTERN = JVM_ELAPSE_TIME;
 private final long jvmStartTime;
 private final boolean locationInfo;
 private final String title;
 private final String contentType;
 private final String font;
 private final String fontSize;
 private final String headerSize;
 private final org.apache.logging.log4j.core.pattern.DatePatternConverter datePatternConverter;
 private void HtmlLayout(boolean, String, String, java.nio.charset.Charset, String, String, String, String, String);
 public String getTitle();
 public boolean isLocationInfo();
 public boolean requiresLocation();
 private String addCharsetToContentType(String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String getContentType();
 private void appendThrowableAsHtml(Throwable, StringBuilder);
 private StringBuilder appendLs(StringBuilder, String);
 private StringBuilder append(StringBuilder, String);
 public byte[] getHeader();
 public byte[] getFooter();
 public static HtmlLayout createLayout(boolean, String, String, java.nio.charset.Charset, String, String);
 public static HtmlLayout createDefaultLayout();
 public static HtmlLayout$Builder newBuilder();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class LevelPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class MarkerPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final boolean requiresLocation;
 public void MarkerPatternSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 private void MarkerPatternSelector(PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static MarkerPatternSelector$Builder newBuilder();
 public static MarkerPatternSelector createSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$2.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$2 {
 void GelfLayout$CompressionType$2(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/AbstractLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractLayout implements org.apache.logging.log4j.core.Layout {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected final org.apache.logging.log4j.core.config.Configuration configuration;
 protected long eventCount;
 protected final byte[] footer;
 protected final byte[] header;
 public void AbstractLayout(byte[], byte[]);
 public void AbstractLayout(org.apache.logging.log4j.core.config.Configuration, byte[], byte[]);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public java.util.Map getContentFormat();
 public byte[] getFooter();
 public byte[] getHeader();
 protected void markEvent();
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/DisruptorUtil.class

package org.apache.logging.log4j.core.async;
final synchronized class DisruptorUtil {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int RINGBUFFER_MIN_SIZE = 128;
 private static final int RINGBUFFER_DEFAULT_SIZE = 262144;
 private static final int RINGBUFFER_NO_GC_DEFAULT_SIZE = 4096;
 static final boolean ASYNC_LOGGER_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL;
 static final boolean ASYNC_CONFIG_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL;
 private void DisruptorUtil();
 static com.lmax.disruptor.WaitStrategy createWaitStrategy(String);
 private static String getFullPropertyKey(String, String);
 private static long parseAdditionalLongProperty(String, String, long);
 static int calculateRingBufferSize(String);
 static com.lmax.disruptor.ExceptionHandler getAsyncLoggerExceptionHandler();
 static com.lmax.disruptor.ExceptionHandler getAsyncLoggerConfigExceptionHandler();
 public static long getExecutorThreadId(java.util.concurrent.ExecutorService);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$WaitStrategy.class

package org.apache.logging.log4j.core.async;
public final synchronized enum JCToolsBlockingQueueFactory$WaitStrategy {
 public static final JCToolsBlockingQueueFactory$WaitStrategy SPIN;
 public static final JCToolsBlockingQueueFactory$WaitStrategy YIELD;
 public static final JCToolsBlockingQueueFactory$WaitStrategy PARK;
 public static final JCToolsBlockingQueueFactory$WaitStrategy PROGRESSIVE;
 private final JCToolsBlockingQueueFactory$Idle idle;
 public static JCToolsBlockingQueueFactory$WaitStrategy[] values();
 public static JCToolsBlockingQueueFactory$WaitStrategy valueOf(String);
 private int idle(int);
 private void JCToolsBlockingQueueFactory$WaitStrategy(String, int, JCToolsBlockingQueueFactory$Idle);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/RingBufferLogEventHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEventHandler implements com.lmax.disruptor.SequenceReportingEventHandler, com.lmax.disruptor.LifecycleAware {
 private static final int NOTIFY_PROGRESS_THRESHOLD = 50;
 private com.lmax.disruptor.Sequence sequenceCallback;
 private int counter;
 private long threadId;
 public void RingBufferLogEventHandler();
 public void setSequenceCallback(com.lmax.disruptor.Sequence);
 public void onEvent(RingBufferLogEvent, long, boolean) throws Exception;
 private void notifyCallback(long);
 public long getThreadId();
 public void onStart();
 public void onShutdown();
}

org/apache/logging/log4j/core/lookup/MainMapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MainMapLookup extends MapLookup {
 static final MapLookup MAIN_SINGLETON;
 public void MainMapLookup();
 public void MainMapLookup(java.util.Map);
 public static transient void setMainArguments(String[]);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$TrimMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$TrimMatcher extends StrMatcher {
 void StrMatcher$TrimMatcher();
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/JmxRuntimeInputArgumentsLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JmxRuntimeInputArgumentsLookup extends MapLookup {
 public static final JmxRuntimeInputArgumentsLookup JMX_SINGLETON;
 public void JmxRuntimeInputArgumentsLookup();
 public void JmxRuntimeInputArgumentsLookup(java.util.Map);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/ConfigurationStrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class ConfigurationStrSubstitutor extends StrSubstitutor {
 public void ConfigurationStrSubstitutor();
 public void ConfigurationStrSubstitutor(java.util.Map);
 public void ConfigurationStrSubstitutor(java.util.Properties);
 public void ConfigurationStrSubstitutor(StrLookup);
 public void ConfigurationStrSubstitutor(StrSubstitutor);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 public String toString();
}

org/apache/logging/log4j/core/parser/LogEventParser.class

package org.apache.logging.log4j.core.parser;
public abstract interface LogEventParser {
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(byte[]) throws ParseException;
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(byte[], int, int) throws ParseException;
}

org/apache/logging/log4j/core/script/ScriptManager$1.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$1 {
}

org/apache/logging/log4j/core/time/internal/FixedPreciseClock.class

package org.apache.logging.log4j.core.time.internal;
public synchronized class FixedPreciseClock implements org.apache.logging.log4j.core.time.PreciseClock {
 private final long currentTimeMillis;
 private final int nanosOfMillisecond;
 public void FixedPreciseClock();
 public void FixedPreciseClock(long);
 public void FixedPreciseClock(long, int);
 public void init(org.apache.logging.log4j.core.time.MutableInstant);
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/Appender.class

package org.apache.logging.log4j.core;
public abstract interface Appender extends LifeCycle {
 public static final String ELEMENT_TYPE = appender;
 public abstract void append(LogEvent);
 public abstract String getName();
 public abstract Layout getLayout();
 public abstract boolean ignoreExceptions();
 public abstract ErrorHandler getHandler();
 public abstract void setHandler(ErrorHandler);
}

org/apache/logging/log4j/core/filter/BurstFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class BurstFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.Level level;
 private float rate;
 private long maxBurst;
 public void BurstFilter$Builder();
 public BurstFilter$Builder setLevel(org.apache.logging.log4j.Level);
 public BurstFilter$Builder setRate(float);
 public BurstFilter$Builder setMaxBurst(long);
 public BurstFilter build();
}

org/apache/logging/log4j/core/filter/LevelRangeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class LevelRangeFilter extends AbstractFilter {
 private final org.apache.logging.log4j.Level maxLevel;
 private final org.apache.logging.log4j.Level minLevel;
 public static LevelRangeFilter createFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private void LevelRangeFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.Level getMinLevel();
 public String toString();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class NoMarkerFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void NoMarkerFilter$Builder();
 public NoMarkerFilter build();
}

org/apache/logging/log4j/core/pattern/LoggerFqcnPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LoggerFqcnPatternConverter extends LogEventPatternConverter {
 private static final LoggerFqcnPatternConverter INSTANCE;
 private void LoggerFqcnPatternConverter();
 public static LoggerFqcnPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/CachedDateFormat.class

package org.apache.logging.log4j.core.pattern;
final synchronized class CachedDateFormat extends java.text.DateFormat {
 public static final int NO_MILLISECONDS = -2;
 public static final int UNRECOGNIZED_MILLISECONDS = -1;
 private static final long serialVersionUID = -1253877934598423628;
 private static final String DIGITS = 0123456789;
 private static final int MAGIC1 = 654;
 private static final String MAGICSTRING1 = 654;
 private static final int MAGIC2 = 987;
 private static final String MAGICSTRING2 = 987;
 private static final String ZERO_STRING = 000;
 private static final int BUF_SIZE = 50;
 private static final int DEFAULT_VALIDITY = 1000;
 private static final int THREE_DIGITS = 100;
 private static final int TWO_DIGITS = 10;
 private static final long SLOTS = 1000;
 private final java.text.DateFormat formatter;
 private int millisecondStart;
 private long slotBegin;
 private final StringBuffer cache;
 private final int expiration;
 private long previousTime;
 private final java.util.Date tmpDate;
 public void CachedDateFormat(java.text.DateFormat, int);
 public static int findMillisecondStart(long, String, java.text.DateFormat);
 public StringBuffer format(java.util.Date, StringBuffer, java.text.FieldPosition);
 public StringBuffer format(long, StringBuffer);
 private static void millisecondFormat(int, StringBuffer, int);
 public void setTimeZone(java.util.TimeZone);
 public java.util.Date parse(String, java.text.ParsePosition);
 public java.text.NumberFormat getNumberFormat();
 public static int getMaximumCacheValidity(String);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Green.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Green extends AbstractStyleNameConverter {
 protected static final String NAME = green;
 public void AbstractStyleNameConverter$Green(java.util.List, String);
 public static AbstractStyleNameConverter$Green newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ContextDataAsEntryListDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void ContextDataAsEntryListDeserializer$1(ContextDataAsEntryListDeserializer);
}

org/apache/logging/log4j/core/jackson/ThrowableProxyWithStacktraceAsStringMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyWithStacktraceAsStringMixIn {
 private ThrowableProxyWithStacktraceAsStringMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyWithStacktraceAsStringMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/LogEventJsonMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LogEventJsonMixIn implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = 1;
 void LogEventJsonMixIn();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerFqcn();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract StackTraceElement getSource();
 public abstract long getThreadId();
 public abstract String getThreadName();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public abstract long getTimeMillis();
 public abstract org.apache.logging.log4j.core.time.Instant getInstant();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
}

META-INF/services/org.apache.logging.log4j.message.ThreadDumpMessage$ThreadInfoFactory

org.apache.logging.log4j.core.message.ExtendedThreadInfoFactory

META-INF/services/org.apache.logging.log4j.spi.Provider

org.apache.logging.log4j.core.impl.Log4jProvider

org/apache/logging/log4j/core/appender/ConsoleAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class ConsoleAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = Console;
 private static final String JANSI_CLASS = org.fusesource.jansi.WindowsAnsiOutputStream;
 private static ConsoleAppender$ConsoleManagerFactory factory;
 private static final ConsoleAppender$Target DEFAULT_TARGET;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private final ConsoleAppender$Target target;
 private void ConsoleAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, boolean, ConsoleAppender$Target, org.apache.logging.log4j.core.config.Property[]);
 public static ConsoleAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, String);
 public static ConsoleAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, ConsoleAppender$Target, String, boolean, boolean, boolean);
 public static ConsoleAppender createDefaultAppenderForLayout(org.apache.logging.log4j.core.Layout);
 public static ConsoleAppender$Builder newBuilder();
 private static OutputStreamManager getDefaultManager(ConsoleAppender$Target, boolean, boolean, org.apache.logging.log4j.core.Layout);
 private static OutputStreamManager getManager(ConsoleAppender$Target, boolean, boolean, org.apache.logging.log4j.core.Layout);
 private static java.io.OutputStream getOutputStream(boolean, boolean, ConsoleAppender$Target);
 private static String clean(String);
 public ConsoleAppender$Target getTarget();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SocketAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SocketAppender$Builder extends SocketAppender$AbstractBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void SocketAppender$Builder();
 public SocketAppender build();
}

org/apache/logging/log4j/core/appender/SyslogAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SyslogAppender$Builder extends SocketAppender$AbstractBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.net.Facility facility;
 private String id;
 private int enterpriseNumber;
 private boolean includeMdc;
 private String mdcId;
 private String mdcPrefix;
 private String eventPrefix;
 private boolean newLine;
 private String escapeNL;
 private String appName;
 private String msgId;
 private String excludes;
 private String includes;
 private String required;
 private String format;
 private java.nio.charset.Charset charsetName;
 private String exceptionPattern;
 private org.apache.logging.log4j.core.layout.LoggerFields[] loggerFields;
 public void SyslogAppender$Builder();
 public SyslogAppender build();
 public org.apache.logging.log4j.core.net.Facility getFacility();
 public String getId();
 public int getEnterpriseNumber();
 public boolean isIncludeMdc();
 public String getMdcId();
 public String getMdcPrefix();
 public String getEventPrefix();
 public boolean isNewLine();
 public String getEscapeNL();
 public String getAppName();
 public String getMsgId();
 public String getExcludes();
 public String getIncludes();
 public String getRequired();
 public String getFormat();
 public java.nio.charset.Charset getCharsetName();
 public String getExceptionPattern();
 public org.apache.logging.log4j.core.layout.LoggerFields[] getLoggerFields();
 public SyslogAppender$Builder setFacility(org.apache.logging.log4j.core.net.Facility);
 public SyslogAppender$Builder setId(String);
 public SyslogAppender$Builder setEnterpriseNumber(int);
 public SyslogAppender$Builder setIncludeMdc(boolean);
 public SyslogAppender$Builder setMdcId(String);
 public SyslogAppender$Builder setMdcPrefix(String);
 public SyslogAppender$Builder setEventPrefix(String);
 public SyslogAppender$Builder setNewLine(boolean);
 public SyslogAppender$Builder setEscapeNL(String);
 public SyslogAppender$Builder setAppName(String);
 public SyslogAppender$Builder setMsgId(String);
 public SyslogAppender$Builder setExcludes(String);
 public SyslogAppender$Builder setIncludes(String);
 public SyslogAppender$Builder setRequired(String);
 public SyslogAppender$Builder setFormat(String);
 public SyslogAppender$Builder setCharsetName(java.nio.charset.Charset);
 public SyslogAppender$Builder setExceptionPattern(String);
 public SyslogAppender$Builder setLoggerFields(org.apache.logging.log4j.core.layout.LoggerFields[]);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RollingRandomAccessFileAppender$1 {
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class TimeBasedTriggeringPolicy extends AbstractTriggeringPolicy {
 private long nextRolloverMillis;
 private final int interval;
 private final boolean modulate;
 private final long maxRandomDelayMillis;
 private RollingFileManager manager;
 private void TimeBasedTriggeringPolicy(int, boolean, long);
 public int getInterval();
 public long getNextRolloverMillis();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public static TimeBasedTriggeringPolicy createPolicy(String, String);
 public static TimeBasedTriggeringPolicy$Builder newBuilder();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/DirectFileRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface DirectFileRolloverStrategy {
 public abstract String getCurrentFileName(RollingFileManager);
 public abstract void clearCurrentFileName();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$FactoryData extends org.apache.logging.log4j.core.appender.ConfigurationFactoryData {
 private final String fileName;
 private final String pattern;
 private final boolean append;
 private final boolean immediateFlush;
 private final int bufferSize;
 private final TriggeringPolicy policy;
 private final RolloverStrategy strategy;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void RollingRandomAccessFileManager$FactoryData(String, String, boolean, boolean, int, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public String getPattern();
 public TriggeringPolicy getTriggeringPolicy();
 public RolloverStrategy getRolloverStrategy();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$RollingFileManagerFactory.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$RollingFileManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void RollingFileManager$RollingFileManagerFactory();
 public RollingFileManager createManager(String, RollingFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/action/IfNot.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfNot implements PathCondition {
 private final PathCondition negate;
 private void IfNot(PathCondition);
 public PathCondition getWrappedFilter();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static IfNot createNotCondition(PathCondition);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PosixViewAttributeAction extends AbstractPathAction {
 private final java.util.Set filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 private void PosixViewAttributeAction(String, boolean, int, PathCondition[], org.apache.logging.log4j.core.lookup.StrSubstitutor, java.util.Set, String, String);
 public static PosixViewAttributeAction$Builder newBuilder();
 protected java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public java.util.Set getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/DeleteAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class DeleteAction extends AbstractPathAction {
 private final PathSorter pathSorter;
 private final boolean testMode;
 private final ScriptCondition scriptCondition;
 void DeleteAction(String, boolean, int, boolean, PathSorter, PathCondition[], ScriptCondition, org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public boolean execute() throws java.io.IOException;
 private boolean executeScript() throws java.io.IOException;
 private java.util.List callScript() throws java.io.IOException;
 private void deleteSelectedFiles(java.util.List) throws java.io.IOException;
 protected void delete(java.nio.file.Path) throws java.io.IOException;
 public boolean execute(java.nio.file.FileVisitor) throws java.io.IOException;
 private void trace(String, java.util.List);
 java.util.List getSortedPaths() throws java.io.IOException;
 public boolean isTestMode();
 protected java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public static DeleteAction createDeleteAction(String, boolean, int, boolean, PathSorter, PathCondition[], ScriptCondition, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/action/ZipCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class ZipCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 private final int level;
 public void ZipCompressAction(java.io.File, java.io.File, boolean, int);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean, int) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
 public int getLevel();
}

org/apache/logging/log4j/core/appender/rolling/CompositeTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class CompositeTriggeringPolicy extends AbstractTriggeringPolicy {
 private final TriggeringPolicy[] triggeringPolicies;
 private transient void CompositeTriggeringPolicy(TriggeringPolicy[]);
 public TriggeringPolicy[] getTriggeringPolicies();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public static transient CompositeTriggeringPolicy createPolicy(TriggeringPolicy[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$3.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$3 {
 void FileExtension$3(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$2.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$2 {
 void FileExtension$2(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/HttpAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class HttpAppender extends AbstractAppender {
 private final HttpManager manager;
 public static HttpAppender$Builder newBuilder();
 private void HttpAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, HttpManager, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/AbstractFileAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private final Object advertisement;
 private void AbstractFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public String getFileName();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$FactoryData {
 private final java.io.OutputStream os;
 private final String name;
 private final org.apache.logging.log4j.core.Layout layout;
 public void ConsoleAppender$FactoryData(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$FactoryData {
 private final org.apache.logging.log4j.core.Layout layout;
 private final String name;
 private final java.io.OutputStream os;
 public void OutputStreamAppender$FactoryData(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/AppenderLoggingException.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderLoggingException extends org.apache.logging.log4j.LoggingException {
 private static final long serialVersionUID = 6545990597472958303;
 public void AppenderLoggingException(String);
 public transient void AppenderLoggingException(String, Object[]);
 public void AppenderLoggingException(String, Throwable);
 public void AppenderLoggingException(Throwable);
 public transient void AppenderLoggingException(Throwable, String, Object[]);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RollingRandomAccessFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private final String filePattern;
 private final Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RollingRandomAccessFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, rolling.RollingRandomAccessFileManager, String, String, boolean, boolean, int, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public String getFileName();
 public String getFilePattern();
 public int getBufferSize();
 public static RollingRandomAccessFileAppender createAppender(String, String, String, String, String, String, rolling.TriggeringPolicy, rolling.RolloverStrategy, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RollingRandomAccessFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/AsyncAppenderEventDispatcher.class

package org.apache.logging.log4j.core.appender;
synchronized class AsyncAppenderEventDispatcher extends org.apache.logging.log4j.core.util.Log4jThread {
 private static final org.apache.logging.log4j.core.LogEvent STOP_EVENT;
 private static final java.util.concurrent.atomic.AtomicLong THREAD_COUNTER;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.AppenderControl errorAppender;
 private final java.util.List appenders;
 private final java.util.concurrent.BlockingQueue queue;
 private final java.util.concurrent.atomic.AtomicBoolean stoppedRef;
 void AsyncAppenderEventDispatcher(String, org.apache.logging.log4j.core.config.AppenderControl, java.util.List, java.util.concurrent.BlockingQueue);
 public void run();
 private void dispatchAll();
 private void dispatchRemaining();
 void dispatch(org.apache.logging.log4j.core.LogEvent);
 void stop(long) throws InterruptedException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractOutputStreamAppender extends AbstractAppender {
 private final boolean immediateFlush;
 private final OutputStreamManager manager;
 protected void AbstractOutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, OutputStreamManager);
 protected void AbstractOutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.config.Property[], OutputStreamManager);
 public boolean getImmediateFlush();
 public OutputStreamManager getManager();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 protected boolean stop(long, java.util.concurrent.TimeUnit, boolean);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void tryAppend(org.apache.logging.log4j.core.LogEvent);
 protected void directEncodeEvent(org.apache.logging.log4j.core.LogEvent);
 protected void writeByteArrayToManager(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/SmtpAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class SmtpAppender extends AbstractAppender {
 private static final int DEFAULT_BUFFER_SIZE = 512;
 private final org.apache.logging.log4j.core.net.SmtpManager manager;
 private void SmtpAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.net.SmtpManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 public static SmtpAppender$Builder newBuilder();
 public static SmtpAppender createAppender(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String, String, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String);
 public boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseAppender$Builder.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class AbstractDatabaseAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder {
 public void AbstractDatabaseAppender$Builder();
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractDriverManagerConnectionSource$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class AbstractDriverManagerConnectionSource$Builder {
 protected String connectionString;
 protected String driverClassName;
 protected char[] password;
 protected org.apache.logging.log4j.core.config.Property[] properties;
 protected char[] userName;
 public void AbstractDriverManagerConnectionSource$Builder();
 protected AbstractDriverManagerConnectionSource$Builder asBuilder();
 public String getConnectionString();
 public String getDriverClassName();
 public char[] getPassword();
 public org.apache.logging.log4j.core.config.Property[] getProperties();
 public char[] getUserName();
 public AbstractDriverManagerConnectionSource$Builder setConnectionString(String);
 public AbstractDriverManagerConnectionSource$Builder setDriverClassName(String);
 public AbstractDriverManagerConnectionSource$Builder setPassword(char[]);
 public AbstractDriverManagerConnectionSource$Builder setProperties(org.apache.logging.log4j.core.config.Property[]);
 public AbstractDriverManagerConnectionSource$Builder setUserName(char[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/FactoryMethodConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class FactoryMethodConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final javax.sql.DataSource dataSource;
 private final String description;
 private void FactoryMethodConnectionSource(javax.sql.DataSource, String, String, String);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String toString();
 public static FactoryMethodConnectionSource createConnectionSource(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseManager$AbstractFactoryData.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseManager$AbstractFactoryData {
 private final int bufferSize;
 private final org.apache.logging.log4j.core.Layout layout;
 protected void AbstractDatabaseManager$AbstractFactoryData(int, org.apache.logging.log4j.core.Layout);
 public int getBufferSize();
 public org.apache.logging.log4j.core.Layout getLayout();
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseManager.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseManager extends org.apache.logging.log4j.core.appender.AbstractManager implements java.io.Flushable {
 private final java.util.ArrayList buffer;
 private final int bufferSize;
 private final org.apache.logging.log4j.core.Layout layout;
 private boolean running;
 protected static AbstractDatabaseManager getManager(String, AbstractDatabaseManager$AbstractFactoryData, org.apache.logging.log4j.core.appender.ManagerFactory);
 protected void AbstractDatabaseManager(String, int);
 protected void AbstractDatabaseManager(String, int, org.apache.logging.log4j.core.Layout);
 protected void buffer(org.apache.logging.log4j.core.LogEvent);
 protected abstract boolean commitAndClose();
 protected abstract void connectAndStart();
 public final synchronized void flush();
 protected boolean isBuffered();
 public final boolean isRunning();
 public final boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public final synchronized boolean shutdown();
 protected abstract boolean shutdownInternal() throws Exception;
 public final synchronized void startup();
 protected abstract void startupInternal() throws Exception;
 public final String toString();
 public final synchronized void write(org.apache.logging.log4j.core.LogEvent);
 public final synchronized void write(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent);
 protected abstract void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeThrough(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$ReferencedRouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
final synchronized class RoutingAppender$ReferencedRouteAppenderControl extends RoutingAppender$RouteAppenderControl {
 void RoutingAppender$ReferencedRouteAppenderControl(org.apache.logging.log4j.core.Appender);
 void checkout();
 void release();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlProvider.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlProvider {
 public abstract NoSqlConnection getConnection();
 public abstract String toString();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender$1.class

package org.apache.logging.log4j.core.appender.nosql;
synchronized class NoSqlAppender$1 {
}

org/apache/logging/log4j/core/appender/SmtpAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SmtpAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String to;
 private String cc;
 private String bcc;
 private String from;
 private String replyTo;
 private String subject;
 private String smtpProtocol;
 private String smtpHost;
 private int smtpPort;
 private String smtpUsername;
 private String smtpPassword;
 private boolean smtpDebug;
 private int bufferSize;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 public void SmtpAppender$Builder();
 public SmtpAppender$Builder setTo(String);
 public SmtpAppender$Builder setCc(String);
 public SmtpAppender$Builder setBcc(String);
 public SmtpAppender$Builder setFrom(String);
 public SmtpAppender$Builder setReplyTo(String);
 public SmtpAppender$Builder setSubject(String);
 public SmtpAppender$Builder setSmtpProtocol(String);
 public SmtpAppender$Builder setSmtpHost(String);
 public SmtpAppender$Builder setSmtpPort(int);
 public SmtpAppender$Builder setSmtpUsername(String);
 public SmtpAppender$Builder setSmtpPassword(String);
 public SmtpAppender$Builder setSmtpDebug(boolean);
 public SmtpAppender$Builder setBufferSize(int);
 public SmtpAppender$Builder setSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public SmtpAppender$Builder setLayout(org.apache.logging.log4j.core.Layout);
 public SmtpAppender$Builder setFilter(org.apache.logging.log4j.core.Filter);
 public SmtpAppender build();
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender$1.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public final synchronized class KafkaAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private static final String[] KAFKA_CLIENT_PACKAGES;
 private final Integer retryCount;
 private final KafkaManager manager;
 public static KafkaAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, boolean, String, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, String);
 private static boolean isRecursive(org.apache.logging.log4j.core.LogEvent);
 public static KafkaAppender$Builder newBuilder();
 private void KafkaAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, KafkaManager, org.apache.logging.log4j.core.config.Property[], Integer);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
 private void tryAppend(org.apache.logging.log4j.core.LogEvent) throws java.util.concurrent.ExecutionException, InterruptedException, java.util.concurrent.TimeoutException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaProducerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public abstract interface KafkaProducerFactory {
 public abstract org.apache.kafka.clients.producer.Producer newKafkaProducer(java.util.Properties);
}

org/apache/logging/log4j/core/appender/AbstractFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractFileAppender$Builder extends AbstractOutputStreamAppender$Builder {
 private String fileName;
 private boolean append;
 private boolean locking;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void AbstractFileAppender$Builder();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public AbstractFileAppender$Builder withAdvertise(boolean);
 public AbstractFileAppender$Builder withAdvertiseUri(String);
 public AbstractFileAppender$Builder withAppend(boolean);
 public AbstractFileAppender$Builder withFileName(String);
 public AbstractFileAppender$Builder withCreateOnDemand(boolean);
 public AbstractFileAppender$Builder withLocking(boolean);
 public AbstractFileAppender$Builder withFilePermissions(String);
 public AbstractFileAppender$Builder withFileOwner(String);
 public AbstractFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/impl/Log4jLogEvent.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jLogEvent implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = -8393305700508709443;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static volatile org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private static final org.apache.logging.log4j.core.ContextDataInjector CONTEXT_DATA_INJECTOR;
 private final String loggerFqcn;
 private final org.apache.logging.log4j.Marker marker;
 private final org.apache.logging.log4j.Level level;
 private final String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private final transient Throwable thrown;
 private ThrowableProxy thrownProxy;
 private final org.apache.logging.log4j.util.StringMap contextData;
 private final org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement source;
 private boolean includeLocation;
 private boolean endOfBatch;
 private final transient long nanoTime;
 public static Log4jLogEvent$Builder newBuilder();
 public void Log4jLogEvent();
 public void Log4jLogEvent(long);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, java.util.Map, org.apache.logging.log4j.ThreadContext$ContextStack, String, StackTraceElement, long);
 public static Log4jLogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, java.util.Map, org.apache.logging.log4j.ThreadContext$ContextStack, String, StackTraceElement, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, long, int, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, org.apache.logging.log4j.core.util.Clock, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, long);
 private static org.apache.logging.log4j.util.StringMap createContextData(java.util.Map);
 private static org.apache.logging.log4j.util.StringMap createContextData(java.util.List);
 public static org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public static void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
 public Log4jLogEvent$Builder asBuilder();
 public Log4jLogEvent toImmutable();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerName();
 public org.apache.logging.log4j.message.Message getMessage();
 public void makeMessageImmutable();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public Throwable getThrown();
 public ThrowableProxy getThrownProxy();
 public org.apache.logging.log4j.Marker getMarker();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public StackTraceElement getSource();
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public long getNanoTime();
 protected Object writeReplace();
 public static java.io.Serializable serialize(org.apache.logging.log4j.core.LogEvent, boolean);
 public static java.io.Serializable serialize(Log4jLogEvent, boolean);
 public static boolean canDeserialize(java.io.Serializable);
 public static Log4jLogEvent deserialize(java.io.Serializable);
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public static org.apache.logging.log4j.core.LogEvent createMemento(org.apache.logging.log4j.core.LogEvent);
 public static Log4jLogEvent createMemento(org.apache.logging.log4j.core.LogEvent, boolean);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BooleanConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BooleanConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BooleanConverter();
 public Boolean convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$StringBuilderConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$StringBuilderConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$StringBuilderConverter();
 public StringBuilder convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MaxValuesforFieldExceededException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MaxValuesforFieldExceededException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 6536145439570100641;
 public void CommandLine$MaxValuesforFieldExceededException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$InitializationException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$InitializationException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 8423014001666638895;
 public void CommandLine$InitializationException(String);
 public void CommandLine$InitializationException(String, Exception);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$TraceLevel.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized enum CommandLine$TraceLevel {
 public static final CommandLine$TraceLevel OFF;
 public static final CommandLine$TraceLevel WARN;
 public static final CommandLine$TraceLevel INFO;
 public static final CommandLine$TraceLevel DEBUG;
 public static CommandLine$TraceLevel[] values();
 public static CommandLine$TraceLevel valueOf(String);
 private void CommandLine$TraceLevel(String, int);
 public boolean isEnabled(CommandLine$TraceLevel);
 private transient void print(CommandLine$Tracer, String, Object[]);
 private String prefix(String);
 static CommandLine$TraceLevel lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Palette256Color.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$Ansi$Palette256Color implements CommandLine$Help$Ansi$IStyle {
 private final int fgbg;
 private final int color;
 void CommandLine$Help$Ansi$Palette256Color(boolean, String);
 public String on();
 public String off();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help {
 protected static final String DEFAULT_COMMAND_NAME = <main class>;
 protected static final String DEFAULT_SEPARATOR = =;
 private static final int usageHelpWidth = 80;
 private static final int optionsColumnWidth = 29;
 private final Object command;
 private final java.util.Map commands;
 final CommandLine$Help$ColorScheme colorScheme;
 public final java.util.List optionFields;
 public final java.util.List positionalParametersFields;
 public String separator;
 public String commandName;
 public String[] description;
 public String[] customSynopsis;
 public String[] header;
 public String[] footer;
 public CommandLine$Help$IParamLabelRenderer parameterLabelRenderer;
 public Boolean abbreviateSynopsis;
 public Boolean sortOptions;
 public Boolean showDefaultValues;
 public Character requiredOptionMarker;
 public String headerHeading;
 public String synopsisHeading;
 public String descriptionHeading;
 public String parameterListHeading;
 public String optionListHeading;
 public String commandListHeading;
 public String footerHeading;
 public void CommandLine$Help(Object);
 public void CommandLine$Help(Object, CommandLine$Help$Ansi);
 public void CommandLine$Help(Object, CommandLine$Help$ColorScheme);
 public CommandLine$Help addAllSubcommands(java.util.Map);
 public CommandLine$Help addSubcommand(String, Object);
 public String synopsis();
 public String synopsis(int);
 public String abbreviatedSynopsis();
 public String detailedSynopsis(java.util.Comparator, boolean);
 public String detailedSynopsis(int, java.util.Comparator, boolean);
 private CommandLine$Help$Ansi$Text appendOptionSynopsis(CommandLine$Help$Ansi$Text, reflect.Field, String, String, String);
 public int synopsisHeadingLength();
 public String optionList();
 public String optionList(CommandLine$Help$Layout, java.util.Comparator, CommandLine$Help$IParamLabelRenderer);
 public String parameterList();
 public String parameterList(CommandLine$Help$Layout, CommandLine$Help$IParamLabelRenderer);
 private static transient String heading(CommandLine$Help$Ansi, String, Object[]);
 private static char[] spaces(int);
 private static int countTrailingSpaces(String);
 public static transient StringBuilder join(CommandLine$Help$Ansi, String[], StringBuilder, Object[]);
 private static transient String format(String, Object[]);
 public transient String customSynopsis(Object[]);
 public transient String description(Object[]);
 public transient String header(Object[]);
 public transient String footer(Object[]);
 public transient String headerHeading(Object[]);
 public transient String synopsisHeading(Object[]);
 public transient String descriptionHeading(Object[]);
 public transient String parameterListHeading(Object[]);
 public transient String optionListHeading(Object[]);
 public transient String commandListHeading(Object[]);
 public transient String footerHeading(Object[]);
 public String commandList();
 private static int maxLength(java.util.Collection);
 private static String join(String[], int, int, String);
 private static String stringOf(char, int);
 public CommandLine$Help$Layout createDefaultLayout();
 public CommandLine$Help$IOptionRenderer createDefaultOptionRenderer();
 public static CommandLine$Help$IOptionRenderer createMinimalOptionRenderer();
 public CommandLine$Help$IParameterRenderer createDefaultParameterRenderer();
 public static CommandLine$Help$IParameterRenderer createMinimalParameterRenderer();
 public static CommandLine$Help$IParamLabelRenderer createMinimalParamLabelRenderer();
 public CommandLine$Help$IParamLabelRenderer createDefaultParamLabelRenderer();
 public static java.util.Comparator createShortOptionNameComparator();
 public static java.util.Comparator createShortOptionArityAndNameComparator();
 public static java.util.Comparator shortestFirst();
 public CommandLine$Help$Ansi ansi();
 public static CommandLine$Help$ColorScheme defaultColorScheme(CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Layout.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Layout {
 protected final CommandLine$Help$ColorScheme colorScheme;
 protected final CommandLine$Help$TextTable table;
 protected CommandLine$Help$IOptionRenderer optionRenderer;
 protected CommandLine$Help$IParameterRenderer parameterRenderer;
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme);
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme, CommandLine$Help$TextTable);
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme, CommandLine$Help$TextTable, CommandLine$Help$IOptionRenderer, CommandLine$Help$IParameterRenderer);
 public void layout(reflect.Field, CommandLine$Help$Ansi$Text[][]);
 public void addOptions(java.util.List, CommandLine$Help$IParamLabelRenderer);
 public void addOption(reflect.Field, CommandLine$Help$IParamLabelRenderer);
 public void addPositionalParameters(java.util.List, CommandLine$Help$IParamLabelRenderer);
 public void addPositionalParameter(reflect.Field, CommandLine$Help$IParamLabelRenderer);
 public String toString();
}

org/apache/logging/log4j/core/tools/CustomLoggerGenerator.class

package org.apache.logging.log4j.core.tools;
public synchronized class CustomLoggerGenerator {
 public void CustomLoggerGenerator();
 public static void main(String[]);
}

org/apache/logging/log4j/core/net/ssl/KeyStoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class KeyStoreConfigurationException extends StoreConfigurationException {
 private static final long serialVersionUID = 1;
 public void KeyStoreConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/ssl/TrustStoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class TrustStoreConfigurationException extends StoreConfigurationException {
 private static final long serialVersionUID = 1;
 public void TrustStoreConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/TcpSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager extends AbstractSocketManager {
 public static final int DEFAULT_RECONNECTION_DELAY_MILLIS = 30000;
 private static final int DEFAULT_PORT = 4560;
 private static final TcpSocketManager$TcpSocketManagerFactory FACTORY;
 private final int reconnectionDelayMillis;
 private TcpSocketManager$Reconnector reconnector;
 private java.net.Socket socket;
 private final SocketOptions socketOptions;
 private final boolean retry;
 private final boolean immediateFail;
 private final int connectTimeoutMillis;
 public void TcpSocketManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public void TcpSocketManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public static TcpSocketManager getSocketManager(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public static TcpSocketManager getSocketManager(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 protected void write(byte[], int, int, boolean);
 private void writeAndFlush(byte[], int, int, boolean) throws java.io.IOException;
 protected synchronized boolean closeOutputStream();
 public int getConnectTimeoutMillis();
 public java.util.Map getContentFormat();
 private TcpSocketManager$Reconnector createReconnector();
 protected java.net.Socket createSocket(java.net.InetSocketAddress) throws java.io.IOException;
 protected static java.net.Socket createSocket(java.net.InetSocketAddress, SocketOptions, int) throws java.io.IOException;
 public static void setHostResolver(TcpSocketManager$HostResolver);
 public SocketOptions getSocketOptions();
 public java.net.Socket getSocket();
 public int getReconnectionDelayMillis();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Priority.class

package org.apache.logging.log4j.core.net;
public synchronized class Priority {
 private final Facility facility;
 private final Severity severity;
 public void Priority(Facility, Severity);
 public static int getPriority(Facility, org.apache.logging.log4j.Level);
 private static int toPriority(Facility, Severity);
 public Facility getFacility();
 public Severity getSeverity();
 public int getValue();
 public String toString();
}

org/apache/logging/log4j/core/net/SslSocketManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$1 {
}

org/apache/logging/log4j/core/net/SslSocketManager$SslSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$SslSocketManagerFactory extends TcpSocketManager$TcpSocketManagerFactory {
 private void SslSocketManager$SslSocketManagerFactory();
 SslSocketManager createManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, SslSocketManager$SslFactoryData);
 java.net.Socket createSocket(SslSocketManager$SslFactoryData) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/NameUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class NameUtil {
 private void NameUtil();
 public static String getSubName(String);
 public static String md5(String);
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FixedDateFormat {
 private static final char NONE = 0;
 private final FixedDateFormat$FixedFormat fixedFormat;
 private final java.util.TimeZone timeZone;
 private final int length;
 private final int secondFractionDigits;
 private final FastDateFormat fastDateFormat;
 private final char timeSeparatorChar;
 private final char millisSeparatorChar;
 private final int timeSeparatorLength;
 private final int millisSeparatorLength;
 private final FixedDateFormat$FixedTimeZoneFormat fixedTimeZoneFormat;
 private volatile long midnightToday;
 private volatile long midnightTomorrow;
 private final int[] dstOffsets;
 private char[] cachedDate;
 private int dateLength;
 static int[] TABLE;
 void FixedDateFormat(FixedDateFormat$FixedFormat, java.util.TimeZone);
 void FixedDateFormat(FixedDateFormat$FixedFormat, java.util.TimeZone, int);
 public static transient FixedDateFormat createIfSupported(String[]);
 public static FixedDateFormat create(FixedDateFormat$FixedFormat);
 public static FixedDateFormat create(FixedDateFormat$FixedFormat, java.util.TimeZone);
 public String getFormat();
 public java.util.TimeZone getTimeZone();
 public long millisSinceMidnight(long);
 private void updateMidnightMillis(long);
 private long calcMidnightMillis(long, int);
 private void updateDaylightSavingTime();
 private void updateCachedDate(long);
 public String formatInstant(org.apache.logging.log4j.core.time.Instant);
 public int formatInstant(org.apache.logging.log4j.core.time.Instant, char[], int);
 private int digitsLessThanThree();
 public String format(long);
 public int format(long, char[], int);
 private void writeDate(char[], int);
 private int writeTime(int, char[], int);
 private int writeTimeZone(long, char[], int);
 private int formatNanoOfMillisecond(int, char[], int);
 private int daylightSavingTime(int);
 public boolean isEquivalent(long, int, long, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$Rule.class

package org.apache.logging.log4j.core.util.datetime;
abstract interface FastDatePrinter$Rule {
 public abstract int estimateLength();
 public abstract void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$UnpaddedNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$UnpaddedNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 void FastDatePrinter$UnpaddedNumberField(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$StringLiteral.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$StringLiteral implements FastDatePrinter$Rule {
 private final String mValue;
 void FastDatePrinter$StringLiteral(String);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$2.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$2 extends FastDateParser$NumberStrategy {
 void FastDateParser$2(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$NumberStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$NumberStrategy extends FastDateParser$Strategy {
 private final int field;
 void FastDateParser$NumberStrategy(int);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/DateParser.class

package org.apache.logging.log4j.core.util.datetime;
public abstract interface DateParser {
 public abstract java.util.Date parse(String) throws java.text.ParseException;
 public abstract java.util.Date parse(String, java.text.ParsePosition);
 public abstract boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 public abstract String getPattern();
 public abstract java.util.TimeZone getTimeZone();
 public abstract java.util.Locale getLocale();
 public abstract Object parseObject(String) throws java.text.ParseException;
 public abstract Object parseObject(String, java.text.ParsePosition);
}

org/apache/logging/log4j/core/util/WatchManager$WatchRunnable.class

package org.apache.logging.log4j.core.util;
final synchronized class WatchManager$WatchRunnable implements Runnable {
 private final String SIMPLE_NAME;
 private void WatchManager$WatchRunnable(WatchManager);
 public void run();
}

org/apache/logging/log4j/core/util/AbstractWatcher$ReconfigurationRunnable.class

package org.apache.logging.log4j.core.util;
public synchronized class AbstractWatcher$ReconfigurationRunnable implements Runnable {
 private final org.apache.logging.log4j.core.config.ConfigurationListener configurationListener;
 private final org.apache.logging.log4j.core.config.Reconfigurable reconfigurable;
 public void AbstractWatcher$ReconfigurationRunnable(org.apache.logging.log4j.core.config.ConfigurationListener, org.apache.logging.log4j.core.config.Reconfigurable);
 public void run();
}

org/apache/logging/log4j/core/util/StringEncoder.class

package org.apache.logging.log4j.core.util;
public final synchronized class StringEncoder {
 private void StringEncoder();
 public static byte[] toBytes(String, java.nio.charset.Charset);
 public static byte[] encodeSingleByteChars(CharSequence);
 public static int encodeIsoChars(CharSequence, int, byte[], int, int);
 public static int encodeString(CharSequence, int, int, byte[]);
}

org/apache/logging/log4j/core/util/WrappedFileWatcher.class

package org.apache.logging.log4j.core.util;
public synchronized class WrappedFileWatcher extends AbstractWatcher implements FileWatcher {
 private final FileWatcher watcher;
 private volatile long lastModifiedMillis;
 public void WrappedFileWatcher(FileWatcher, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 public void WrappedFileWatcher(FileWatcher);
 public long getLastModified();
 public void fileModified(java.io.File);
 public boolean isModified();
 public java.util.List getListeners();
 public void modified();
 public void watching(Source);
 public Watcher newWatcher(org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/util/CoarseCachedClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class CoarseCachedClock implements Clock {
 private static volatile CoarseCachedClock instance;
 private static final Object INSTANCE_LOCK;
 private volatile long millis;
 private final Thread updater;
 private void CoarseCachedClock();
 public static CoarseCachedClock instance();
 public long currentTimeMillis();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/AppenderControlArraySet.class

package org.apache.logging.log4j.core.config;
public synchronized class AppenderControlArraySet {
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater appenderArrayUpdater;
 private volatile AppenderControl[] appenderArray;
 public void AppenderControlArraySet();
 public boolean add(AppenderControl);
 public AppenderControl remove(String);
 private AppenderControl[] removeElementAt(int, AppenderControl[]);
 public java.util.Map asMap();
 public AppenderControl[] clear();
 public boolean isEmpty();
 public AppenderControl[] get();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/NullConfiguration.class

package org.apache.logging.log4j.core.config;
public synchronized class NullConfiguration extends AbstractConfiguration {
 public static final String NULL_NAME = Null;
 public void NullConfiguration();
}

org/apache/logging/log4j/core/config/ConfigurationFactory$Factory.class

package org.apache.logging.log4j.core.config;
synchronized class ConfigurationFactory$Factory extends ConfigurationFactory {
 private static final String ALL_TYPES = *;
 private void ConfigurationFactory$Factory();
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI);
 private Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String);
 private Configuration getConfiguration(String, org.apache.logging.log4j.core.LoggerContext, String);
 private Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, boolean, String);
 public String[] getSupportedTypes();
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 private String[] parseConfigLocations(java.net.URI);
 private String[] parseConfigLocations(String);
}

org/apache/logging/log4j/core/config/arbiters/Arbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public abstract interface Arbiter {
 public static final String ELEMENT_TYPE = Arbiter;
 public abstract boolean isCondition();
}

org/apache/logging/log4j/core/config/plugins/Plugin.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface Plugin extends annotation.Annotation {
 public static final String EMPTY = ;
 public abstract String name();
 public abstract String category();
 public abstract String elementType();
 public abstract boolean printObject();
 public abstract boolean deferChildren();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/ValidHost.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface ValidHost extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/Required.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface Required extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/ValidPort.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface ValidPort extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/ConstraintValidators.class

package org.apache.logging.log4j.core.config.plugins.validation;
public final synchronized class ConstraintValidators {
 private void ConstraintValidators();
 public static transient java.util.Collection findValidators(annotation.Annotation[]);
 private static ConstraintValidator getValidator(annotation.Annotation, Class);
 private static reflect.Type getConstraintValidatorAnnotationType(Class);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$FloatConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$FloatConverter implements TypeConverter {
 public void TypeConverters$FloatConverter();
 public Float convert(String);
}

org/apache/logging/log4j/core/config/ConfigurationFactory$1.class

package org.apache.logging.log4j.core.config;
synchronized class ConfigurationFactory$1 {
}

org/apache/logging/log4j/core/config/AbstractConfiguration.class

package org.apache.logging.log4j.core.config;
public abstract synchronized class AbstractConfiguration extends org.apache.logging.log4j.core.filter.AbstractFilterable implements Configuration {
 private static final int BUF_SIZE = 16384;
 protected Node rootNode;
 protected final java.util.List listeners;
 protected final java.util.List pluginPackages;
 protected plugins.util.PluginManager pluginManager;
 protected boolean isShutdownHookEnabled;
 protected long shutdownTimeoutMillis;
 protected org.apache.logging.log4j.core.script.ScriptManager scriptManager;
 private org.apache.logging.log4j.core.net.Advertiser advertiser;
 private Node advertiserNode;
 private Object advertisement;
 private String name;
 private java.util.concurrent.ConcurrentMap appenders;
 private java.util.concurrent.ConcurrentMap loggerConfigs;
 private java.util.List customLevels;
 private final java.util.concurrent.ConcurrentMap propertyMap;
 private final org.apache.logging.log4j.core.lookup.StrLookup tempLookup;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor configurationStrSubstitutor;
 private LoggerConfig root;
 private final java.util.concurrent.ConcurrentMap componentMap;
 private final ConfigurationSource configurationSource;
 private final ConfigurationScheduler configurationScheduler;
 private final org.apache.logging.log4j.core.util.WatchManager watchManager;
 private org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor asyncLoggerConfigDisruptor;
 private org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private final ref.WeakReference loggerContext;
 protected void AbstractConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 public ConfigurationSource getConfigurationSource();
 public java.util.List getPluginPackages();
 public java.util.Map getProperties();
 public org.apache.logging.log4j.core.script.ScriptManager getScriptManager();
 public void setScriptManager(org.apache.logging.log4j.core.script.ScriptManager);
 public plugins.util.PluginManager getPluginManager();
 public void setPluginManager(plugins.util.PluginManager);
 public org.apache.logging.log4j.core.util.WatchManager getWatchManager();
 public ConfigurationScheduler getScheduler();
 public Node getRootNode();
 public org.apache.logging.log4j.core.async.AsyncLoggerConfigDelegate getAsyncLoggerConfigDelegate();
 public void initialize();
 protected void initializeWatchers(Reconfigurable, ConfigurationSource, int);
 private void monitorSource(Reconfigurable, ConfigurationSource);
 public void start();
 private boolean hasAsyncLoggers();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private java.util.List getAsyncAppenders(org.apache.logging.log4j.core.Appender[]);
 public boolean isShutdownHookEnabled();
 public long getShutdownTimeoutMillis();
 public void setup();
 protected org.apache.logging.log4j.Level getDefaultStatus();
 protected void createAdvertiser(String, ConfigurationSource, byte[], String);
 private void setupAdvertisement();
 public Object getComponent(String);
 public void addComponent(String, Object);
 protected void preConfigure(Node);
 protected void processConditionals(Node);
 protected java.util.List processSelect(Node, plugins.util.PluginType);
 protected void doConfigure();
 protected void setToDefault();
 public void setName(String);
 public String getName();
 public void addListener(ConfigurationListener);
 public void removeListener(ConfigurationListener);
 public org.apache.logging.log4j.core.Appender getAppender(String);
 public java.util.Map getAppenders();
 public void addAppender(org.apache.logging.log4j.core.Appender);
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getConfigurationStrSubstitutor();
 public void setAdvertiser(org.apache.logging.log4j.core.net.Advertiser);
 public org.apache.logging.log4j.core.net.Advertiser getAdvertiser();
 public ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
 public synchronized void addLoggerAppender(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Appender);
 public synchronized void addLoggerFilter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Filter);
 public synchronized void setLoggerAdditive(org.apache.logging.log4j.core.Logger, boolean);
 public synchronized void removeAppender(String);
 public java.util.List getCustomLevels();
 public LoggerConfig getLoggerConfig(String);
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
 public LoggerConfig getRootLogger();
 public java.util.Map getLoggers();
 public LoggerConfig getLogger(String);
 public synchronized void addLogger(String, LoggerConfig);
 public synchronized void removeLogger(String);
 public void createConfiguration(Node, org.apache.logging.log4j.core.LogEvent);
 public Object createPluginObject(plugins.util.PluginType, Node);
 private Object createPluginObject(plugins.util.PluginType, Node, org.apache.logging.log4j.core.LogEvent);
 private static java.util.Map createPluginMap(Node);
 private static java.util.Collection createPluginCollection(Node);
 private void setParents();
 protected static byte[] toByteArray(java.io.InputStream) throws java.io.IOException;
 public org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
}

org/apache/logging/log4j/core/config/yaml/YamlConfigurationFactory.class

package org.apache.logging.log4j.core.config.yaml;
public synchronized class YamlConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 private static final String[] SUFFIXES;
 private static final String[] dependencies;
 private final boolean isActive;
 public void YamlConfigurationFactory();
 protected boolean isActive();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$3.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$3 {
 void LoggerConfig$LoggerConfigPredicate$3(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/AppenderControl.class

package org.apache.logging.log4j.core.config;
public synchronized class AppenderControl extends org.apache.logging.log4j.core.filter.AbstractFilterable {
 static final AppenderControl[] EMPTY_ARRAY;
 private final ThreadLocal recursive;
 private final org.apache.logging.log4j.core.Appender appender;
 private final org.apache.logging.log4j.Level level;
 private final int intLevel;
 private final String appenderName;
 public void AppenderControl(org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public String getAppenderName();
 public org.apache.logging.log4j.core.Appender getAppender();
 public void callAppender(org.apache.logging.log4j.core.LogEvent);
 private boolean shouldSkip(org.apache.logging.log4j.core.LogEvent);
 private boolean isFilteredByAppenderControl(org.apache.logging.log4j.core.LogEvent);
 private boolean isFilteredByLevel(org.apache.logging.log4j.core.LogEvent);
 private boolean isRecursiveCall();
 private String appenderErrorHandlerMessage(String);
 private void callAppenderPreventRecursion(org.apache.logging.log4j.core.LogEvent);
 private void callAppender0(org.apache.logging.log4j.core.LogEvent);
 private void ensureAppenderStarted();
 private void handleError(String);
 private String createErrorMsg(String);
 private boolean isFilteredByAppender(org.apache.logging.log4j.core.LogEvent);
 private void tryCallAppender(org.apache.logging.log4j.core.LogEvent);
 private void handleAppenderError(org.apache.logging.log4j.core.LogEvent, RuntimeException);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultCompositeFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultCompositeFilterComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.CompositeFilterComponentBuilder {
 public void DefaultCompositeFilterComponentBuilder(DefaultConfigurationBuilder, String, String);
 public org.apache.logging.log4j.core.config.builder.api.CompositeFilterComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/ConfigurationBuilderFactory.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract synchronized class ConfigurationBuilderFactory {
 public void ConfigurationBuilderFactory();
 public static ConfigurationBuilder newConfigurationBuilder();
 public static ConfigurationBuilder newConfigurationBuilder(Class);
}

org/apache/logging/log4j/core/config/Configuration.class

package org.apache.logging.log4j.core.config;
public abstract interface Configuration extends org.apache.logging.log4j.core.filter.Filterable {
 public static final String CONTEXT_PROPERTIES = ContextProperties;
 public abstract String getName();
 public abstract LoggerConfig getLoggerConfig(String);
 public abstract org.apache.logging.log4j.core.Appender getAppender(String);
 public abstract java.util.Map getAppenders();
 public abstract void addAppender(org.apache.logging.log4j.core.Appender);
 public abstract java.util.Map getLoggers();
 public abstract void addLoggerAppender(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Appender);
 public abstract void addLoggerFilter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Filter);
 public abstract void setLoggerAdditive(org.apache.logging.log4j.core.Logger, boolean);
 public abstract void addLogger(String, LoggerConfig);
 public abstract void removeLogger(String);
 public abstract java.util.List getPluginPackages();
 public abstract java.util.Map getProperties();
 public abstract LoggerConfig getRootLogger();
 public abstract void addListener(ConfigurationListener);
 public abstract void removeListener(ConfigurationListener);
 public abstract org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getConfigurationStrSubstitutor();
 public abstract void createConfiguration(Node, org.apache.logging.log4j.core.LogEvent);
 public abstract Object getComponent(String);
 public abstract void addComponent(String, Object);
 public abstract void setAdvertiser(org.apache.logging.log4j.core.net.Advertiser);
 public abstract org.apache.logging.log4j.core.net.Advertiser getAdvertiser();
 public abstract boolean isShutdownHookEnabled();
 public abstract long getShutdownTimeoutMillis();
 public abstract ConfigurationScheduler getScheduler();
 public abstract ConfigurationSource getConfigurationSource();
 public abstract java.util.List getCustomLevels();
 public abstract org.apache.logging.log4j.core.script.ScriptManager getScriptManager();
 public abstract org.apache.logging.log4j.core.async.AsyncLoggerConfigDelegate getAsyncLoggerConfigDelegate();
 public abstract org.apache.logging.log4j.core.util.WatchManager getWatchManager();
 public abstract ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
 public abstract org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public abstract void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
 public abstract org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/jmx/LoggerConfigAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface LoggerConfigAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=Loggers,name=%s;
 public abstract String getName();
 public abstract String getLevel();
 public abstract void setLevel(String);
 public abstract boolean isAdditive();
 public abstract void setAdditive(boolean);
 public abstract boolean isIncludeLocation();
 public abstract String getFilter();
 public abstract String[] getAppenderRefs();
}

org/apache/logging/log4j/core/jmx/AsyncAppenderAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class AsyncAppenderAdmin implements AsyncAppenderAdminMBean {
 private final String contextName;
 private final org.apache.logging.log4j.core.appender.AsyncAppender asyncAppender;
 private final javax.management.ObjectName objectName;
 public void AsyncAppenderAdmin(String, org.apache.logging.log4j.core.appender.AsyncAppender);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLayout();
 public boolean isIgnoreExceptions();
 public String getErrorHandler();
 public String getFilter();
 public String[] getAppenderRefs();
 public boolean isIncludeLocation();
 public boolean isBlocking();
 public String getErrorRef();
 public int getQueueCapacity();
 public int getQueueRemainingCapacity();
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class ScriptPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/JacksonFactory.class

package org.apache.logging.log4j.core.layout;
abstract synchronized class JacksonFactory {
 void JacksonFactory();
 protected abstract String getPropertyNameForTimeMillis();
 protected abstract String getPropertyNameForInstant();
 protected abstract String getPropertNameForContextMap();
 protected abstract String getPropertNameForSource();
 protected abstract String getPropertNameForNanoTime();
 protected abstract com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected abstract com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected abstract com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
 com.fasterxml.jackson.databind.ObjectWriter newWriter(boolean, boolean, boolean);
 com.fasterxml.jackson.databind.ObjectWriter newWriter(boolean, boolean, boolean, boolean);
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Serializer.class

package org.apache.logging.log4j.core.layout;
public abstract interface AbstractStringLayout$Serializer extends AbstractStringLayout$Serializer2 {
 public abstract String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/layout/HtmlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class HtmlLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractLayout$Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private byte[] footer;
 private byte[] header;
 public void AbstractLayout$Builder();
 public AbstractLayout$Builder asBuilder();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public byte[] getFooter();
 public byte[] getHeader();
 public AbstractLayout$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractLayout$Builder setFooter(byte[]);
 public AbstractLayout$Builder setHeader(byte[]);
}

org/apache/logging/log4j/core/layout/SerializedLayout$PrivateObjectOutputStream.class

package org.apache.logging.log4j.core.layout;
synchronized class SerializedLayout$PrivateObjectOutputStream extends java.io.ObjectOutputStream {
 public void SerializedLayout$PrivateObjectOutputStream(SerializedLayout, java.io.OutputStream) throws java.io.IOException;
 protected void writeStreamHeader();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class LevelPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void LevelPatternSelector$Builder();
 public LevelPatternSelector build();
 public LevelPatternSelector$Builder setProperties(PatternMatch[]);
 public LevelPatternSelector$Builder setDefaultPattern(String);
 public LevelPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public LevelPatternSelector$Builder setDisableAnsi(boolean);
 public LevelPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public LevelPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$ReadOnlyLogEventWrapper.class

package org.apache.logging.log4j.core.layout;
synchronized class AbstractJacksonLayout$ReadOnlyLogEventWrapper implements org.apache.logging.log4j.core.LogEvent {
 private final org.apache.logging.log4j.core.LogEvent event;
 public void AbstractJacksonLayout$ReadOnlyLogEventWrapper(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.LogEvent toImmutable();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public org.apache.logging.log4j.message.Message getMessage();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public StackTraceElement getSource();
 public String getThreadName();
 public long getThreadId();
 public int getThreadPriority();
 public Throwable getThrown();
 public org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public boolean isEndOfBatch();
 public boolean isIncludeLocation();
 public void setEndOfBatch(boolean);
 public void setIncludeLocation(boolean);
 public long getNanoTime();
}

org/apache/logging/log4j/core/layout/Encoder.class

package org.apache.logging.log4j.core.layout;
public abstract interface Encoder {
 public abstract void encode(Object, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/PatternLayout$SerializerBuilder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternLayout$SerializerBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private String pattern;
 private String defaultPattern;
 private PatternSelector patternSelector;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 public void PatternLayout$SerializerBuilder();
 public AbstractStringLayout$Serializer build();
 public PatternLayout$SerializerBuilder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PatternLayout$SerializerBuilder setReplace(org.apache.logging.log4j.core.pattern.RegexReplacement);
 public PatternLayout$SerializerBuilder setPattern(String);
 public PatternLayout$SerializerBuilder setDefaultPattern(String);
 public PatternLayout$SerializerBuilder setPatternSelector(PatternSelector);
 public PatternLayout$SerializerBuilder setAlwaysWriteExceptions(boolean);
 public PatternLayout$SerializerBuilder setDisableAnsi(boolean);
 public PatternLayout$SerializerBuilder setNoConsoleNoAnsi(boolean);
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class ScriptPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final boolean requiresLocation;
 public void ScriptPatternSelector(org.apache.logging.log4j.core.script.AbstractScript, PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static ScriptPatternSelector$Builder newBuilder();
 public static ScriptPatternSelector createSelector(org.apache.logging.log4j.core.script.AbstractScript, PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/SyslogLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class SyslogLayout extends AbstractStringLayout {
 public static final java.util.regex.Pattern NEWLINE_PATTERN;
 private final org.apache.logging.log4j.core.net.Facility facility;
 private final boolean includeNewLine;
 private final String escapeNewLine;
 private final java.text.SimpleDateFormat dateFormat;
 private final String localHostname;
 public static SyslogLayout$Builder newBuilder();
 protected void SyslogLayout(org.apache.logging.log4j.core.net.Facility, boolean, String, java.nio.charset.Charset);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private synchronized void addDate(long, StringBuilder);
 public java.util.Map getContentFormat();
 public static SyslogLayout createLayout(org.apache.logging.log4j.core.net.Facility, boolean, String, java.nio.charset.Charset);
 public org.apache.logging.log4j.core.net.Facility getFacility();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLogger$TranslatorType.class

package org.apache.logging.log4j.core.async;
abstract synchronized class AsyncLogger$TranslatorType {
 void AsyncLogger$TranslatorType(AsyncLogger);
 abstract void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 abstract void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig$1.class

package org.apache.logging.log4j.core.async;
final synchronized class AsyncLoggerConfig$1 extends ThreadLocal {
 void AsyncLoggerConfig$1();
 protected Boolean initialValue();
}

org/apache/logging/log4j/core/async/BlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public abstract interface BlockingQueueFactory {
 public static final String ELEMENT_TYPE = BlockingQueueFactory;
 public abstract java.util.concurrent.BlockingQueue create(int);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDefaultExceptionHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDefaultExceptionHandler extends AbstractAsyncExceptionHandler {
 public void AsyncLoggerConfigDefaultExceptionHandler();
}

org/apache/logging/log4j/core/async/AsyncQueueFullMessageUtil.class

package org.apache.logging.log4j.core.async;
public final synchronized class AsyncQueueFullMessageUtil {
 private void AsyncQueueFullMessageUtil();
 public static void logWarningToStatusLogger();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy.class

package org.apache.logging.log4j.core.async;
public abstract synchronized enum ThreadNameCachingStrategy {
 public static final ThreadNameCachingStrategy CACHED;
 public static final ThreadNameCachingStrategy UNCACHED;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final ThreadLocal THREADLOCAL_NAME;
 static final ThreadNameCachingStrategy DEFAULT_STRATEGY;
 public static ThreadNameCachingStrategy[] values();
 public static ThreadNameCachingStrategy valueOf(String);
 private void ThreadNameCachingStrategy(String, int);
 abstract String getThreadName();
 public static ThreadNameCachingStrategy create();
 static boolean isAllocatingThreadGetName();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/RingBufferLogEventTranslator.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEventTranslator implements com.lmax.disruptor.EventTranslator {
 private static final org.apache.logging.log4j.core.ContextDataInjector INJECTOR;
 private AsyncLogger asyncLogger;
 String loggerName;
 protected org.apache.logging.log4j.Marker marker;
 protected String fqcn;
 protected org.apache.logging.log4j.Level level;
 protected org.apache.logging.log4j.message.Message message;
 protected Throwable thrown;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement location;
 private org.apache.logging.log4j.core.util.Clock clock;
 private org.apache.logging.log4j.core.util.NanoClock nanoClock;
 public void RingBufferLogEventTranslator();
 public void translateTo(RingBufferLogEvent, long);
 void clear();
 public void setBasicValues(AsyncLogger, String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, org.apache.logging.log4j.ThreadContext$ContextStack, StackTraceElement, org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 public void updateThreadValues();
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/JndiLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JndiLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 static final String CONTAINER_JNDI_RESOURCE_PATH_PREFIX = java:comp/env/;
 public void JndiLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 private String convertJndiName(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$NoMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$NoMatcher extends StrMatcher {
 void StrMatcher$NoMatcher();
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/StrLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract interface StrLookup {
 public static final String CATEGORY = Lookup;
 public abstract String lookup(String);
 public abstract String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/StructuredDataLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class StructuredDataLookup implements StrLookup {
 public void StructuredDataLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/message/ExtendedThreadInformation$1.class

package org.apache.logging.log4j.core.message;
synchronized class ExtendedThreadInformation$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/YamlLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class YamlLogEventParser extends AbstractJacksonLogEventParser {
 public void YamlLogEventParser();
}

org/apache/logging/log4j/core/parser/TextLogEventParser.class

package org.apache.logging.log4j.core.parser;
public abstract interface TextLogEventParser extends LogEventParser {
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(String) throws ParseException;
}

org/apache/logging/log4j/core/script/AbstractScript.class

package org.apache.logging.log4j.core.script;
public abstract synchronized class AbstractScript {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected static final String DEFAULT_LANGUAGE = JavaScript;
 private final String language;
 private final String scriptText;
 private final String name;
 public void AbstractScript(String, String, String);
 public String getLanguage();
 public String getScriptText();
 public String getName();
 static void <clinit>();
}

org/apache/logging/log4j/core/script/ScriptManager$AbstractScriptRunner.class

package org.apache.logging.log4j.core.script;
abstract synchronized class ScriptManager$AbstractScriptRunner implements ScriptManager$ScriptRunner {
 private static final String KEY_STATUS_LOGGER = statusLogger;
 private static final String KEY_CONFIGURATION = configuration;
 private void ScriptManager$AbstractScriptRunner(ScriptManager);
 public javax.script.Bindings createBindings();
}

org/apache/logging/log4j/core/time/MutableInstant$1.class

package org.apache.logging.log4j.core.time;
synchronized class MutableInstant$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/Filter$Result.class

package org.apache.logging.log4j.core;
public final synchronized enum Filter$Result {
 public static final Filter$Result ACCEPT;
 public static final Filter$Result NEUTRAL;
 public static final Filter$Result DENY;
 public static Filter$Result[] values();
 public static Filter$Result valueOf(String);
 private void Filter$Result(String, int);
 public static Filter$Result toResult(String);
 public static Filter$Result toResult(String, Filter$Result);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/MarkerFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class MarkerFilter extends AbstractFilter {
 public static final String ATTR_MARKER = marker;
 private final String name;
 private void MarkerFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static MarkerFilter createFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/Filterable.class

package org.apache.logging.log4j.core.filter;
public abstract interface Filterable extends org.apache.logging.log4j.core.LifeCycle {
 public abstract void addFilter(org.apache.logging.log4j.core.Filter);
 public abstract void removeFilter(org.apache.logging.log4j.core.Filter);
 public abstract org.apache.logging.log4j.core.Filter getFilter();
 public abstract boolean hasFilter();
 public abstract boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/filter/StringMatchFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class StringMatchFilter$1 {
}

org/apache/logging/log4j/core/pattern/HighlightConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class HighlightConverter extends LogEventPatternConverter implements AnsiConverter {
 private static final java.util.Map DEFAULT_STYLES;
 private static final java.util.Map LOGBACK_STYLES;
 private static final String STYLE_KEY = STYLE;
 private static final String STYLE_KEY_DEFAULT = DEFAULT;
 private static final String STYLE_KEY_LOGBACK = LOGBACK;
 private static final java.util.Map STYLES;
 private final java.util.Map levelStyles;
 private final java.util.List patternFormatters;
 private final boolean noAnsi;
 private final String defaultStyle;
 private static java.util.Map createLevelStyleMap(String[]);
 public static HighlightConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void HighlightConverter(java.util.List, java.util.Map, boolean);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 String getLevelStyle(org.apache.logging.log4j.Level);
 public boolean handlesThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/RelativeTimePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class RelativeTimePatternConverter extends LogEventPatternConverter {
 private final long startTime;
 public void RelativeTimePatternConverter();
 public static RelativeTimePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/PatternParser$ParserState.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum PatternParser$ParserState {
 public static final PatternParser$ParserState LITERAL_STATE;
 public static final PatternParser$ParserState CONVERTER_STATE;
 public static final PatternParser$ParserState DOT_STATE;
 public static final PatternParser$ParserState MIN_STATE;
 public static final PatternParser$ParserState MAX_STATE;
 public static PatternParser$ParserState[] values();
 public static PatternParser$ParserState valueOf(String);
 private void PatternParser$ParserState(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$Space.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$Space extends SimpleLiteralPatternConverter {
 private static final SimpleLiteralPatternConverter$Space INSTANCE;
 private void SimpleLiteralPatternConverter$Space();
 void format(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized class SimpleLiteralPatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private void SimpleLiteralPatternConverter();
 static LogEventPatternConverter of(String, boolean);
 static LogEventPatternConverter of(String);
 public final void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public final void format(Object, StringBuilder);
 public final transient void format(StringBuilder, Object[]);
 abstract void format(StringBuilder);
 public final boolean isVariable();
 public final boolean handlesThrowable();
}

org/apache/logging/log4j/core/pattern/RegexReplacement.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RegexReplacement {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.regex.Pattern pattern;
 private final String substitution;
 private void RegexReplacement(java.util.regex.Pattern, String);
 public String format(String);
 public String toString();
 public static RegexReplacement createRegexReplacement(java.util.regex.Pattern, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$1 {
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Red.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Red extends AbstractStyleNameConverter {
 protected static final String NAME = red;
 public void AbstractStyleNameConverter$Red(java.util.List, String);
 public static AbstractStyleNameConverter$Red newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$StringValue.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$StringValue extends SimpleLiteralPatternConverter {
 private final String literal;
 void SimpleLiteralPatternConverter$StringValue(String);
 void format(StringBuilder);
}

org/apache/logging/log4j/core/pattern/FormattingInfo.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FormattingInfo {
 private static final char[] SPACES;
 private static final char[] ZEROS;
 private static final FormattingInfo DEFAULT;
 private final int minLength;
 private final int maxLength;
 private final boolean leftAlign;
 private final boolean leftTruncate;
 private final boolean zeroPad;
 public void FormattingInfo(boolean, int, int, boolean);
 public void FormattingInfo(boolean, int, int, boolean, boolean);
 public static FormattingInfo getDefault();
 public boolean isLeftAligned();
 public boolean isLeftTruncate();
 public boolean isZeroPad();
 public int getMinLength();
 public int getMaxLength();
 public void format(int, StringBuilder);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class DatePatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Yellow.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Yellow extends AbstractStyleNameConverter {
 protected static final String NAME = yellow;
 public void AbstractStyleNameConverter$Yellow(java.util.List, String);
 public static AbstractStyleNameConverter$Yellow newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/AnsiConverter.class

package org.apache.logging.log4j.core.pattern;
abstract interface AnsiConverter {
}

org/apache/logging/log4j/core/Layout.class

package org.apache.logging.log4j.core;
public abstract interface Layout extends layout.Encoder {
 public static final String ELEMENT_TYPE = layout;
 public abstract byte[] getFooter();
 public abstract byte[] getHeader();
 public abstract byte[] toByteArray(LogEvent);
 public abstract java.io.Serializable toSerializable(LogEvent);
 public abstract String getContentType();
 public abstract java.util.Map getContentFormat();
}

org/apache/logging/log4j/core/StringLayout.class

package org.apache.logging.log4j.core;
public abstract interface StringLayout extends Layout {
 public abstract java.nio.charset.Charset getCharset();
}

org/apache/logging/log4j/core/jackson/MessageSerializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MessageSerializer extends com.fasterxml.jackson.databind.ser.std.StdScalarSerializer {
 private static final long serialVersionUID = 1;
 void MessageSerializer();
 public void serialize(org.apache.logging.log4j.message.Message, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

Log4j-events.xsd

 Log4J 2.0 XML Schema for XML log event files.

META-INF/maven/org.apache.logging.log4j/log4j-core/pom.properties

#Created by Apache Maven 3.8.4
version=2.17.1
groupId=org.apache.logging.log4j
artifactId=log4j-core

Log4j-events.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!--the entity declarations may be overridden in the internal subset-->
<!--namespace prefixes-->
<!ENTITY % log4j_prefix "log4j">
<!--namespace prefix to namespace uri mappings-->
<!ENTITY % log4j_prefix.. "%log4j_prefix;:">
<!--namespaces attributes for root element-->
<!ENTITY % documentElementAttributes " xmlns:%log4j_prefix; CDATA 'http://logging.apache.org/log4j/2.0/events'">
<!--the declarations below should not be modified-->
<!--element name mappings-->
<!ENTITY % log4j..Events "%log4j_prefix..;Events">
<!ENTITY % log4j..Event "%log4j_prefix..;Event">
<!ENTITY % log4j..Message "%log4j_prefix..;Message">
<!ENTITY % log4j..Marker "%log4j_prefix..;Marker">
<!ATTLIST %log4j..Marker;
 parent CDATA #IMPLIED
>
<!ENTITY % log4j..NDC "%log4j_prefix..;NDC">
<!ENTITY % log4j..Throwable "%log4j_prefix..;Throwable">
<!ENTITY % log4j..LocationInfo "%log4j_prefix..;LocationInfo">
<!ENTITY % log4j..Properties "%log4j_prefix..;Properties">
<!ENTITY % log4j..Data "%log4j_prefix..;Data">
<!--element and attribute declarations-->
<!--Log4J 2.0 XML Schema-->
<!ELEMENT %log4j..Events; ((%log4j..Event;)*)>
<!ATTLIST %log4j..Events;
	%documentElementAttributes;
>
<!ELEMENT %log4j..Event; (%log4j..Message;, (%log4j..NDC;)?, (%log4j..Marker;)?, (%log4j..Throwable;)?, (%log4j..LocationInfo;)?, (%log4j..Properties;)?)>
<!ATTLIST %log4j..Event;
	logger CDATA #REQUIRED
	timestamp NMTOKEN #REQUIRED
	level (OFF | FATAL | ERROR | WARN | INFO | DEBUG | TRACE | ALL) #REQUIRED
 threadId CDATA #REQUIRED
 thread CDATA #REQUIRED
 threadPriority CDATA #REQUIRED
>
<!ELEMENT %log4j..Message; ANY>
<!ELEMENT %log4j..NDC; ANY>
<!ELEMENT %log4j..Throwable; ANY>
<!ELEMENT %log4j..LocationInfo; EMPTY>
<!ATTLIST %log4j..LocationInfo;
	class CDATA #REQUIRED
	method CDATA #REQUIRED
	file CDATA #REQUIRED
	line NMTOKEN #REQUIRED
>
<!ELEMENT %log4j..Properties; ((%log4j..Data;)+)>
<!ELEMENT %log4j..Data; EMPTY>
<!ATTLIST %log4j..Data;
	name CDATA #REQUIRED
	value CDATA #REQUIRED
>

org/apache/logging/log4j/core/appender/WriterManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class WriterManager extends AbstractManager {
 protected final org.apache.logging.log4j.core.StringLayout layout;
 private volatile java.io.Writer writer;
 public static WriterManager getManager(String, Object, ManagerFactory);
 public void WriterManager(java.io.Writer, String, org.apache.logging.log4j.core.StringLayout, boolean);
 protected synchronized void closeWriter();
 public synchronized void flush();
 protected java.io.Writer getWriter();
 public boolean isOpen();
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected void setWriter(java.io.Writer);
 protected synchronized void write(String);
 protected void writeFooter();
}

org/apache/logging/log4j/core/appender/rolling/DirectWriteRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DirectWriteRolloverStrategy extends AbstractRolloverStrategy implements DirectFileRolloverStrategy {
 private static final int DEFAULT_MAX_FILES = 7;
 private final int maxFiles;
 private final int compressionLevel;
 private final java.util.List customActions;
 private final boolean stopCustomActionsOnError;
 private volatile String currentFileName;
 private int nextIndex;
 private final PatternProcessor tempCompressedFilePattern;
 private volatile boolean usePrevTime;
 public static DirectWriteRolloverStrategy$Builder newBuilder();
 public static DirectWriteRolloverStrategy createStrategy(String, String, action.Action[], boolean, org.apache.logging.log4j.core.config.Configuration);
 protected void DirectWriteRolloverStrategy(int, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean);
 protected void DirectWriteRolloverStrategy(int, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean, String);
 public int getCompressionLevel();
 public java.util.List getCustomActions();
 public int getMaxFiles();
 public boolean isStopCustomActionsOnError();
 public PatternProcessor getTempCompressedFilePattern();
 private int purge(RollingFileManager);
 public String getCurrentFileName(RollingFileManager);
 public void clearCurrentFileName();
 public RolloverDescription rollover(RollingFileManager) throws SecurityException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/ScriptCondition.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class ScriptCondition {
 private static org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 public void ScriptCondition(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration);
 public java.util.List selectFilesToDelete(java.nio.file.Path, java.util.List);
 public static ScriptCondition createCondition(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction$Builder.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PosixViewAttributeAction$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 private String basePath;
 private boolean followLinks;
 private int maxDepth;
 private PathCondition[] pathConditions;
 private String filePermissionsString;
 private java.util.Set filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void PosixViewAttributeAction$Builder();
 public PosixViewAttributeAction build();
 public PosixViewAttributeAction$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PosixViewAttributeAction$Builder withSubst(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public PosixViewAttributeAction$Builder withBasePath(String);
 public PosixViewAttributeAction$Builder withFollowLinks(boolean);
 public PosixViewAttributeAction$Builder withMaxDepth(int);
 public PosixViewAttributeAction$Builder withPathConditions(PathCondition[]);
 public PosixViewAttributeAction$Builder withFilePermissionsString(String);
 public PosixViewAttributeAction$Builder withFilePermissions(java.util.Set);
 public PosixViewAttributeAction$Builder withFileOwner(String);
 public PosixViewAttributeAction$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/rolling/action/CompositeAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class CompositeAction extends AbstractAction {
 private final Action[] actions;
 private final boolean stopOnError;
 public void CompositeAction(java.util.List, boolean);
 public void run();
 public boolean execute() throws java.io.IOException;
 public String toString();
 public Action[] getActions();
 public boolean isStopOnError();
}

org/apache/logging/log4j/core/appender/rolling/action/Action.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface Action extends Runnable {
 public abstract boolean execute() throws java.io.IOException;
 public abstract void close();
 public abstract boolean isComplete();
}

org/apache/logging/log4j/core/appender/rolling/DefaultRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DefaultRolloverStrategy extends AbstractRolloverStrategy {
 private static final int MIN_WINDOW_SIZE = 1;
 private static final int DEFAULT_WINDOW_SIZE = 7;
 private final int maxIndex;
 private final int minIndex;
 private final boolean useMax;
 private final int compressionLevel;
 private final java.util.List customActions;
 private final boolean stopCustomActionsOnError;
 private final PatternProcessor tempCompressedFilePattern;
 public static DefaultRolloverStrategy$Builder newBuilder();
 public static DefaultRolloverStrategy createStrategy(String, String, String, String, action.Action[], boolean, org.apache.logging.log4j.core.config.Configuration);
 protected void DefaultRolloverStrategy(int, int, boolean, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean);
 protected void DefaultRolloverStrategy(int, int, boolean, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean, String);
 public int getCompressionLevel();
 public java.util.List getCustomActions();
 public int getMaxIndex();
 public int getMinIndex();
 public boolean isStopCustomActionsOnError();
 public boolean isUseMax();
 public PatternProcessor getTempCompressedFilePattern();
 private int purge(int, int, RollingFileManager);
 private int purgeAscending(int, int, RollingFileManager);
 private int purgeDescending(int, int, RollingFileManager);
 public RolloverDescription rollover(RollingFileManager) throws SecurityException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class CronTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final String defaultSchedule = 0 0 0 * * ?;
 private RollingFileManager manager;
 private final org.apache.logging.log4j.core.util.CronExpression cronExpression;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final boolean checkOnStartup;
 private volatile java.util.Date lastRollDate;
 private org.apache.logging.log4j.core.config.CronScheduledFuture future;
 private void CronTriggeringPolicy(org.apache.logging.log4j.core.util.CronExpression, boolean, org.apache.logging.log4j.core.config.Configuration);
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.util.CronExpression getCronExpression();
 public static CronTriggeringPolicy createPolicy(org.apache.logging.log4j.core.config.Configuration, String, String);
 private static org.apache.logging.log4j.core.util.CronExpression getSchedule(String);
 private void rollover();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class MemoryMappedFileManager extends OutputStreamManager {
 static final int DEFAULT_REGION_LENGTH = 33554432;
 private static final int MAX_REMAP_COUNT = 10;
 private static final MemoryMappedFileManager$MemoryMappedFileManagerFactory FACTORY;
 private static final double NANOS_PER_MILLISEC = 1000000.0;
 private final boolean immediateFlush;
 private final int regionLength;
 private final String advertiseURI;
 private final java.io.RandomAccessFile randomAccessFile;
 private java.nio.MappedByteBuffer mappedBuffer;
 private long mappingOffset;
 protected void MemoryMappedFileManager(java.io.RandomAccessFile, String, java.io.OutputStream, boolean, long, int, String, org.apache.logging.log4j.core.Layout, boolean) throws java.io.IOException;
 public static MemoryMappedFileManager getFileManager(String, boolean, boolean, int, String, org.apache.logging.log4j.core.Layout);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected synchronized void write(byte[], int, int, boolean);
 private synchronized void remap();
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public static java.nio.MappedByteBuffer mmap(java.nio.channels.FileChannel, String, long, int) throws java.io.IOException;
 private static void unsafeUnmap(java.nio.MappedByteBuffer) throws java.security.PrivilegedActionException;
 public String getFileName();
 public int getRegionLength();
 public boolean isImmediateFlush();
 public java.util.Map getContentFormat();
 protected void flushBuffer(java.nio.ByteBuffer);
 public java.nio.ByteBuffer getByteBuffer();
 public java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/ManagerFactory.class

package org.apache.logging.log4j.core.appender;
public abstract interface ManagerFactory {
 public abstract Object createManager(String, Object);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class JdbcAppender extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender {
 private final String description;
 public static JdbcAppender createAppender(String, String, org.apache.logging.log4j.core.Filter, ConnectionSource, String, String, ColumnConfig[]);
 public static JdbcAppender$Builder newBuilder();
 private void JdbcAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], JdbcDatabaseManager);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/DriverManagerConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class DriverManagerConnectionSource extends AbstractDriverManagerConnectionSource {
 public static DriverManagerConnectionSource$Builder newBuilder();
 public void DriverManagerConnectionSource(String, String, String, char[], char[], org.apache.logging.log4j.core.config.Property[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class JdbcAppender$Builder extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private ConnectionSource connectionSource;
 private boolean immediateFail;
 private int bufferSize;
 private String tableName;
 private ColumnConfig[] columnConfigs;
 private org.apache.logging.log4j.core.appender.db.ColumnMapping[] columnMappings;
 private boolean truncateStrings;
 private long reconnectIntervalMillis;
 public void JdbcAppender$Builder();
 public JdbcAppender build();
 public long getReconnectIntervalMillis();
 public boolean isImmediateFail();
 public JdbcAppender$Builder setBufferSize(int);
 public transient JdbcAppender$Builder setColumnConfigs(ColumnConfig[]);
 public transient JdbcAppender$Builder setColumnMappings(org.apache.logging.log4j.core.appender.db.ColumnMapping[]);
 public JdbcAppender$Builder setConnectionSource(ConnectionSource);
 public void setImmediateFail(boolean);
 public void setReconnectIntervalMillis(long);
 public JdbcAppender$Builder setTableName(String);
 public JdbcAppender$Builder setTruncateStrings(boolean);
}

org/apache/logging/log4j/core/appender/AsyncAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class AsyncAppender$1 {
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$Builder.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class RoutingAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.script.AbstractScript defaultRouteScript;
 private Routes routes;
 private org.apache.logging.log4j.core.appender.rewrite.RewritePolicy rewritePolicy;
 private PurgePolicy purgePolicy;
 public void RoutingAppender$Builder();
 public RoutingAppender build();
 public Routes getRoutes();
 public org.apache.logging.log4j.core.script.AbstractScript getDefaultRouteScript();
 public org.apache.logging.log4j.core.appender.rewrite.RewritePolicy getRewritePolicy();
 public PurgePolicy getPurgePolicy();
 public RoutingAppender$Builder withRoutes(Routes);
 public RoutingAppender$Builder withDefaultRouteScript(org.apache.logging.log4j.core.script.AbstractScript);
 public RoutingAppender$Builder withRewritePolicy(org.apache.logging.log4j.core.appender.rewrite.RewritePolicy);
 public void withPurgePolicy(PurgePolicy);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlObject.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlObject {
 public abstract void set(String, Object);
 public abstract void set(String, NoSqlObject);
 public abstract void set(String, Object[]);
 public abstract void set(String, NoSqlObject[]);
 public abstract Object unwrap();
}

org/apache/logging/log4j/core/appender/nosql/AbstractNoSqlConnection.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract synchronized class AbstractNoSqlConnection implements NoSqlConnection {
 private final java.util.concurrent.atomic.AtomicBoolean closed;
 public void AbstractNoSqlConnection();
 public void close();
 protected abstract void closeImpl();
 public boolean isClosed();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class MemoryMappedFileAppender extends AbstractOutputStreamAppender {
 private static final int BIT_POSITION_1GB = 30;
 private static final int MAX_REGION_LENGTH = 1073741824;
 private static final int MIN_REGION_LENGTH = 256;
 private final String fileName;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void MemoryMappedFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, MemoryMappedFileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getFileName();
 public int getRegionLength();
 public static MemoryMappedFileAppender createAppender(String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static MemoryMappedFileAppender$Builder newBuilder();
 private static int determineValidRegionLength(String, int);
}

org/apache/logging/log4j/core/impl/ThrowableProxy.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThrowableProxy implements java.io.Serializable {
 static final ThrowableProxy[] EMPTY_ARRAY;
 private static final char EOL = 10;
 private static final String EOL_STR;
 private static final long serialVersionUID = -2752771578252251910;
 private final ThrowableProxy causeProxy;
 private int commonElementCount;
 private final ExtendedStackTraceElement[] extendedStackTrace;
 private final String localizedMessage;
 private final String message;
 private final String name;
 private final ThrowableProxy[] suppressedProxies;
 private final transient Throwable throwable;
 void ThrowableProxy();
 public void ThrowableProxy(Throwable);
 void ThrowableProxy(Throwable, java.util.Set);
 private void ThrowableProxy(Throwable, java.util.Stack, java.util.Map, Throwable, java.util.Set, java.util.Set);
 public boolean equals(Object);
 public void formatWrapper(StringBuilder, ThrowableProxy, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public ThrowableProxy getCauseProxy();
 public String getCauseStackTraceAsString(String);
 public String getCauseStackTraceAsString(java.util.List, String);
 public String getCauseStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public String getCauseStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public int getCommonElementCount();
 void setCommonElementCount(int);
 public ExtendedStackTraceElement[] getExtendedStackTrace();
 public String getExtendedStackTraceAsString();
 public String getExtendedStackTraceAsString(String);
 public String getExtendedStackTraceAsString(java.util.List, String);
 public String getExtendedStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public String getExtendedStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public void formatExtendedStackTraceTo(StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public String getLocalizedMessage();
 public String getMessage();
 public String getName();
 public StackTraceElement[] getStackTrace();
 public ThrowableProxy[] getSuppressedProxies();
 public String getSuppressedStackTrace(String);
 public Throwable getThrowable();
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/ContextDataFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ContextDataFactory {
 private static final String CLASS_NAME;
 private static final Class CACHED_CLASS;
 private static final reflect.Constructor DEFAULT_CONSTRUCTOR;
 private static final reflect.Constructor INITIAL_CAPACITY_CONSTRUCTOR;
 private static final org.apache.logging.log4j.util.StringMap EMPTY_STRING_MAP;
 public void ContextDataFactory();
 private static Class createCachedClass(String);
 private static reflect.Constructor createDefaultConstructor(Class);
 private static reflect.Constructor createInitialCapacityConstructor(Class);
 public static org.apache.logging.log4j.util.StringMap createContextData();
 public static org.apache.logging.log4j.util.StringMap createContextData(int);
 public static org.apache.logging.log4j.util.StringMap createContextData(java.util.Map);
 public static org.apache.logging.log4j.util.StringMap createContextData(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public static org.apache.logging.log4j.util.StringMap emptyFrozenContextData();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/JndiContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class JndiContextSelector implements NamedContextSelector {
 private static final org.apache.logging.log4j.core.LoggerContext CONTEXT;
 private static final java.util.concurrent.ConcurrentMap CONTEXT_MAP;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 public void JndiContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 private String getContextName();
 public org.apache.logging.log4j.core.LoggerContext locateContext(String, Object, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public org.apache.logging.log4j.core.LoggerContext removeContext(String);
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$ShortestFirst.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$ShortestFirst implements java.util.Comparator {
 void CommandLine$Help$ShortestFirst();
 public int compare(String, String);
 public static String[] sort(String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$IExceptionHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$IExceptionHandler {
 public abstract transient java.util.List handleException(CommandLine$ParameterException, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine {
 public static final String VERSION = 2.0.3;
 private final CommandLine$Tracer tracer;
 private final CommandLine$Interpreter interpreter;
 private String commandName;
 private boolean overwrittenOptionsAllowed;
 private boolean unmatchedArgumentsAllowed;
 private final java.util.List unmatchedArguments;
 private CommandLine parent;
 private boolean usageHelpRequested;
 private boolean versionHelpRequested;
 private final java.util.List versionLines;
 public void CommandLine(Object);
 public CommandLine addSubcommand(String, Object);
 public java.util.Map getSubcommands();
 public CommandLine getParent();
 public Object getCommand();
 public boolean isUsageHelpRequested();
 public boolean isVersionHelpRequested();
 public boolean isOverwrittenOptionsAllowed();
 public CommandLine setOverwrittenOptionsAllowed(boolean);
 public boolean isUnmatchedArgumentsAllowed();
 public CommandLine setUnmatchedArgumentsAllowed(boolean);
 public java.util.List getUnmatchedArguments();
 public static transient Object populateCommand(Object, String[]);
 public transient java.util.List parse(String[]);
 public static boolean printHelpIfRequested(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
 private static Object execute(CommandLine);
 public transient java.util.List parseWithHandler(CommandLine$IParseResultHandler, java.io.PrintStream, String[]);
 public transient java.util.List parseWithHandlers(CommandLine$IParseResultHandler, java.io.PrintStream, CommandLine$Help$Ansi, CommandLine$IExceptionHandler, String[]);
 public static void usage(Object, java.io.PrintStream);
 public static void usage(Object, java.io.PrintStream, CommandLine$Help$Ansi);
 public static void usage(Object, java.io.PrintStream, CommandLine$Help$ColorScheme);
 public void usage(java.io.PrintStream);
 public void usage(java.io.PrintStream, CommandLine$Help$Ansi);
 public void usage(java.io.PrintStream, CommandLine$Help$ColorScheme);
 public void printVersionHelp(java.io.PrintStream);
 public void printVersionHelp(java.io.PrintStream, CommandLine$Help$Ansi);
 public transient void printVersionHelp(java.io.PrintStream, CommandLine$Help$Ansi, Object[]);
 public static transient Object call(java.util.concurrent.Callable, java.io.PrintStream, String[]);
 public static transient Object call(java.util.concurrent.Callable, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
 public static transient void run(Runnable, java.io.PrintStream, String[]);
 public static transient void run(Runnable, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
 public CommandLine registerConverter(Class, CommandLine$ITypeConverter);
 public String getSeparator();
 public CommandLine setSeparator(String);
 public String getCommandName();
 public CommandLine setCommandName(String);
 private static boolean empty(String);
 private static boolean empty(Object[]);
 private static boolean empty(CommandLine$Help$Ansi$Text);
 private static String str(String[], int);
 private static boolean isBoolean(Class);
 private static CommandLine toCommandLine(Object);
 private static boolean isMultiValue(reflect.Field);
 private static boolean isMultiValue(Class);
 private static Class[] getTypeAttribute(reflect.Field);
 static void init(Class, java.util.List, java.util.Map, java.util.Map, java.util.List);
 static void validatePositionalParameters(java.util.List);
 private static java.util.Stack reverse(java.util.Stack);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Option.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Option extends annotation.Annotation {
 public abstract String[] names();
 public abstract boolean required();
 public abstract boolean help();
 public abstract boolean usageHelp();
 public abstract boolean versionHelp();
 public abstract String[] description();
 public abstract String arity();
 public abstract String paramLabel();
 public abstract Class[] type();
 public abstract String split();
 public abstract boolean hidden();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$MinimalParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$MinimalParameterRenderer implements CommandLine$Help$IParameterRenderer {
 void CommandLine$Help$MinimalParameterRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ShortConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ShortConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ShortConverter();
 public Short convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Text.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Ansi$Text implements Cloneable {
 private final int maxLength;
 private int from;
 private int length;
 private StringBuilder plain;
 private java.util.List sections;
 public void CommandLine$Help$Ansi$Text(CommandLine$Help$Ansi, int);
 public void CommandLine$Help$Ansi$Text(CommandLine$Help$Ansi, String);
 private void addStyledSection(int, int, String, String);
 public Object clone();
 public CommandLine$Help$Ansi$Text[] splitLines();
 public CommandLine$Help$Ansi$Text substring(int);
 public CommandLine$Help$Ansi$Text substring(int, int);
 public CommandLine$Help$Ansi$Text append(String);
 public CommandLine$Help$Ansi$Text append(CommandLine$Help$Ansi$Text);
 public void getStyledChars(int, int, CommandLine$Help$Ansi$Text, int);
 public String plainString();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private CommandLine$Help$Ansi$StyledSection findSectionContaining(int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharsetConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharsetConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharsetConverter();
 public java.nio.charset.Charset convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultParameterRenderer implements CommandLine$Help$IParameterRenderer {
 public String requiredMarker;
 void CommandLine$Help$DefaultParameterRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn {
 private void CommandLine$BuiltIn();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$LongConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$LongConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$LongConverter();
 public Long convert(String);
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationFactory.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationFactory {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static SslConfiguration sslConfiguration;
 private static final String trustStorelocation = log4j2.trustStoreLocation;
 private static final String trustStorePassword = log4j2.trustStorePassword;
 private static final String trustStorePasswordFile = log4j2.trustStorePasswordFile;
 private static final String trustStorePasswordEnvVar = log4j2.trustStorePasswordEnvironmentVariable;
 private static final String trustStoreKeyStoreType = log4j2.trustStoreKeyStoreType;
 private static final String trustStoreKeyManagerFactoryAlgorithm = log4j2.trustStoreKeyManagerFactoryAlgorithm;
 private static final String keyStoreLocation = log4j2.keyStoreLocation;
 private static final String keyStorePassword = log4j2.keyStorePassword;
 private static final String keyStorePasswordFile = log4j2.keyStorePasswordFile;
 private static final String keyStorePasswordEnvVar = log4j2.keyStorePasswordEnvironmentVariable;
 private static final String keyStoreType = log4j2.keyStoreType;
 private static final String keyStoreKeyManagerFactoryAlgorithm = log4j2.keyStoreKeyManagerFactoryAlgorithm;
 private static final String verifyHostName = log4j2.sslVerifyHostName;
 public void SslConfigurationFactory();
 public static SslConfiguration getSslConfiguration();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/EnvironmentPasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class EnvironmentPasswordProvider implements PasswordProvider {
 private final String passwordEnvironmentVariable;
 public void EnvironmentPasswordProvider(String);
 public char[] getPassword();
}

org/apache/logging/log4j/core/net/ssl/AbstractKeyStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class AbstractKeyStoreConfiguration extends StoreConfiguration {
 private final java.security.KeyStore keyStore;
 private final String keyStoreType;
 public void AbstractKeyStoreConfiguration(String, PasswordProvider, String) throws StoreConfigurationException;
 public void AbstractKeyStoreConfiguration(String, char[], String) throws StoreConfigurationException;
 public void AbstractKeyStoreConfiguration(String, String, String) throws StoreConfigurationException;
 protected java.security.KeyStore load() throws StoreConfigurationException;
 private java.io.InputStream openInputStream(String);
 public java.security.KeyStore getKeyStore();
 public int hashCode();
 public boolean equals(Object);
 public String getKeyStoreType();
}

org/apache/logging/log4j/core/net/AbstractSocketManager.class

package org.apache.logging.log4j.core.net;
public abstract synchronized class AbstractSocketManager extends org.apache.logging.log4j.core.appender.OutputStreamManager {
 protected final java.net.InetAddress inetAddress;
 protected final String host;
 protected final int port;
 public void AbstractSocketManager(String, java.io.OutputStream, java.net.InetAddress, String, int, org.apache.logging.log4j.core.Layout, boolean, int);
 public java.util.Map getContentFormat();
}

org/apache/logging/log4j/core/net/Facility.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Facility {
 public static final Facility KERN;
 public static final Facility USER;
 public static final Facility MAIL;
 public static final Facility DAEMON;
 public static final Facility AUTH;
 public static final Facility SYSLOG;
 public static final Facility LPR;
 public static final Facility NEWS;
 public static final Facility UUCP;
 public static final Facility CRON;
 public static final Facility AUTHPRIV;
 public static final Facility FTP;
 public static final Facility NTP;
 public static final Facility LOG_AUDIT;
 public static final Facility LOG_ALERT;
 public static final Facility CLOCK;
 public static final Facility LOCAL0;
 public static final Facility LOCAL1;
 public static final Facility LOCAL2;
 public static final Facility LOCAL3;
 public static final Facility LOCAL4;
 public static final Facility LOCAL5;
 public static final Facility LOCAL6;
 public static final Facility LOCAL7;
 private final int code;
 public static Facility[] values();
 public static Facility valueOf(String);
 private void Facility(String, int, int);
 public static Facility toFacility(String);
 public static Facility toFacility(String, Facility);
 public int getCode();
 public boolean isEqual(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatcherFactory.class

package org.apache.logging.log4j.core.util;
public synchronized class WatcherFactory {
 private static org.apache.logging.log4j.Logger LOGGER;
 private static org.apache.logging.log4j.core.config.plugins.util.PluginManager pluginManager;
 private static volatile WatcherFactory factory;
 private final java.util.Map plugins;
 private void WatcherFactory(java.util.List);
 public static WatcherFactory getInstance(java.util.List);
 public Watcher newWatcher(Source, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 public static Watcher instantiate(String, Class, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CyclicBuffer.class

package org.apache.logging.log4j.core.util;
public final synchronized class CyclicBuffer {
 private final Object[] ring;
 private int first;
 private int last;
 private int numElems;
 private final Class clazz;
 public void CyclicBuffer(Class, int) throws IllegalArgumentException;
 private Object[] makeArray(Class, int);
 public synchronized void add(Object);
 public synchronized Object[] removeAll();
 public boolean isEmpty();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$TimeZoneStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$TimeZoneStrategy extends FastDateParser$PatternStrategy {
 private static final String RFC_822_TIME_ZONE = [+-]\d{4};
 private static final String GMT_OPTION = GMT[+-]\d{1,2}:\d{2};
 private final java.util.Locale locale;
 private final java.util.Map tzNames;
 private static final int ID = 0;
 void FastDateParser$TimeZoneStrategy(java.util.Locale);
 void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDatePrinter implements DatePrinter, java.io.Serializable {
 private static final long serialVersionUID = 1;
 public static final int FULL = 0;
 public static final int LONG = 1;
 public static final int MEDIUM = 2;
 public static final int SHORT = 3;
 private final String mPattern;
 private final java.util.TimeZone mTimeZone;
 private final java.util.Locale mLocale;
 private transient FastDatePrinter$Rule[] mRules;
 private transient int mMaxLengthEstimate;
 private static final int MAX_DIGITS = 10;
 private static final java.util.concurrent.ConcurrentMap cTimeZoneDisplayCache;
 protected void FastDatePrinter(String, java.util.TimeZone, java.util.Locale);
 private void init();
 protected java.util.List parsePattern();
 protected String parseToken(String, int[]);
 protected FastDatePrinter$NumberRule selectNumberRule(int, int);
 public StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 String format(Object);
 public String format(long);
 private String applyRulesToString(java.util.Calendar);
 private java.util.Calendar newCalendar();
 public String format(java.util.Date);
 public String format(java.util.Calendar);
 public Appendable format(long, Appendable);
 public Appendable format(java.util.Date, Appendable);
 public Appendable format(java.util.Calendar, Appendable);
 protected StringBuffer applyRules(java.util.Calendar, StringBuffer);
 private Appendable applyRules(java.util.Calendar, Appendable);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public int getMaxLengthEstimate();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private static void appendDigits(Appendable, int) throws java.io.IOException;
 private static void appendFullDigits(Appendable, int, int) throws java.io.IOException;
 static String getTimeZoneDisplay(java.util.TimeZone, boolean, int, java.util.Locale);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$StrategyParser.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$StrategyParser {
 private final java.util.Calendar definingCalendar;
 private int currentIdx;
 void FastDateParser$StrategyParser(FastDateParser, java.util.Calendar);
 FastDateParser$StrategyAndWidth getNextStrategy();
 private FastDateParser$StrategyAndWidth letterPattern(char);
 private FastDateParser$StrategyAndWidth literal();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$5.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$5 extends FastDateParser$NumberStrategy {
 void FastDateParser$5(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$1.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$1 extends FastDateParser$NumberStrategy {
 void FastDateParser$1(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateFormat$1.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateFormat$1 extends FormatCache {
 void FastDateFormat$1();
 protected FastDateFormat createInstance(String, java.util.TimeZone, java.util.Locale);
}

org/apache/logging/log4j/core/util/PasswordDecryptor.class

package org.apache.logging.log4j.core.util;
public abstract interface PasswordDecryptor {
 public abstract String decryptPassword(String);
}

org/apache/logging/log4j/core/util/Closer.class

package org.apache.logging.log4j.core.util;
public final synchronized class Closer {
 private void Closer();
 public static boolean close(AutoCloseable) throws Exception;
 public static boolean closeSilently(AutoCloseable);
}

org/apache/logging/log4j/core/util/WatchManager.class

package org.apache.logging.log4j.core.util;
public synchronized class WatchManager extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static org.apache.logging.log4j.Logger logger;
 private final java.util.concurrent.ConcurrentMap watchers;
 private int intervalSeconds;
 private java.util.concurrent.ScheduledFuture future;
 private final org.apache.logging.log4j.core.config.ConfigurationScheduler scheduler;
 private final java.util.List eventServiceList;
 private final java.util.UUID id;
 public void WatchManager(org.apache.logging.log4j.core.config.ConfigurationScheduler);
 public void checkFiles();
 public java.util.Map getConfigurationWatchers();
 private java.util.List getEventServices();
 public java.util.UUID getId();
 public int getIntervalSeconds();
 public java.util.Map getWatchers();
 public boolean hasEventListeners();
 private String millisToString(long);
 public void reset();
 public void reset(java.io.File);
 public void reset(Source);
 public void setIntervalSeconds(int);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
 public void unwatch(Source);
 public void unwatchFile(java.io.File);
 public void watch(Source, Watcher);
 public void watchFile(java.io.File, FileWatcher);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Watcher.class

package org.apache.logging.log4j.core.util;
public abstract interface Watcher {
 public static final String CATEGORY = Watcher;
 public static final String ELEMENT_TYPE = watcher;
 public abstract java.util.List getListeners();
 public abstract void modified();
 public abstract boolean isModified();
 public abstract long getLastModified();
 public abstract void watching(Source);
 public abstract Source getSource();
 public abstract Watcher newWatcher(org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/util/ExecutorServices.class

package org.apache.logging.log4j.core.util;
public synchronized class ExecutorServices {
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void ExecutorServices();
 public static boolean shutdown(java.util.concurrent.ExecutorService, long, java.util.concurrent.TimeUnit, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/AuthorizationProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface AuthorizationProvider {
 public abstract void addAuthorization(java.net.URLConnection);
}

org/apache/logging/log4j/core/util/ShutdownCallbackRegistry.class

package org.apache.logging.log4j.core.util;
public abstract interface ShutdownCallbackRegistry {
 public static final String SHUTDOWN_CALLBACK_REGISTRY = log4j.shutdownCallbackRegistry;
 public static final String SHUTDOWN_HOOK_ENABLED = log4j.shutdownHookEnabled;
 public static final org.apache.logging.log4j.Marker SHUTDOWN_HOOK_MARKER;
 public abstract Cancellable addShutdownCallback(Runnable);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DummyNanoClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class DummyNanoClock implements NanoClock {
 private final long fixedNanoTime;
 public void DummyNanoClock();
 public void DummyNanoClock(long);
 public long nanoTime();
}

org/apache/logging/log4j/core/config/LoggerConfig$RootLogger.class

package org.apache.logging.log4j.core.config;
public synchronized class LoggerConfig$RootLogger extends LoggerConfig {
 public void LoggerConfig$RootLogger();
 public static LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginElementVisitor extends AbstractPluginVisitor {
 public void PluginElementVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private org.apache.logging.log4j.core.config.Node findNamedNode(String, Iterable);
}

org/apache/logging/log4j/core/config/plugins/util/PluginRegistry.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginRegistry {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile PluginRegistry INSTANCE;
 private static final Object INSTANCE_LOCK;
 private final java.util.concurrent.atomic.AtomicReference pluginsByCategoryRef;
 private final java.util.concurrent.ConcurrentMap pluginsByCategoryByBundleId;
 private final java.util.concurrent.ConcurrentMap pluginsByCategoryByPackage;
 private void PluginRegistry();
 public static PluginRegistry getInstance();
 public void clear();
 public java.util.Map getPluginsByCategoryByBundleId();
 public java.util.Map loadFromMainClassLoader();
 public void clearBundlePlugins(long);
 public java.util.Map loadFromBundle(long, ClassLoader);
 private java.util.Map decodeCacheFiles(ClassLoader);
 public java.util.Map loadFromPackage(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/PluginManager.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginManager {
 private static final java.util.concurrent.CopyOnWriteArrayList PACKAGES;
 private static final String LOG4J_PACKAGES = org.apache.logging.log4j.core;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private java.util.Map plugins;
 private final String category;
 public void PluginManager(String);
 public static void main(String[]);
 public static void addPackage(String);
 public static void addPackages(java.util.Collection);
 public PluginType getPluginType(String);
 public java.util.Map getPlugins();
 public void collectPlugins();
 public void collectPlugins(java.util.List);
 private static void mergeByName(java.util.Map, java.util.List);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/PluginConfiguration.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginConfiguration extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/validation/validators/ValidPortValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class ValidPortValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidPort annotation;
 public void ValidPortValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidPort);
 public boolean isValid(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/HexConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class HexConverter {
 public void HexConverter();
 public static byte[] parseHexBinary(String);
}

org/apache/logging/log4j/core/config/plugins/convert/Base64Converter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class Base64Converter {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static reflect.Method method;
 private static Object decoder;
 public void Base64Converter();
 public static byte[] parseBase64Binary(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/Configurator.class

package org.apache.logging.log4j.core.config;
public final synchronized class Configurator {
 private static final String FQCN;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static org.apache.logging.log4j.core.impl.Log4jContextFactory getFactory();
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, ConfigurationSource);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, ConfigurationSource, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, String);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, String, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI, java.util.Map$Entry);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.util.List, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, String);
 public static org.apache.logging.log4j.core.LoggerContext initialize(Configuration);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, Configuration);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, Configuration, Object);
 public static void reconfigure(Configuration);
 public static void reconfigure();
 public static void reconfigure(java.net.URI);
 public static void setAllLevels(String, org.apache.logging.log4j.Level);
 private static boolean setLevel(LoggerConfig, org.apache.logging.log4j.Level);
 public static void setLevel(java.util.Map);
 public static void setLevel(String, org.apache.logging.log4j.Level);
 private static boolean setLevel(String, org.apache.logging.log4j.Level, Configuration);
 public static void setRootLevel(org.apache.logging.log4j.Level);
 public static void shutdown(org.apache.logging.log4j.core.LoggerContext);
 public static boolean shutdown(org.apache.logging.log4j.core.LoggerContext, long, java.util.concurrent.TimeUnit);
 private void Configurator();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/composite/DefaultMergeStrategy.class

package org.apache.logging.log4j.core.config.composite;
public synchronized class DefaultMergeStrategy implements MergeStrategy {
 private static final String APPENDERS = appenders;
 private static final String PROPERTIES = properties;
 private static final String LOGGERS = loggers;
 private static final String SCRIPTS = scripts;
 private static final String FILTERS = filters;
 private static final String STATUS = status;
 private static final String NAME = name;
 private static final String REF = ref;
 public void DefaultMergeStrategy();
 public void mergeRootProperties(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.AbstractConfiguration);
 public void mergConfigurations(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
 private org.apache.logging.log4j.core.config.Node getLoggerNode(org.apache.logging.log4j.core.config.Node, String);
 private void updateFilterNode(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
 private boolean isFilterNode(org.apache.logging.log4j.core.config.Node);
 private boolean isSameName(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node);
 private boolean isSameReference(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node);
}

org/apache/logging/log4j/core/config/properties/PropertiesConfiguration.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfiguration extends org.apache.logging.log4j.core.config.builder.impl.BuiltConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 public void PropertiesConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource, org.apache.logging.log4j.core.config.builder.api.Component);
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
}

org/apache/logging/log4j/core/config/CustomLevels.class

package org.apache.logging.log4j.core.config;
public final synchronized class CustomLevels {
 private final java.util.List customLevels;
 private void CustomLevels(CustomLevelConfig[]);
 public static CustomLevels createCustomLevels(CustomLevelConfig[]);
 public java.util.List getCustomLevels();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultKeyValuePairComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultKeyValuePairComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.KeyValuePairComponentBuilder {
 public void DefaultKeyValuePairComponentBuilder(DefaultConfigurationBuilder, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultComponentAndConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultComponentAndConfigurationBuilder extends DefaultComponentBuilder {
 void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String, String, String);
 void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String);
}

org/apache/logging/log4j/core/config/builder/api/PropertyComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface PropertyComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/FilterableComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface FilterableComponentBuilder extends ComponentBuilder {
 public abstract ComponentBuilder add(FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/LoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LoggerComponentBuilder extends LoggableComponentBuilder {
}

org/apache/logging/log4j/core/jmx/RingBufferAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface RingBufferAdminMBean {
 public static final String PATTERN_ASYNC_LOGGER = org.apache.logging.log4j2:type=%s,component=AsyncLoggerRingBuffer;
 public static final String PATTERN_ASYNC_LOGGER_CONFIG = org.apache.logging.log4j2:type=%s,component=Loggers,name=%s,subtype=RingBuffer;
 public abstract long getBufferSize();
 public abstract long getRemainingCapacity();
}

org/apache/logging/log4j/core/jmx/StatusLoggerAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class StatusLoggerAdmin extends javax.management.NotificationBroadcasterSupport implements org.apache.logging.log4j.status.StatusListener, StatusLoggerAdminMBean {
 private final java.util.concurrent.atomic.AtomicLong sequenceNo;
 private final javax.management.ObjectName objectName;
 private final String contextName;
 private org.apache.logging.log4j.Level level;
 public void StatusLoggerAdmin(String, java.util.concurrent.Executor);
 private void removeListeners(String);
 private static javax.management.MBeanNotificationInfo createNotificationInfo();
 public String[] getStatusDataHistory();
 public java.util.List getStatusData();
 public String getLevel();
 public org.apache.logging.log4j.Level getStatusLevel();
 public void setLevel(String);
 public String getContextName();
 public void log(org.apache.logging.log4j.status.StatusData);
 public javax.management.ObjectName getObjectName();
 private long nextSeqNo();
 private long nowMillis();
 public void close() throws java.io.IOException;
}

org/apache/logging/log4j/core/jmx/AsyncAppenderAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface AsyncAppenderAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=AsyncAppenders,name=%s;
 public abstract String getName();
 public abstract String getLayout();
 public abstract boolean isIgnoreExceptions();
 public abstract String getErrorHandler();
 public abstract String getFilter();
 public abstract String[] getAppenderRefs();
 public abstract boolean isIncludeLocation();
 public abstract boolean isBlocking();
 public abstract String getErrorRef();
 public abstract int getQueueCapacity();
 public abstract int getQueueRemainingCapacity();
}

org/apache/logging/log4j/core/jmx/StatusLoggerAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface StatusLoggerAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=StatusLogger;
 public static final String NOTIF_TYPE_DATA = com.apache.logging.log4j.core.jmx.statuslogger.data;
 public static final String NOTIF_TYPE_MESSAGE = com.apache.logging.log4j.core.jmx.statuslogger.message;
 public abstract javax.management.ObjectName getObjectName();
 public abstract java.util.List getStatusData();
 public abstract String[] getStatusDataHistory();
 public abstract String getLevel();
 public abstract void setLevel(String);
 public abstract String getContextName();
}

org/apache/logging/log4j/core/jmx/AppenderAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class AppenderAdmin implements AppenderAdminMBean {
 private final String contextName;
 private final org.apache.logging.log4j.core.Appender appender;
 private final javax.management.ObjectName objectName;
 public void AppenderAdmin(String, org.apache.logging.log4j.core.Appender);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLayout();
 public boolean isIgnoreExceptions();
 public String getErrorHandler();
 public String getFilter();
}

org/apache/logging/log4j/core/layout/YamlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class YamlLayout extends AbstractJacksonLayout {
 private static final String DEFAULT_FOOTER = ;
 private static final String DEFAULT_HEADER = ;
 static final String CONTENT_TYPE = application/yaml;
 protected void YamlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 private void YamlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static AbstractJacksonLayout createLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 public static YamlLayout$Builder newBuilder();
 public static AbstractJacksonLayout createDefaultLayout();
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$ResolvableKeyValuePair.class

package org.apache.logging.log4j.core.layout;
public synchronized class AbstractJacksonLayout$ResolvableKeyValuePair {
 static final AbstractJacksonLayout$ResolvableKeyValuePair[] EMPTY_ARRAY;
 final String key;
 final String value;
 final boolean valueNeedsLookup;
 void AbstractJacksonLayout$ResolvableKeyValuePair(org.apache.logging.log4j.core.util.KeyValuePair);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/YamlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class YamlLayout$1 {
}

org/apache/logging/log4j/core/layout/CsvLogEventLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class CsvLogEventLayout extends AbstractCsvLayout {
 public static CsvLogEventLayout createDefaultLayout();
 public static CsvLogEventLayout createLayout(org.apache.commons.csv.CSVFormat);
 public static CsvLogEventLayout createLayout(org.apache.logging.log4j.core.config.Configuration, String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String, java.nio.charset.Charset, String, String);
 protected void CsvLogEventLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractStringLayout$Builder extends AbstractLayout$Builder {
 private java.nio.charset.Charset charset;
 private AbstractStringLayout$Serializer footerSerializer;
 private AbstractStringLayout$Serializer headerSerializer;
 public void AbstractStringLayout$Builder();
 public java.nio.charset.Charset getCharset();
 public AbstractStringLayout$Serializer getFooterSerializer();
 public AbstractStringLayout$Serializer getHeaderSerializer();
 public AbstractStringLayout$Builder setCharset(java.nio.charset.Charset);
 public AbstractStringLayout$Builder setFooterSerializer(AbstractStringLayout$Serializer);
 public AbstractStringLayout$Builder setHeaderSerializer(AbstractStringLayout$Serializer);
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternFormatterPatternSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternFormatterPatternSerializer implements PatternLayout$PatternSerializer {
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] formatters;
 private void PatternLayout$PatternFormatterPatternSerializer(org.apache.logging.log4j.core.pattern.PatternFormatter[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$3.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$3 {
 void GelfLayout$CompressionType$3(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class MarkerPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void MarkerPatternSelector$Builder();
 public MarkerPatternSelector build();
 public MarkerPatternSelector$Builder setProperties(PatternMatch[]);
 public MarkerPatternSelector$Builder setDefaultPattern(String);
 public MarkerPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public MarkerPatternSelector$Builder setDisableAnsi(boolean);
 public MarkerPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public MarkerPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/layout/JsonLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class JsonLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean propertiesAsList;
 private boolean objectMessageAsJsonObject;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 public void JsonLayout$Builder();
 public JsonLayout build();
 public boolean isPropertiesAsList();
 public JsonLayout$Builder setPropertiesAsList(boolean);
 public boolean getObjectMessageAsJsonObject();
 public JsonLayout$Builder setObjectMessageAsJsonObject(boolean);
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public JsonLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
}

org/apache/logging/log4j/core/async/RingBufferLogEvent.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEvent implements org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.message.ReusableMessage, CharSequence, org.apache.logging.log4j.message.ParameterVisitable {
 public static final RingBufferLogEvent$Factory FACTORY;
 private static final long serialVersionUID = 8462119088943934758;
 private static final org.apache.logging.log4j.message.Message EMPTY;
 private boolean populated;
 private int threadPriority;
 private long threadId;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private long nanoTime;
 private short parameterCount;
 private boolean includeLocation;
 private boolean endOfBatch;
 private org.apache.logging.log4j.Level level;
 private String threadName;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private String messageFormat;
 private StringBuilder messageText;
 private Object[] parameters;
 private transient Throwable thrown;
 private org.apache.logging.log4j.core.impl.ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.Marker marker;
 private String fqcn;
 private StackTraceElement location;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private transient AsyncLogger asyncLogger;
 public void RingBufferLogEvent();
 public void setValues(AsyncLogger, String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 private void initTime(org.apache.logging.log4j.core.util.Clock);
 public org.apache.logging.log4j.core.LogEvent toImmutable();
 private void setMessage(org.apache.logging.log4j.message.Message);
 private StringBuilder getMessageTextForWriting();
 public void execute(boolean);
 public boolean isPopulated();
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.message.Message getMessage();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(org.apache.logging.log4j.message.ParameterConsumer, Object);
 public org.apache.logging.log4j.message.Message memento();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 public Throwable getThrown();
 public org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 void setContextData(org.apache.logging.log4j.util.StringMap);
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public StackTraceElement getSource();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public long getNanoTime();
 public void clear();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 public org.apache.logging.log4j.core.LogEvent createMemento();
 public void initializeBuilder(org.apache.logging.log4j.core.impl.Log4jLogEvent$Builder);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public abstract interface AsyncQueueFullPolicy {
 public abstract EventRoute getRoute(long, org.apache.logging.log4j.Level);
}

org/apache/logging/log4j/core/async/DefaultAsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public synchronized class DefaultAsyncQueueFullPolicy implements AsyncQueueFullPolicy {
 public void DefaultAsyncQueueFullPolicy();
 public EventRoute getRoute(long, org.apache.logging.log4j.Level);
}

org/apache/logging/log4j/core/lookup/StrMatcher$CharMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$CharMatcher extends StrMatcher {
 private final char ch;
 void StrMatcher$CharMatcher(char);
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/EnvironmentLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class EnvironmentLookup extends AbstractLookup {
 public void EnvironmentLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/PropertiesLookup.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class PropertiesLookup implements StrLookup {
 private final java.util.Map properties;
 public void PropertiesLookup(java.util.Map);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 public String toString();
}

org/apache/logging/log4j/core/LoggerContext$1.class

package org.apache.logging.log4j.core;
synchronized class LoggerContext$1 implements Runnable {
 void LoggerContext$1(LoggerContext, long);
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/script/ScriptFile.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptFile extends AbstractScript {
 private final java.nio.file.Path filePath;
 private final boolean isWatched;
 public void ScriptFile(String, java.nio.file.Path, String, boolean, String);
 public java.nio.file.Path getPath();
 public boolean isWatched();
 public static ScriptFile createScript(String, String, String, Boolean, java.nio.charset.Charset);
 public String toString();
}

org/apache/logging/log4j/core/ContextDataInjector.class

package org.apache.logging.log4j.core;
public abstract interface ContextDataInjector {
 public abstract org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/time/PreciseClock.class

package org.apache.logging.log4j.core.time;
public abstract interface PreciseClock extends org.apache.logging.log4j.core.util.Clock {
 public abstract void init(MutableInstant);
}

org/apache/logging/log4j/core/filter/LevelMatchFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class LevelMatchFilter$1 {
}

org/apache/logging/log4j/core/filter/StructuredDataFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class StructuredDataFilter extends MapFilter {
 private static final int MAX_BUFFER_SIZE = 2048;
 private static ThreadLocal threadLocalStringBuilder;
 private void StructuredDataFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 protected org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.message.StructuredDataMessage);
 private StringBuilder getValue(org.apache.logging.log4j.message.StructuredDataMessage, String);
 private StringBuilder getStringBuilder();
 private StringBuilder appendOrNull(String, StringBuilder);
 private boolean listContainsValue(java.util.List, StringBuilder);
 public static StructuredDataFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/ThresholdFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class ThresholdFilter extends AbstractFilter {
 private final org.apache.logging.log4j.Level level;
 private void ThresholdFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.Level getLevel();
 public String toString();
 public static ThresholdFilter createFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/StringMatchFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class StringMatchFilter extends AbstractFilter {
 public static final String ATTR_MATCH = match;
 private final String text;
 private void StringMatchFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(String);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static StringMatchFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/StyleConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class StyleConverter extends LogEventPatternConverter implements AnsiConverter {
 private final java.util.List patternFormatters;
 private final boolean noAnsi;
 private final String style;
 private final String defaultStyle;
 private void StyleConverter(java.util.List, String, boolean);
 public static StyleConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean handlesThrowable();
 public String toString();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$Noop.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$Noop extends SimpleLiteralPatternConverter {
 private static final SimpleLiteralPatternConverter$Noop INSTANCE;
 private void SimpleLiteralPatternConverter$Noop();
 void format(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class NamePatternConverter extends LogEventPatternConverter {
 private final NameAbbreviator abbreviator;
 protected void NamePatternConverter(String, String, String[]);
 protected final void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MethodLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MethodLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final MethodLocationPatternConverter INSTANCE;
 private void MethodLocationPatternConverter();
 public static MethodLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LiteralPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LiteralPatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private final String literal;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final boolean substitute;
 public void LiteralPatternConverter(org.apache.logging.log4j.core.config.Configuration, String, boolean);
 static boolean containsSubstitutionSequence(String);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public transient void format(StringBuilder, Object[]);
 public String getLiteral();
 public boolean isVariable();
 public String toString();
}

org/apache/logging/log4j/core/pattern/ConverterKeys.class

package org.apache.logging.log4j.core.pattern;
public abstract interface ConverterKeys extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class EncodingPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/EqualsReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EqualsReplacementConverter extends EqualsBaseReplacementConverter {
 public static EqualsReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void EqualsReplacementConverter(java.util.List, String, String, PatternParser);
 protected boolean equals(String, StringBuilder, int, int);
}

org/apache/logging/log4j/core/pattern/AbstractPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class AbstractPatternConverter implements PatternConverter {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final String name;
 private final String style;
 protected void AbstractPatternConverter(String, String);
 public final String getName();
 public String getStyleClass(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Magenta.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Magenta extends AbstractStyleNameConverter {
 protected static final String NAME = magenta;
 public void AbstractStyleNameConverter$Magenta(java.util.List, String);
 public static AbstractStyleNameConverter$Magenta newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Blue.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Blue extends AbstractStyleNameConverter {
 protected static final String NAME = blue;
 public void AbstractStyleNameConverter$Blue(java.util.List, String);
 public static AbstractStyleNameConverter$Blue newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/jackson/Initializers.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers {
 void Initializers();
}

org/apache/logging/log4j/core/jackson/Log4jXmlModule.class

package org.apache.logging.log4j.core.jackson;
final synchronized class Log4jXmlModule extends com.fasterxml.jackson.dataformat.xml.JacksonXmlModule {
 private static final long serialVersionUID = 1;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 void Log4jXmlModule(boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/ThrowableProxyWithoutStacktraceMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyWithoutStacktraceMixIn {
 private ThrowableProxyWithoutStacktraceMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyWithoutStacktraceMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/Log4jStackTraceElementDeserializer.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class Log4jStackTraceElementDeserializer extends com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer {
 private static final long serialVersionUID = 1;
 public void Log4jStackTraceElementDeserializer();
 public StackTraceElement deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Initializers$SetupContextInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SetupContextInitializer {
 void Initializers$SetupContextInitializer();
 void setupModule(com.fasterxml.jackson.databind.Module$SetupContext, boolean, boolean);
}

META-INF/DEPENDENCIES

// --
// Transitive dependencies of this project determined from the
// maven pom organized by organization.
// --

Apache Log4j Core

From: 'an unknown organization'
 - Disruptor Framework (http://lmax-exchange.github.com/disruptor) com.lmax:disruptor:jar:3.4.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - JavaBeans Activation Framework (JAF) (http://java.sun.com/products/javabeans/jaf/index.jsp) javax.activation:activation:jar:1.1
 License: Common Development and Distribution License (CDDL) v1.0 (https://glassfish.dev.java.net/public/CDDLv1.0.html)
 - Apache Kafka (http://kafka.apache.org) org.apache.kafka:kafka-clients:jar:1.1.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Java Concurrency Tools Core Library (https://github.com/JCTools) org.jctools:jctools-core:jar:1.2.1
 License: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - LZ4 and xxHash (https://github.com/lz4/lz4-java) org.lz4:lz4-java:jar:1.4.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - SnakeYAML (http://www.snakeyaml.org) org.yaml:snakeyaml:bundle:1.27
 License: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - JeroMQ (https://github.com/zeromq/jeromq) org.zeromq:jeromq:jar:0.4.3
 License: Mozilla Public License version 2.0 (https://www.mozilla.org/en-US/MPL/2.0)
 - org.zeromq:jnacl (https://github.com/trevorbernard/jnacl) org.zeromq:jnacl:jar:0.1.0
 License: The BSD 2-Clause License (http://opensource.org/licenses/bsd-license.php)

From: 'Conversant Engineering' (http://engineering.conversantmedia.com)
 - com.conversantmedia:disruptor (https://github.com/conversant/disruptor) com.conversantmedia:disruptor:jar:1.2.15
 License: The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Eclipse Foundation' (https://www.eclipse.org)
 - JavaBeans Activation Framework API jar (https://github.com/eclipse-ee4j/jaf/jakarta.activation-api) jakarta.activation:jakarta.activation-api:jar:1.2.1
 License: EDL 1.0 (http://www.eclipse.org/org/documents/edl-v10.php)
 - jakarta.xml.bind-api (https://github.com/eclipse-ee4j/jaxb-api/jakarta.xml.bind-api) jakarta.xml.bind:jakarta.xml.bind-api:jar:2.3.2
 License: Eclipse Distribution License - v 1.0 (http://www.eclipse.org/org/documents/edl-v10.php)

From: 'FasterXML' (http://fasterxml.com)
 - Woodstox (https://github.com/FasterXML/woodstox) com.fasterxml.woodstox:woodstox-core:bundle:6.2.6
 License: The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'FasterXML' (http://fasterxml.com/)
 - Jackson-annotations (http://github.com/FasterXML/jackson) com.fasterxml.jackson.core:jackson-annotations:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-core (https://github.com/FasterXML/jackson-core) com.fasterxml.jackson.core:jackson-core:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - jackson-databind (http://github.com/FasterXML/jackson) com.fasterxml.jackson.core:jackson-databind:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-dataformat-XML (https://github.com/FasterXML/jackson-dataformat-xml) com.fasterxml.jackson.dataformat:jackson-dataformat-xml:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-dataformat-YAML (https://github.com/FasterXML/jackson-dataformats-text) com.fasterxml.jackson.dataformat:jackson-dataformat-yaml:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson module: JAXB Annotations (https://github.com/FasterXML/jackson-modules-base) com.fasterxml.jackson.module:jackson-module-jaxb-annotations:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'fasterxml.com' (http://fasterxml.com)
 - Stax2 API (http://github.com/FasterXML/stax2-api) org.codehaus.woodstox:stax2-api:bundle:4.2.1
 License: The BSD License (http://www.opensource.org/licenses/bsd-license.php)

From: 'FuseSource, Corp.' (http://fusesource.com/)
 - jansi (http://fusesource.github.io/jansi) org.fusesource.jansi:jansi:jar:2.3.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Oracle' (http://www.oracle.com)
 - JavaMail API (http://javaee.github.io/javamail/javax.mail) com.sun.mail:javax.mail:jar:1.6.2
 License: CDDL/GPLv2+CE (https://javaee.github.io/javamail/LICENSE)

From: 'QOS.ch' (http://www.qos.ch)
 - SLF4J API Module (http://www.slf4j.org) org.slf4j:slf4j-api:jar:1.7.25
 License: MIT License (http://www.opensource.org/licenses/mit-license.php)

From: 'The Apache Software Foundation' (https://www.apache.org/)
 - Apache Commons Compress (https://commons.apache.org/proper/commons-compress/) org.apache.commons:commons-compress:jar:1.21
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)
 - Apache Commons CSV (https://commons.apache.org/proper/commons-csv/) org.apache.commons:commons-csv:jar:1.9.0
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)
 - Apache Log4j API (https://logging.apache.org/log4j/2.x/log4j-api/) org.apache.logging.log4j:log4j-api:jar:2.17.1
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'xerial.org'
 - snappy-java (https://github.com/xerial/snappy-java) org.xerial.snappy:snappy-java:jar:1.1.7.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

META-INF/services/org.apache.logging.log4j.core.util.ContextDataProvider

org.apache.logging.log4j.core.impl.ThreadContextDataProvider

META-INF/services/javax.annotation.processing.Processor

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.
#
org.apache.logging.log4j.core.config.plugins.processor.PluginProcessor

org/apache/logging/log4j/core/appender/RandomAccessFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$FactoryData extends ConfigurationFactoryData {
 private final boolean append;
 private final boolean immediateFlush;
 private final int bufferSize;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 public void RandomAccessFileManager$FactoryData(boolean, boolean, int, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/RolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverStrategy {
 public abstract RolloverDescription rollover(RollingFileManager) throws SecurityException;
}

org/apache/logging/log4j/core/appender/rolling/action/AbstractPathAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract synchronized class AbstractPathAction extends AbstractAction {
 private final String basePathString;
 private final java.util.Set options;
 private final int maxDepth;
 private final java.util.List pathConditions;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 protected void AbstractPathAction(String, boolean, int, PathCondition[], org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public boolean execute() throws java.io.IOException;
 public boolean execute(java.nio.file.FileVisitor) throws java.io.IOException;
 protected abstract java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public java.nio.file.Path getBasePath();
 public String getBasePathString();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public java.util.Set getOptions();
 public boolean isFollowSymbolicLinks();
 public int getMaxDepth();
 public java.util.List getPathConditions();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAccumulatedFileCount.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAccumulatedFileCount implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final int threshold;
 private int count;
 private final PathCondition[] nestedConditions;
 private transient void IfAccumulatedFileCount(int, PathCondition[]);
 public int getThresholdCount();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAccumulatedFileCount createFileCountCondition(int, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$4.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$4 {
 void FileExtension$4(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/CountingNoOpAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class CountingNoOpAppender extends AbstractAppender {
 private final java.util.concurrent.atomic.AtomicLong total;
 public void CountingNoOpAppender(String, org.apache.logging.log4j.core.Layout);
 private void CountingNoOpAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Property[]);
 public long getCount();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public static CountingNoOpAppender createAppender(String);
}

org/apache/logging/log4j/core/appender/WriterAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class WriterAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean follow;
 private java.io.Writer target;
 public void WriterAppender$Builder();
 public WriterAppender build();
 public WriterAppender$Builder setFollow(boolean);
 public WriterAppender$Builder setTarget(java.io.Writer);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$1 {
}

org/apache/logging/log4j/core/appender/SocketAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class SocketAppender$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AppenderSet.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderSet {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final java.util.Map nodeMap;
 public static AppenderSet$Builder newBuilder();
 private void AppenderSet(org.apache.logging.log4j.core.config.Configuration, java.util.Map);
 public org.apache.logging.log4j.core.Appender createAppender(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractAppender$Builder extends org.apache.logging.log4j.core.filter.AbstractFilterable$Builder {
 private boolean ignoreExceptions;
 private org.apache.logging.log4j.core.Layout layout;
 private String name;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void AbstractAppender$Builder();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public org.apache.logging.log4j.core.Layout getLayout();
 public String getName();
 public org.apache.logging.log4j.core.Layout getOrCreateLayout();
 public org.apache.logging.log4j.core.Layout getOrCreateLayout(java.nio.charset.Charset);
 public boolean isIgnoreExceptions();
 public AbstractAppender$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractAppender$Builder setIgnoreExceptions(boolean);
 public AbstractAppender$Builder setLayout(org.apache.logging.log4j.core.Layout);
 public AbstractAppender$Builder setName(String);
 public AbstractAppender$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractAppender$Builder withIgnoreExceptions(boolean);
 public AbstractAppender$Builder withLayout(org.apache.logging.log4j.core.Layout);
 public AbstractAppender$Builder withName(String);
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class ColumnConfig$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String name;
 private String pattern;
 private String literal;
 private boolean isEventTimestamp;
 private boolean isUnicode;
 private boolean isClob;
 public void ColumnConfig$Builder();
 public ColumnConfig build();
 public ColumnConfig$Builder setClob(boolean);
 public ColumnConfig$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ColumnConfig$Builder setEventTimestamp(boolean);
 public ColumnConfig$Builder setLiteral(String);
 public ColumnConfig$Builder setName(String);
 public ColumnConfig$Builder setPattern(String);
 public ColumnConfig$Builder setUnicode(boolean);
}

org/apache/logging/log4j/core/appender/db/jdbc/ConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public abstract interface ConnectionSource extends org.apache.logging.log4j.core.LifeCycle {
 public abstract java.sql.Connection getConnection() throws java.sql.SQLException;
 public abstract String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/FactoryMethodConnectionSource$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class FactoryMethodConnectionSource$1 implements javax.sql.DataSource {
 void FactoryMethodConnectionSource$1(reflect.Method);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public java.sql.Connection getConnection(String, String) throws java.sql.SQLException;
 public int getLoginTimeout() throws java.sql.SQLException;
 public java.io.PrintWriter getLogWriter() throws java.sql.SQLException;
 public java.util.logging.Logger getParentLogger();
 public boolean isWrapperFor(Class) throws java.sql.SQLException;
 public void setLoginTimeout(int) throws java.sql.SQLException;
 public void setLogWriter(java.io.PrintWriter) throws java.sql.SQLException;
 public Object unwrap(Class) throws java.sql.SQLException;
}

org/apache/logging/log4j/core/appender/routing/PurgePolicy.class

package org.apache.logging.log4j.core.appender.routing;
public abstract interface PurgePolicy {
 public abstract void purge();
 public abstract void update(String, org.apache.logging.log4j.core.LogEvent);
 public abstract void initialize(RoutingAppender);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlConnection.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlConnection extends java.io.Closeable {
 public abstract NoSqlObject createObject();
 public abstract NoSqlObject[] createList(int);
 public abstract void insertObject(NoSqlObject);
 public abstract void close();
 public abstract boolean isClosed();
}

org/apache/logging/log4j/core/appender/nosql/DefaultNoSqlObject.class

package org.apache.logging.log4j.core.appender.nosql;
public synchronized class DefaultNoSqlObject implements NoSqlObject {
 private final java.util.Map map;
 public void DefaultNoSqlObject();
 public void set(String, Object);
 public void set(String, NoSqlObject);
 public void set(String, Object[]);
 public void set(String, NoSqlObject[]);
 public java.util.Map unwrap();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$FactoryData.class

package org.apache.logging.log4j.core.appender.nosql;
final synchronized class NoSqlDatabaseManager$FactoryData extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager$AbstractFactoryData {
 private final NoSqlProvider provider;
 protected void NoSqlDatabaseManager$FactoryData(int, NoSqlProvider);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager.class

package org.apache.logging.log4j.core.appender.nosql;
public final synchronized class NoSqlDatabaseManager extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager {
 private static final NoSqlDatabaseManager$NoSQLDatabaseManagerFactory FACTORY;
 private final NoSqlProvider provider;
 private NoSqlConnection connection;
 private void NoSqlDatabaseManager(String, int, NoSqlProvider);
 protected void startupInternal();
 protected boolean shutdownInternal();
 protected void connectAndStart();
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 private void setFields(org.apache.logging.log4j.message.MapMessage, NoSqlObject);
 private void setFields(org.apache.logging.log4j.core.LogEvent, NoSqlObject);
 private NoSqlObject buildMarkerEntity(org.apache.logging.log4j.Marker);
 protected boolean commitAndClose();
 private NoSqlObject[] convertStackTrace(StackTraceElement[]);
 private NoSqlObject convertStackTraceElement(StackTraceElement);
 public static NoSqlDatabaseManager getNoSqlDatabaseManager(String, int, NoSqlProvider);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/FileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class FileAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/JmsAppender.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private volatile JmsManager manager;
 public static JmsAppender$Builder newBuilder();
 protected void JmsAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], JmsManager) throws javax.jms.JMSException;
 protected void JmsAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, JmsManager) throws javax.jms.JMSException;
 public void append(org.apache.logging.log4j.core.LogEvent);
 public JmsManager getManager();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$JeroMqConfiguration.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$JeroMqConfiguration {
 private final long affinity;
 private final long backlog;
 private final boolean delayAttachOnConnect;
 private final byte[] identity;
 private final boolean ipv4Only;
 private final long linger;
 private final long maxMsgSize;
 private final long rcvHwm;
 private final long receiveBufferSize;
 private final int receiveTimeOut;
 private final long reconnectIVL;
 private final long reconnectIVLMax;
 private final long sendBufferSize;
 private final int sendTimeOut;
 private final long sndHwm;
 private final int tcpKeepAlive;
 private final long tcpKeepAliveCount;
 private final long tcpKeepAliveIdle;
 private final long tcpKeepAliveInterval;
 private final boolean xpubVerbose;
 private final java.util.List endpoints;
 private void JeroMqManager$JeroMqConfiguration(long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, java.util.List);
 public String toString();
}

org/apache/logging/log4j/core/impl/DefaultLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class DefaultLogEventFactory implements LogEventFactory, LocationAwareLogEventFactory {
 private static final DefaultLogEventFactory instance;
 public void DefaultLogEventFactory();
 public static DefaultLogEventFactory getInstance();
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/MutableLogEvent.class

package org.apache.logging.log4j.core.impl;
public synchronized class MutableLogEvent implements org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.message.ReusableMessage, org.apache.logging.log4j.message.ParameterVisitable {
 private static final org.apache.logging.log4j.message.Message EMPTY;
 private int threadPriority;
 private long threadId;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private long nanoTime;
 private short parameterCount;
 private boolean includeLocation;
 private boolean endOfBatch;
 private org.apache.logging.log4j.Level level;
 private String threadName;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private String messageFormat;
 private StringBuilder messageText;
 private Object[] parameters;
 private Throwable thrown;
 private ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.Marker marker;
 private String loggerFqcn;
 private StackTraceElement source;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 transient boolean reserved;
 public void MutableLogEvent();
 public void MutableLogEvent(StringBuilder, Object[]);
 public Log4jLogEvent toImmutable();
 public void initFrom(org.apache.logging.log4j.core.LogEvent);
 public void clear();
 public String getLoggerFqcn();
 public void setLoggerFqcn(String);
 public org.apache.logging.log4j.Marker getMarker();
 public void setMarker(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.Level getLevel();
 public void setLevel(org.apache.logging.log4j.Level);
 public String getLoggerName();
 public void setLoggerName(String);
 public org.apache.logging.log4j.message.Message getMessage();
 public void setMessage(org.apache.logging.log4j.message.Message);
 private StringBuilder getMessageTextForWriting();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public void forEachParameter(org.apache.logging.log4j.message.ParameterConsumer, Object);
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public org.apache.logging.log4j.message.Message memento();
 public Throwable getThrown();
 public void setThrown(Throwable);
 void initTime(org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 public long getTimeMillis();
 public void setTimeMillis(long);
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public ThrowableProxy getThrownProxy();
 public void setSource(StackTraceElement);
 public StackTraceElement getSource();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public void setContextData(org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public void setContextStack(org.apache.logging.log4j.ThreadContext$ContextStack);
 public long getThreadId();
 public void setThreadId(long);
 public String getThreadName();
 public void setThreadName(String);
 public int getThreadPriority();
 public void setThreadPriority(int);
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public long getNanoTime();
 public void setNanoTime(long);
 protected Object writeReplace();
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public Log4jLogEvent createMemento();
 public void initializeBuilder(Log4jLogEvent$Builder);
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$1.class

package org.apache.logging.log4j.core.impl;
synchronized class Log4jLogEvent$1 {
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ParameterIndexGapException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ParameterIndexGapException extends CommandLine$InitializationException {
 private static final long serialVersionUID = -1520981133257618319;
 public void CommandLine$ParameterIndexGapException(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$UnmatchedArgumentException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$UnmatchedArgumentException extends CommandLine$ParameterException {
 private static final long serialVersionUID = -8700426380701452440;
 public void CommandLine$UnmatchedArgumentException(CommandLine, String);
 public void CommandLine$UnmatchedArgumentException(CommandLine, java.util.Stack);
 public void CommandLine$UnmatchedArgumentException(CommandLine, java.util.List);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ParameterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ParameterException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 1477112829129763139;
 private final CommandLine commandLine;
 public void CommandLine$ParameterException(CommandLine, String);
 public void CommandLine$ParameterException(CommandLine, String, Exception);
 public CommandLine getCommandLine();
 private static CommandLine$ParameterException create(CommandLine, Exception, String, int, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$PathConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$PathConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$PathConverter();
 public java.nio.file.Path convert(String);
}

org/apache/logging/log4j/core/tools/ExtendedLoggerGenerator.class

package org.apache.logging.log4j.core.tools;
public synchronized class ExtendedLoggerGenerator {
 public void ExtendedLoggerGenerator();
 public static void main(String[]);
}

org/apache/logging/log4j/core/tools/Generate$ExtendedLogger.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate$ExtendedLogger {
 public static void main(String[]);
 private void Generate$ExtendedLogger();
}

org/apache/logging/log4j/core/net/SmtpManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$1 {
}

org/apache/logging/log4j/core/net/SmtpManager.class

package org.apache.logging.log4j.core.net;
public synchronized class SmtpManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 private static final SmtpManager$SMTPManagerFactory FACTORY;
 private final javax.mail.Session session;
 private final org.apache.logging.log4j.core.util.CyclicBuffer buffer;
 private volatile javax.mail.internet.MimeMessage message;
 private final SmtpManager$FactoryData data;
 private static javax.mail.internet.MimeMessage createMimeMessage(SmtpManager$FactoryData, javax.mail.Session, org.apache.logging.log4j.core.LogEvent) throws javax.mail.MessagingException;
 protected void SmtpManager(String, javax.mail.Session, javax.mail.internet.MimeMessage, SmtpManager$FactoryData);
 public void add(org.apache.logging.log4j.core.LogEvent);
 public static SmtpManager getSmtpManager(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String, String, String, int, String, String, boolean, String, int, ssl.SslConfiguration);
 static String createManagerName(String, String, String, String, String, String, String, String, int, String, boolean, String);
 public void sendEvents(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent);
 org.apache.logging.log4j.core.LogEvent[] removeAllBufferedEvents();
 protected byte[] formatContentToBytes(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout) throws java.io.IOException;
 private void writeContent(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout, java.io.ByteArrayOutputStream) throws java.io.IOException;
 protected void writeHeader(org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected void writeBuffer(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected void writeFooter(org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected String getEncoding(byte[], String);
 protected byte[] encodeContentToBytes(byte[], String) throws javax.mail.MessagingException, java.io.IOException;
 protected void encodeContent(byte[], String, java.io.ByteArrayOutputStream) throws javax.mail.MessagingException, java.io.IOException;
 protected javax.mail.internet.InternetHeaders getHeaders(String, String);
 protected javax.mail.internet.MimeMultipart getMimeMultipart(byte[], javax.mail.internet.InternetHeaders) throws javax.mail.MessagingException;
 protected void sendMultipartMessage(javax.mail.internet.MimeMessage, javax.mail.internet.MimeMultipart) throws javax.mail.MessagingException;
 protected void sendMultipartMessage(javax.mail.internet.MimeMessage, javax.mail.internet.MimeMultipart, String) throws javax.mail.MessagingException;
 private synchronized void connect(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SmtpManager$SMTPManagerFactory$1.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$SMTPManagerFactory$1 extends javax.mail.Authenticator {
 private final javax.mail.PasswordAuthentication passwordAuthentication;
 void SmtpManager$SMTPManagerFactory$1(SmtpManager$SMTPManagerFactory, String, String);
 protected javax.mail.PasswordAuthentication getPasswordAuthentication();
}

org/apache/logging/log4j/core/net/SmtpManager$SMTPManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$SMTPManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void SmtpManager$SMTPManagerFactory();
 public SmtpManager createManager(String, SmtpManager$FactoryData);
 private javax.mail.Authenticator buildAuthenticator(String, String);
}

org/apache/logging/log4j/core/net/DatagramSocketManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$FactoryData {
 private final String host;
 private final int port;
 private final org.apache.logging.log4j.core.Layout layout;
 private final int bufferSize;
 public void DatagramSocketManager$FactoryData(String, int, org.apache.logging.log4j.core.Layout, int);
}

org/apache/logging/log4j/core/util/ObjectArrayIterator.class

package org.apache.logging.log4j.core.util;
public synchronized class ObjectArrayIterator implements java.util.Iterator {
 final Object[] array;
 final int startIndex;
 final int endIndex;
 int index;
 public transient void ObjectArrayIterator(Object[]);
 public void ObjectArrayIterator(Object[], int);
 public void ObjectArrayIterator(Object[], int, int);
 public boolean hasNext();
 public Object next();
 public void remove();
 public Object[] getArray();
 public int getStartIndex();
 public int getEndIndex();
 public void reset();
}

org/apache/logging/log4j/core/util/datetime/DatePrinter.class

package org.apache.logging.log4j.core.util.datetime;
public abstract interface DatePrinter {
 public abstract String format(long);
 public abstract String format(java.util.Date);
 public abstract String format(java.util.Calendar);
 public abstract Appendable format(long, Appendable);
 public abstract Appendable format(java.util.Date, Appendable);
 public abstract Appendable format(java.util.Calendar, Appendable);
 public abstract String getPattern();
 public abstract java.util.TimeZone getTimeZone();
 public abstract java.util.Locale getLocale();
 public abstract StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$NumberRule.class

package org.apache.logging.log4j.core.util.datetime;
abstract interface FastDatePrinter$NumberRule extends FastDatePrinter$Rule {
 public abstract void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$CaseInsensitiveTextStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$CaseInsensitiveTextStrategy extends FastDateParser$PatternStrategy {
 private final int field;
 final java.util.Locale locale;
 private final java.util.Map lKeyValues;
 void FastDateParser$CaseInsensitiveTextStrategy(int, java.util.Calendar, java.util.Locale);
 void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneDisplayKey.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneDisplayKey {
 private final java.util.TimeZone mTimeZone;
 private final int mStyle;
 private final java.util.Locale mLocale;
 void FastDatePrinter$TimeZoneDisplayKey(java.util.TimeZone, boolean, int, java.util.Locale);
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$TimeZoneStrategy$TzInfo.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$TimeZoneStrategy$TzInfo {
 java.util.TimeZone zone;
 int dstOffset;
 void FastDateParser$TimeZoneStrategy$TzInfo(java.util.TimeZone, boolean);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitYearField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitYearField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$TwoDigitYearField INSTANCE;
 void FastDatePrinter$TwoDigitYearField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TextField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TextField implements FastDatePrinter$Rule {
 private final int mField;
 private final String[] mValues;
 void FastDatePrinter$TextField(int, String[]);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$ISO8601TimeZoneStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$ISO8601TimeZoneStrategy extends FastDateParser$PatternStrategy {
 private static final FastDateParser$Strategy ISO_8601_1_STRATEGY;
 private static final FastDateParser$Strategy ISO_8601_2_STRATEGY;
 private static final FastDateParser$Strategy ISO_8601_3_STRATEGY;
 void FastDateParser$ISO8601TimeZoneStrategy(String);
 void setCalendar(FastDateParser, java.util.Calendar, String);
 static FastDateParser$Strategy getStrategy(int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/KeyValuePair.class

package org.apache.logging.log4j.core.util;
public final synchronized class KeyValuePair {
 public static final KeyValuePair[] EMPTY_ARRAY;
 private final String key;
 private final String value;
 public void KeyValuePair(String, String);
 public String getKey();
 public String getValue();
 public String toString();
 public static KeyValuePair$Builder newBuilder();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Loader.class

package org.apache.logging.log4j.core.util;
public final synchronized class Loader {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String TSTR = Caught Exception while in Loader.getResource. This may be innocuous.;
 private void Loader();
 public static ClassLoader getClassLoader();
 public static ClassLoader getThreadContextClassLoader();
 public static ClassLoader getClassLoader(Class, Class);
 public static java.net.URL getResource(String, ClassLoader);
 public static java.io.InputStream getResourceAsStream(String, ClassLoader);
 private static boolean isChild(ClassLoader, ClassLoader);
 public static Class initializeClass(String, ClassLoader) throws ClassNotFoundException;
 public static Class loadClass(String, ClassLoader) throws ClassNotFoundException;
 public static Class loadSystemClass(String) throws ClassNotFoundException;
 public static Object newInstanceOf(String) throws ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, reflect.InvocationTargetException;
 public static Object newCheckedInstanceOf(String, Class) throws ClassNotFoundException, NoSuchMethodException, IllegalAccessException, reflect.InvocationTargetException, InstantiationException;
 public static Object newCheckedInstanceOfProperty(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 public static boolean isClassAvailable(String);
 public static boolean isJansiAvailable();
 public static Class loadClass(String) throws ClassNotFoundException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatchManager$1.class

package org.apache.logging.log4j.core.util;
synchronized class WatchManager$1 {
}

org/apache/logging/log4j/core/util/CoarseCachedClock$1.class

package org.apache.logging.log4j.core.util;
synchronized class CoarseCachedClock$1 extends Log4jThread {
 void CoarseCachedClock$1(CoarseCachedClock, String);
 public void run();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginCache.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginCache {
 private final java.util.Map categories;
 public void PluginCache();
 public java.util.Map getAllCategories();
 public java.util.Map getCategory(String);
 public void writeCache(java.io.OutputStream) throws java.io.IOException;
 public void loadCacheFiles(java.util.Enumeration) throws java.io.IOException;
 public int size();
}

org/apache/logging/log4j/core/config/plugins/validation/validators/RequiredValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class RequiredValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.Required annotation;
 public void RequiredValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.Required);
 public boolean isValid(String, Object);
 private boolean err(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$IntegerConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$IntegerConverter implements TypeConverter {
 public void TypeConverters$IntegerConverter();
 public Integer convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BooleanConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BooleanConverter implements TypeConverter {
 public void TypeConverters$BooleanConverter();
 public Boolean convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharacterConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharacterConverter implements TypeConverter {
 public void TypeConverters$CharacterConverter();
 public Character convert(String);
}

org/apache/logging/log4j/core/config/OrderComparator.class

package org.apache.logging.log4j.core.config;
public synchronized class OrderComparator implements java.util.Comparator, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private static final java.util.Comparator INSTANCE;
 public void OrderComparator();
 public static java.util.Comparator getInstance();
 public int compare(Class, Class);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/HttpWatcher.class

package org.apache.logging.log4j.core.config;
public synchronized class HttpWatcher extends org.apache.logging.log4j.core.util.AbstractWatcher {
 private org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private java.net.URL url;
 private volatile long lastModifiedMillis;
 private static final int NOT_MODIFIED = 304;
 private static final int OK = 200;
 private static final int BUF_SIZE = 1024;
 private static final String HTTP = http;
 private static final String HTTPS = https;
 public void HttpWatcher(Configuration, Reconfigurable, java.util.List, long);
 public long getLastModified();
 public boolean isModified();
 public void watching(org.apache.logging.log4j.core.util.Source);
 public org.apache.logging.log4j.core.util.Watcher newWatcher(Reconfigurable, java.util.List, long);
 private boolean refreshConfiguration();
 private byte[] readStream(java.io.InputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/config/composite/MergeStrategy.class

package org.apache.logging.log4j.core.config.composite;
public abstract interface MergeStrategy {
 public abstract void mergeRootProperties(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.AbstractConfiguration);
 public abstract void mergConfigurations(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
}

org/apache/logging/log4j/core/config/composite/CompositeConfiguration.class

package org.apache.logging.log4j.core.config.composite;
public synchronized class CompositeConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 public static final String MERGE_STRATEGY_PROPERTY = log4j.mergeStrategy;
 private static final String[] VERBOSE_CLASSES;
 private final java.util.List configurations;
 private MergeStrategy mergeStrategy;
 public void CompositeConfiguration(java.util.List);
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private void staffChildConfiguration(org.apache.logging.log4j.core.config.AbstractConfiguration);
 private void printNodes(String, org.apache.logging.log4j.core.config.Node, StringBuilder);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/CronScheduledFuture.class

package org.apache.logging.log4j.core.config;
public synchronized class CronScheduledFuture implements java.util.concurrent.ScheduledFuture {
 private volatile CronScheduledFuture$FutureData futureData;
 public void CronScheduledFuture(java.util.concurrent.ScheduledFuture, java.util.Date);
 public java.util.Date getFireTime();
 void reset(java.util.concurrent.ScheduledFuture, java.util.Date);
 public long getDelay(java.util.concurrent.TimeUnit);
 public int compareTo(java.util.concurrent.Delayed);
 public boolean cancel(boolean);
 public boolean isCancelled();
 public boolean isDone();
 public Object get() throws InterruptedException, java.util.concurrent.ExecutionException;
 public Object get(long, java.util.concurrent.TimeUnit) throws InterruptedException, java.util.concurrent.ExecutionException, java.util.concurrent.TimeoutException;
}

org/apache/logging/log4j/core/config/ScriptsPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class ScriptsPlugin {
 private void ScriptsPlugin();
 public static org.apache.logging.log4j.core.script.AbstractScript[] createScripts(org.apache.logging.log4j.core.script.AbstractScript[]);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultScriptFileComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultScriptFileComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder {
 public void DefaultScriptFileComponentBuilder(DefaultConfigurationBuilder, String, String);
 public DefaultScriptFileComponentBuilder addLanguage(String);
 public DefaultScriptFileComponentBuilder addIsWatched(boolean);
 public DefaultScriptFileComponentBuilder addIsWatched(String);
 public DefaultScriptFileComponentBuilder addCharset(String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultFilterComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder {
 public void DefaultFilterComponentBuilder(DefaultConfigurationBuilder, String, String, String);
}

org/apache/logging/log4j/core/config/AppendersPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class AppendersPlugin {
 private void AppendersPlugin();
 public static java.util.concurrent.ConcurrentMap createAppenders(org.apache.logging.log4j.core.Appender[]);
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$2.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$2 {
 void LoggerConfig$LoggerConfigPredicate$2(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate.class

package org.apache.logging.log4j.core.config;
public abstract synchronized enum LoggerConfig$LoggerConfigPredicate {
 public static final LoggerConfig$LoggerConfigPredicate ALL;
 public static final LoggerConfig$LoggerConfigPredicate ASYNCHRONOUS_ONLY;
 public static final LoggerConfig$LoggerConfigPredicate SYNCHRONOUS_ONLY;
 public static LoggerConfig$LoggerConfigPredicate[] values();
 public static LoggerConfig$LoggerConfigPredicate valueOf(String);
 private void LoggerConfig$LoggerConfigPredicate(String, int);
 abstract boolean allow(LoggerConfig);
 static void <clinit>();
}

org/apache/logging/log4j/core/jmx/LoggerContextAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class LoggerContextAdmin extends javax.management.NotificationBroadcasterSupport implements LoggerContextAdminMBean, java.beans.PropertyChangeListener {
 private static final int PAGE = 4096;
 private static final int TEXT_BUFFER = 65536;
 private static final int BUFFER_SIZE = 2048;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final java.util.concurrent.atomic.AtomicLong sequenceNo;
 private final javax.management.ObjectName objectName;
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 public void LoggerContextAdmin(org.apache.logging.log4j.core.LoggerContext, java.util.concurrent.Executor);
 private static javax.management.MBeanNotificationInfo createNotificationInfo();
 public String getStatus();
 public String getName();
 private org.apache.logging.log4j.core.config.Configuration getConfig();
 public String getConfigLocationUri();
 public void setConfigLocationUri(String) throws java.net.URISyntaxException, java.io.IOException;
 public void propertyChange(java.beans.PropertyChangeEvent);
 public String getConfigText() throws java.io.IOException;
 public String getConfigText(String) throws java.io.IOException;
 private String readContents(java.io.InputStream, java.nio.charset.Charset) throws java.io.IOException;
 public void setConfigText(String, String);
 public String getConfigName();
 public String getConfigClassName();
 public String getConfigFilter();
 public java.util.Map getConfigProperties();
 public javax.management.ObjectName getObjectName();
 private long nextSeqNo();
 private long now();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSerializerWithReplacement.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternSerializerWithReplacement implements AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
 private final PatternLayout$PatternSerializer delegate;
 private final org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private void PatternLayout$PatternSerializerWithReplacement(PatternLayout$PatternSerializer, org.apache.logging.log4j.core.pattern.RegexReplacement);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/JacksonFactory$Log4jXmlPrettyPrinter.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$Log4jXmlPrettyPrinter extends com.fasterxml.jackson.dataformat.xml.util.DefaultXmlPrettyPrinter {
 private static final long serialVersionUID = 1;
 void JacksonFactory$Log4jXmlPrettyPrinter(int);
 public void writePrologLinefeed(org.codehaus.stax2.XMLStreamWriter2) throws javax.xml.stream.XMLStreamException;
 public com.fasterxml.jackson.dataformat.xml.util.DefaultXmlPrettyPrinter createInstance();
}

org/apache/logging/log4j/core/layout/JsonLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class JsonLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout.class

package org.apache.logging.log4j.core.layout;
abstract synchronized class AbstractJacksonLayout extends AbstractStringLayout {
 protected static final String DEFAULT_EOL =

;
 protected static final String COMPACT_EOL = ;
 protected final String eol;
 protected final com.fasterxml.jackson.databind.ObjectWriter objectWriter;
 protected final boolean compact;
 protected final boolean complete;
 protected final boolean includeNullDelimiter;
 protected final AbstractJacksonLayout$ResolvableKeyValuePair[] additionalFields;
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer);
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer, boolean);
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, String, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 protected static boolean valueNeedsLookup(String);
 private static AbstractJacksonLayout$ResolvableKeyValuePair[] prepareAdditionalFields(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private static org.apache.logging.log4j.core.LogEvent convertMutableToLog4jEvent(org.apache.logging.log4j.core.LogEvent);
 protected Object wrapLogEvent(org.apache.logging.log4j.core.LogEvent);
 private java.util.Map resolveAdditionalFields(org.apache.logging.log4j.core.LogEvent);
 public void toSerializable(org.apache.logging.log4j.core.LogEvent, java.io.Writer) throws com.fasterxml.jackson.core.JsonGenerationException, com.fasterxml.jackson.databind.JsonMappingException, java.io.IOException;
}

org/apache/logging/log4j/core/layout/YamlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class YamlLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void YamlLayout$Builder();
 public YamlLayout build();
}

org/apache/logging/log4j/core/layout/GelfLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class GelfLayout$Builder extends AbstractStringLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String host;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 private GelfLayout$CompressionType compressionType;
 private int compressionThreshold;
 private boolean includeStacktrace;
 private boolean includeThreadContext;
 private boolean includeNullDelimiter;
 private boolean includeNewLineDelimiter;
 private String threadContextIncludes;
 private String threadContextExcludes;
 private String mapMessageIncludes;
 private String mapMessageExcludes;
 private boolean includeMapMessage;
 private boolean omitEmptyFields;
 private String messagePattern;
 private String threadContextPrefix;
 private String mapPrefix;
 private PatternSelector patternSelector;
 public void GelfLayout$Builder();
 public GelfLayout build();
 private internal.ListChecker createChecker(String, String);
 public String getHost();
 public GelfLayout$CompressionType getCompressionType();
 public int getCompressionThreshold();
 public boolean isIncludeStacktrace();
 public boolean isIncludeThreadContext();
 public boolean isIncludeNullDelimiter();
 public boolean isIncludeNewLineDelimiter();
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public GelfLayout$Builder setHost(String);
 public GelfLayout$Builder setCompressionType(GelfLayout$CompressionType);
 public GelfLayout$Builder setCompressionThreshold(int);
 public GelfLayout$Builder setIncludeStacktrace(boolean);
 public GelfLayout$Builder setIncludeThreadContext(boolean);
 public GelfLayout$Builder setIncludeNullDelimiter(boolean);
 public GelfLayout$Builder setIncludeNewLineDelimiter(boolean);
 public GelfLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
 public GelfLayout$Builder setMessagePattern(String);
 public GelfLayout$Builder setPatternSelector(PatternSelector);
 public GelfLayout$Builder setMdcIncludes(String);
 public GelfLayout$Builder setMdcExcludes(String);
 public GelfLayout$Builder setIncludeMapMessage(boolean);
 public GelfLayout$Builder setMapMessageIncludes(String);
 public GelfLayout$Builder setMapMessageExcludes(String);
 public GelfLayout$Builder setThreadContextPrefix(String);
 public GelfLayout$Builder setMapPrefix(String);
}

org/apache/logging/log4j/core/layout/MessageLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class MessageLayout extends AbstractLayout {
 public void MessageLayout();
 public void MessageLayout(org.apache.logging.log4j.core.config.Configuration, byte[], byte[]);
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.message.Message toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String getContentType();
 public static org.apache.logging.log4j.core.Layout createLayout();
}

org/apache/logging/log4j/core/layout/SyslogLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class SyslogLayout$Builder extends AbstractStringLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.net.Facility facility;
 private boolean includeNewLine;
 private String escapeNL;
 public void SyslogLayout$Builder();
 public SyslogLayout build();
 public org.apache.logging.log4j.core.net.Facility getFacility();
 public boolean isIncludeNewLine();
 public String getEscapeNL();
 public SyslogLayout$Builder setFacility(org.apache.logging.log4j.core.net.Facility);
 public SyslogLayout$Builder setIncludeNewLine(boolean);
 public SyslogLayout$Builder setEscapeNL(String);
}

org/apache/logging/log4j/core/layout/JacksonFactory$JSON.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$JSON extends JacksonFactory {
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 private final boolean objectMessageAsJsonObject;
 public void JacksonFactory$JSON(boolean, boolean, boolean, boolean);
 protected String getPropertNameForContextMap();
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/GelfLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class GelfLayout extends AbstractStringLayout {
 private static final char C = 44;
 private static final int COMPRESSION_THRESHOLD = 1024;
 private static final char Q = 34;
 private static final String QC = ",;
 private static final String QU = "_;
 private final org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 private final int compressionThreshold;
 private final GelfLayout$CompressionType compressionType;
 private final String host;
 private final boolean includeStacktrace;
 private final boolean includeThreadContext;
 private final boolean includeMapMessage;
 private final boolean includeNullDelimiter;
 private final boolean includeNewLineDelimiter;
 private final boolean omitEmptyFields;
 private final PatternLayout layout;
 private final GelfLayout$FieldWriter mdcWriter;
 private final GelfLayout$FieldWriter mapWriter;
 private static final ThreadLocal messageStringBuilder;
 private static final ThreadLocal timestampStringBuilder;
 public void GelfLayout(String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean);
 private void GelfLayout(org.apache.logging.log4j.core.config.Configuration, String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean, boolean, boolean, boolean, boolean, boolean, internal.ListChecker, internal.ListChecker, PatternLayout, String, String);
 public String toString();
 public static GelfLayout createLayout(String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean);
 public static GelfLayout$Builder newBuilder();
 public java.util.Map getContentFormat();
 public String getContentType();
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 public boolean requiresLocation();
 private byte[] compress(byte[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private StringBuilder toText(org.apache.logging.log4j.core.LogEvent, StringBuilder, boolean);
 private static boolean valueNeedsLookup(String);
 private static StringBuilder getMessageStringBuilder();
 private static CharSequence toNullSafeString(CharSequence);
 static CharSequence formatTimestamp(long);
 private static StringBuilder getTimestampStringBuilder();
 private int formatLevel(org.apache.logging.log4j.Level);
 static CharSequence formatThrowable(Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String pattern;
 private PatternSelector patternSelector;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.pattern.RegexReplacement regexReplacement;
 private java.nio.charset.Charset charset;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private String header;
 private String footer;
 private void PatternLayout$Builder();
 private boolean useAnsiEscapeCodes();
 public PatternLayout$Builder withPattern(String);
 public PatternLayout$Builder withPatternSelector(PatternSelector);
 public PatternLayout$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PatternLayout$Builder withRegexReplacement(org.apache.logging.log4j.core.pattern.RegexReplacement);
 public PatternLayout$Builder withCharset(java.nio.charset.Charset);
 public PatternLayout$Builder withAlwaysWriteExceptions(boolean);
 public PatternLayout$Builder withDisableAnsi(boolean);
 public PatternLayout$Builder withNoConsoleNoAnsi(boolean);
 public PatternLayout$Builder withHeader(String);
 public PatternLayout$Builder withFooter(String);
 public PatternLayout build();
}

org/apache/logging/log4j/core/async/RingBufferLogEvent$Factory.class

package org.apache.logging.log4j.core.async;
synchronized class RingBufferLogEvent$Factory implements com.lmax.disruptor.EventFactory {
 private void RingBufferLogEvent$Factory();
 public RingBufferLogEvent newInstance();
}

org/apache/logging/log4j/core/async/DiscardingAsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public synchronized class DiscardingAsyncQueueFullPolicy extends DefaultAsyncQueueFullPolicy {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.Level thresholdLevel;
 private final java.util.concurrent.atomic.AtomicLong discardCount;
 public void DiscardingAsyncQueueFullPolicy(org.apache.logging.log4j.Level);
 public EventRoute getRoute(long, org.apache.logging.log4j.Level);
 public static long getDiscardCount(AsyncQueueFullPolicy);
 public org.apache.logging.log4j.Level getThresholdLevel();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDisruptor extends org.apache.logging.log4j.core.AbstractLifeCycle implements AsyncLoggerConfigDelegate {
 private static final int MAX_DRAIN_ATTEMPTS_BEFORE_SHUTDOWN = 200;
 private static final int SLEEP_MILLIS_BETWEEN_DRAIN_ATTEMPTS = 50;
 private static final com.lmax.disruptor.EventFactory FACTORY;
 private static final com.lmax.disruptor.EventFactory MUTABLE_FACTORY;
 private static final com.lmax.disruptor.EventTranslatorTwoArg TRANSLATOR;
 private static final com.lmax.disruptor.EventTranslatorTwoArg MUTABLE_TRANSLATOR;
 private int ringBufferSize;
 private AsyncQueueFullPolicy asyncQueueFullPolicy;
 private Boolean mutable;
 private volatile com.lmax.disruptor.dsl.Disruptor disruptor;
 private long backgroundThreadId;
 private com.lmax.disruptor.EventFactory factory;
 private com.lmax.disruptor.EventTranslatorTwoArg translator;
 private volatile boolean alreadyLoggedWarning;
 private final Object queueFullEnqueueLock;
 public void AsyncLoggerConfigDisruptor();
 public void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
 public synchronized void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private static boolean hasBacklog(com.lmax.disruptor.dsl.Disruptor);
 public EventRoute getEventRoute(org.apache.logging.log4j.Level);
 private int remainingDisruptorCapacity();
 private boolean hasLog4jBeenShutDown(com.lmax.disruptor.dsl.Disruptor);
 public void enqueueEvent(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private org.apache.logging.log4j.core.LogEvent prepareEvent(org.apache.logging.log4j.core.LogEvent);
 private void showWarningAboutCustomLogEventWithReusableMessage(org.apache.logging.log4j.core.LogEvent);
 private void enqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private boolean synchronizeEnqueueWhenQueueFull();
 public boolean tryEnqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private org.apache.logging.log4j.core.LogEvent ensureImmutable(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/DisruptorBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class DisruptorBlockingQueueFactory implements BlockingQueueFactory {
 private final com.conversantmedia.util.concurrent.SpinPolicy spinPolicy;
 private void DisruptorBlockingQueueFactory(com.conversantmedia.util.concurrent.SpinPolicy);
 public java.util.concurrent.BlockingQueue create(int);
 public static DisruptorBlockingQueueFactory createFactory(com.conversantmedia.util.concurrent.SpinPolicy);
}

org/apache/logging/log4j/core/async/AbstractAsyncExceptionHandler.class

package org.apache.logging.log4j.core.async;
abstract synchronized class AbstractAsyncExceptionHandler implements com.lmax.disruptor.ExceptionHandler {
 void AbstractAsyncExceptionHandler();
 public void handleEventException(Throwable, long, Object);
 public void handleOnStartException(Throwable);
 public void handleOnShutdownException(Throwable);
}

org/apache/logging/log4j/core/async/EventRoute.class

package org.apache.logging.log4j.core.async;
public abstract synchronized enum EventRoute {
 public static final EventRoute ENQUEUE;
 public static final EventRoute SYNCHRONOUS;
 public static final EventRoute DISCARD;
 public static EventRoute[] values();
 public static EventRoute valueOf(String);
 private void EventRoute(String, int);
 public abstract void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public abstract void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/EventLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class EventLookup extends AbstractLookup {
 public void EventLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/AbstractConfigurationAwareLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class AbstractConfigurationAwareLookup extends AbstractLookup implements org.apache.logging.log4j.core.config.ConfigurationAware {
 protected org.apache.logging.log4j.core.config.Configuration configuration;
 public void AbstractConfigurationAwareLookup();
 public void setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/lookup/SystemPropertiesLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class SystemPropertiesLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void SystemPropertiesLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$CharSetMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$CharSetMatcher extends StrMatcher {
 private final char[] chars;
 void StrMatcher$CharSetMatcher(char[]);
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/LowerLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class LowerLookup implements StrLookup {
 public void LowerLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/MapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MapLookup implements StrLookup {
 private final java.util.Map map;
 public void MapLookup();
 public void MapLookup(java.util.Map);
 static java.util.Map initMap(String[], java.util.Map);
 static java.util.HashMap newMap(int);
 public static transient void setMainArguments(String[]);
 static java.util.Map toMap(java.util.List);
 static java.util.Map toMap(String[]);
 protected java.util.Map getMap();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
}

org/apache/logging/log4j/core/ErrorHandler.class

package org.apache.logging.log4j.core;
public abstract interface ErrorHandler {
 public abstract void error(String);
 public abstract void error(String, Throwable);
 public abstract void error(String, LogEvent, Throwable);
}

org/apache/logging/log4j/core/script/ScriptRef.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptRef extends AbstractScript {
 private final ScriptManager scriptManager;
 public void ScriptRef(String, ScriptManager);
 public String getLanguage();
 public String getScriptText();
 public static ScriptRef createReference(String, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/Filter.class

package org.apache.logging.log4j.core;
public abstract interface Filter extends LifeCycle {
 public static final Filter[] EMPTY_ARRAY;
 public static final String ELEMENT_TYPE = filter;
 public abstract Filter$Result getOnMismatch();
 public abstract Filter$Result getOnMatch();
 public abstract transient Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract Filter$Result filter(LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/BurstFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class BurstFilter$1 {
}

org/apache/logging/log4j/core/filter/BurstFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class BurstFilter extends AbstractFilter {
 private static final long NANOS_IN_SECONDS = 1000000000;
 private static final int DEFAULT_RATE = 10;
 private static final int DEFAULT_RATE_MULTIPLE = 100;
 private static final int HASH_SHIFT = 32;
 private final org.apache.logging.log4j.Level level;
 private final long burstInterval;
 private final java.util.concurrent.DelayQueue history;
 private final java.util.Queue available;
 static BurstFilter$LogDelay createLogDelay(long);
 private void BurstFilter(org.apache.logging.log4j.Level, float, long, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public int getAvailable();
 public void clear();
 public String toString();
 public static BurstFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/RootThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RootThrowablePatternConverter extends ThrowablePatternConverter {
 private void RootThrowablePatternConverter(org.apache.logging.log4j.core.config.Configuration, String[]);
 public static RootThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/PatternParser$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class PatternParser$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/RepeatPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RepeatPatternConverter extends LogEventPatternConverter {
 private final String result;
 public static RepeatPatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void RepeatPatternConverter(String);
 public void format(Object, StringBuilder);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void format(StringBuilder);
}

org/apache/logging/log4j/core/pattern/MaxLengthConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MaxLengthConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final int maxLength;
 public static MaxLengthConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void MaxLengthConverter(java.util.List, int);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NanoTimePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NanoTimePatternConverter extends LogEventPatternConverter {
 private void NanoTimePatternConverter(String[]);
 public static NanoTimePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy$1.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy$1 {
 void NameAbbreviator$MaxElementAbbreviator$Strategy$1(String, int, int);
 void abbreviate(int, String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$FormattedMessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$FormattedMessagePatternConverter extends MessagePatternConverter {
 private final String[] formats;
 void MessagePatternConverter$FormattedMessagePatternConverter(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$Formatter.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized class DatePatternConverter$Formatter {
 long previousTime;
 int nanos;
 private void DatePatternConverter$Formatter();
 abstract String format(org.apache.logging.log4j.core.time.Instant);
 abstract void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/jackson/MarkerMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class MarkerMixIn implements org.apache.logging.log4j.Marker {
 private static final long serialVersionUID = 1;
 void MarkerMixIn(String);
 public abstract String getName();
 public abstract org.apache.logging.log4j.Marker[] getParents();
}

org/apache/logging/log4j/core/jackson/Log4jJsonModule.class

package org.apache.logging.log4j.core.jackson;
synchronized class Log4jJsonModule extends com.fasterxml.jackson.databind.module.SimpleModule {
 private static final long serialVersionUID = 1;
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 private final boolean objectMessageAsJsonObject;
 void Log4jJsonModule(boolean, boolean, boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/MutableThreadContextStackDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class MutableThreadContextStackDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void MutableThreadContextStackDeserializer$1(MutableThreadContextStackDeserializer);
}

org/apache/logging/log4j/core/jackson/ExtendedStackTraceElementMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ExtendedStackTraceElementMixIn implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 public void ExtendedStackTraceElementMixIn(String, String, String, int, boolean, String, String);
 public abstract String getClassName();
 public abstract boolean getExact();
 public abstract org.apache.logging.log4j.core.impl.ExtendedClassInfo getExtraClassInfo();
 public abstract String getFileName();
 public abstract int getLineNumber();
 public abstract String getLocation();
 public abstract String getMethodName();
 abstract StackTraceElement getStackTraceElement();
 public abstract String getVersion();
 public abstract boolean isNativeMethod();
}

org/apache/logging/log4j/core/jackson/Initializers$SimpleModuleInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SimpleModuleInitializer {
 void Initializers$SimpleModuleInitializer();
 void initialize(com.fasterxml.jackson.databind.module.SimpleModule, boolean);
}

org/apache/logging/log4j/core/jackson/LogEventWithContextListMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LogEventWithContextListMixIn implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = 1;
 void LogEventWithContextListMixIn();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerFqcn();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract StackTraceElement getSource();
 public abstract long getThreadId();
 public abstract String getThreadName();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public abstract long getTimeMillis();
 public abstract org.apache.logging.log4j.core.time.Instant getInstant();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
}

org/apache/logging/log4j/core/appender/FileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class FileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private boolean locking;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void FileAppender$Builder();
 public FileAppender build();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public FileAppender$Builder withAdvertise(boolean);
 public FileAppender$Builder withAdvertiseUri(String);
 public FileAppender$Builder withAppend(boolean);
 public FileAppender$Builder withFileName(String);
 public FileAppender$Builder withCreateOnDemand(boolean);
 public FileAppender$Builder withLocking(boolean);
 public FileAppender$Builder withFilePermissions(String);
 public FileAppender$Builder withFileOwner(String);
 public FileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class MapRewritePolicy implements RewritePolicy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map map;
 private final MapRewritePolicy$Mode mode;
 private void MapRewritePolicy(java.util.Map, MapRewritePolicy$Mode);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static MapRewritePolicy createPolicy(String, org.apache.logging.log4j.core.util.KeyValuePair[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$MemoryMappedFileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$MemoryMappedFileManagerFactory implements ManagerFactory {
 private void MemoryMappedFileManager$MemoryMappedFileManagerFactory();
 public MemoryMappedFileManager createManager(String, MemoryMappedFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class TimeBasedTriggeringPolicy$1 {
}

org/apache/logging/log4j/core/appender/rolling/SizeBasedTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class SizeBasedTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final long MAX_FILE_SIZE = 10485760;
 private final long maxFileSize;
 private RollingFileManager manager;
 protected void SizeBasedTriggeringPolicy();
 protected void SizeBasedTriggeringPolicy(long);
 public long getMaxFileSize();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static SizeBasedTriggeringPolicy createPolicy(String);
}

org/apache/logging/log4j/core/appender/rolling/action/PathSorter.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface PathSorter extends java.util.Comparator {
}

org/apache/logging/log4j/core/appender/rolling/action/IfLastModified.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfLastModified implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private final Duration age;
 private final PathCondition[] nestedConditions;
 private void IfLastModified(Duration, PathCondition[]);
 public Duration getAge();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfLastModified createAgeCondition(Duration, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAccumulatedFileSize.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAccumulatedFileSize implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final long thresholdBytes;
 private long accumulatedSize;
 private final PathCondition[] nestedConditions;
 private transient void IfAccumulatedFileSize(long, PathCondition[]);
 public long getThresholdBytes();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAccumulatedFileSize createFileSizeCondition(String, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathCondition.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface PathCondition {
 public static final PathCondition[] EMPTY_ARRAY;
 public static transient PathCondition[] copy(PathCondition[]);
 public abstract void beforeFileTreeWalk();
 public abstract boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction$1.class

package org.apache.logging.log4j.core.appender.rolling.action;
synchronized class PosixViewAttributeAction$1 extends java.nio.file.SimpleFileVisitor {
 void PosixViewAttributeAction$1(PosixViewAttributeAction, java.util.List, java.nio.file.Path);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/rolling/action/DeletingVisitor.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class DeletingVisitor extends java.nio.file.SimpleFileVisitor {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.nio.file.Path basePath;
 private final boolean testMode;
 private final java.util.List pathConditions;
 public void DeletingVisitor(java.nio.file.Path, java.util.List, boolean);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
 public java.nio.file.FileVisitResult visitFileFailed(java.nio.file.Path, java.io.IOException) throws java.io.IOException;
 protected void delete(java.nio.file.Path) throws java.io.IOException;
 public boolean isTestMode();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$1 {
}

org/apache/logging/log4j/core/appender/rolling/TriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface TriggeringPolicy {
 public abstract void initialize(RollingFileManager);
 public abstract boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RollingRandomAccessFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private String filePattern;
 private boolean append;
 private rolling.TriggeringPolicy policy;
 private rolling.RolloverStrategy strategy;
 private boolean advertise;
 private String advertiseURI;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void RollingRandomAccessFileAppender$Builder();
 public RollingRandomAccessFileAppender build();
 public RollingRandomAccessFileAppender$Builder withFileName(String);
 public RollingRandomAccessFileAppender$Builder withFilePattern(String);
 public RollingRandomAccessFileAppender$Builder withAppend(boolean);
 public RollingRandomAccessFileAppender$Builder withPolicy(rolling.TriggeringPolicy);
 public RollingRandomAccessFileAppender$Builder withStrategy(rolling.RolloverStrategy);
 public RollingRandomAccessFileAppender$Builder withAdvertise(boolean);
 public RollingRandomAccessFileAppender$Builder withAdvertiseURI(String);
 public RollingRandomAccessFileAppender$Builder withFilePermissions(String);
 public RollingRandomAccessFileAppender$Builder withFileOwner(String);
 public RollingRandomAccessFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/SyslogAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class SyslogAppender extends SocketAppender {
 protected static final String RFC5424 = RFC5424;
 protected void SyslogAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.net.AbstractSocketManager, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 protected void SyslogAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.net.AbstractSocketManager, org.apache.logging.log4j.core.net.Advertiser);
 public static SyslogAppender createAppender(String, int, String, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, int, boolean, String, boolean, boolean, org.apache.logging.log4j.core.net.Facility, String, int, boolean, String, String, String, boolean, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, String, org.apache.logging.log4j.core.layout.LoggerFields[], boolean);
 public static SyslogAppender$Builder newSyslogAppenderBuilder();
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RandomAccessFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private boolean advertise;
 private String advertiseURI;
 public void RandomAccessFileAppender$Builder();
 public RandomAccessFileAppender build();
 public RandomAccessFileAppender$Builder setFileName(String);
 public RandomAccessFileAppender$Builder setAppend(boolean);
 public RandomAccessFileAppender$Builder setAdvertise(boolean);
 public RandomAccessFileAppender$Builder setAdvertiseURI(String);
}

org/apache/logging/log4j/core/appender/ConfigurationFactoryData.class

package org.apache.logging.log4j.core.appender;
public synchronized class ConfigurationFactoryData {
 public final org.apache.logging.log4j.core.config.Configuration configuration;
 public void ConfigurationFactoryData(org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class ConsoleAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private ConsoleAppender$Target target;
 private boolean follow;
 private boolean direct;
 public void ConsoleAppender$Builder();
 public ConsoleAppender$Builder setTarget(ConsoleAppender$Target);
 public ConsoleAppender$Builder setFollow(boolean);
 public ConsoleAppender$Builder setDirect(boolean);
 public ConsoleAppender build();
}

org/apache/logging/log4j/core/appender/DefaultErrorHandler.class

package org.apache.logging.log4j.core.appender;
public synchronized class DefaultErrorHandler implements org.apache.logging.log4j.core.ErrorHandler {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int MAX_EXCEPTION_COUNT = 3;
 private static final long EXCEPTION_INTERVAL_NANOS;
 private int exceptionCount;
 private long lastExceptionInstantNanos;
 private final org.apache.logging.log4j.core.Appender appender;
 public void DefaultErrorHandler(org.apache.logging.log4j.core.Appender);
 public void error(String);
 public void error(String, Throwable);
 public void error(String, org.apache.logging.log4j.core.LogEvent, Throwable);
 private boolean acquirePermit();
 public org.apache.logging.log4j.core.Appender getAppender();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class JdbcDatabaseManager extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager {
 private static final JdbcDatabaseManager$JdbcDatabaseManagerFactory INSTANCE;
 private final java.util.List columnConfigs;
 private final String sqlStatement;
 private final JdbcDatabaseManager$FactoryData factoryData;
 private volatile java.sql.Connection connection;
 private volatile java.sql.PreparedStatement statement;
 private volatile JdbcDatabaseManager$Reconnector reconnector;
 private volatile boolean isBatchSupported;
 private volatile java.util.Map columnMetaData;
 private static void appendColumnName(int, String, StringBuilder);
 private static void appendColumnNames(String, JdbcDatabaseManager$FactoryData, StringBuilder);
 private static JdbcDatabaseManager$JdbcDatabaseManagerFactory getFactory();
 public static JdbcDatabaseManager getJDBCDatabaseManager(String, int, ConnectionSource, String, ColumnConfig[]);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[]);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long, boolean);
 private void JdbcDatabaseManager(String, String, java.util.List, JdbcDatabaseManager$FactoryData);
 private void checkConnection();
 protected void closeResources(boolean);
 protected boolean commitAndClose();
 private boolean commitAndCloseAll();
 private void connectAndPrepare() throws java.sql.SQLException;
 protected void connectAndStart();
 private JdbcDatabaseManager$Reconnector createReconnector();
 private String createSqlSelect();
 private String fieldsToString();
 public ConnectionSource getConnectionSource();
 public String getSqlStatement();
 public String getTableName();
 private void initColumnMetaData() throws java.sql.SQLException;
 private boolean isClosed(java.sql.Statement) throws java.sql.SQLException;
 private boolean isClosed(java.sql.Connection) throws java.sql.SQLException;
 private void reconnectOn(Exception);
 private void setFields(org.apache.logging.log4j.message.MapMessage) throws java.sql.SQLException;
 private void setStatementObject(int, String, Object) throws java.sql.SQLException;
 protected boolean shutdownInternal();
 protected void startupInternal() throws Exception;
 private Object truncate(String, Object);
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeThrough(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/routing/IdlePurgePolicy.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class IdlePurgePolicy extends org.apache.logging.log4j.core.AbstractLifeCycle implements PurgePolicy, Runnable {
 private final long timeToLive;
 private final long checkInterval;
 private final java.util.concurrent.ConcurrentMap appendersUsage;
 private RoutingAppender routingAppender;
 private final org.apache.logging.log4j.core.config.ConfigurationScheduler scheduler;
 private volatile java.util.concurrent.ScheduledFuture future;
 public void IdlePurgePolicy(long, long, org.apache.logging.log4j.core.config.ConfigurationScheduler);
 public void initialize(RoutingAppender);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void purge();
 public void update(String, org.apache.logging.log4j.core.LogEvent);
 public void run();
 private void scheduleNext();
 public static PurgePolicy createPurgePolicy(String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/appender/AsyncAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class AsyncAppender$Builder extends org.apache.logging.log4j.core.filter.AbstractFilterable$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private String errorRef;
 private boolean blocking;
 private long shutdownTimeout;
 private int bufferSize;
 private String name;
 private boolean includeLocation;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private boolean ignoreExceptions;
 private org.apache.logging.log4j.core.async.BlockingQueueFactory blockingQueueFactory;
 public void AsyncAppender$Builder();
 public AsyncAppender$Builder setAppenderRefs(org.apache.logging.log4j.core.config.AppenderRef[]);
 public AsyncAppender$Builder setErrorRef(String);
 public AsyncAppender$Builder setBlocking(boolean);
 public AsyncAppender$Builder setShutdownTimeout(long);
 public AsyncAppender$Builder setBufferSize(int);
 public AsyncAppender$Builder setName(String);
 public AsyncAppender$Builder setIncludeLocation(boolean);
 public AsyncAppender$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AsyncAppender$Builder setIgnoreExceptions(boolean);
 public AsyncAppender$Builder setBlockingQueueFactory(org.apache.logging.log4j.core.async.BlockingQueueFactory);
 public AsyncAppender build();
}

org/apache/logging/log4j/core/appender/mom/JmsManager$JmsManagerFactory.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$JmsManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JmsManager$JmsManagerFactory();
 public JmsManager createManager(String, JmsManager$JmsManagerConfiguration);
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class KafkaManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 public static final String DEFAULT_TIMEOUT_MILLIS = 30000;
 static KafkaProducerFactory producerFactory;
 private final java.util.Properties config;
 private org.apache.kafka.clients.producer.Producer producer;
 private final int timeoutMillis;
 private final String topic;
 private final String key;
 private final boolean syncSend;
 private static final KafkaManager$KafkaManagerFactory factory;
 public void KafkaManager(org.apache.logging.log4j.core.LoggerContext, String, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 private void closeProducer(long, java.util.concurrent.TimeUnit);
 public void send(byte[]) throws java.util.concurrent.ExecutionException, InterruptedException, java.util.concurrent.TimeoutException;
 public void startup();
 public String getTopic();
 public static KafkaManager getManager(org.apache.logging.log4j.core.LoggerContext, String, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$1.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$1 {
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
public synchronized class JeroMqManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 public static final String SYS_PROPERTY_ENABLE_SHUTDOWN_HOOK = log4j.jeromq.enableShutdownHook;
 public static final String SYS_PROPERTY_IO_THREADS = log4j.jeromq.ioThreads;
 private static final JeroMqManager$JeroMqManagerFactory FACTORY;
 private static final org.zeromq.ZMQ$Context CONTEXT;
 private static final org.apache.logging.log4j.core.util.Cancellable SHUTDOWN_HOOK;
 private final org.zeromq.ZMQ$Socket publisher;
 private void JeroMqManager(String, JeroMqManager$JeroMqConfiguration);
 public boolean send(byte[]);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public static JeroMqManager getJeroMqManager(String, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, java.util.List);
 public static org.zeromq.ZMQ$Context getContext();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LocationAware.class

package org.apache.logging.log4j.core.impl;
public abstract interface LocationAware {
 public abstract boolean requiresLocation();
}

org/apache/logging/log4j/core/impl/MementoMessage.class

package org.apache.logging.log4j.core.impl;
public final synchronized class MementoMessage implements org.apache.logging.log4j.message.Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private final String formattedMessage;
 private final String format;
 private final Object[] parameters;
 public void MementoMessage(String, String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public String toString();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$Builder.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jLogEvent$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String loggerFqcn;
 private org.apache.logging.log4j.Marker marker;
 private org.apache.logging.log4j.Level level;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private Throwable thrown;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement source;
 private boolean includeLocation;
 private boolean endOfBatch;
 private long nanoTime;
 public void Log4jLogEvent$Builder();
 public void Log4jLogEvent$Builder(org.apache.logging.log4j.core.LogEvent);
 public Log4jLogEvent$Builder setLevel(org.apache.logging.log4j.Level);
 public Log4jLogEvent$Builder setLoggerFqcn(String);
 public Log4jLogEvent$Builder setLoggerName(String);
 public Log4jLogEvent$Builder setMarker(org.apache.logging.log4j.Marker);
 public Log4jLogEvent$Builder setMessage(org.apache.logging.log4j.message.Message);
 public Log4jLogEvent$Builder setThrown(Throwable);
 public Log4jLogEvent$Builder setTimeMillis(long);
 public Log4jLogEvent$Builder setInstant(org.apache.logging.log4j.core.time.Instant);
 public Log4jLogEvent$Builder setThrownProxy(ThrowableProxy);
 public Log4jLogEvent$Builder setContextMap(java.util.Map);
 public Log4jLogEvent$Builder setContextData(org.apache.logging.log4j.util.StringMap);
 public Log4jLogEvent$Builder setContextStack(org.apache.logging.log4j.ThreadContext$ContextStack);
 public Log4jLogEvent$Builder setThreadId(long);
 public Log4jLogEvent$Builder setThreadName(String);
 public Log4jLogEvent$Builder setThreadPriority(int);
 public Log4jLogEvent$Builder setSource(StackTraceElement);
 public Log4jLogEvent$Builder setIncludeLocation(boolean);
 public Log4jLogEvent$Builder setEndOfBatch(boolean);
 public Log4jLogEvent$Builder setNanoTime(long);
 public Log4jLogEvent build();
 private void initTimeFields();
}

org/apache/logging/log4j/core/impl/ContextDataInjectorFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ContextDataInjectorFactory {
 public void ContextDataInjectorFactory();
 public static org.apache.logging.log4j.core.ContextDataInjector createInjector();
 private static org.apache.logging.log4j.core.ContextDataInjector createDefaultInjector();
}

org/apache/logging/log4j/core/selector/ContextSelector.class

package org.apache.logging.log4j.core.selector;
public abstract interface ContextSelector {
 public static final long DEFAULT_STOP_TIMEOUT = 50;
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public abstract org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean);
 public abstract org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI);
 public abstract java.util.List getLoggerContexts();
 public abstract void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
}

org/apache/logging/log4j/core/tools/Generate$Type$1.class

package org.apache.logging.log4j.core.tools;
final synchronized enum Generate$Type$1 {
 void Generate$Type$1(String, int);
 String imports();
 String declaration();
 String constructor();
 Class generator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$TypeConversionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$TypeConversionException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 4251973913816346114;
 public void CommandLine$TypeConversionException(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$SortByOptionArityAndNameAlphabetically.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$SortByOptionArityAndNameAlphabetically extends CommandLine$Help$SortByShortestOptionNameAlphabetically {
 void CommandLine$Help$SortByOptionArityAndNameAlphabetically();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ByteConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ByteConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ByteConverter();
 public Byte convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ISO8601DateConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ISO8601DateConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ISO8601DateConverter();
 public java.util.Date convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$DoubleConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$DoubleConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$DoubleConverter();
 public Double convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Tracer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Tracer {
 CommandLine$TraceLevel level;
 java.io.PrintStream stream;
 private void CommandLine$Tracer();
 transient void warn(String, Object[]);
 transient void info(String, Object[]);
 transient void debug(String, Object[]);
 boolean isWarn();
 boolean isInfo();
 boolean isDebug();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MissingTypeConverterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MissingTypeConverterException extends CommandLine$ParameterException {
 private static final long serialVersionUID = -6050931703233083760;
 public void CommandLine$MissingTypeConverterException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$SortByShortestOptionNameAlphabetically.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$SortByShortestOptionNameAlphabetically implements java.util.Comparator {
 void CommandLine$Help$SortByShortestOptionNameAlphabetically();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/net/ssl/LaxHostnameVerifier.class

package org.apache.logging.log4j.core.net.ssl;
public final synchronized class LaxHostnameVerifier implements javax.net.ssl.HostnameVerifier {
 public static final javax.net.ssl.HostnameVerifier INSTANCE;
 private void LaxHostnameVerifier();
 public boolean verify(String, javax.net.ssl.SSLSession);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/KeyStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class KeyStoreConfiguration extends AbstractKeyStoreConfiguration {
 private final String keyManagerFactoryAlgorithm;
 public void KeyStoreConfiguration(String, PasswordProvider, String, String) throws StoreConfigurationException;
 public void KeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public void KeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, char[], String, String, String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public javax.net.ssl.KeyManagerFactory initKeyManagerFactory() throws java.security.NoSuchAlgorithmException, java.security.UnrecoverableKeyException, java.security.KeyStoreException;
 public int hashCode();
 public boolean equals(Object);
 public String getKeyManagerFactoryAlgorithm();
}

org/apache/logging/log4j/core/net/ssl/StoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class StoreConfigurationException extends Exception {
 private static final long serialVersionUID = 1;
 public void StoreConfigurationException(Exception);
 public void StoreConfigurationException(String);
 public void StoreConfigurationException(String, Exception);
}

org/apache/logging/log4j/core/net/JndiManager.class

package org.apache.logging.log4j.core.net;
public synchronized class JndiManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 private static final JndiManager$JndiManagerFactory FACTORY;
 private static final String PREFIX = log4j2.enableJndi;
 private static final String JAVA_SCHEME = java;
 private static final boolean JNDI_CONTEXT_SELECTOR_ENABLED;
 private static final boolean JNDI_JDBC_ENABLED;
 private static final boolean JNDI_JMS_ENABLED;
 private static final boolean JNDI_LOOKUP_ENABLED;
 private final javax.naming.InitialContext context;
 private static boolean isJndiEnabled(String);
 public static boolean isJndiEnabled();
 public static boolean isJndiContextSelectorEnabled();
 public static boolean isJndiJdbcEnabled();
 public static boolean isJndiJmsEnabled();
 public static boolean isJndiLookupEnabled();
 private void JndiManager(String, javax.naming.InitialContext);
 public static JndiManager getDefaultManager();
 public static JndiManager getDefaultManager(String);
 public static JndiManager getJndiManager(String, String, String, String, String, java.util.Properties);
 public static JndiManager getJndiManager(java.util.Properties);
 private static String createManagerName();
 public static java.util.Properties createProperties(String, String, String, String, String, java.util.Properties);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public Object lookup(String) throws javax.naming.NamingException;
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/MulticastDnsAdvertiser.class

package org.apache.logging.log4j.core.net;
public synchronized class MulticastDnsAdvertiser implements Advertiser {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final int MAX_LENGTH = 255;
 private static final int DEFAULT_PORT = 4555;
 private static Object jmDNS;
 private static Class jmDNSClass;
 private static Class serviceInfoClass;
 public void MulticastDnsAdvertiser();
 public Object advertise(java.util.Map);
 public void unadvertise(Object);
 private static Object createJmDnsVersion1();
 private static Object createJmDnsVersion3();
 private static Object buildServiceInfoVersion1(String, int, String, java.util.Map);
 private static Object buildServiceInfoVersion3(String, int, String, java.util.Map);
 private static Object initializeJmDns();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SocketAddress.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketAddress {
 private final java.net.InetSocketAddress socketAddress;
 public static SocketAddress getLoopback();
 private void SocketAddress(java.net.InetAddress, int);
 public java.net.InetSocketAddress getSocketAddress();
 public int getPort();
 public java.net.InetAddress getAddress();
 public String getHostName();
 public static SocketAddress$Builder newBuilder();
 public String toString();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$DayInWeekField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$DayInWeekField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$DayInWeekField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 void FastDatePrinter$TwoDigitNumberField(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$UnpaddedMonthField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$UnpaddedMonthField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$UnpaddedMonthField INSTANCE;
 void FastDatePrinter$UnpaddedMonthField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$Strategy.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FastDateParser$Strategy {
 private void FastDateParser$Strategy();
 boolean isNumber();
 abstract boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
}

org/apache/logging/log4j/core/util/ArrayUtils.class

package org.apache.logging.log4j.core.util;
public synchronized class ArrayUtils {
 public void ArrayUtils();
 public static boolean isEmpty(byte[]);
 public static int getLength(Object);
 private static Object remove(Object, int);
 public static Object[] remove(Object[], int);
}

org/apache/logging/log4j/core/util/NullOutputStream.class

package org.apache.logging.log4j.core.util;
public synchronized class NullOutputStream extends java.io.OutputStream {
 private static final NullOutputStream INSTANCE;
 public static final NullOutputStream NULL_OUTPUT_STREAM;
 public static NullOutputStream getInstance();
 private void NullOutputStream();
 public void write(byte[], int, int);
 public void write(int);
 public void write(byte[]) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DefaultShutdownCallbackRegistry.class

package org.apache.logging.log4j.core.util;
public synchronized class DefaultShutdownCallbackRegistry implements ShutdownCallbackRegistry, org.apache.logging.log4j.core.LifeCycle2, Runnable {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.concurrent.atomic.AtomicReference state;
 private final java.util.concurrent.ThreadFactory threadFactory;
 private final java.util.Collection hooks;
 private ref.Reference shutdownHookRef;
 public void DefaultShutdownCallbackRegistry();
 protected void DefaultShutdownCallbackRegistry(java.util.concurrent.ThreadFactory);
 public void run();
 public Cancellable addShutdownCallback(Runnable);
 public void initialize();
 public void start();
 private void addShutdownHook(Thread);
 public void stop();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private void removeShutdownHook();
 public org.apache.logging.log4j.core.LifeCycle$State getState();
 public boolean isStarted();
 public boolean isStopped();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/UuidUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class UuidUtil {
 private static final long[] EMPTY_LONG_ARRAY;
 public static final String UUID_SEQUENCE = org.apache.logging.log4j.uuidSequence;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String ASSIGNED_SEQUENCES = org.apache.logging.log4j.assignedSequences;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private static final long TYPE1 = 4096;
 private static final byte VARIANT = -128;
 private static final int SEQUENCE_MASK = 16383;
 private static final long NUM_100NS_INTERVALS_SINCE_UUID_EPOCH = 122192928000000000;
 private static final long INITIAL_UUID_SEQNO;
 private static final long LOW_MASK = 4294967295;
 private static final long MID_MASK = 281470681743360;
 private static final long HIGH_MASK = 1152640029630136320;
 private static final int NODE_SIZE = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_4 = 32;
 private static final int SHIFT_6 = 48;
 private static final int HUNDRED_NANOS_PER_MILLI = 10000;
 private static final long LEAST;
 private void UuidUtil();
 static long initialize(byte[]);
 public static java.util.UUID getTimeBasedUuid();
 static void <clinit>();
}

org/apache/logging/log4j/core/AbstractLogEvent.class

package org.apache.logging.log4j.core;
public abstract synchronized class AbstractLogEvent implements LogEvent {
 private static final long serialVersionUID = 1;
 private volatile time.MutableInstant instant;
 public void AbstractLogEvent();
 public LogEvent toImmutable();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerFqcn();
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public org.apache.logging.log4j.message.Message getMessage();
 public StackTraceElement getSource();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public Throwable getThrown();
 public impl.ThrowableProxy getThrownProxy();
 public long getTimeMillis();
 public time.Instant getInstant();
 protected final time.MutableInstant getMutableInstant();
 public boolean isEndOfBatch();
 public boolean isIncludeLocation();
 public void setEndOfBatch(boolean);
 public void setIncludeLocation(boolean);
 public long getNanoTime();
}

org/apache/logging/log4j/core/config/arbiters/SelectArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SelectArbiter {
 public void SelectArbiter();
 public Arbiter evaluateConditions(java.util.List);
 public static SelectArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/DefaultArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class DefaultArbiter implements Arbiter {
 public void DefaultArbiter();
 public boolean isCondition();
 public static DefaultArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/plugins/PluginFactory.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginFactory extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/PluginBuilderFactory.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginBuilderFactory extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/util/PluginType.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginType {
 private final org.apache.logging.log4j.core.config.plugins.processor.PluginEntry pluginEntry;
 private final Class pluginClass;
 private final String elementName;
 public void PluginType(org.apache.logging.log4j.core.config.plugins.processor.PluginEntry, Class, String);
 public Class getPluginClass();
 public String getElementName();
 public String getKey();
 public boolean isObjectPrintable();
 public boolean isDeferChildren();
 public String getCategory();
 public String toString();
}

org/apache/logging/log4j/core/config/plugins/util/PluginBuilder.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginBuilder implements org.apache.logging.log4j.core.util.Builder {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final PluginType pluginType;
 private final Class clazz;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.config.Node node;
 private org.apache.logging.log4j.core.LogEvent event;
 public void PluginBuilder(PluginType);
 public PluginBuilder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PluginBuilder withConfigurationNode(org.apache.logging.log4j.core.config.Node);
 public PluginBuilder forLogEvent(org.apache.logging.log4j.core.LogEvent);
 public Object build();
 private void verify();
 private static org.apache.logging.log4j.core.util.Builder createBuilder(Class) throws reflect.InvocationTargetException, IllegalAccessException;
 private void injectFields(org.apache.logging.log4j.core.util.Builder) throws IllegalAccessException;
 private static String simpleName(Object);
 private static reflect.Method findFactoryMethod(Class);
 private Object[] generateParameters(reflect.Method);
 private static transient String[] extractPluginAliases(annotation.Annotation[]);
 private void checkForRemainingAttributes();
 private void verifyNodeChildrenUsed();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$1.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$1 {
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UriConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UriConverter implements TypeConverter {
 public void TypeConverters$UriConverter();
 public java.net.URI convert(String) throws java.net.URISyntaxException;
}

org/apache/logging/log4j/core/config/DefaultConfiguration.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultConfiguration extends AbstractConfiguration {
 public static final String DEFAULT_NAME = Default;
 public static final String DEFAULT_LEVEL = org.apache.logging.log4j.level;
 public static final String DEFAULT_PATTERN = %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n;
 public void DefaultConfiguration();
 protected void doConfigure();
}

org/apache/logging/log4j/core/config/ConfigurationFactory.class

package org.apache.logging.log4j.core.config;
public abstract synchronized class ConfigurationFactory extends builder.api.ConfigurationBuilderFactory {
 public static final String CONFIGURATION_FACTORY_PROPERTY = log4j.configurationFactory;
 public static final String CONFIGURATION_FILE_PROPERTY = log4j.configurationFile;
 public static final String LOG4J1_CONFIGURATION_FILE_PROPERTY = log4j.configuration;
 public static final String LOG4J1_EXPERIMENTAL = log4j1.compatibility;
 public static final String AUTHORIZATION_PROVIDER = log4j2.authorizationProvider;
 public static final String CATEGORY = ConfigurationFactory;
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected static final String TEST_PREFIX = log4j2-test;
 protected static final String DEFAULT_PREFIX = log4j2;
 protected static final String LOG4J1_VERSION = 1;
 protected static final String LOG4J2_VERSION = 2;
 private static final String CLASS_LOADER_SCHEME = classloader;
 private static final String CLASS_PATH_SCHEME = classpath;
 private static final String OVERRIDE_PARAM = override;
 private static volatile java.util.List factories;
 private static ConfigurationFactory configFactory;
 protected final org.apache.logging.log4j.core.lookup.StrSubstitutor substitutor;
 private static final java.util.concurrent.locks.Lock LOCK;
 private static final String HTTPS = https;
 private static final String HTTP = http;
 private static volatile org.apache.logging.log4j.core.util.AuthorizationProvider authorizationProvider;
 public void ConfigurationFactory();
 public static ConfigurationFactory getInstance();
 public static org.apache.logging.log4j.core.util.AuthorizationProvider authorizationProvider(org.apache.logging.log4j.util.PropertiesUtil);
 public static org.apache.logging.log4j.core.util.AuthorizationProvider getAuthorizationProvider();
 private static void addFactory(java.util.Collection, String);
 private static void addFactory(java.util.Collection, Class);
 public static void setConfigurationFactory(ConfigurationFactory);
 public static void resetConfigurationFactory();
 public static void removeConfigurationFactory(ConfigurationFactory);
 protected abstract String[] getSupportedTypes();
 protected String getTestPrefix();
 protected String getDefaultPrefix();
 protected String getVersion();
 protected boolean isActive();
 public abstract Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI);
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI, ClassLoader);
 static boolean isClassLoaderUri(java.net.URI);
 static String extractClassLoaderUriPath(java.net.URI);
 protected ConfigurationSource getInputFromString(String, ClassLoader);
 static java.util.List getFactories();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/ConfigurationScheduler.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationScheduler extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String SIMPLE_NAME;
 private static final int MAX_SCHEDULED_ITEMS = 5;
 private volatile java.util.concurrent.ScheduledExecutorService executorService;
 private int scheduledItems;
 private final String name;
 public void ConfigurationScheduler();
 public void ConfigurationScheduler(String);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public boolean isExecutorServiceSet();
 public void incrementScheduledItems();
 public void decrementScheduledItems();
 public java.util.concurrent.ScheduledFuture schedule(java.util.concurrent.Callable, long, java.util.concurrent.TimeUnit);
 public java.util.concurrent.ScheduledFuture schedule(Runnable, long, java.util.concurrent.TimeUnit);
 public CronScheduledFuture scheduleWithCron(org.apache.logging.log4j.core.util.CronExpression, Runnable);
 public CronScheduledFuture scheduleWithCron(org.apache.logging.log4j.core.util.CronExpression, java.util.Date, Runnable);
 public java.util.concurrent.ScheduledFuture scheduleAtFixedRate(Runnable, long, long, java.util.concurrent.TimeUnit);
 public java.util.concurrent.ScheduledFuture scheduleWithFixedDelay(Runnable, long, long, java.util.concurrent.TimeUnit);
 public long nextFireInterval(java.util.Date);
 private java.util.concurrent.ScheduledExecutorService getExecutorService();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultAppenderComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultAppenderComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder {
 public void DefaultAppenderComponentBuilder(DefaultConfigurationBuilder, String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/ConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ConfigurationBuilder extends org.apache.logging.log4j.core.util.Builder {
 public abstract ConfigurationBuilder add(ScriptComponentBuilder);
 public abstract ConfigurationBuilder add(ScriptFileComponentBuilder);
 public abstract ConfigurationBuilder add(AppenderComponentBuilder);
 public abstract ConfigurationBuilder add(CustomLevelComponentBuilder);
 public abstract ConfigurationBuilder add(FilterComponentBuilder);
 public abstract ConfigurationBuilder add(LoggerComponentBuilder);
 public abstract ConfigurationBuilder add(RootLoggerComponentBuilder);
 public abstract ConfigurationBuilder addProperty(String, String);
 public abstract ScriptComponentBuilder newScript(String, String, String);
 public abstract ScriptFileComponentBuilder newScriptFile(String);
 public abstract ScriptFileComponentBuilder newScriptFile(String, String);
 public abstract AppenderComponentBuilder newAppender(String, String);
 public abstract AppenderRefComponentBuilder newAppenderRef(String);
 public abstract LoggerComponentBuilder newAsyncLogger(String);
 public abstract LoggerComponentBuilder newAsyncLogger(String, boolean);
 public abstract LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level);
 public abstract LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level, boolean);
 public abstract LoggerComponentBuilder newAsyncLogger(String, String);
 public abstract LoggerComponentBuilder newAsyncLogger(String, String, boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger();
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level, boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(String);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(String, boolean);
 public abstract ComponentBuilder newComponent(String);
 public abstract ComponentBuilder newComponent(String, String);
 public abstract ComponentBuilder newComponent(String, String, String);
 public abstract PropertyComponentBuilder newProperty(String, String);
 public abstract KeyValuePairComponentBuilder newKeyValuePair(String, String);
 public abstract CustomLevelComponentBuilder newCustomLevel(String, int);
 public abstract FilterComponentBuilder newFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public abstract FilterComponentBuilder newFilter(String, String, String);
 public abstract LayoutComponentBuilder newLayout(String);
 public abstract LoggerComponentBuilder newLogger(String);
 public abstract LoggerComponentBuilder newLogger(String, boolean);
 public abstract LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level);
 public abstract LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level, boolean);
 public abstract LoggerComponentBuilder newLogger(String, String);
 public abstract LoggerComponentBuilder newLogger(String, String, boolean);
 public abstract RootLoggerComponentBuilder newRootLogger();
 public abstract RootLoggerComponentBuilder newRootLogger(boolean);
 public abstract RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level);
 public abstract RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level, boolean);
 public abstract RootLoggerComponentBuilder newRootLogger(String);
 public abstract RootLoggerComponentBuilder newRootLogger(String, boolean);
 public abstract ConfigurationBuilder setAdvertiser(String);
 public abstract ConfigurationBuilder setConfigurationName(String);
 public abstract ConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public abstract ConfigurationBuilder setMonitorInterval(String);
 public abstract ConfigurationBuilder setPackages(String);
 public abstract ConfigurationBuilder setShutdownHook(String);
 public abstract ConfigurationBuilder setShutdownTimeout(long, java.util.concurrent.TimeUnit);
 public abstract ConfigurationBuilder setStatusLevel(org.apache.logging.log4j.Level);
 public abstract ConfigurationBuilder setVerbosity(String);
 public abstract ConfigurationBuilder setDestination(String);
 public abstract void setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public abstract ConfigurationBuilder addRootProperty(String, String);
 public abstract org.apache.logging.log4j.core.config.Configuration build(boolean);
 public abstract void writeXmlConfiguration(java.io.OutputStream) throws java.io.IOException;
 public abstract String toXmlConfiguration();
}

org/apache/logging/log4j/core/jmx/ContextSelectorAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class ContextSelectorAdmin implements ContextSelectorAdminMBean {
 private final javax.management.ObjectName objectName;
 private final org.apache.logging.log4j.core.selector.ContextSelector selector;
 public void ContextSelectorAdmin(String, org.apache.logging.log4j.core.selector.ContextSelector);
 public javax.management.ObjectName getObjectName();
 public String getImplementationClassName();
}

org/apache/logging/log4j/core/jmx/Server.class

package org.apache.logging.log4j.core.jmx;
public final synchronized class Server {
 private static final String CONTEXT_NAME_ALL = *;
 public static final String DOMAIN = org.apache.logging.log4j2;
 private static final String PROPERTY_DISABLE_JMX = log4j2.disable.jmx;
 private static final String PROPERTY_ASYNC_NOTIF = log4j2.jmx.notify.async;
 private static final String THREAD_NAME_PREFIX = jmx.notif;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 static final java.util.concurrent.Executor executor;
 private void Server();
 private static java.util.concurrent.ExecutorService createExecutor();
 public static String escape(String);
 private static boolean isJmxDisabled();
 public static void reregisterMBeansAfterReconfigure();
 public static void reregisterMBeansAfterReconfigure(javax.management.MBeanServer);
 public static void unregisterMBeans();
 public static void unregisterMBeans(javax.management.MBeanServer);
 private static org.apache.logging.log4j.core.selector.ContextSelector getContextSelector();
 public static void unregisterLoggerContext(String);
 public static void unregisterLoggerContext(String, javax.management.MBeanServer);
 private static void registerStatusLogger(String, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void registerContextSelector(String, org.apache.logging.log4j.core.selector.ContextSelector, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void unregisterStatusLogger(String, javax.management.MBeanServer);
 private static void unregisterContextSelector(String, javax.management.MBeanServer);
 private static void unregisterLoggerConfigs(String, javax.management.MBeanServer);
 private static void unregisterContexts(javax.management.MBeanServer);
 private static void unregisterAppenders(String, javax.management.MBeanServer);
 private static void unregisterAsyncAppenders(String, javax.management.MBeanServer);
 private static void unregisterAsyncLoggerRingBufferAdmins(String, javax.management.MBeanServer);
 private static void unregisterAsyncLoggerConfigRingBufferAdmins(String, javax.management.MBeanServer);
 private static void unregisterAllMatching(String, javax.management.MBeanServer);
 private static void registerLoggerConfigs(org.apache.logging.log4j.core.LoggerContext, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void registerAppenders(org.apache.logging.log4j.core.LoggerContext, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void register(javax.management.MBeanServer, Object, javax.management.ObjectName) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternMatch$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternMatch$Builder implements org.apache.logging.log4j.core.util.Builder, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private String key;
 private String pattern;
 public void PatternMatch$Builder();
 public PatternMatch$Builder setKey(String);
 public PatternMatch$Builder setPattern(String);
 public PatternMatch build();
 protected Object readResolve() throws java.io.ObjectStreamException;
}

org/apache/logging/log4j/core/layout/JacksonFactory$YAML.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$YAML extends JacksonFactory {
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 public void JacksonFactory$YAML(boolean, boolean);
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForContextMap();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/CsvParameterLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class CsvParameterLayout extends AbstractCsvLayout {
 public static AbstractCsvLayout createDefaultLayout();
 public static AbstractCsvLayout createLayout(org.apache.commons.csv.CSVFormat);
 public static AbstractCsvLayout createLayout(org.apache.logging.log4j.core.config.Configuration, String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String, java.nio.charset.Charset, String, String);
 public void CsvParameterLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/internal/ListChecker$NoopChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class ListChecker$NoopChecker implements ListChecker {
 public void ListChecker$NoopChecker();
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/AbstractStringLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractStringLayout extends AbstractLayout implements org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.impl.LocationAware {
 protected static final int DEFAULT_STRING_BUILDER_SIZE = 1024;
 protected static final int MAX_STRING_BUILDER_SIZE;
 private static final ThreadLocal threadLocal;
 private Encoder textEncoder;
 private final java.nio.charset.Charset charset;
 private final AbstractStringLayout$Serializer footerSerializer;
 private final AbstractStringLayout$Serializer headerSerializer;
 public boolean requiresLocation();
 protected static StringBuilder getStringBuilder();
 private static int size(String, int);
 protected static void trimToMaxSize(StringBuilder);
 protected void AbstractStringLayout(java.nio.charset.Charset);
 protected void AbstractStringLayout(java.nio.charset.Charset, byte[], byte[]);
 protected void AbstractStringLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer);
 protected byte[] getBytes(String);
 public java.nio.charset.Charset getCharset();
 public String getContentType();
 public byte[] getFooter();
 public AbstractStringLayout$Serializer getFooterSerializer();
 public byte[] getHeader();
 public AbstractStringLayout$Serializer getHeaderSerializer();
 private org.apache.logging.log4j.core.impl.DefaultLogEventFactory getLogEventFactory();
 protected Encoder getStringBuilderEncoder();
 protected byte[] serializeToBytes(AbstractStringLayout$Serializer, byte[]);
 protected String serializeToString(AbstractStringLayout$Serializer);
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy$1.class

package org.apache.logging.log4j.core.async;
final synchronized enum ThreadNameCachingStrategy$1 {
 void ThreadNameCachingStrategy$1(String, int);
 public String getThreadName();
}

org/apache/logging/log4j/core/async/AsyncLoggerContextSelector.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerContextSelector extends org.apache.logging.log4j.core.selector.ClassLoaderContextSelector {
 public void AsyncLoggerContextSelector();
 public static boolean isSelected();
 protected org.apache.logging.log4j.core.LoggerContext createContext(String, java.net.URI);
 protected String toContextMapKey(ClassLoader);
 protected String defaultContextName();
}

org/apache/logging/log4j/core/async/AsyncLogger.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLogger extends org.apache.logging.log4j.core.Logger implements com.lmax.disruptor.EventTranslatorVararg {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final org.apache.logging.log4j.core.ContextDataInjector CONTEXT_DATA_INJECTOR;
 private static final ThreadNameCachingStrategy THREAD_NAME_CACHING_STRATEGY;
 private final ThreadLocal threadLocalTranslator;
 private final AsyncLoggerDisruptor loggerDisruptor;
 private volatile boolean includeLocation;
 private volatile org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private final AsyncLogger$TranslatorType threadLocalTranslatorType;
 private final AsyncLogger$TranslatorType varargTranslatorType;
 public void AsyncLogger(org.apache.logging.log4j.core.LoggerContext, String, org.apache.logging.log4j.message.MessageFactory, AsyncLoggerDisruptor);
 protected void updateConfiguration(org.apache.logging.log4j.core.config.Configuration);
 org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 private RingBufferLogEventTranslator getCachedTranslator();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 private AsyncLogger$TranslatorType getTranslatorType();
 private boolean isReused(org.apache.logging.log4j.message.Message);
 private void logWithThreadLocalTranslator(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logWithThreadLocalTranslator(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void publish(RingBufferLogEventTranslator);
 private void handleRingBufferFull(RingBufferLogEventTranslator);
 private void initTranslator(RingBufferLogEventTranslator, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void initTranslator(RingBufferLogEventTranslator, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void initTranslatorThreadValues(RingBufferLogEventTranslator);
 private StackTraceElement calcLocationIfRequested(String);
 private void logWithVarargTranslator(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logWithVarargTranslator(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public transient void translateTo(RingBufferLogEvent, long, Object[]);
 void logMessageInCurrentThread(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void handleRingBufferFull(StackTraceElement, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void actualAsyncLog(RingBufferLogEvent);
 private void onPropertiesPresent(RingBufferLogEvent, java.util.List);
 private static org.apache.logging.log4j.util.StringMap getContextData(RingBufferLogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerDisruptor.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerDisruptor extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static final int SLEEP_MILLIS_BETWEEN_DRAIN_ATTEMPTS = 50;
 private static final int MAX_DRAIN_ATTEMPTS_BEFORE_SHUTDOWN = 200;
 private final Object queueFullEnqueueLock;
 private volatile com.lmax.disruptor.dsl.Disruptor disruptor;
 private String contextName;
 private boolean useThreadLocalTranslator;
 private long backgroundThreadId;
 private AsyncQueueFullPolicy asyncQueueFullPolicy;
 private int ringBufferSize;
 void AsyncLoggerDisruptor(String);
 public String getContextName();
 public void setContextName(String);
 com.lmax.disruptor.dsl.Disruptor getDisruptor();
 public synchronized void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private static boolean hasBacklog(com.lmax.disruptor.dsl.Disruptor);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String);
 EventRoute getEventRoute(org.apache.logging.log4j.Level);
 private int remainingDisruptorCapacity();
 private boolean hasLog4jBeenShutDown(com.lmax.disruptor.dsl.Disruptor);
 boolean tryPublish(RingBufferLogEventTranslator);
 void enqueueLogMessageWhenQueueFull(RingBufferLogEventTranslator);
 void enqueueLogMessageWhenQueueFull(com.lmax.disruptor.EventTranslatorVararg, AsyncLogger, StackTraceElement, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private boolean synchronizeEnqueueWhenQueueFull();
 private void logWarningOnNpeFromDisruptorPublish(RingBufferLogEventTranslator);
 private void logWarningOnNpeFromDisruptorPublish(org.apache.logging.log4j.Level, String, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isUseThreadLocals();
 public void setUseThreadLocals(boolean);
}

org/apache/logging/log4j/core/LifeCycle$State.class

package org.apache.logging.log4j.core;
public final synchronized enum LifeCycle$State {
 public static final LifeCycle$State INITIALIZING;
 public static final LifeCycle$State INITIALIZED;
 public static final LifeCycle$State STARTING;
 public static final LifeCycle$State STARTED;
 public static final LifeCycle$State STOPPING;
 public static final LifeCycle$State STOPPED;
 public static LifeCycle$State[] values();
 public static LifeCycle$State valueOf(String);
 private void LifeCycle$State(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/DateLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class DateLookup implements StrLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void DateLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 private String formatDate(long, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/message/ExtendedThreadInformation.class

package org.apache.logging.log4j.core.message;
synchronized class ExtendedThreadInformation implements org.apache.logging.log4j.message.ThreadInformation {
 private final management.ThreadInfo threadInfo;
 void ExtendedThreadInformation(management.ThreadInfo);
 public void printThreadInfo(StringBuilder);
 public void printStack(StringBuilder, StackTraceElement[]);
 private void formatLock(StringBuilder, management.LockInfo);
 private void formatState(StringBuilder, management.ThreadInfo);
}

org/apache/logging/log4j/core/LifeCycle.class

package org.apache.logging.log4j.core;
public abstract interface LifeCycle {
 public abstract LifeCycle$State getState();
 public abstract void initialize();
 public abstract void start();
 public abstract void stop();
 public abstract boolean isStarted();
 public abstract boolean isStopped();
}

org/apache/logging/log4j/core/Logger$LoggerProxy.class

package org.apache.logging.log4j.core;
public synchronized class Logger$LoggerProxy implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final String name;
 private final org.apache.logging.log4j.message.MessageFactory messageFactory;
 public void Logger$LoggerProxy(String, org.apache.logging.log4j.message.MessageFactory);
 protected Object readResolve() throws java.io.ObjectStreamException;
}

org/apache/logging/log4j/core/LoggerContext.class

package org.apache.logging.log4j.core;
public synchronized class LoggerContext extends AbstractLifeCycle implements org.apache.logging.log4j.spi.LoggerContext, AutoCloseable, org.apache.logging.log4j.spi.Terminable, config.ConfigurationListener, org.apache.logging.log4j.spi.LoggerContextShutdownEnabled {
 public static final String PROPERTY_CONFIG = config;
 private static final config.Configuration NULL_CONFIGURATION;
 private final org.apache.logging.log4j.spi.LoggerRegistry loggerRegistry;
 private final java.util.concurrent.CopyOnWriteArrayList propertyChangeListeners;
 private volatile java.util.List listeners;
 private volatile config.Configuration configuration;
 private static final String EXTERNAL_CONTEXT_KEY = __EXTERNAL_CONTEXT_KEY__;
 private java.util.concurrent.ConcurrentMap externalMap;
 private String contextName;
 private volatile java.net.URI configLocation;
 private util.Cancellable shutdownCallback;
 private final java.util.concurrent.locks.Lock configLock;
 public void LoggerContext(String);
 public void LoggerContext(String, Object);
 public void LoggerContext(String, Object, java.net.URI);
 public void LoggerContext(String, Object, String);
 public void addShutdownListener(org.apache.logging.log4j.spi.LoggerContextShutdownAware);
 public java.util.List getListeners();
 public static LoggerContext getContext();
 public static LoggerContext getContext(boolean);
 public static LoggerContext getContext(ClassLoader, boolean, java.net.URI);
 public void start();
 public void start(config.Configuration);
 private void setUpShutdownHook();
 public void close();
 public void terminate();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getName();
 public Logger getRootLogger();
 public void setName(String);
 public Object getObject(String);
 public Object putObject(String, Object);
 public Object putObjectIfAbsent(String, Object);
 public Object removeObject(String);
 public boolean removeObject(String, Object);
 public void setExternalContext(Object);
 public Object getExternalContext();
 public Logger getLogger(String);
 public java.util.Collection getLoggers();
 public Logger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public config.Configuration getConfiguration();
 public void addFilter(Filter);
 public void removeFilter(Filter);
 public config.Configuration setConfiguration(config.Configuration);
 private void firePropertyChangeEvent(java.beans.PropertyChangeEvent);
 public void addPropertyChangeListener(java.beans.PropertyChangeListener);
 public void removePropertyChangeListener(java.beans.PropertyChangeListener);
 public java.net.URI getConfigLocation();
 public void setConfigLocation(java.net.URI);
 private void reconfigure(java.net.URI);
 public void reconfigure();
 public void reconfigure(config.Configuration);
 public void updateLoggers();
 public void updateLoggers(config.Configuration);
 public synchronized void onChange(config.Reconfigurable);
 private void initApiModule();
 protected Logger newInstance(LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/TimeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class TimeFilter extends AbstractFilter {
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final java.time.format.DateTimeFormatter FORMATTER;
 private static final long HOUR_MS = 3600000;
 private static final long DAY_MS = 86400000;
 private volatile long start;
 private final java.time.LocalTime startTime;
 private volatile long end;
 private final java.time.LocalTime endTime;
 private final long duration;
 private final java.time.ZoneId timeZone;
 void TimeFilter(java.time.LocalTime, java.time.LocalTime, java.time.ZoneId, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result, java.time.LocalDate);
 private void TimeFilter(java.time.LocalTime, java.time.LocalTime, java.time.ZoneId, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private synchronized void adjustTimes(long);
 org.apache.logging.log4j.core.Filter$Result filter(long);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static TimeFilter createFilter(String, String, String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private static java.time.LocalTime parseTimestamp(String, java.time.LocalTime);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/TextRenderer.class

package org.apache.logging.log4j.core.pattern;
public abstract interface TextRenderer {
 public abstract void render(String, StringBuilder, String);
 public abstract void render(StringBuilder, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ThreadNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadNamePatternConverter extends LogEventPatternConverter {
 private static final ThreadNamePatternConverter INSTANCE;
 private void ThreadNamePatternConverter();
 public static ThreadNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$PatternFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$PatternFormatter extends DatePatternConverter$Formatter {
 private final org.apache.logging.log4j.core.util.datetime.FastDateFormat fastDateFormat;
 private final StringBuilder cachedBuffer;
 void DatePatternConverter$PatternFormatter(org.apache.logging.log4j.core.util.datetime.FastDateFormat);
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Cyan.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Cyan extends AbstractStyleNameConverter {
 protected static final String NAME = cyan;
 public void AbstractStyleNameConverter$Cyan(java.util.List, String);
 public static AbstractStyleNameConverter$Cyan newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/ThreadIdPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadIdPatternConverter extends LogEventPatternConverter {
 private static final ThreadIdPatternConverter INSTANCE;
 private void ThreadIdPatternConverter();
 public static ThreadIdPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AnsiEscape.class

package org.apache.logging.log4j.core.pattern;
public final synchronized enum AnsiEscape {
 public static final AnsiEscape CSI;
 public static final AnsiEscape SUFFIX;
 public static final AnsiEscape SEPARATOR;
 public static final AnsiEscape NORMAL;
 public static final AnsiEscape BRIGHT;
 public static final AnsiEscape DIM;
 public static final AnsiEscape UNDERLINE;
 public static final AnsiEscape BLINK;
 public static final AnsiEscape REVERSE;
 public static final AnsiEscape HIDDEN;
 public static final AnsiEscape BLACK;
 public static final AnsiEscape FG_BLACK;
 public static final AnsiEscape RED;
 public static final AnsiEscape FG_RED;
 public static final AnsiEscape GREEN;
 public static final AnsiEscape FG_GREEN;
 public static final AnsiEscape YELLOW;
 public static final AnsiEscape FG_YELLOW;
 public static final AnsiEscape BLUE;
 public static final AnsiEscape FG_BLUE;
 public static final AnsiEscape MAGENTA;
 public static final AnsiEscape FG_MAGENTA;
 public static final AnsiEscape CYAN;
 public static final AnsiEscape FG_CYAN;
 public static final AnsiEscape WHITE;
 public static final AnsiEscape FG_WHITE;
 public static final AnsiEscape DEFAULT;
 public static final AnsiEscape FG_DEFAULT;
 public static final AnsiEscape BG_BLACK;
 public static final AnsiEscape BG_RED;
 public static final AnsiEscape BG_GREEN;
 public static final AnsiEscape BG_YELLOW;
 public static final AnsiEscape BG_BLUE;
 public static final AnsiEscape BG_MAGENTA;
 public static final AnsiEscape BG_CYAN;
 public static final AnsiEscape BG_WHITE;
 private static final String DEFAULT_STYLE;
 private final String code;
 public static AnsiEscape[] values();
 public static AnsiEscape valueOf(String);
 private void AnsiEscape(String, int, String);
 public static String getDefaultStyle();
 public String getCode();
 public static java.util.Map createMap(String, String[]);
 public static java.util.Map createMap(String[], String[]);
 public static transient String createSequence(String[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/HtmlTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class HtmlTextRenderer implements TextRenderer {
 public void HtmlTextRenderer(String[]);
 public void render(String, StringBuilder, String);
 public void render(StringBuilder, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class MessagePatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/ClassNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ClassNamePatternConverter extends NamePatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final String NA = ?;
 private void ClassNamePatternConverter(String[]);
 public static ClassNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$4.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$4 {
 void EncodingPatternConverter$EscapeFormat$4(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class LevelPatternConverter extends LogEventPatternConverter {
 private static final String OPTION_LENGTH = length;
 private static final String OPTION_LOWER = lowerCase;
 private static final LevelPatternConverter INSTANCE;
 private void LevelPatternConverter();
 public static LevelPatternConverter newInstance(String[]);
 private static String left(org.apache.logging.log4j.Level, int);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public String getStyleClass(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntryDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ListOfMapEntryDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ListOfMapEntryDeserializer();
 public java.util.Map deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/ObjectMessageSerializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class ObjectMessageSerializer extends com.fasterxml.jackson.databind.ser.std.StdScalarSerializer {
 private static final long serialVersionUID = 1;
 void ObjectMessageSerializer();
 public void serialize(org.apache.logging.log4j.message.ObjectMessage, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

Log4j-config.xsd

org/apache/logging/log4j/core/appender/AppenderSet$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderSet$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Node node;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void AppenderSet$Builder();
 public AppenderSet build();
 public org.apache.logging.log4j.core.config.Node getNode();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public AppenderSet$Builder withNode(org.apache.logging.log4j.core.config.Node);
 public AppenderSet$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/appender/rewrite/LoggerNameLevelRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public synchronized class LoggerNameLevelRewritePolicy implements RewritePolicy {
 private final String loggerName;
 private final java.util.Map map;
 public static LoggerNameLevelRewritePolicy createPolicy(String, org.apache.logging.log4j.core.util.KeyValuePair[]);
 private static org.apache.logging.log4j.Level getLevel(String);
 private void LoggerNameLevelRewritePolicy(String, java.util.Map);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/HttpAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class HttpAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private java.net.URL url;
 private String method;
 private int connectTimeoutMillis;
 private int readTimeoutMillis;
 private org.apache.logging.log4j.core.config.Property[] headers;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private boolean verifyHostname;
 public void HttpAppender$Builder();
 public HttpAppender build();
 public java.net.URL getUrl();
 public String getMethod();
 public int getConnectTimeoutMillis();
 public int getReadTimeoutMillis();
 public org.apache.logging.log4j.core.config.Property[] getHeaders();
 public org.apache.logging.log4j.core.net.ssl.SslConfiguration getSslConfiguration();
 public boolean isVerifyHostname();
 public HttpAppender$Builder setUrl(java.net.URL);
 public HttpAppender$Builder setMethod(String);
 public HttpAppender$Builder setConnectTimeoutMillis(int);
 public HttpAppender$Builder setReadTimeoutMillis(int);
 public HttpAppender$Builder setHeaders(org.apache.logging.log4j.core.config.Property[]);
 public HttpAppender$Builder setSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public HttpAppender$Builder setVerifyHostname(boolean);
}

org/apache/logging/log4j/core/appender/rolling/action/GzCompressAction$ConfigurableLevelGZIPOutputStream.class

package org.apache.logging.log4j.core.appender.rolling.action;
final synchronized class GzCompressAction$ConfigurableLevelGZIPOutputStream extends java.util.zip.GZIPOutputStream {
 void GzCompressAction$ConfigurableLevelGZIPOutputStream(java.io.OutputStream, int, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/rolling/action/FileRenameAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class FileRenameAction extends AbstractAction {
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean renameEmptyFiles;
 public void FileRenameAction(java.io.File, java.io.File, boolean);
 public boolean execute();
 public java.io.File getDestination();
 public java.io.File getSource();
 public boolean isRenameEmptyFiles();
 public static boolean execute(java.io.File, java.io.File, boolean);
 private static boolean moveFile(java.nio.file.Path, java.nio.file.Path) throws java.io.IOException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAny.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAny implements PathCondition {
 private final PathCondition[] components;
 private transient void IfAny(PathCondition[]);
 public PathCondition[] getDeleteFilters();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAny createOrCondition(PathCondition[]);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$EmptyQueue.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$EmptyQueue extends java.util.concurrent.ArrayBlockingQueue {
 private static final long serialVersionUID = 1;
 void RollingFileManager$EmptyQueue();
 public int remainingCapacity();
 public boolean add(Runnable);
 public void put(Runnable) throws InterruptedException;
 public boolean offer(Runnable, long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public boolean addAll(java.util.Collection);
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy$CronTrigger.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class CronTriggeringPolicy$CronTrigger implements Runnable {
 private void CronTriggeringPolicy$CronTrigger(CronTriggeringPolicy);
 public void run();
}

org/apache/logging/log4j/core/appender/rolling/AbstractRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized class AbstractRolloverStrategy implements RolloverStrategy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 public static final java.util.regex.Pattern PATTERN_COUNTER;
 protected final org.apache.logging.log4j.core.lookup.StrSubstitutor strSubstitutor;
 protected void AbstractRolloverStrategy(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 protected action.Action merge(action.Action, java.util.List, boolean);
 protected int suffixLength(String);
 protected java.util.SortedMap getEligibleFiles(RollingFileManager);
 protected java.util.SortedMap getEligibleFiles(RollingFileManager, boolean);
 protected java.util.SortedMap getEligibleFiles(String, String);
 protected java.util.SortedMap getEligibleFiles(String, String, boolean);
 protected java.util.SortedMap getEligibleFiles(String, String, String, boolean);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AsyncAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class AsyncAppender extends AbstractAppender {
 private static final int DEFAULT_QUEUE_SIZE = 1024;
 private final java.util.concurrent.BlockingQueue queue;
 private final int queueSize;
 private final boolean blocking;
 private final long shutdownTimeout;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private final String errorRef;
 private final boolean includeLocation;
 private org.apache.logging.log4j.core.config.AppenderControl errorAppender;
 private AsyncAppenderEventDispatcher dispatcher;
 private org.apache.logging.log4j.core.async.AsyncQueueFullPolicy asyncQueueFullPolicy;
 private void AsyncAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.AppenderRef[], String, int, boolean, boolean, long, org.apache.logging.log4j.core.config.Configuration, boolean, org.apache.logging.log4j.core.async.BlockingQueueFactory, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private boolean transfer(org.apache.logging.log4j.core.LogEvent);
 public void logMessageInCurrentThread(org.apache.logging.log4j.core.LogEvent);
 public void logMessageInBackgroundThread(org.apache.logging.log4j.core.LogEvent);
 private boolean handleInterruptedException(org.apache.logging.log4j.core.LogEvent);
 private void logToErrorAppenderIfNecessary(boolean, org.apache.logging.log4j.core.LogEvent);
 public static AsyncAppender createAppender(org.apache.logging.log4j.core.config.AppenderRef[], String, boolean, long, int, String, boolean, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Configuration, boolean);
 public static AsyncAppender$Builder newBuilder();
 public String[] getAppenderRefStrings();
 public boolean isIncludeLocation();
 public boolean isBlocking();
 public String getErrorRef();
 public int getQueueCapacity();
 public int getQueueRemainingCapacity();
 public int getQueueSize();
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$OutputStreamManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$OutputStreamManagerFactory implements ManagerFactory {
 private void OutputStreamAppender$OutputStreamManagerFactory();
 public OutputStreamManager createManager(String, OutputStreamAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/AbstractWriterAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractWriterAppender extends AbstractAppender {
 protected final boolean immediateFlush;
 private final WriterManager manager;
 private final java.util.concurrent.locks.ReadWriteLock readWriteLock;
 private final java.util.concurrent.locks.Lock readLock;
 protected void AbstractWriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.config.Property[], WriterManager);
 protected void AbstractWriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, boolean, boolean, WriterManager);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public WriterManager getManager();
 public org.apache.logging.log4j.core.StringLayout getStringLayout();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/db/ColumnMapping$1.class

package org.apache.logging.log4j.core.appender.db;
synchronized class ColumnMapping$1 {
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class ColumnConfig$1 {
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractDriverManagerConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class AbstractDriverManagerConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String actualConnectionString;
 private final String connectionString;
 private final String driverClassName;
 private final char[] password;
 private final org.apache.logging.log4j.core.config.Property[] properties;
 private final char[] userName;
 public static org.apache.logging.log4j.Logger getLogger();
 public void AbstractDriverManagerConnectionSource(String, String, String, char[], char[], org.apache.logging.log4j.core.config.Property[]);
 public String getActualConnectionString();
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String getConnectionString();
 public String getDriverClassName();
 public char[] getPassword();
 public org.apache.logging.log4j.core.config.Property[] getProperties();
 public char[] getUserName();
 protected void loadDriver() throws java.sql.SQLException;
 protected void loadDriver(String) throws java.sql.SQLException;
 protected java.util.Properties toProperties(org.apache.logging.log4j.core.config.Property[]);
 public String toString();
 protected String toString(char[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/DriverManagerConnectionSource$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class DriverManagerConnectionSource$Builder extends AbstractDriverManagerConnectionSource$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void DriverManagerConnectionSource$Builder();
 public DriverManagerConnectionSource build();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$Reconnector.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private volatile boolean shutdown;
 private void JdbcDatabaseManager$Reconnector(JdbcDatabaseManager);
 public void latch();
 void reconnect() throws java.sql.SQLException;
 public void run();
 public void shutdown();
 public String toString();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class RoutingAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 public static final String STATIC_VARIABLES_KEY = staticVariables;
 private static final String DEFAULT_KEY = ROUTING_APPENDER_DEFAULT;
 private final Routes routes;
 private Route defaultRoute;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final java.util.concurrent.ConcurrentMap createdAppenders;
 private final java.util.Map createdAppendersUnmodifiableView;
 private final java.util.concurrent.ConcurrentMap referencedAppenders;
 private final org.apache.logging.log4j.core.appender.rewrite.RewritePolicy rewritePolicy;
 private final PurgePolicy purgePolicy;
 private final org.apache.logging.log4j.core.script.AbstractScript defaultRouteScript;
 private final java.util.concurrent.ConcurrentMap scriptStaticVariables;
 public static RoutingAppender$Builder newBuilder();
 private void RoutingAppender(String, org.apache.logging.log4j.core.Filter, boolean, Routes, org.apache.logging.log4j.core.appender.rewrite.RewritePolicy, org.apache.logging.log4j.core.config.Configuration, PurgePolicy, org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void updatePurgePolicy(String, org.apache.logging.log4j.core.LogEvent);
 private synchronized RoutingAppender$RouteAppenderControl getControl(String, org.apache.logging.log4j.core.LogEvent);
 private RoutingAppender$RouteAppenderControl getAppender(String);
 private org.apache.logging.log4j.core.Appender createAppender(Route, org.apache.logging.log4j.core.LogEvent);
 public java.util.Map getAppenders();
 public void deleteAppender(String);
 public static RoutingAppender createAppender(String, String, Routes, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.appender.rewrite.RewritePolicy, PurgePolicy, org.apache.logging.log4j.core.Filter);
 public Route getDefaultRoute();
 public org.apache.logging.log4j.core.script.AbstractScript getDefaultRouteScript();
 public PurgePolicy getPurgePolicy();
 public org.apache.logging.log4j.core.appender.rewrite.RewritePolicy getRewritePolicy();
 public Routes getRoutes();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public java.util.concurrent.ConcurrentMap getScriptStaticVariables();
}

org/apache/logging/log4j/core/appender/routing/Routes.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class Routes {
 private static final String LOG_EVENT_KEY = logEvent;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final String pattern;
 private final org.apache.logging.log4j.core.script.AbstractScript patternScript;
 private final Route[] routes;
 public static transient Routes createRoutes(String, Route[]);
 public static Routes$Builder newBuilder();
 private transient void Routes(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.script.AbstractScript, String, Route[]);
 public String getPattern(org.apache.logging.log4j.core.LogEvent, java.util.concurrent.ConcurrentMap);
 public org.apache.logging.log4j.core.script.AbstractScript getPatternScript();
 public Route getRoute(String);
 public Route[] getRoutes();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender.class

package org.apache.logging.log4j.core.appender.nosql;
public final synchronized class NoSqlAppender extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender {
 private final String description;
 public static NoSqlAppender createAppender(String, String, org.apache.logging.log4j.core.Filter, String, NoSqlProvider);
 public static NoSqlAppender$Builder newBuilder();
 private void NoSqlAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], NoSqlDatabaseManager);
 public String toString();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$SystemOutStream.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$SystemOutStream extends java.io.OutputStream {
 public void ConsoleAppender$SystemOutStream();
 public void close();
 public void flush();
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/mom/JmsManager.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 static final JmsManager$JmsManagerFactory FACTORY;
 private final JmsManager$JmsManagerConfiguration configuration;
 private volatile JmsManager$Reconnector reconnector;
 private volatile org.apache.logging.log4j.core.net.JndiManager jndiManager;
 private volatile javax.jms.Connection connection;
 private volatile javax.jms.Session session;
 private volatile javax.jms.Destination destination;
 private volatile javax.jms.MessageProducer messageProducer;
 public static JmsManager getJmsManager(String, java.util.Properties, String, String, String, char[], boolean, long);
 private void JmsManager(String, JmsManager$JmsManagerConfiguration);
 private boolean closeConnection();
 private boolean closeJndiManager();
 private boolean closeMessageProducer();
 private boolean closeSession();
 private javax.jms.Connection createConnection(org.apache.logging.log4j.core.net.JndiManager) throws javax.naming.NamingException, javax.jms.JMSException;
 private javax.jms.Destination createDestination(org.apache.logging.log4j.core.net.JndiManager) throws javax.naming.NamingException;
 public javax.jms.Message createMessage(java.io.Serializable) throws javax.jms.JMSException;
 private void createMessageAndSend(org.apache.logging.log4j.core.LogEvent, java.io.Serializable) throws javax.jms.JMSException;
 public javax.jms.MessageConsumer createMessageConsumer() throws javax.jms.JMSException;
 public javax.jms.MessageProducer createMessageProducer(javax.jms.Session, javax.jms.Destination) throws javax.jms.JMSException;
 private JmsManager$Reconnector createReconnector();
 private javax.jms.Session createSession(javax.jms.Connection) throws javax.jms.JMSException;
 public JmsManager$JmsManagerConfiguration getJmsManagerConfiguration();
 org.apache.logging.log4j.core.net.JndiManager getJndiManager();
 Object lookup(String) throws javax.naming.NamingException;
 private javax.jms.MapMessage map(org.apache.logging.log4j.message.MapMessage, javax.jms.MapMessage);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 void send(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/kafka/DefaultKafkaProducerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class DefaultKafkaProducerFactory implements KafkaProducerFactory {
 public void DefaultKafkaProducerFactory();
 public org.apache.kafka.clients.producer.Producer newKafkaProducer(java.util.Properties);
}

org/apache/logging/log4j/core/appender/mom/JmsManager$JmsManagerConfiguration.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsManager$JmsManagerConfiguration {
 private final java.util.Properties jndiProperties;
 private final String connectionFactoryName;
 private final String destinationName;
 private final String userName;
 private final char[] password;
 private final boolean immediateFail;
 private final boolean retry;
 private final long reconnectIntervalMillis;
 void JmsManager$JmsManagerConfiguration(java.util.Properties, String, String, String, char[], boolean, long);
 public String getConnectionFactoryName();
 public String getDestinationName();
 public org.apache.logging.log4j.core.net.JndiManager getJndiManager();
 public java.util.Properties getJndiProperties();
 public char[] getPassword();
 public long getReconnectIntervalMillis();
 public String getUserName();
 public boolean isImmediateFail();
 public boolean isRetry();
 public String toString();
}

org/apache/logging/log4j/core/impl/ExtendedClassInfo.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ExtendedClassInfo implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final boolean exact;
 private final String location;
 private final String version;
 public void ExtendedClassInfo(boolean, String, String);
 public boolean equals(Object);
 public boolean getExact();
 public String getLocation();
 public String getVersion();
 public int hashCode();
 public void renderOn(StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 public String toString();
}

org/apache/logging/log4j/core/impl/Log4jContextFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jContextFactory implements org.apache.logging.log4j.spi.LoggerContextFactory, org.apache.logging.log4j.core.util.ShutdownCallbackRegistry {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final boolean SHUTDOWN_HOOK_ENABLED;
 private final org.apache.logging.log4j.core.selector.ContextSelector selector;
 private final org.apache.logging.log4j.core.util.ShutdownCallbackRegistry shutdownCallbackRegistry;
 public void Log4jContextFactory();
 public void Log4jContextFactory(org.apache.logging.log4j.core.selector.ContextSelector);
 public void Log4jContextFactory(org.apache.logging.log4j.core.util.ShutdownCallbackRegistry);
 public void Log4jContextFactory(org.apache.logging.log4j.core.selector.ContextSelector, org.apache.logging.log4j.core.util.ShutdownCallbackRegistry);
 private static org.apache.logging.log4j.core.selector.ContextSelector createContextSelector();
 private static org.apache.logging.log4j.core.util.ShutdownCallbackRegistry createShutdownCallbackRegistry();
 private void initializeShutdownCallbackRegistry();
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI, String);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, java.util.List, String);
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.selector.ContextSelector getSelector();
 public org.apache.logging.log4j.core.util.ShutdownCallbackRegistry getShutdownCallbackRegistry();
 public void removeContext(org.apache.logging.log4j.spi.LoggerContext);
 public boolean isClassLoaderDependent();
 public org.apache.logging.log4j.core.util.Cancellable addShutdownCallback(Runnable);
 public boolean isShutdownHookEnabled();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/BasicContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class BasicContextSelector implements ContextSelector {
 private static final org.apache.logging.log4j.core.LoggerContext CONTEXT;
 public void BasicContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext locateContext(String, String);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/CoreContextSelectors.class

package org.apache.logging.log4j.core.selector;
public synchronized class CoreContextSelectors {
 public static final Class[] CLASSES;
 public void CoreContextSelectors();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/BasicCommandLineArguments.class

package org.apache.logging.log4j.core.tools;
public synchronized class BasicCommandLineArguments {
 private boolean help;
 public void BasicCommandLineArguments();
 public boolean isHelp();
 public void setHelp(boolean);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultOptionRenderer implements CommandLine$Help$IOptionRenderer {
 public String requiredMarker;
 public Object command;
 private String sep;
 private boolean showDefault;
 void CommandLine$Help$DefaultOptionRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
 private Object createDefaultValue(reflect.Field);
 private CommandLine$Help$Ansi$Text createLongOptionText(reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme, String);
 private CommandLine$Help$Ansi$Text[][] renderDescriptionLines(CommandLine$Option, CommandLine$Help$ColorScheme, String, String, CommandLine$Help$Ansi$Text, Object);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$URLConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$URLConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$URLConverter();
 public java.net.URL convert(String) throws java.net.MalformedURLException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$URIConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$URIConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$URIConverter();
 public java.net.URI convert(String) throws java.net.URISyntaxException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$TextTable$Cell.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$TextTable$Cell {
 public final int column;
 public final int row;
 public void CommandLine$Help$TextTable$Cell(int, int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$FloatConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$FloatConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$FloatConverter();
 public Float convert(String);
}

org/apache/logging/log4j/core/net/ssl/MemoryPasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class MemoryPasswordProvider implements PasswordProvider {
 private final char[] password;
 public void MemoryPasswordProvider(char[]);
 public char[] getPassword();
 public void clearSecrets();
}

org/apache/logging/log4j/core/net/SocketPerformancePreferences.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketPerformancePreferences implements org.apache.logging.log4j.core.util.Builder, Cloneable {
 private int bandwidth;
 private int connectionTime;
 private int latency;
 public void SocketPerformancePreferences();
 public static SocketPerformancePreferences newBuilder();
 public void apply(java.net.Socket);
 public SocketPerformancePreferences build();
 public int getBandwidth();
 public int getConnectionTime();
 public int getLatency();
 public void setBandwidth(int);
 public void setConnectionTime(int);
 public void setLatency(int);
 public String toString();
}

org/apache/logging/log4j/core/net/SocketAddress$Builder.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketAddress$Builder implements org.apache.logging.log4j.core.util.Builder {
 private java.net.InetAddress host;
 private int port;
 public void SocketAddress$Builder();
 public SocketAddress$Builder setHost(java.net.InetAddress);
 public SocketAddress$Builder setPort(int);
 public SocketAddress build();
}

org/apache/logging/log4j/core/net/TcpSocketManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class TcpSocketManager$FactoryData {
 protected final String host;
 protected final int port;
 protected final int connectTimeoutMillis;
 protected final int reconnectDelayMillis;
 protected final boolean immediateFail;
 protected final org.apache.logging.log4j.core.Layout layout;
 protected final int bufferSize;
 protected final SocketOptions socketOptions;
 public void TcpSocketManager$FactoryData(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public String toString();
}

org/apache/logging/log4j/core/net/DatagramSocketManager$DatagramSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$DatagramSocketManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void DatagramSocketManager$DatagramSocketManagerFactory();
 public DatagramSocketManager createManager(String, DatagramSocketManager$FactoryData);
}

org/apache/logging/log4j/core/util/Constants.class

package org.apache.logging.log4j.core.util;
public final synchronized class Constants {
 public static final String LOG4J_LOG_EVENT_FACTORY = Log4jLogEventFactory;
 public static final String LOG4J_CONTEXT_SELECTOR = Log4jContextSelector;
 public static final String LOG4J_DEFAULT_STATUS_LEVEL = Log4jDefaultStatusLevel;
 public static final String JNDI_CONTEXT_NAME = java:comp/env/log4j/context-name;
 public static final int MILLIS_IN_SECONDS = 1000;
 public static final boolean FORMAT_MESSAGES_IN_BACKGROUND;
 public static final boolean FORMAT_MESSAGES_PATTERN_DISABLE_LOOKUPS;
 public static final boolean IS_WEB_APP;
 public static final boolean ENABLE_THREADLOCALS;
 public static final boolean ENABLE_DIRECT_ENCODERS;
 public static final int INITIAL_REUSABLE_MESSAGE_SIZE;
 public static final int MAX_REUSABLE_MESSAGE_SIZE;
 public static final int ENCODER_CHAR_BUFFER_SIZE;
 public static final int ENCODER_BYTE_BUFFER_SIZE;
 private static int size(String, int);
 private void Constants();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat$FixedFormat.class

package org.apache.logging.log4j.core.util.datetime;
public final synchronized enum FixedDateFormat$FixedFormat {
 public static final FixedDateFormat$FixedFormat ABSOLUTE;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_MICROS;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_NANOS;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_PERIOD;
 public static final FixedDateFormat$FixedFormat COMPACT;
 public static final FixedDateFormat$FixedFormat DATE;
 public static final FixedDateFormat$FixedFormat DATE_PERIOD;
 public static final FixedDateFormat$FixedFormat DEFAULT;
 public static final FixedDateFormat$FixedFormat DEFAULT_MICROS;
 public static final FixedDateFormat$FixedFormat DEFAULT_NANOS;
 public static final FixedDateFormat$FixedFormat DEFAULT_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601_BASIC;
 public static final FixedDateFormat$FixedFormat ISO8601_BASIC_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HH;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HHMM;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HHCMM;
 public static final FixedDateFormat$FixedFormat ISO8601_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601_PERIOD_MICROS;
 public static final FixedDateFormat$FixedFormat US_MONTH_DAY_YEAR2_TIME;
 public static final FixedDateFormat$FixedFormat US_MONTH_DAY_YEAR4_TIME;
 private static final String DEFAULT_SECOND_FRACTION_PATTERN = SSS;
 private static final int MILLI_FRACTION_DIGITS;
 private static final char SECOND_FRACTION_PATTERN = 110;
 private final String pattern;
 private final String datePattern;
 private final int escapeCount;
 private final char timeSeparatorChar;
 private final int timeSeparatorLength;
 private final char millisSeparatorChar;
 private final int millisSeparatorLength;
 private final int secondFractionDigits;
 private final FixedDateFormat$FixedTimeZoneFormat fixedTimeZoneFormat;
 private static final int[] EMPTY_RANGE;
 public static FixedDateFormat$FixedFormat[] values();
 public static FixedDateFormat$FixedFormat valueOf(String);
 private void FixedDateFormat$FixedFormat(String, int, String, String, int, char, int, char, int, int, FixedDateFormat$FixedTimeZoneFormat);
 public String getPattern();
 public String getDatePattern();
 public static FixedDateFormat$FixedFormat lookup(String);
 static FixedDateFormat$FixedFormat lookupIgnoringNanos(String);
 private static int[] nanoRange(String);
 public int getLength();
 public int getDatePatternLength();
 public FastDateFormat getFastDateFormat();
 public FastDateFormat getFastDateFormat(java.util.TimeZone);
 public int getSecondFractionDigits();
 public FixedDateFormat$FixedTimeZoneFormat getFixedTimeZoneFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$StrategyAndWidth.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$StrategyAndWidth {
 final FastDateParser$Strategy strategy;
 final int width;
 void FastDateParser$StrategyAndWidth(FastDateParser$Strategy, int);
 int getMaxWidth(java.util.ListIterator);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitMonthField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitMonthField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$TwoDigitMonthField INSTANCE;
 void FastDatePrinter$TwoDigitMonthField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneNumberRule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneNumberRule implements FastDatePrinter$Rule {
 static final FastDatePrinter$TimeZoneNumberRule INSTANCE_COLON;
 static final FastDatePrinter$TimeZoneNumberRule INSTANCE_NO_COLON;
 final boolean mColon;
 void FastDatePrinter$TimeZoneNumberRule(boolean);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Booleans.class

package org.apache.logging.log4j.core.util;
public final synchronized class Booleans {
 private void Booleans();
 public static boolean parseBoolean(String, boolean);
}

org/apache/logging/log4j/core/util/Builder.class

package org.apache.logging.log4j.core.util;
public abstract interface Builder {
 public abstract Object build();
}

org/apache/logging/log4j/core/util/WatchManager$LocalUUID.class

package org.apache.logging.log4j.core.util;
synchronized class WatchManager$LocalUUID {
 private static final long LOW_MASK = 4294967295;
 private static final long MID_MASK = 281470681743360;
 private static final long HIGH_MASK = 1152640029630136320;
 private static final int NODE_SIZE = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_4 = 32;
 private static final int SHIFT_6 = 48;
 private static final int HUNDRED_NANOS_PER_MILLI = 10000;
 private static final long NUM_100NS_INTERVALS_SINCE_UUID_EPOCH = 122192928000000000;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private static final long TYPE1 = 4096;
 private static final byte VARIANT = -128;
 private static final int SEQUENCE_MASK = 16383;
 private void WatchManager$LocalUUID();
 public static java.util.UUID get();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ContextDataProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface ContextDataProvider {
 public abstract java.util.Map supplyContextData();
 public org.apache.logging.log4j.util.StringMap supplyStringMap();
}

org/apache/logging/log4j/core/util/SecretKeyProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface SecretKeyProvider {
 public abstract javax.crypto.SecretKey getSecretKey();
}

org/apache/logging/log4j/core/util/Log4jThread.class

package org.apache.logging.log4j.core.util;
public synchronized class Log4jThread extends Thread {
 static final String PREFIX = Log4j2-;
 private static final java.util.concurrent.atomic.AtomicLong threadInitNumber;
 private static long nextThreadNum();
 private static String toThreadName(Object);
 public void Log4jThread();
 public void Log4jThread(Runnable);
 public void Log4jThread(Runnable, String);
 public void Log4jThread(String);
 public void Log4jThread(ThreadGroup, Runnable);
 public void Log4jThread(ThreadGroup, Runnable, String);
 public void Log4jThread(ThreadGroup, Runnable, String, long);
 public void Log4jThread(ThreadGroup, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/AbstractLifeCycle.class

package org.apache.logging.log4j.core;
public synchronized class AbstractLifeCycle implements LifeCycle2 {
 public static final int DEFAULT_STOP_TIMEOUT = 0;
 public static final java.util.concurrent.TimeUnit DEFAULT_STOP_TIMEUNIT;
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private volatile LifeCycle$State state;
 public void AbstractLifeCycle();
 protected static org.apache.logging.log4j.Logger getStatusLogger();
 protected boolean equalsImpl(Object);
 public LifeCycle$State getState();
 protected int hashCodeImpl();
 public boolean isInitialized();
 public boolean isStarted();
 public boolean isStarting();
 public boolean isStopped();
 public boolean isStopping();
 protected void setStarted();
 protected void setStarting();
 protected void setState(LifeCycle$State);
 protected void setStopped();
 protected void setStopping();
 public void initialize();
 public void start();
 public void stop();
 protected boolean stop(java.util.concurrent.Future);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/ConfigurationFileWatcher.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationFileWatcher extends org.apache.logging.log4j.core.util.AbstractWatcher implements org.apache.logging.log4j.core.util.FileWatcher {
 private java.io.File file;
 private long lastModifiedMillis;
 public void ConfigurationFileWatcher(Configuration, Reconfigurable, java.util.List, long);
 public long getLastModified();
 public void fileModified(java.io.File);
 public void watching(org.apache.logging.log4j.core.util.Source);
 public boolean isModified();
 public org.apache.logging.log4j.core.util.Watcher newWatcher(Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/config/AppenderRef.class

package org.apache.logging.log4j.core.config;
public final synchronized class AppenderRef {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String ref;
 private final org.apache.logging.log4j.Level level;
 private final org.apache.logging.log4j.core.Filter filter;
 private void AppenderRef(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public String getRef();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.core.Filter getFilter();
 public String toString();
 public static AppenderRef createAppenderRef(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ScriptArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.AbstractConfiguration configuration;
 private org.apache.logging.log4j.core.config.Node node;
 public void ScriptArbiter$Builder();
 public ScriptArbiter$Builder setConfiguration(org.apache.logging.log4j.core.config.AbstractConfiguration);
 public ScriptArbiter$Builder setNode(org.apache.logging.log4j.core.config.Node);
 public ScriptArbiter$Builder asBuilder();
 public ScriptArbiter build();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/ResolverUtil$Test.class

package org.apache.logging.log4j.core.config.plugins.util;
public abstract interface ResolverUtil$Test {
 public abstract boolean matches(Class);
 public abstract boolean matches(java.net.URI);
 public abstract boolean doesMatchClass();
 public abstract boolean doesMatchResource();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharsetConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharsetConverter implements TypeConverter {
 public void TypeConverters$CharsetConverter();
 public java.nio.charset.Charset convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BigDecimalConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BigDecimalConverter implements TypeConverter {
 public void TypeConverters$BigDecimalConverter();
 public java.math.BigDecimal convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ShortConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ShortConverter implements TypeConverter {
 public void TypeConverters$ShortConverter();
 public Short convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/DateTypeConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public final synchronized class DateTypeConverter {
 private static final java.util.Map CONSTRUCTORS;
 public static java.util.Date fromMillis(long, Class);
 private void DateTypeConverter();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UrlConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UrlConverter implements TypeConverter {
 public void TypeConverters$UrlConverter();
 public java.net.URL convert(String) throws java.net.MalformedURLException;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CronExpressionConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CronExpressionConverter implements TypeConverter {
 public void TypeConverters$CronExpressionConverter();
 public org.apache.logging.log4j.core.util.CronExpression convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$PatternConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$PatternConverter implements TypeConverter {
 public void TypeConverters$PatternConverter();
 public java.util.regex.Pattern convert(String);
}

org/apache/logging/log4j/core/config/Order.class

package org.apache.logging.log4j.core.config;
public abstract interface Order extends annotation.Annotation {
 public abstract int value();
}

org/apache/logging/log4j/core/config/status/StatusConfiguration.class

package org.apache.logging.log4j.core.config.status;
public synchronized class StatusConfiguration {
 private static final java.io.PrintStream DEFAULT_STREAM;
 private static final org.apache.logging.log4j.Level DEFAULT_STATUS;
 private static final StatusConfiguration$Verbosity DEFAULT_VERBOSITY;
 private final java.util.Collection errorMessages;
 private final org.apache.logging.log4j.status.StatusLogger logger;
 private volatile boolean initialized;
 private java.io.PrintStream destination;
 private org.apache.logging.log4j.Level status;
 private StatusConfiguration$Verbosity verbosity;
 private String[] verboseClasses;
 public void StatusConfiguration();
 public void error(String);
 public StatusConfiguration withDestination(String);
 private java.io.PrintStream parseStreamName(String) throws java.net.URISyntaxException, java.io.FileNotFoundException;
 public StatusConfiguration withStatus(String);
 public StatusConfiguration withStatus(org.apache.logging.log4j.Level);
 public StatusConfiguration withVerbosity(String);
 public transient StatusConfiguration withVerboseClasses(String[]);
 public void initialize();
 private boolean configureExistingStatusConsoleListener();
 private void registerNewStatusConsoleListener();
 private void migrateSavedLogMessages();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfigurationFactory.class

package org.apache.logging.log4j.core.config.xml;
public synchronized class XmlConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 public static final String[] SUFFIXES;
 public void XmlConfigurationFactory();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/json/JsonConfiguration$Status.class

package org.apache.logging.log4j.core.config.json;
synchronized class JsonConfiguration$Status {
 private final com.fasterxml.jackson.databind.JsonNode node;
 private final String name;
 private final JsonConfiguration$ErrorType errorType;
 public void JsonConfiguration$Status(String, com.fasterxml.jackson.databind.JsonNode, JsonConfiguration$ErrorType);
 public String toString();
}

org/apache/logging/log4j/core/config/properties/PropertiesConfigurationFactory.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 public void PropertiesConfigurationFactory();
 protected String[] getSupportedTypes();
 public PropertiesConfiguration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
}

org/apache/logging/log4j/core/config/ConfigurationListener.class

package org.apache.logging.log4j.core.config;
public abstract interface ConfigurationListener {
 public abstract void onChange(Reconfigurable);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultRootLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultRootLoggerComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder {
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, boolean);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultLayoutComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultLayoutComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder {
 public void DefaultLayoutComponentBuilder(DefaultConfigurationBuilder, String);
}

org/apache/logging/log4j/core/config/builder/api/CustomLevelComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface CustomLevelComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/KeyValuePairComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface KeyValuePairComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/Component.class

package org.apache.logging.log4j.core.config.builder.api;
public synchronized class Component {
 private final java.util.Map attributes;
 private final java.util.List components;
 private final String pluginType;
 private final String value;
 public void Component(String);
 public void Component(String, String);
 public void Component(String, String, String);
 public void Component();
 public String addAttribute(String, String);
 public void addComponent(Component);
 public java.util.Map getAttributes();
 public java.util.List getComponents();
 public String getPluginType();
 public String getValue();
}

org/apache/logging/log4j/core/config/Node.class

package org.apache.logging.log4j.core.config;
public synchronized class Node {
 public static final String CATEGORY = Core;
 private Node parent;
 private final String name;
 private String value;
 private final plugins.util.PluginType type;
 private final java.util.Map attributes;
 private final java.util.List children;
 private Object object;
 public void Node(Node, String, plugins.util.PluginType);
 public void Node();
 public void Node(Node);
 public void setParent(Node);
 public java.util.Map getAttributes();
 public java.util.List getChildren();
 public boolean hasChildren();
 public String getValue();
 public void setValue(String);
 public Node getParent();
 public String getName();
 public boolean isRoot();
 public void setObject(Object);
 public Object getObject();
 public Object getObject(Class);
 public boolean isInstanceOf(Class);
 public plugins.util.PluginType getType();
 public String toString();
}

org/apache/logging/log4j/core/jmx/LoggerContextAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface LoggerContextAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s;
 public static final String NOTIF_TYPE_RECONFIGURED = com.apache.logging.log4j.core.jmx.config.reconfigured;
 public abstract javax.management.ObjectName getObjectName();
 public abstract String getStatus();
 public abstract String getName();
 public abstract String getConfigLocationUri();
 public abstract void setConfigLocationUri(String) throws java.net.URISyntaxException, java.io.IOException;
 public abstract String getConfigText() throws java.io.IOException;
 public abstract String getConfigText(String) throws java.io.IOException;
 public abstract void setConfigText(String, String);
 public abstract String getConfigName();
 public abstract String getConfigClassName();
 public abstract String getConfigFilter();
 public abstract java.util.Map getConfigProperties();
}

org/apache/logging/log4j/core/jmx/LoggerConfigAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class LoggerConfigAdmin implements LoggerConfigAdminMBean {
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 private final org.apache.logging.log4j.core.config.LoggerConfig loggerConfig;
 private final javax.management.ObjectName objectName;
 public void LoggerConfigAdmin(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.LoggerConfig);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLevel();
 public void setLevel(String);
 public boolean isAdditive();
 public void setAdditive(boolean);
 public boolean isIncludeLocation();
 public String getFilter();
 public String[] getAppenderRefs();
}

org/apache/logging/log4j/core/layout/PatternMatch.class

package org.apache.logging.log4j.core.layout;
public final synchronized class PatternMatch {
 private final String key;
 private final String pattern;
 public void PatternMatch(String, String);
 public String getKey();
 public String getPattern();
 public String toString();
 public static PatternMatch$Builder newBuilder();
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/layout/HtmlLayout$FontSize.class

package org.apache.logging.log4j.core.layout;
public final synchronized enum HtmlLayout$FontSize {
 public static final HtmlLayout$FontSize SMALLER;
 public static final HtmlLayout$FontSize XXSMALL;
 public static final HtmlLayout$FontSize XSMALL;
 public static final HtmlLayout$FontSize SMALL;
 public static final HtmlLayout$FontSize MEDIUM;
 public static final HtmlLayout$FontSize LARGE;
 public static final HtmlLayout$FontSize XLARGE;
 public static final HtmlLayout$FontSize XXLARGE;
 public static final HtmlLayout$FontSize LARGER;
 private final String size;
 public static HtmlLayout$FontSize[] values();
 public static HtmlLayout$FontSize valueOf(String);
 private void HtmlLayout$FontSize(String, int, String);
 public String getFontSize();
 public static HtmlLayout$FontSize getFontSize(String);
 public HtmlLayout$FontSize larger();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/XmlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class XmlLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void XmlLayout$Builder();
 public XmlLayout build();
}

org/apache/logging/log4j/core/layout/internal/IncludeChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class IncludeChecker implements ListChecker {
 private final java.util.List list;
 public void IncludeChecker(java.util.List);
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/XmlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class XmlLayout extends AbstractJacksonLayout {
 private static final String ROOT_TAG = Events;
 protected void XmlLayout(boolean, boolean, boolean, boolean, java.nio.charset.Charset, boolean);
 private void XmlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static XmlLayout createLayout(boolean, boolean, boolean, boolean, java.nio.charset.Charset, boolean);
 public static XmlLayout$Builder newBuilder();
 public static XmlLayout createDefaultLayout();
}

org/apache/logging/log4j/core/layout/XmlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class XmlLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractJacksonLayout$Builder extends AbstractStringLayout$Builder {
 private boolean eventEol;
 private String endOfLine;
 private boolean compact;
 private boolean complete;
 private boolean locationInfo;
 private boolean properties;
 private boolean includeStacktrace;
 private boolean stacktraceAsString;
 private boolean includeNullDelimiter;
 private boolean includeTimeMillis;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 public void AbstractJacksonLayout$Builder();
 protected String toStringOrNull(byte[]);
 public boolean getEventEol();
 public String getEndOfLine();
 public boolean isCompact();
 public boolean isComplete();
 public boolean isLocationInfo();
 public boolean isProperties();
 public boolean isIncludeStacktrace();
 public boolean isStacktraceAsString();
 public boolean isIncludeNullDelimiter();
 public boolean isIncludeTimeMillis();
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public AbstractJacksonLayout$Builder setEventEol(boolean);
 public AbstractJacksonLayout$Builder setEndOfLine(String);
 public AbstractJacksonLayout$Builder setCompact(boolean);
 public AbstractJacksonLayout$Builder setComplete(boolean);
 public AbstractJacksonLayout$Builder setLocationInfo(boolean);
 public AbstractJacksonLayout$Builder setProperties(boolean);
 public AbstractJacksonLayout$Builder setIncludeStacktrace(boolean);
 public AbstractJacksonLayout$Builder setStacktraceAsString(boolean);
 public AbstractJacksonLayout$Builder setIncludeNullDelimiter(boolean);
 public AbstractJacksonLayout$Builder setIncludeTimeMillis(boolean);
 public AbstractJacksonLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
}

org/apache/logging/log4j/core/layout/HtmlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class HtmlLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean locationInfo;
 private String title;
 private String contentType;
 private java.nio.charset.Charset charset;
 private HtmlLayout$FontSize fontSize;
 private String fontName;
 private String datePattern;
 private String timezone;
 private void HtmlLayout$Builder();
 public HtmlLayout$Builder withLocationInfo(boolean);
 public HtmlLayout$Builder withTitle(String);
 public HtmlLayout$Builder withContentType(String);
 public HtmlLayout$Builder withCharset(java.nio.charset.Charset);
 public HtmlLayout$Builder withFontSize(HtmlLayout$FontSize);
 public HtmlLayout$Builder withFontName(String);
 public HtmlLayout$Builder setDatePattern(String);
 public HtmlLayout$Builder setTimezone(String);
 public HtmlLayout build();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSelectorSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternSelectorSerializer implements AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
 private final PatternSelector patternSelector;
 private final org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private void PatternLayout$PatternSelectorSerializer(PatternSelector, org.apache.logging.log4j.core.pattern.RegexReplacement);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/osgi/BundleContextSelector.class

package org.apache.logging.log4j.core.osgi;
public synchronized class BundleContextSelector extends org.apache.logging.log4j.core.selector.ClassLoaderContextSelector {
 public void BundleContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 private org.apache.logging.log4j.core.LoggerContext getLoggerContext(org.osgi.framework.Bundle);
 private void removeLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 private static boolean hasContext(org.osgi.framework.Bundle);
 private static org.apache.logging.log4j.core.LoggerContext locateContext(org.osgi.framework.Bundle, java.net.URI);
}

org/apache/logging/log4j/core/async/AsyncLoggerDefaultExceptionHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerDefaultExceptionHandler extends AbstractAsyncExceptionHandler {
 public void AsyncLoggerDefaultExceptionHandler();
}

org/apache/logging/log4j/core/async/AsyncLoggerDisruptor$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerDisruptor$1 extends org.apache.logging.log4j.core.util.Log4jThreadFactory {
 void AsyncLoggerDisruptor$1(AsyncLoggerDisruptor, String, boolean, int);
 public Thread newThread(Runnable);
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$Idle.class

package org.apache.logging.log4j.core.async;
abstract interface JCToolsBlockingQueueFactory$Idle {
 public abstract int idle(int);
}

org/apache/logging/log4j/core/async/AsyncLoggerContext.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerContext extends org.apache.logging.log4j.core.LoggerContext {
 private final AsyncLoggerDisruptor loggerDisruptor;
 public void AsyncLoggerContext(String);
 public void AsyncLoggerContext(String, Object);
 public void AsyncLoggerContext(String, Object, java.net.URI);
 public void AsyncLoggerContext(String, Object, String);
 protected org.apache.logging.log4j.core.Logger newInstance(org.apache.logging.log4j.core.LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 public void setName(String);
 public void start();
 public void start(org.apache.logging.log4j.core.config.Configuration);
 private void maybeStartHelper(org.apache.logging.log4j.core.config.Configuration);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin();
 public void setUseThreadLocals(boolean);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDelegate.class

package org.apache.logging.log4j.core.async;
public abstract interface AsyncLoggerConfigDelegate {
 public abstract org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String, String);
 public abstract EventRoute getEventRoute(org.apache.logging.log4j.Level);
 public abstract void enqueueEvent(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 public abstract boolean tryEnqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 public abstract void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
}

org/apache/logging/log4j/core/lookup/UpperLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class UpperLookup implements StrLookup {
 public void UpperLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/parser/JsonLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class JsonLogEventParser extends AbstractJacksonLogEventParser {
 public void JsonLogEventParser();
}

org/apache/logging/log4j/core/script/ScriptManager$ThreadLocalScriptRunner.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$ThreadLocalScriptRunner extends ScriptManager$AbstractScriptRunner {
 private final AbstractScript script;
 private final ThreadLocal runners;
 public void ScriptManager$ThreadLocalScriptRunner(ScriptManager, AbstractScript);
 public Object execute(javax.script.Bindings);
 public AbstractScript getScript();
 public javax.script.ScriptEngine getScriptEngine();
}

org/apache/logging/log4j/core/script/Script.class

package org.apache.logging.log4j.core.script;
public synchronized class Script extends AbstractScript {
 private static final String ATTR_LANGUAGE = language;
 private static final String ATTR_SCRIPT_TEXT = scriptText;
 static final String PLUGIN_NAME = Script;
 public void Script(String, String, String);
 public static Script createScript(String, String, String);
 public String toString();
}

org/apache/logging/log4j/core/script/ScriptManager$ScriptRunner.class

package org.apache.logging.log4j.core.script;
abstract interface ScriptManager$ScriptRunner {
 public abstract javax.script.Bindings createBindings();
 public abstract Object execute(javax.script.Bindings);
 public abstract AbstractScript getScript();
 public abstract javax.script.ScriptEngine getScriptEngine();
}

org/apache/logging/log4j/core/DefaultLoggerContextAccessor.class

package org.apache.logging.log4j.core;
public synchronized class DefaultLoggerContextAccessor implements LoggerContextAccessor {
 public static DefaultLoggerContextAccessor INSTANCE;
 public void DefaultLoggerContextAccessor();
 public LoggerContext getLoggerContext();
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/DenyAllFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class DenyAllFilter extends AbstractFilter {
 private void DenyAllFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static DenyAllFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/filter/ThreadContextMapFilter.class

package org.apache.logging.log4j.core.filter;
public synchronized class ThreadContextMapFilter extends MapFilter {
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 private final String key;
 private final String value;
 private final boolean useMap;
 public void ThreadContextMapFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private org.apache.logging.log4j.core.Filter$Result filter();
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public static ThreadContextMapFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/AbstractFilterable$Builder.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilterable$Builder {
 private org.apache.logging.log4j.core.Filter filter;
 private org.apache.logging.log4j.core.config.Property[] propertyArray;
 public void AbstractFilterable$Builder();
 public AbstractFilterable$Builder asBuilder();
 public org.apache.logging.log4j.core.Filter getFilter();
 public org.apache.logging.log4j.core.config.Property[] getPropertyArray();
 public AbstractFilterable$Builder setFilter(org.apache.logging.log4j.core.Filter);
 public AbstractFilterable$Builder setPropertyArray(org.apache.logging.log4j.core.config.Property[]);
 public AbstractFilterable$Builder withFilter(org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/filter/BurstFilter$LogDelay.class

package org.apache.logging.log4j.core.filter;
synchronized class BurstFilter$LogDelay implements java.util.concurrent.Delayed {
 private long expireTime;
 void BurstFilter$LogDelay(long);
 public void setDelay(long);
 public long getDelay(java.util.concurrent.TimeUnit);
 public int compareTo(java.util.concurrent.Delayed);
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class NameAbbreviator {
 private static final NameAbbreviator DEFAULT;
 public void NameAbbreviator();
 public static NameAbbreviator getAbbreviator(String);
 public static NameAbbreviator getDefaultAbbreviator();
 public abstract void abbreviate(String, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ThreadPriorityPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadPriorityPatternConverter extends LogEventPatternConverter {
 private static final ThreadPriorityPatternConverter INSTANCE;
 private void ThreadPriorityPatternConverter();
 public static ThreadPriorityPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MdcPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MdcPatternConverter extends LogEventPatternConverter {
 private final String key;
 private final String[] keys;
 private final boolean full;
 private static final org.apache.logging.log4j.util.TriConsumer WRITE_KEY_VALUES_INTO;
 private void MdcPatternConverter(String[]);
 public static MdcPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private static void appendFully(org.apache.logging.log4j.util.ReadOnlyStringMap, StringBuilder);
 private static void appendSelectedKeys(String[], org.apache.logging.log4j.util.ReadOnlyStringMap, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$UnixMillisFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$UnixMillisFormatter extends DatePatternConverter$Formatter {
 private void DatePatternConverter$UnixMillisFormatter();
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class AbstractStyleNameConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final String style;
 protected void AbstractStyleNameConverter(String, java.util.List, String);
 protected static AbstractStyleNameConverter newInstance(Class, String, org.apache.logging.log4j.core.config.Configuration, String[]);
 private static java.util.List toPatternFormatterList(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class DatePatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private static final String UNIX_FORMAT = UNIX;
 private static final String UNIX_MILLIS_FORMAT = UNIX_MILLIS;
 private final String[] options;
 private final ThreadLocal threadLocalMutableInstant;
 private final ThreadLocal threadLocalFormatter;
 private final java.util.concurrent.atomic.AtomicReference cachedTime;
 private final DatePatternConverter$Formatter formatter;
 private void DatePatternConverter(String[]);
 private DatePatternConverter$CachedTime fromEpochMillis(long);
 private DatePatternConverter$Formatter createFormatter(String[]);
 public static DatePatternConverter newInstance(String[]);
 private static DatePatternConverter$Formatter createFixedFormatter(org.apache.logging.log4j.core.util.datetime.FixedDateFormat);
 private static DatePatternConverter$Formatter createNonFixedFormatter(String[]);
 public void format(java.util.Date, StringBuilder);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(long, StringBuilder);
 private org.apache.logging.log4j.core.time.MutableInstant getMutableInstant();
 public void format(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 private void formatWithoutAllocation(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 private DatePatternConverter$Formatter getThreadLocalFormatter();
 private void formatWithoutThreadLocals(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public void format(Object, StringBuilder);
 public transient void format(StringBuilder, Object[]);
 public String getPattern();
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$LevelMapLevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class LevelPatternConverter$LevelMapLevelPatternConverter extends LevelPatternConverter {
 private final java.util.Map levelMap;
 private void LevelPatternConverter$LevelMapLevelPatternConverter(java.util.Map);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$SimpleLevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class LevelPatternConverter$SimpleLevelPatternConverter extends LevelPatternConverter {
 private void LevelPatternConverter$SimpleLevelPatternConverter();
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized enum EncodingPatternConverter$EscapeFormat {
 public static final EncodingPatternConverter$EscapeFormat HTML;
 public static final EncodingPatternConverter$EscapeFormat JSON;
 public static final EncodingPatternConverter$EscapeFormat CRLF;
 public static final EncodingPatternConverter$EscapeFormat XML;
 public static EncodingPatternConverter$EscapeFormat[] values();
 public static EncodingPatternConverter$EscapeFormat valueOf(String);
 private void EncodingPatternConverter$EscapeFormat(String, int);
 abstract void escape(StringBuilder, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class ThrowablePatternConverter extends LogEventPatternConverter {
 protected final java.util.List formatters;
 private String rawOption;
 private final boolean subShortOption;
 private final boolean nonStandardLineSeparator;
 protected final org.apache.logging.log4j.core.impl.ThrowableFormatOptions options;
 protected void ThrowablePatternConverter(String, String, String[]);
 protected void ThrowablePatternConverter(String, String, String[], org.apache.logging.log4j.core.config.Configuration);
 public static ThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void formatSubShortOption(Throwable, String, StringBuilder);
 private void formatOption(Throwable, String, StringBuilder);
 public boolean handlesThrowable();
 protected String getSuffix(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.impl.ThrowableFormatOptions getOptions();
}

org/apache/logging/log4j/core/pattern/FileDatePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FileDatePatternConverter {
 private void FileDatePatternConverter();
 public static PatternConverter newInstance(String[]);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Black.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Black extends AbstractStyleNameConverter {
 protected static final String NAME = black;
 public void AbstractStyleNameConverter$Black(java.util.List, String);
 public static AbstractStyleNameConverter$Black newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/LogEventPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class LogEventPatternConverter extends AbstractPatternConverter {
 protected void LogEventPatternConverter(String, String);
 public abstract void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public boolean handlesThrowable();
 public boolean isVariable();
}

org/apache/logging/log4j/core/jackson/Initializers$SetupContextJsonInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SetupContextJsonInitializer {
 void Initializers$SetupContextJsonInitializer();
 void setupModule(com.fasterxml.jackson.databind.Module$SetupContext, boolean, boolean);
}

org/apache/logging/log4j/core/jackson/ContextDataDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ContextDataDeserializer();
 public org.apache.logging.log4j.util.StringMap deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jYamlModule.class

package org.apache.logging.log4j.core.jackson;
final synchronized class Log4jYamlModule extends com.fasterxml.jackson.databind.module.SimpleModule {
 private static final long serialVersionUID = 1;
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 void Log4jYamlModule(boolean, boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/LevelMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LevelMixIn {
 void LevelMixIn();
 public static org.apache.logging.log4j.Level getLevel(String);
 public abstract String name();
}

org/apache/logging/log4j/core/appender/NullAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class NullAppender extends AbstractAppender {
 public static final String PLUGIN_NAME = Null;
 public static NullAppender createAppender(String);
 private void NullAppender(String);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/rewrite/PropertiesRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class PropertiesRewritePolicy implements RewritePolicy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map properties;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private void PropertiesRewritePolicy(org.apache.logging.log4j.core.config.Configuration, java.util.List);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static PropertiesRewritePolicy createPolicy(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized enum ConsoleAppender$Target {
 public static final ConsoleAppender$Target SYSTEM_OUT;
 public static final ConsoleAppender$Target SYSTEM_ERR;
 public static ConsoleAppender$Target[] values();
 public static ConsoleAppender$Target valueOf(String);
 private void ConsoleAppender$Target(String, int);
 public abstract java.nio.charset.Charset getDefaultCharset();
 protected java.nio.charset.Charset getCharset(String, java.nio.charset.Charset);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/AbstractTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized class AbstractTriggeringPolicy extends org.apache.logging.log4j.core.AbstractLifeCycle implements TriggeringPolicy {
 public void AbstractTriggeringPolicy();
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class CronTriggeringPolicy$1 {
}

org/apache/logging/log4j/core/appender/rolling/action/AbstractAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract synchronized class AbstractAction implements Action {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private boolean complete;
 private boolean interrupted;
 protected void AbstractAction();
 public abstract boolean execute() throws java.io.IOException;
 public synchronized void run();
 public synchronized void close();
 public boolean isComplete();
 public boolean isInterrupted();
 protected void reportException(Exception);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized enum FileExtension {
 public static final FileExtension ZIP;
 public static final FileExtension GZ;
 public static final FileExtension BZIP2;
 public static final FileExtension DEFLATE;
 public static final FileExtension PACK200;
 public static final FileExtension XZ;
 private final String extension;
 public static FileExtension[] values();
 public static FileExtension valueOf(String);
 public static FileExtension lookup(String);
 public static FileExtension lookupForFile(String);
 private void FileExtension(String, int, String);
 abstract action.Action createCompressAction(String, String, boolean, int);
 String getExtension();
 boolean isExtensionFor(String);
 int length();
 java.io.File source(String);
 java.io.File target(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$FactoryData extends org.apache.logging.log4j.core.appender.ConfigurationFactoryData {
 private final String fileName;
 private final String pattern;
 private final boolean append;
 private final boolean bufferedIO;
 private final int bufferSize;
 private final boolean immediateFlush;
 private final boolean createOnDemand;
 private final TriggeringPolicy policy;
 private final RolloverStrategy strategy;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void RollingFileManager$FactoryData(String, String, boolean, boolean, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean, boolean, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public TriggeringPolicy getTriggeringPolicy();
 public RolloverStrategy getRolloverStrategy();
 public String getPattern();
 public String toString();
}

org/apache/logging/log4j/core/appender/WriterAppender$WriterManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$WriterManagerFactory implements ManagerFactory {
 private void WriterAppender$WriterManagerFactory();
 public WriterManager createManager(String, WriterAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/SocketAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class SocketAppender extends AbstractOutputStreamAppender {
 private final Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 public static SocketAppender$Builder newBuilder();
 protected void SocketAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.net.AbstractSocketManager, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 protected void SocketAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.net.AbstractSocketManager, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public static SocketAppender createAppender(String, int, org.apache.logging.log4j.core.net.Protocol, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, int, boolean, String, boolean, boolean, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, org.apache.logging.log4j.core.config.Configuration);
 public static SocketAppender createAppender(String, String, String, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, org.apache.logging.log4j.core.config.Configuration);
 protected static org.apache.logging.log4j.core.net.AbstractSocketManager createSocketManager(String, org.apache.logging.log4j.core.net.Protocol, String, int, int, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, boolean, org.apache.logging.log4j.core.Layout, int);
 protected static org.apache.logging.log4j.core.net.AbstractSocketManager createSocketManager(String, org.apache.logging.log4j.core.net.Protocol, String, int, int, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, boolean, org.apache.logging.log4j.core.Layout, int, org.apache.logging.log4j.core.net.SocketOptions);
 protected void directEncodeEvent(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/AbstractAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractAppender extends org.apache.logging.log4j.core.filter.AbstractFilterable implements org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.core.impl.LocationAware {
 private final String name;
 private final boolean ignoreExceptions;
 private final org.apache.logging.log4j.core.Layout layout;
 private org.apache.logging.log4j.core.ErrorHandler handler;
 public static int parseInt(String, int);
 public boolean requiresLocation();
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout);
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean);
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[]);
 public void error(String);
 public void error(String, org.apache.logging.log4j.core.LogEvent, Throwable);
 public void error(String, Throwable);
 public org.apache.logging.log4j.core.ErrorHandler getHandler();
 public org.apache.logging.log4j.core.Layout getLayout();
 public String getName();
 public boolean ignoreExceptions();
 public void setHandler(org.apache.logging.log4j.core.ErrorHandler);
 protected java.io.Serializable toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String toString();
}

org/apache/logging/log4j/core/appender/FileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$FactoryData extends ConfigurationFactoryData {
 private final boolean append;
 private final boolean locking;
 private final boolean bufferedIo;
 private final int bufferSize;
 private final boolean createOnDemand;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void FileManager$FactoryData(boolean, boolean, boolean, int, boolean, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$FactoryData {
 private final boolean append;
 private final boolean immediateFlush;
 private final int regionLength;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 public void MemoryMappedFileManager$FactoryData(boolean, boolean, int, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$FactoryData.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$FactoryData extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager$AbstractFactoryData {
 private final ConnectionSource connectionSource;
 private final String tableName;
 private final ColumnConfig[] columnConfigs;
 private final org.apache.logging.log4j.core.appender.db.ColumnMapping[] columnMappings;
 private final boolean immediateFail;
 private final boolean retry;
 private final long reconnectIntervalMillis;
 private final boolean truncateStrings;
 protected void JdbcDatabaseManager$FactoryData(int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long, boolean);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class JdbcAppender$1 {
}

org/apache/logging/log4j/core/appender/AppenderSet$1.class

package org.apache.logging.log4j.core.appender;
synchronized class AppenderSet$1 {
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileAppender$1 {
}

org/apache/logging/log4j/core/appender/ScriptAppenderSelector$Builder.class

package org.apache.logging.log4j.core.appender;
public final synchronized class ScriptAppenderSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private AppenderSet appenderSet;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String name;
 private org.apache.logging.log4j.core.script.AbstractScript script;
 public void ScriptAppenderSelector$Builder();
 public org.apache.logging.log4j.core.Appender build();
 public AppenderSet getAppenderSet();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public String getName();
 public org.apache.logging.log4j.core.script.AbstractScript getScript();
 public ScriptAppenderSelector$Builder withAppenderNodeSet(AppenderSet);
 public ScriptAppenderSelector$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ScriptAppenderSelector$Builder withName(String);
 public ScriptAppenderSelector$Builder withScript(org.apache.logging.log4j.core.script.AbstractScript);
}

org/apache/logging/log4j/core/appender/mom/JmsAppender$Builder.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final int DEFAULT_RECONNECT_INTERVAL_MILLIS = 5000;
 private String factoryName;
 private String providerUrl;
 private String urlPkgPrefixes;
 private String securityPrincipalName;
 private String securityCredentials;
 private String factoryBindingName;
 private String destinationBindingName;
 private String userName;
 private char[] password;
 private long reconnectIntervalMillis;
 private boolean immediateFail;
 private JmsManager jmsManager;
 private void JmsAppender$Builder();
 public JmsAppender build();
 public JmsAppender$Builder setDestinationBindingName(String);
 public JmsAppender$Builder setFactoryBindingName(String);
 public JmsAppender$Builder setFactoryName(String);
 public JmsAppender$Builder setImmediateFail(boolean);
 public JmsAppender$Builder setJmsManager(JmsManager);
 public JmsAppender$Builder setPassword(char[]);
 public JmsAppender$Builder setPassword(String);
 public JmsAppender$Builder setProviderUrl(String);
 public JmsAppender$Builder setReconnectIntervalMillis(long);
 public JmsAppender$Builder setSecurityCredentials(String);
 public JmsAppender$Builder setSecurityPrincipalName(String);
 public JmsAppender$Builder setUrlPkgPrefixes(String);
 public JmsAppender$Builder setUsername(String);
 public JmsAppender$Builder setUserName(String);
 public String toString();
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$JeroMqManagerFactory.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$JeroMqManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JeroMqManager$JeroMqManagerFactory();
 public JeroMqManager createManager(String, JeroMqManager$JeroMqConfiguration);
}

org/apache/logging/log4j/core/impl/ThrowableProxyRenderer.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyRenderer {
 private static final String TAB = 	;
 private static final String CAUSED_BY_LABEL = Caused by: ;
 private static final String SUPPRESSED_LABEL = Suppressed: ;
 private static final String WRAPPED_BY_LABEL = Wrapped by: ;
 private void ThrowableProxyRenderer();
 static void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatCause(StringBuilder, String, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatThrowableProxy(StringBuilder, String, String, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatSuppressed(StringBuilder, String, ThrowableProxy[], java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatElements(StringBuilder, String, int, StackTraceElement[], ExtendedStackTraceElement[], java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void renderSuffix(String, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 private static void appendSuppressedCount(StringBuilder, String, int, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatEntry(ExtendedStackTraceElement, StringBuilder, String, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static boolean ignoreElement(StackTraceElement, java.util.List);
 static void formatExtendedStackTraceTo(ThrowableProxy, StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 static void formatCauseStackTrace(ThrowableProxy, StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void renderOn(ThrowableProxy, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyHelper {
 private void ThrowableProxyHelper();
 static ExtendedStackTraceElement[] toExtendedStackTrace(ThrowableProxy, java.util.Stack, java.util.Map, StackTraceElement[], StackTraceElement[]);
 static ThrowableProxy[] toSuppressedProxies(Throwable, java.util.Set);
 private static ThrowableProxyHelper$CacheEntry toCacheEntry(Class, boolean);
 private static Class loadClass(ClassLoader, String);
 private static Class loadClass(String);
}

org/apache/logging/log4j/core/impl/ExtendedStackTraceElement.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ExtendedStackTraceElement implements java.io.Serializable {
 static final ExtendedStackTraceElement[] EMPTY_ARRAY;
 private static final long serialVersionUID = -2171069569241280505;
 private final ExtendedClassInfo extraClassInfo;
 private final StackTraceElement stackTraceElement;
 public void ExtendedStackTraceElement(StackTraceElement, ExtendedClassInfo);
 public void ExtendedStackTraceElement(String, String, String, int, boolean, String, String);
 public boolean equals(Object);
 public String getClassName();
 public boolean getExact();
 public ExtendedClassInfo getExtraClassInfo();
 public String getFileName();
 public int getLineNumber();
 public String getLocation();
 public String getMethodName();
 public StackTraceElement getStackTraceElement();
 public String getVersion();
 public int hashCode();
 public boolean isNativeMethod();
 void renderOn(StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 private void render(StackTraceElement, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/NamedContextSelector.class

package org.apache.logging.log4j.core.selector;
public abstract interface NamedContextSelector extends ContextSelector {
 public abstract org.apache.logging.log4j.core.LoggerContext locateContext(String, Object, java.net.URI);
 public abstract org.apache.logging.log4j.core.LoggerContext removeContext(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$InetAddressConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$InetAddressConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$InetAddressConverter();
 public java.net.InetAddress convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$1.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized class CommandLine$Help$1 implements CommandLine$Help$IParamLabelRenderer {
 void CommandLine$Help$1();
 public CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 public String separator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharacterConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharacterConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharacterConverter();
 public Character convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Assert.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized class CommandLine$Assert {
 static Object notNull(Object, String);
 private void CommandLine$Assert();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$FileConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$FileConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$FileConverter();
 public java.io.File convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ISO8601TimeConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ISO8601TimeConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ISO8601TimeConverter();
 public java.sql.Time convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Interpreter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Interpreter {
 private final java.util.Map commands;
 private final java.util.Map converterRegistry;
 private final java.util.Map optionName2Field;
 private final java.util.Map singleCharOption2Field;
 private final java.util.List requiredFields;
 private final java.util.List positionalParametersFields;
 private final Object command;
 private boolean isHelpRequested;
 private String separator;
 private int position;
 void CommandLine$Interpreter(CommandLine, Object);
 transient java.util.List parse(String[]);
 private void parse(java.util.List, java.util.Stack, String[]);
 private void processArguments(java.util.List, java.util.Stack, java.util.Collection, java.util.Set, String[]) throws Exception;
 private boolean resemblesOption(String);
 private void handleUnmatchedArguments(String);
 private void handleUnmatchedArguments(java.util.Stack);
 private void processRemainderAsPositionalParameters(java.util.Collection, java.util.Set, java.util.Stack) throws Exception;
 private void processPositionalParameter(java.util.Collection, java.util.Set, java.util.Stack) throws Exception;
 private void processStandaloneOption(java.util.Collection, java.util.Set, String, java.util.Stack, boolean) throws Exception;
 private void processClusteredShortOptions(java.util.Collection, java.util.Set, String, java.util.Stack) throws Exception;
 private int applyOption(reflect.Field, Class, CommandLine$Range, boolean, java.util.Stack, java.util.Set, String) throws Exception;
 private int applyValueToSingleValuedField(reflect.Field, CommandLine$Range, java.util.Stack, Class, java.util.Set, String) throws Exception;
 private int applyValuesToMapField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private void consumeMapArguments(reflect.Field, CommandLine$Range, java.util.Stack, Class[], CommandLine$ITypeConverter, CommandLine$ITypeConverter, java.util.Map, String) throws Exception;
 private void consumeOneMapArgument(reflect.Field, CommandLine$Range, java.util.Stack, Class[], CommandLine$ITypeConverter, CommandLine$ITypeConverter, java.util.Map, int, String) throws Exception;
 private void checkMaxArityExceeded(CommandLine$Range, int, reflect.Field, String[]);
 private int applyValuesToArrayField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private int applyValuesToCollectionField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private java.util.List consumeArguments(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, int, String) throws Exception;
 private int consumeOneArgument(reflect.Field, CommandLine$Range, java.util.Stack, Class, java.util.List, int, int, String) throws Exception;
 private String splitRegex(reflect.Field);
 private String[] split(String, reflect.Field);
 private boolean isOption(String);
 private Object tryConvert(reflect.Field, int, CommandLine$ITypeConverter, String, Class) throws Exception;
 private String optionDescription(String, reflect.Field, int);
 private boolean isAnyHelpRequested();
 private void updateHelpRequested(reflect.Field);
 private boolean is(reflect.Field, String, boolean);
 private java.util.Collection createCollection(Class) throws Exception;
 private java.util.Map createMap(Class) throws Exception;
 private CommandLine$ITypeConverter getTypeConverter(Class, reflect.Field);
 private void assertNoMissingParameters(reflect.Field, int, java.util.Stack);
 private String trim(String);
 private String unquote(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IParamLabelRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IParamLabelRenderer {
 public abstract CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 public abstract String separator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IParameterRenderer {
 public abstract CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/net/TcpSocketManager$HostResolver.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager$HostResolver {
 public void TcpSocketManager$HostResolver();
 public java.util.List resolveHost(String, int) throws java.net.UnknownHostException;
}

org/apache/logging/log4j/core/net/ssl/SslConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfiguration {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final KeyStoreConfiguration keyStoreConfig;
 private final TrustStoreConfiguration trustStoreConfig;
 private final javax.net.ssl.SSLContext sslContext;
 private final String protocol;
 private final boolean verifyHostName;
 private void SslConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration, boolean);
 public void clearSecrets();
 public javax.net.ssl.SSLSocketFactory getSslSocketFactory();
 public javax.net.ssl.SSLServerSocketFactory getSslServerSocketFactory();
 private javax.net.ssl.SSLContext createSslContext();
 private javax.net.ssl.SSLContext createSslContextWithTrustStoreFailure();
 private javax.net.ssl.SSLContext createSslContextWithKeyStoreFailure();
 private javax.net.ssl.SSLContext createSslContextBasedOnConfiguration() throws KeyStoreConfigurationException, TrustStoreConfigurationException;
 private javax.net.ssl.SSLContext createSslContextWithDefaultKeyManagerFactory() throws TrustStoreConfigurationException;
 private javax.net.ssl.SSLContext createSslContextWithDefaultTrustManagerFactory() throws KeyStoreConfigurationException;
 private javax.net.ssl.SSLContext createDefaultSslContext();
 private javax.net.ssl.SSLContext createSslContext(boolean, boolean) throws KeyStoreConfigurationException, TrustStoreConfigurationException;
 private javax.net.ssl.TrustManagerFactory loadTrustManagerFactory() throws TrustStoreConfigurationException;
 private javax.net.ssl.KeyManagerFactory loadKeyManagerFactory() throws KeyStoreConfigurationException;
 public static SslConfiguration createSSLConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration);
 public static SslConfiguration createSSLConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration, boolean);
 public int hashCode();
 public boolean equals(Object);
 public KeyStoreConfiguration getKeyStoreConfig();
 public TrustStoreConfiguration getTrustStoreConfig();
 public javax.net.ssl.SSLContext getSslContext();
 public String getProtocol();
 public boolean isVerifyHostName();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Advertiser.class

package org.apache.logging.log4j.core.net;
public abstract interface Advertiser {
 public abstract Object advertise(java.util.Map);
 public abstract void unadvertise(Object);
}

org/apache/logging/log4j/core/net/SocketAddress$1.class

package org.apache.logging.log4j.core.net;
synchronized class SocketAddress$1 {
}

org/apache/logging/log4j/core/net/TcpSocketManager$TcpSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager$TcpSocketManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 static TcpSocketManager$HostResolver resolver;
 protected void TcpSocketManager$TcpSocketManagerFactory();
 public TcpSocketManager createManager(String, TcpSocketManager$FactoryData);
 TcpSocketManager createManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, TcpSocketManager$FactoryData);
 java.net.Socket createSocket(TcpSocketManager$FactoryData) throws java.io.IOException;
 protected String errorMessage(TcpSocketManager$FactoryData, java.util.List);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/Format.class

package org.apache.logging.log4j.core.util.datetime;
public abstract synchronized class Format {
 public void Format();
 public final String format(Object);
 public abstract StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 public abstract Object parseObject(String, java.text.ParsePosition);
 public Object parseObject(String) throws java.text.ParseException;
}

org/apache/logging/log4j/core/util/datetime/FormatCache.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FormatCache {
 static final int NONE = -1;
 private final java.util.concurrent.ConcurrentMap cInstanceCache;
 private static final java.util.concurrent.ConcurrentMap cDateTimeInstanceCache;
 void FormatCache();
 public Format getInstance();
 public Format getInstance(String, java.util.TimeZone, java.util.Locale);
 protected abstract Format createInstance(String, java.util.TimeZone, java.util.Locale);
 private Format getDateTimeInstance(Integer, Integer, java.util.TimeZone, java.util.Locale);
 Format getDateTimeInstance(int, int, java.util.TimeZone, java.util.Locale);
 Format getDateInstance(int, java.util.TimeZone, java.util.Locale);
 Format getTimeInstance(int, java.util.TimeZone, java.util.Locale);
 static String getPatternForStyle(Integer, Integer, java.util.Locale);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat$FixedTimeZoneFormat.class

package org.apache.logging.log4j.core.util.datetime;
public final synchronized enum FixedDateFormat$FixedTimeZoneFormat {
 public static final FixedDateFormat$FixedTimeZoneFormat HH;
 public static final FixedDateFormat$FixedTimeZoneFormat HHMM;
 public static final FixedDateFormat$FixedTimeZoneFormat HHCMM;
 private final char timeSeparatorChar;
 private final int timeSeparatorCharLen;
 private final boolean useMinutes;
 private final int length;
 public static FixedDateFormat$FixedTimeZoneFormat[] values();
 public static FixedDateFormat$FixedTimeZoneFormat valueOf(String);
 private void FixedDateFormat$FixedTimeZoneFormat(String, int);
 private void FixedDateFormat$FixedTimeZoneFormat(String, int, char, boolean, int);
 public int getLength();
 private int write(int, char[], int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$Iso8601_Rule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$Iso8601_Rule implements FastDatePrinter$Rule {
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS;
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS_MINUTES;
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS_COLON_MINUTES;
 final int length;
 static FastDatePrinter$Iso8601_Rule getRule(int);
 void FastDatePrinter$Iso8601_Rule(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$CopyQuotedStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$CopyQuotedStrategy extends FastDateParser$Strategy {
 private final String formatField;
 void FastDateParser$CopyQuotedStrategy(String);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
}

org/apache/logging/log4j/core/util/CloseShieldWriter.class

package org.apache.logging.log4j.core.util;
public synchronized class CloseShieldWriter extends java.io.Writer {
 private final java.io.Writer delegate;
 public void CloseShieldWriter(java.io.Writer);
 public void close() throws java.io.IOException;
 public void flush() throws java.io.IOException;
 public void write(char[], int, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/Cancellable.class

package org.apache.logging.log4j.core.util;
public abstract interface Cancellable extends Runnable {
 public abstract void cancel();
}

org/apache/logging/log4j/core/util/StringBuilderWriter.class

package org.apache.logging.log4j.core.util;
public synchronized class StringBuilderWriter extends java.io.Writer implements java.io.Serializable {
 private static final long serialVersionUID = -146927496096066153;
 private final StringBuilder builder;
 public void StringBuilderWriter();
 public void StringBuilderWriter(int);
 public void StringBuilderWriter(StringBuilder);
 public java.io.Writer append(char);
 public java.io.Writer append(CharSequence);
 public java.io.Writer append(CharSequence, int, int);
 public void close();
 public void flush();
 public void write(String);
 public void write(char[], int, int);
 public StringBuilder getBuilder();
 public String toString();
}

org/apache/logging/log4j/core/Logger$PrivateConfig.class

package org.apache.logging.log4j.core;
public synchronized class Logger$PrivateConfig {
 public final config.LoggerConfig loggerConfig;
 public final config.Configuration config;
 private final org.apache.logging.log4j.Level loggerConfigLevel;
 private final int intLevel;
 private final Logger logger;
 private final boolean requiresLocation;
 public void Logger$PrivateConfig(Logger, config.Configuration, Logger);
 public void Logger$PrivateConfig(Logger, Logger$PrivateConfig, org.apache.logging.log4j.Level);
 public void Logger$PrivateConfig(Logger, Logger$PrivateConfig, config.LoggerConfig);
 public void logEvent(LogEvent);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 transient boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public String toString();
}

org/apache/logging/log4j/core/config/Property.class

package org.apache.logging.log4j.core.config;
public final synchronized class Property {
 public static final Property[] EMPTY_ARRAY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String name;
 private final String value;
 private final boolean valueNeedsLookup;
 private void Property(String, String);
 public String getName();
 public String getValue();
 public boolean isValueNeedsLookup();
 public static Property createProperty(String, String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ClassArbiter implements Arbiter {
 private final String className;
 private void ClassArbiter(String);
 public boolean isCondition();
 public static SystemPropertyArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/DefaultArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class DefaultArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void DefaultArbiter$Builder();
 public DefaultArbiter$Builder asBuilder();
 public DefaultArbiter build();
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class SystemPropertyArbiter$1 {
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginNodeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginNodeVisitor extends AbstractPluginVisitor {
 public void PluginNodeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public abstract interface PluginVisitor {
 public abstract PluginVisitor setAnnotation(annotation.Annotation);
 public abstract transient PluginVisitor setAliases(String[]);
 public abstract PluginVisitor setConversionType(Class);
 public abstract PluginVisitor setStrSubstitutor(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public abstract PluginVisitor setMember(reflect.Member);
 public abstract Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginEntry.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginEntry implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private String key;
 private String className;
 private String name;
 private boolean printable;
 private boolean defer;
 private transient String category;
 public void PluginEntry();
 public String getKey();
 public void setKey(String);
 public String getClassName();
 public void setClassName(String);
 public String getName();
 public void setName(String);
 public boolean isPrintable();
 public void setPrintable(boolean);
 public boolean isDefer();
 public void setDefer(boolean);
 public String getCategory();
 public void setCategory(String);
 public String toString();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$PluginAliasesElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$PluginAliasesElementVisitor extends javax.lang.model.util.SimpleElementVisitor7 {
 private final javax.lang.model.util.Elements elements;
 private void PluginProcessor$PluginAliasesElementVisitor(javax.lang.model.util.Elements);
 public java.util.Collection visitType(javax.lang.model.element.TypeElement, org.apache.logging.log4j.core.config.plugins.Plugin);
}

org/apache/logging/log4j/core/config/plugins/PluginAttribute.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginAttribute extends annotation.Annotation {
 public abstract boolean defaultBoolean();
 public abstract byte defaultByte();
 public abstract char defaultChar();
 public abstract Class defaultClass();
 public abstract double defaultDouble();
 public abstract float defaultFloat();
 public abstract int defaultInt();
 public abstract long defaultLong();
 public abstract short defaultShort();
 public abstract String defaultString();
 public abstract String value();
 public abstract boolean sensitive();
}

org/apache/logging/log4j/core/config/plugins/PluginNode.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginNode extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters.class

package org.apache.logging.log4j.core.config.plugins.convert;
public final synchronized class TypeConverters {
 public static final String CATEGORY = TypeConverter;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void TypeConverters();
 public static Object convert(String, Class, Object);
 private static Object parseDefaultValue(TypeConverter, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ByteArrayConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ByteArrayConverter implements TypeConverter {
 private static final String PREFIX_0x = 0x;
 private static final String PREFIX_BASE64 = Base64:;
 public void TypeConverters$ByteArrayConverter();
 public byte[] convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharArrayConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharArrayConverter implements TypeConverter {
 public void TypeConverters$CharArrayConverter();
 public char[] convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ClassConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ClassConverter implements TypeConverter {
 public void TypeConverters$ClassConverter();
 public Class convert(String) throws ClassNotFoundException;
}

org/apache/logging/log4j/core/config/plugins/convert/EnumConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class EnumConverter implements TypeConverter {
 private final Class clazz;
 public void EnumConverter(Class);
 public Enum convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ByteConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ByteConverter implements TypeConverter {
 public void TypeConverters$ByteConverter();
 public Byte convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverterRegistry.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverterRegistry {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile TypeConverterRegistry INSTANCE;
 private static final Object INSTANCE_LOCK;
 private final java.util.concurrent.ConcurrentMap registry;
 public static TypeConverterRegistry getInstance();
 public TypeConverter findCompatibleConverter(reflect.Type);
 private void TypeConverterRegistry();
 private void loadKnownTypeConverters(java.util.Collection);
 private TypeConverter registerConverter(reflect.Type, TypeConverter);
 private static reflect.Type getTypeConverterSupportedType(Class);
 private void registerPrimitiveTypes();
 private void registerTypeAlias(reflect.Type, reflect.Type);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/PropertiesPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class PropertiesPlugin {
 private void PropertiesPlugin();
 public static org.apache.logging.log4j.core.lookup.StrLookup configureSubstitutor(Property[], Configuration);
}

org/apache/logging/log4j/core/config/Scheduled.class

package org.apache.logging.log4j.core.config;
public abstract interface Scheduled extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/json/JsonConfiguration$ErrorType.class

package org.apache.logging.log4j.core.config.json;
final synchronized enum JsonConfiguration$ErrorType {
 public static final JsonConfiguration$ErrorType CLASS_NOT_FOUND;
 public static JsonConfiguration$ErrorType[] values();
 public static JsonConfiguration$ErrorType valueOf(String);
 private void JsonConfiguration$ErrorType(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/properties/PropertiesConfigurationBuilder.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfigurationBuilder extends org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilderFactory implements org.apache.logging.log4j.core.util.Builder {
 private static final String ADVERTISER_KEY = advertiser;
 private static final String STATUS_KEY = status;
 private static final String SHUTDOWN_HOOK = shutdownHook;
 private static final String SHUTDOWN_TIMEOUT = shutdownTimeout;
 private static final String VERBOSE = verbose;
 private static final String DEST = dest;
 private static final String PACKAGES = packages;
 private static final String CONFIG_NAME = name;
 private static final String MONITOR_INTERVAL = monitorInterval;
 private static final String CONFIG_TYPE = type;
 private final org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder builder;
 private org.apache.logging.log4j.core.LoggerContext loggerContext;
 private java.util.Properties rootProperties;
 public void PropertiesConfigurationBuilder();
 public PropertiesConfigurationBuilder setRootProperties(java.util.Properties);
 public PropertiesConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public PropertiesConfiguration build();
 private org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder createScript(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder createScriptFile(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder createAppender(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder createFilter(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder createAppenderRef(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder createLogger(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder createRootLogger(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder createLayout(String, java.util.Properties);
 private static org.apache.logging.log4j.core.config.builder.api.ComponentBuilder createComponent(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder, String, java.util.Properties);
 private static org.apache.logging.log4j.core.config.builder.api.ComponentBuilder processRemainingProperties(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.FilterableComponentBuilder addFiltersToComponent(org.apache.logging.log4j.core.config.builder.api.FilterableComponentBuilder, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LoggableComponentBuilder addLoggersToComponent(org.apache.logging.log4j.core.config.builder.api.LoggableComponentBuilder, java.util.Properties);
 public PropertiesConfigurationBuilder setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/config/builder/api/AppenderRefComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface AppenderRefComponentBuilder extends FilterableComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/ScriptFileComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ScriptFileComponentBuilder extends ComponentBuilder {
 public abstract ScriptFileComponentBuilder addLanguage(String);
 public abstract ScriptFileComponentBuilder addIsWatched(boolean);
 public abstract ScriptFileComponentBuilder addIsWatched(String);
 public abstract ScriptFileComponentBuilder addCharset(String);
}

org/apache/logging/log4j/core/jmx/AppenderAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface AppenderAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=Appenders,name=%s;
 public abstract String getName();
 public abstract String getLayout();
 public abstract boolean isIgnoreExceptions();
 public abstract String getErrorHandler();
 public abstract String getFilter();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized enum GelfLayout$CompressionType {
 public static final GelfLayout$CompressionType GZIP;
 public static final GelfLayout$CompressionType ZLIB;
 public static final GelfLayout$CompressionType OFF;
 public static GelfLayout$CompressionType[] values();
 public static GelfLayout$CompressionType valueOf(String);
 private void GelfLayout$CompressionType(String, int);
 public abstract java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class LevelPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final boolean requiresLocation;
 public void LevelPatternSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 private void LevelPatternSelector(PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static LevelPatternSelector$Builder newBuilder();
 public static LevelPatternSelector createSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/ByteBufferDestination.class

package org.apache.logging.log4j.core.layout;
public abstract interface ByteBufferDestination {
 public abstract java.nio.ByteBuffer getByteBuffer();
 public abstract java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 public abstract void writeBytes(java.nio.ByteBuffer);
 public abstract void writeBytes(byte[], int, int);
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$1.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$1 {
 void GelfLayout$CompressionType$1(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/AbstractCsvLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractCsvLayout extends AbstractStringLayout {
 protected static final String DEFAULT_CHARSET = UTF-8;
 protected static final String DEFAULT_FORMAT = Default;
 private static final String CONTENT_TYPE = text/csv;
 private final org.apache.commons.csv.CSVFormat format;
 protected static org.apache.commons.csv.CSVFormat createFormat(String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String);
 private static boolean isNotNul(Character);
 protected void AbstractCsvLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String getContentType();
 public org.apache.commons.csv.CSVFormat getFormat();
}

org/apache/logging/log4j/core/layout/PatternLayout$NoFormatPatternSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$NoFormatPatternSerializer implements PatternLayout$PatternSerializer {
 private final org.apache.logging.log4j.core.pattern.LogEventPatternConverter[] converters;
 private void PatternLayout$NoFormatPatternSerializer(org.apache.logging.log4j.core.pattern.PatternFormatter[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/PatternLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class PatternLayout$1 {
}

org/apache/logging/log4j/core/layout/GelfLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class GelfLayout$1 {
}

org/apache/logging/log4j/core/layout/LoggerFields.class

package org.apache.logging.log4j.core.layout;
public final synchronized class LoggerFields {
 private final java.util.Map map;
 private final String sdId;
 private final String enterpriseId;
 private final boolean discardIfAllFieldsAreEmpty;
 private void LoggerFields(java.util.Map, String, String, boolean);
 public java.util.Map getMap();
 public String toString();
 public static LoggerFields createLoggerFields(org.apache.logging.log4j.core.util.KeyValuePair[], String, String, boolean);
 public org.apache.logging.log4j.message.StructuredDataId getSdId();
 public boolean getDiscardIfAllFieldsAreEmpty();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerConfigDisruptor$1 extends org.apache.logging.log4j.core.util.Log4jThreadFactory {
 void AsyncLoggerConfigDisruptor$1(AsyncLoggerConfigDisruptor, String, boolean, int);
 public Thread newThread(Runnable);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig$RootLogger.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfig$RootLogger extends org.apache.logging.log4j.core.config.LoggerConfig {
 public void AsyncLoggerConfig$RootLogger();
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/lookup/JavaLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JavaLookup extends AbstractLookup {
 private final SystemPropertiesLookup spLookup;
 public void JavaLookup();
 public String getHardware();
 public String getLocale();
 public String getOperatingSystem();
 public String getRuntime();
 private String getSystemProperty(String);
 private String getSystemProperty(String, String);
 public String getVirtualMachine();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/StrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public synchronized class StrSubstitutor implements org.apache.logging.log4j.core.config.ConfigurationAware {
 public static final char DEFAULT_ESCAPE = 36;
 public static final StrMatcher DEFAULT_PREFIX;
 public static final StrMatcher DEFAULT_SUFFIX;
 public static final String DEFAULT_VALUE_DELIMITER_STRING = :-;
 public static final StrMatcher DEFAULT_VALUE_DELIMITER;
 public static final String ESCAPE_DELIMITER_STRING = :\-;
 public static final StrMatcher DEFAULT_VALUE_ESCAPE_DELIMITER;
 private static final int BUF_SIZE = 256;
 private char escapeChar;
 private StrMatcher prefixMatcher;
 private StrMatcher suffixMatcher;
 private String valueDelimiterString;
 private StrMatcher valueDelimiterMatcher;
 private StrMatcher valueEscapeDelimiterMatcher;
 private StrLookup variableResolver;
 private boolean enableSubstitutionInVariables;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private boolean recursiveEvaluationAllowed;
 public void StrSubstitutor();
 public void StrSubstitutor(java.util.Map);
 public void StrSubstitutor(java.util.Map, String, String);
 public void StrSubstitutor(java.util.Map, String, String, char);
 public void StrSubstitutor(java.util.Map, String, String, char, String);
 public void StrSubstitutor(java.util.Properties);
 public void StrSubstitutor(StrLookup);
 public void StrSubstitutor(StrLookup, String, String, char);
 public void StrSubstitutor(StrLookup, String, String, char, String);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char, StrMatcher);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char, StrMatcher, StrMatcher);
 void StrSubstitutor(StrSubstitutor);
 public static String replace(Object, java.util.Map);
 public static String replace(Object, java.util.Map, String, String);
 public static String replace(Object, java.util.Properties);
 private static java.util.Map toTypeSafeMap(java.util.Properties);
 private static String handleFailedReplacement(String, Throwable);
 public String replace(String);
 public String replace(org.apache.logging.log4j.core.LogEvent, String);
 public String replace(String, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, String, int, int);
 public String replace(char[]);
 public String replace(org.apache.logging.log4j.core.LogEvent, char[]);
 public String replace(char[], int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, char[], int, int);
 public String replace(StringBuffer);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuffer);
 public String replace(StringBuffer, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuffer, int, int);
 public String replace(StringBuilder);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public String replace(StringBuilder, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 public String replace(Object);
 public String replace(org.apache.logging.log4j.core.LogEvent, Object);
 public boolean replaceIn(StringBuffer);
 public boolean replaceIn(StringBuffer, int, int);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuffer, int, int);
 public boolean replaceIn(StringBuilder);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean replaceIn(StringBuilder, int, int);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 protected boolean substitute(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 private int substitute(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int, java.util.List);
 private boolean isCyclicSubstitution(String, java.util.List);
 protected String resolveVariable(org.apache.logging.log4j.core.LogEvent, String, StringBuilder, int, int);
 public char getEscapeChar();
 public void setEscapeChar(char);
 public StrMatcher getVariablePrefixMatcher();
 public StrSubstitutor setVariablePrefixMatcher(StrMatcher);
 public StrSubstitutor setVariablePrefix(char);
 public StrSubstitutor setVariablePrefix(String);
 public StrMatcher getVariableSuffixMatcher();
 public StrSubstitutor setVariableSuffixMatcher(StrMatcher);
 public StrSubstitutor setVariableSuffix(char);
 public StrSubstitutor setVariableSuffix(String);
 public StrMatcher getValueDelimiterMatcher();
 public StrSubstitutor setValueDelimiterMatcher(StrMatcher);
 public StrSubstitutor setValueDelimiter(char);
 public StrSubstitutor setValueDelimiter(String);
 public StrLookup getVariableResolver();
 public void setVariableResolver(StrLookup);
 public boolean isEnableSubstitutionInVariables();
 public void setEnableSubstitutionInVariables(boolean);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 private char[] getChars(StringBuilder);
 public void appendWithSeparators(StringBuilder, Iterable, String);
 public String toString();
 public void setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/ParseException.class

package org.apache.logging.log4j.core.parser;
public synchronized class ParseException extends Exception {
 private static final long serialVersionUID = -2739649998196663857;
 public void ParseException(String);
 public void ParseException(String, Throwable);
 public void ParseException(Throwable);
}

org/apache/logging/log4j/core/parser/AbstractJacksonLogEventParser.class

package org.apache.logging.log4j.core.parser;
synchronized class AbstractJacksonLogEventParser implements TextLogEventParser {
 private final com.fasterxml.jackson.databind.ObjectReader objectReader;
 void AbstractJacksonLogEventParser(com.fasterxml.jackson.databind.ObjectMapper);
 public org.apache.logging.log4j.core.LogEvent parseFrom(String) throws ParseException;
 public org.apache.logging.log4j.core.LogEvent parseFrom(byte[]) throws ParseException;
 public org.apache.logging.log4j.core.LogEvent parseFrom(byte[], int, int) throws ParseException;
}

org/apache/logging/log4j/core/script/ScriptManager$ThreadLocalScriptRunner$1.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$ThreadLocalScriptRunner$1 extends ThreadLocal {
 void ScriptManager$ThreadLocalScriptRunner$1(ScriptManager$ThreadLocalScriptRunner);
 protected ScriptManager$MainScriptRunner initialValue();
}

org/apache/logging/log4j/core/script/ScriptManager.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptManager implements org.apache.logging.log4j.core.util.FileWatcher, java.io.Serializable {
 private static final long serialVersionUID = -2534169384971965196;
 private static final String KEY_THREADING = THREADING;
 private static final org.apache.logging.log4j.Logger logger;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final javax.script.ScriptEngineManager manager;
 private final java.util.concurrent.ConcurrentMap scriptRunners;
 private final String languages;
 private final org.apache.logging.log4j.core.util.WatchManager watchManager;
 public void ScriptManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.util.WatchManager);
 public void addScript(AbstractScript);
 public javax.script.Bindings createBindings(AbstractScript);
 public AbstractScript getScript(String);
 public void fileModified(java.io.File);
 public Object execute(String, javax.script.Bindings);
 private ScriptManager$ScriptRunner getScriptRunner(AbstractScript);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class NoMarkerFilter$1 {
}

org/apache/logging/log4j/core/filter/CompositeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class CompositeFilter extends org.apache.logging.log4j.core.AbstractLifeCycle implements Iterable, org.apache.logging.log4j.core.Filter {
 private final org.apache.logging.log4j.core.Filter[] filters;
 private void CompositeFilter();
 private void CompositeFilter(org.apache.logging.log4j.core.Filter[]);
 public CompositeFilter addFilter(org.apache.logging.log4j.core.Filter);
 public CompositeFilter removeFilter(org.apache.logging.log4j.core.Filter);
 public java.util.Iterator iterator();
 public java.util.List getFilters();
 public org.apache.logging.log4j.core.Filter[] getFiltersArray();
 public boolean isEmpty();
 public int size();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 public org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static CompositeFilter createFilters(org.apache.logging.log4j.core.Filter[]);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$FixedFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$FixedFormatter extends DatePatternConverter$Formatter {
 private final org.apache.logging.log4j.core.util.datetime.FixedDateFormat fixedDateFormat;
 private final char[] cachedBuffer;
 private int length;
 void DatePatternConverter$FixedFormatter(org.apache.logging.log4j.core.util.datetime.FixedDateFormat);
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/pattern/PatternFormatter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class PatternFormatter {
 public static final PatternFormatter[] EMPTY_ARRAY;
 private final LogEventPatternConverter converter;
 private final FormattingInfo field;
 private final boolean skipFormattingInfo;
 public void PatternFormatter(LogEventPatternConverter, FormattingInfo);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void formatWithInfo(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public LogEventPatternConverter getConverter();
 public FormattingInfo getFormattingInfo();
 public boolean handlesThrowable();
 public boolean requiresLocation();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$NOPAbbreviator.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$NOPAbbreviator extends NameAbbreviator {
 public void NameAbbreviator$NOPAbbreviator();
 public void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy {
 public static final NameAbbreviator$MaxElementAbbreviator$Strategy DROP;
 public static final NameAbbreviator$MaxElementAbbreviator$Strategy RETAIN;
 final int minCount;
 public static NameAbbreviator$MaxElementAbbreviator$Strategy[] values();
 public static NameAbbreviator$MaxElementAbbreviator$Strategy valueOf(String);
 private void NameAbbreviator$MaxElementAbbreviator$Strategy(String, int, int);
 abstract void abbreviate(int, String, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$PatternAbbreviatorFragment.class

package org.apache.logging.log4j.core.pattern;
final synchronized class NameAbbreviator$PatternAbbreviatorFragment {
 private final int charCount;
 private final char ellipsis;
 void NameAbbreviator$PatternAbbreviatorFragment(int, char);
 int abbreviate(String, int, StringBuilder);
}

org/apache/logging/log4j/core/pattern/RegexReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RegexReplacementConverter extends LogEventPatternConverter {
 private final java.util.regex.Pattern pattern;
 private final String substitution;
 private final java.util.List formatters;
 private void RegexReplacementConverter(java.util.List, java.util.regex.Pattern, String);
 public static RegexReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/SequenceNumberPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class SequenceNumberPatternConverter extends LogEventPatternConverter {
 private static final java.util.concurrent.atomic.AtomicLong SEQUENCE;
 private static final SequenceNumberPatternConverter INSTANCE;
 private void SequenceNumberPatternConverter();
 public static SequenceNumberPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/FileLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FileLocationPatternConverter extends LogEventPatternConverter {
 private static final FileLocationPatternConverter INSTANCE;
 private void FileLocationPatternConverter();
 public static FileLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class SimpleLiteralPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$3.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$3 {
 void EncodingPatternConverter$EscapeFormat$3(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$RenderingPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$RenderingPatternConverter extends MessagePatternConverter {
 private final MessagePatternConverter delegate;
 private final TextRenderer textRenderer;
 void MessagePatternConverter$RenderingPatternConverter(MessagePatternConverter, TextRenderer);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/JAnsiTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class JAnsiTextRenderer implements TextRenderer {
 public static final java.util.Map DefaultExceptionStyleMap;
 static final java.util.Map DefaultMessageStyleMap;
 private static final java.util.Map PrefedinedStyleMaps;
 private final String beginToken;
 private final int beginTokenLen;
 private final String endToken;
 private final int endTokenLen;
 private final java.util.Map styleMap;
 private static transient void put(java.util.Map, String, org.fusesource.jansi.AnsiRenderer$Code[]);
 public void JAnsiTextRenderer(String[], java.util.Map);
 public java.util.Map getStyleMap();
 private void render(org.fusesource.jansi.Ansi, org.fusesource.jansi.AnsiRenderer$Code);
 private transient void render(org.fusesource.jansi.Ansi, org.fusesource.jansi.AnsiRenderer$Code[]);
 private transient String render(String, String[]);
 public void render(String, StringBuilder, String) throws IllegalArgumentException;
 public void render(StringBuilder, StringBuilder) throws IllegalArgumentException;
 private org.fusesource.jansi.AnsiRenderer$Code toCode(String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/IntegerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class IntegerPatternConverter extends AbstractPatternConverter implements ArrayPatternConverter {
 private static final IntegerPatternConverter INSTANCE;
 private void IntegerPatternConverter();
 public static IntegerPatternConverter newInstance(String[]);
 public transient void format(StringBuilder, Object[]);
 public void format(Object, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LineLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LineLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final LineLocationPatternConverter INSTANCE;
 private void LineLocationPatternConverter();
 public static LineLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/LogEventListener.class

package org.apache.logging.log4j.core;
public synchronized class LogEventListener implements java.util.EventListener {
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final LoggerContext context;
 protected void LogEventListener();
 public void log(LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ThrowableProxyMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyMixIn {
 private ThrowableProxyMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntrySerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ListOfMapEntrySerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 protected void ListOfMapEntrySerializer();
 public void serialize(java.util.Map, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

org/apache/logging/log4j/core/jackson/StackTraceElementMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class StackTraceElementMixIn {
 void StackTraceElementMixIn(String, String, String, int);
 abstract String getClassName();
 abstract String getFileName();
 abstract int getLineNumber();
 abstract String getMethodName();
}

org/apache/logging/log4j/core/jackson/InstantMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class InstantMixIn {
 void InstantMixIn(long, int);
 abstract long getEpochSecond();
 abstract int getNanoOfSecond();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntryDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ListOfMapEntryDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void ListOfMapEntryDeserializer$1(ListOfMapEntryDeserializer);
}

org/apache/logging/log4j/core/jackson/XmlConstants.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class XmlConstants {
 public static final String ELT_CAUSE = Cause;
 public static final String ELT_CONTEXT_MAP = ContextMap;
 public static final String ELT_CONTEXT_STACK = ContextStack;
 public static final String ELT_CONTEXT_STACK_ITEM = ContextStackItem;
 public static final String ELT_EVENT = Event;
 public static final String ELT_EXTENDED_STACK_TRACE = ExtendedStackTrace;
 public static final String ELT_EXTENDED_STACK_TRACE_ITEM = ExtendedStackTraceItem;
 public static final String ELT_TIME_MILLIS = TimeMillis;
 public static final String ELT_INSTANT = Instant;
 public static final String ELT_MARKER = Marker;
 public static final String ELT_MESSAGE = Message;
 public static final String ELT_PARENTS = Parents;
 public static final String ELT_SOURCE = Source;
 public static final String ELT_SUPPRESSED = Suppressed;
 public static final String ELT_SUPPRESSED_ITEM = SuppressedItem;
 public static final String ELT_THROWN = Thrown;
 public static final String XML_NAMESPACE = http://logging.apache.org/log4j/2.0/events;
 public void XmlConstants();
}

org/apache/logging/log4j/core/jackson/SimpleMessageDeserializer.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class SimpleMessageDeserializer extends com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer {
 private static final long serialVersionUID = 1;
 void SimpleMessageDeserializer();
 public org.apache.logging.log4j.message.SimpleMessage deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jXmlObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jXmlObjectMapper extends com.fasterxml.jackson.dataformat.xml.XmlMapper {
 private static final long serialVersionUID = 1;
 public void Log4jXmlObjectMapper();
 public void Log4jXmlObjectMapper(boolean, boolean);
}

META-INF/org/apache/logging/log4j/core/config/plugins/Log4j2Plugins.dat

META-INF/maven/org.apache.logging.log4j/log4j-core/pom.xml

 4.0.0

 org.apache.logging.log4j
 log4j
 2.17.1
 ../

 log4j-core
 jar
 Apache Log4j Core
 The Apache Log4j Implementation

 ${basedir}/..
 Core Documentation
 /core
 true

 org.apache.logging.log4j
 log4j-api

 org.osgi
 org.osgi.core
 provided

 com.lmax
 disruptor
 true

 com.conversantmedia
 disruptor
 true

 org.jctools
 jctools-core
 true

 com.fasterxml.jackson.core
 jackson-core
 true

 com.fasterxml.jackson.core
 jackson-databind
 true

 com.fasterxml.jackson.dataformat
 jackson-dataformat-yaml
 true

 com.fasterxml.jackson.dataformat
 jackson-dataformat-xml
 true

 com.fasterxml.woodstox
 woodstox-core
 ${woodstox.version}
 true

 org.fusesource.jansi
 jansi
 true

 com.sun.mail
 javax.mail
 true

 org.jboss.spec.javax.jms
 jboss-jms-api_1.1_spec
 provided
 true

 org.apache.kafka
 kafka-clients
 true

 org.zeromq
 jeromq
 true

 org.apache.commons
 commons-compress
 true

 org.apache.commons
 commons-csv
 true

 org.slf4j
 slf4j-api
 true

 org.apache.logging.log4j
 log4j-api
 test-jar
 test

 org.tukaani
 xz
 test

 org.jmdns
 jmdns
 3.5.7
 test

 log4j
 log4j
 1.2.17
 test

 org.slf4j
 slf4j-ext
 test

 org.junit.vintage
 junit-vintage-engine

 org.junit.jupiter
 junit-jupiter-engine

 org.junit.jupiter
 junit-jupiter-params

 org.hamcrest
 hamcrest
 test

 org.mockito
 mockito-core

 org.mockito
 mockito-junit-jupiter

 org.hsqldb
 hsqldb
 test

 com.h2database
 h2
 test

 org.springframework
 spring-test
 test

 org.apache.activemq
 activemq-broker
 test

 org.apache.geronimo.specs
 geronimo-jms_1.1_spec

 commons-logging
 commons-logging
 test

 ch.qos.logback
 logback-core
 test

 ch.qos.logback
 logback-classic
 test

 org.eclipse.tycho
 org.eclipse.osgi
 test

 org.apache.felix
 org.apache.felix.framework
 test

 org.codehaus.plexus
 plexus-utils
 test

 org.apache.maven
 maven-core
 test

 net.javacrumbs.json-unit
 json-unit
 test

 org.xmlunit
 xmlunit-core
 test

 org.xmlunit
 xmlunit-matchers
 test

 commons-io
 commons-io
 test

 commons-codec
 commons-codec
 test

 org.apache.commons
 commons-lang3
 test

 org.apache-extras.beanshell
 bsh
 test

 org.codehaus.groovy
 groovy-jsr223
 test

 org.codehaus.groovy
 groovy-dateutil
 test

 com.github.tomakehurst
 wiremock
 test

 com.google.code.java-allocation-instrumenter
 java-allocation-instrumenter
 test

 org.hdrhistogram
 HdrHistogram
 test

 org.awaitility
 awaitility
 test

 org.zapodot
 embedded-ldap-junit
 test

 org.apache.maven.plugins
 maven-dependency-plugin
 3.0.2

 unpack-classes
 prepare-package

 unpack

 org.apache.logging.log4j
 log4j-core-java9
 ${project.version}
 zip
 false

 **/*.class
 **/*.java
 ${project.build.directory}
 false
 true

 org.codehaus.mojo
 build-helper-maven-plugin
 1.7

 add-source
 generate-sources

 add-source

 ${project.build.directory}/log4j-core-java9

 maven-compiler-plugin

 default-compile

 module-info.java

 none

 process-plugins

 compile

 process-classes

 module-info.java

 only

 maven-surefire-plugin

 org.apache.logging.log4j.categories.PerformanceTests

 *

 org.apache.maven.plugins
 maven-failsafe-plugin

 true

 org.apache.maven.plugins
 maven-jar-plugin

 default-jar

 jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}
 org.apache.logging.log4j.core
 true

 default

 test-jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}

 org.apache.felix
 maven-bundle-plugin

 org.apache.logging.log4j.core

 org.apache.logging.log4j.core.*

 sun.reflect;resolution:=optional,
 *

 org.apache.logging.log4j.core.osgi.Activator

 org.apache.maven.plugins
 maven-changes-plugin
 ${changes.plugin.version}

 changes-report

 %URL%/show_bug.cgi?id=%ISSUE%
 true

 org.apache.maven.plugins
 maven-checkstyle-plugin
 ${checkstyle.plugin.version}

 ${log4jParentDir}/checkstyle.xml
 ${log4jParentDir}/checkstyle-suppressions.xml
 false
 basedir=${basedir}
 licensedir=${log4jParentDir}/checkstyle-header.txt

 org.apache.maven.plugins
 maven-javadoc-plugin
 ${javadoc.plugin.version}

 false
 <p align="center">Copyright © {inceptionYear}-{currentYear} {organizationName}. All Rights Reserved.

 Apache Logging, Apache Log4j, Log4j, Apache, the Apache feather logo, the Apache Logging project logo,
 and the Apache Log4j logo are trademarks of The Apache Software Foundation.</p>

 false
 true

 http://docs.oracle.com/javaee/6/api/
 http://www.osgi.org/javadoc/r4v43/core/
 https://commons.apache.org/proper/commons-lang/javadocs/api-release/

 Core API
 org.apache.logging.log4j.core

 Configuration
 org.apache.logging.log4j.core.config*:org.apache.logging.log4j.core.selector

 Core Plugins
 org.apache.logging.log4j.core.appender*:org.apache.logging.log4j.core.filter:org.apache.logging.log4j.core.layout:org.apache.logging.log4j.core.lookup:org.apache.logging.log4j.core.pattern:org.apache.logging.log4j.core.script

 Tools
 org.apache.logging.log4j.core.net*:org.apache.logging.log4j.core.tools

 Internals
 org.apache.logging.log4j.core.async:org.apache.logging.log4j.core.impl:org.apache.logging.log4j.core.util*:org.apache.logging.log4j.core.osgi:org.apache.logging.log4j.core.jackson:org.apache.logging.log4j.core.jmx

 non-aggregate

 javadoc

 com.github.spotbugs
 spotbugs-maven-plugin

 org.apache.maven.plugins
 maven-jxr-plugin
 ${jxr.plugin.version}

 non-aggregate

 jxr

 aggregate

 aggregate

 org.apache.maven.plugins
 maven-pmd-plugin
 ${pmd.plugin.version}

 ${maven.compiler.target}

org/apache/logging/log4j/core/appender/FileManager$FileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$FileManagerFactory implements ManagerFactory {
 private void FileManager$FileManagerFactory();
 public FileManager createManager(String, FileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/ScriptAppenderSelector.class

package org.apache.logging.log4j.core.appender;
public synchronized class ScriptAppenderSelector extends AbstractAppender {
 public static ScriptAppenderSelector$Builder newBuilder();
 private void ScriptAppenderSelector(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Property[]);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$ConsoleManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$ConsoleManagerFactory implements ManagerFactory {
 private void ConsoleAppender$ConsoleManagerFactory();
 public OutputStreamManager createManager(String, ConsoleAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/OnStartupTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class OnStartupTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final long JVM_START_TIME;
 private final long minSize;
 private void OnStartupTriggeringPolicy(long);
 private static long initStartTime();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static OnStartupTriggeringPolicy createPolicy(long);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathSortByModificationTime.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PathSortByModificationTime implements PathSorter, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final boolean recentFirst;
 private final int multiplier;
 public void PathSortByModificationTime(boolean);
 public static PathSorter createSorter(boolean);
 public boolean isRecentFirst();
 public int compare(PathWithAttributes, PathWithAttributes);
}

org/apache/logging/log4j/core/appender/rolling/action/IfFileName.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfFileName implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.nio.file.PathMatcher pathMatcher;
 private final String syntaxAndPattern;
 private final PathCondition[] nestedConditions;
 private transient void IfFileName(String, String, PathCondition[]);
 static String createSyntaxAndPatternString(String, String);
 public String getSyntaxAndPattern();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfFileName createNameCondition(String, String, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/Duration.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class Duration implements java.io.Serializable, Comparable {
 private static final long serialVersionUID = -3756810052716342061;
 public static final Duration ZERO;
 private static final int HOURS_PER_DAY = 24;
 private static final int MINUTES_PER_HOUR = 60;
 private static final int SECONDS_PER_MINUTE = 60;
 private static final int SECONDS_PER_HOUR = 3600;
 private static final int SECONDS_PER_DAY = 86400;
 private static final java.util.regex.Pattern PATTERN;
 private final long seconds;
 private void Duration(long);
 public static Duration parse(CharSequence);
 private static long parseNumber(CharSequence, String, int, String);
 private static Duration create(long, long, long, long);
 private static Duration create(long);
 public long toMillis();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public int compareTo(Duration);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$5.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$5 {
 void FileExtension$5(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$1.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$1 {
 void FileExtension$1(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/DefaultRolloverStrategy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DefaultRolloverStrategy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String max;
 private String min;
 private String fileIndex;
 private String compressionLevelStr;
 private action.Action[] customActions;
 private boolean stopCustomActionsOnError;
 private String tempCompressedFilePattern;
 private org.apache.logging.log4j.core.config.Configuration config;
 public void DefaultRolloverStrategy$Builder();
 public DefaultRolloverStrategy build();
 public String getMax();
 public DefaultRolloverStrategy$Builder withMax(String);
 public String getMin();
 public DefaultRolloverStrategy$Builder withMin(String);
 public String getFileIndex();
 public DefaultRolloverStrategy$Builder withFileIndex(String);
 public String getCompressionLevelStr();
 public DefaultRolloverStrategy$Builder withCompressionLevelStr(String);
 public action.Action[] getCustomActions();
 public DefaultRolloverStrategy$Builder withCustomActions(action.Action[]);
 public boolean isStopCustomActionsOnError();
 public DefaultRolloverStrategy$Builder withStopCustomActionsOnError(boolean);
 public String getTempCompressedFilePattern();
 public DefaultRolloverStrategy$Builder withTempCompressedFilePattern(String);
 public org.apache.logging.log4j.core.config.Configuration getConfig();
 public DefaultRolloverStrategy$Builder withConfig(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/FailoverAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FailoverAppender extends AbstractAppender {
 private static final int DEFAULT_INTERVAL_SECONDS = 60;
 private final String primaryRef;
 private final String[] failovers;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private org.apache.logging.log4j.core.config.AppenderControl primary;
 private final java.util.List failoverAppenders;
 private final long intervalNanos;
 private volatile long nextCheckNanos;
 private void FailoverAppender(String, org.apache.logging.log4j.core.Filter, String, String[], int, org.apache.logging.log4j.core.config.Configuration, boolean, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void callAppender(org.apache.logging.log4j.core.LogEvent);
 private void failover(org.apache.logging.log4j.core.LogEvent, Exception);
 public String toString();
 public static FailoverAppender createAppender(String, String, String[], String, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter, String);
}

org/apache/logging/log4j/core/appender/FileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class FileManager extends OutputStreamManager {
 private static final FileManager$FileManagerFactory FACTORY;
 private final boolean isAppend;
 private final boolean createOnDemand;
 private final boolean isLocking;
 private final String advertiseURI;
 private final int bufferSize;
 private final java.util.Set filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 private final boolean attributeViewEnabled;
 protected void FileManager(String, java.io.OutputStream, boolean, boolean, String, org.apache.logging.log4j.core.Layout, int, boolean);
 protected void FileManager(String, java.io.OutputStream, boolean, boolean, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void FileManager(org.apache.logging.log4j.core.LoggerContext, String, java.io.OutputStream, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void FileManager(org.apache.logging.log4j.core.LoggerContext, String, java.io.OutputStream, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean, java.nio.ByteBuffer);
 public static FileManager getFileManager(String, boolean, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, int, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 protected java.io.OutputStream createOutputStream() throws java.io.IOException;
 protected void createParentDir(java.io.File);
 protected void defineAttributeView(java.nio.file.Path);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 public String getFileName();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public int getBufferSize();
 public java.util.Set getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public boolean isAttributeViewEnabled();
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractManager.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractManager implements AutoCloseable {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final java.util.Map MAP;
 private static final java.util.concurrent.locks.Lock LOCK;
 protected int count;
 private final String name;
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 protected void AbstractManager(org.apache.logging.log4j.core.LoggerContext, String);
 public void close();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public static AbstractManager getManager(String, ManagerFactory, Object);
 public void updateData(Object);
 public static boolean hasManager(String);
 protected static AbstractManager narrow(Class, AbstractManager);
 protected static org.apache.logging.log4j.status.StatusLogger logger();
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected int getCount();
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
 public void release();
 public String getName();
 public java.util.Map getContentFormat();
 protected void log(org.apache.logging.log4j.Level, String, Throwable);
 protected void logDebug(String, Throwable);
 protected void logError(String, Throwable);
 protected void logWarn(String, Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/HttpURLConnectionManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class HttpURLConnectionManager extends HttpManager {
 private static final java.nio.charset.Charset CHARSET;
 private final java.net.URL url;
 private final boolean isHttps;
 private final String method;
 private final int connectTimeoutMillis;
 private final int readTimeoutMillis;
 private final org.apache.logging.log4j.core.config.Property[] headers;
 private final org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private final boolean verifyHostname;
 public void HttpURLConnectionManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.LoggerContext, String, java.net.URL, String, int, int, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.net.ssl.SslConfiguration, boolean);
 public void send(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager$RandomAccessFileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$RandomAccessFileManagerFactory implements ManagerFactory {
 private void RandomAccessFileManager$RandomAccessFileManagerFactory();
 public RandomAccessFileManager createManager(String, RandomAccessFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$1 {
}

org/apache/logging/log4j/core/appender/RollingFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RollingFileAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = RollingFile;
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private final String fileName;
 private final String filePattern;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RollingFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, rolling.RollingFileManager, String, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public String getFileName();
 public String getFilePattern();
 public rolling.TriggeringPolicy getTriggeringPolicy();
 public static RollingFileAppender createAppender(String, String, String, String, String, String, String, rolling.TriggeringPolicy, rolling.RolloverStrategy, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RollingFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/FileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$1 {
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseAppender.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 public static final int DEFAULT_RECONNECT_INTERVAL_MILLIS = 5000;
 private final java.util.concurrent.locks.ReadWriteLock lock;
 private final java.util.concurrent.locks.Lock readLock;
 private final java.util.concurrent.locks.Lock writeLock;
 private AbstractDatabaseManager manager;
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, boolean, AbstractDatabaseManager);
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], AbstractDatabaseManager);
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, AbstractDatabaseManager);
 public final void append(org.apache.logging.log4j.core.LogEvent);
 public final org.apache.logging.log4j.core.Layout getLayout();
 public final AbstractDatabaseManager getManager();
 protected final void replaceManager(AbstractDatabaseManager);
 public final void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$JdbcDatabaseManagerFactory.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$JdbcDatabaseManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private static final char PARAMETER_MARKER = 63;
 private void JdbcDatabaseManager$JdbcDatabaseManagerFactory();
 public JdbcDatabaseManager createManager(String, JdbcDatabaseManager$FactoryData);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target$2.class

package org.apache.logging.log4j.core.appender;
final synchronized enum ConsoleAppender$Target$2 {
 void ConsoleAppender$Target$2(String, int);
 public java.nio.charset.Charset getDefaultCharset();
}

org/apache/logging/log4j/core/appender/FileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FileAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = File;
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private final String fileName;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private final Object advertisement;
 public static FileAppender createAppender(String, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static FileAppender$Builder newBuilder();
 private void FileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, FileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public String getFileName();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/RollingFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RollingFileAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/JmsManager$Reconnector.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private volatile boolean shutdown;
 private final Object owner;
 private void JmsManager$Reconnector(JmsManager, Object);
 public void latch();
 void reconnect() throws javax.naming.NamingException, javax.jms.JMSException;
 public void run();
 public void shutdown();
}

org/apache/logging/log4j/core/appender/mom/JmsAppender$1.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$FactoryData.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$FactoryData {
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 private final String topic;
 private final boolean syncSend;
 private final org.apache.logging.log4j.core.config.Property[] properties;
 private final String key;
 public void KafkaManager$FactoryData(org.apache.logging.log4j.core.LoggerContext, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
}

org/apache/logging/log4j/core/impl/ThreadContextDataProvider.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataProvider implements org.apache.logging.log4j.core.util.ContextDataProvider {
 public void ThreadContextDataProvider();
 public java.util.Map supplyContextData();
 public org.apache.logging.log4j.util.StringMap supplyStringMap();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$LogEventProxy.class

package org.apache.logging.log4j.core.impl;
synchronized class Log4jLogEvent$LogEventProxy implements java.io.Serializable {
 private static final long serialVersionUID = -8634075037355293699;
 private final String loggerFQCN;
 private final org.apache.logging.log4j.Marker marker;
 private final org.apache.logging.log4j.Level level;
 private final String loggerName;
 private final transient org.apache.logging.log4j.message.Message message;
 private java.rmi.MarshalledObject marshalledMessage;
 private String messageString;
 private final long timeMillis;
 private final int nanoOfMillisecond;
 private final transient Throwable thrown;
 private final ThrowableProxy thrownProxy;
 private final org.apache.logging.log4j.util.StringMap contextData;
 private final org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private final long threadId;
 private final String threadName;
 private final int threadPriority;
 private final StackTraceElement source;
 private final boolean isLocationRequired;
 private final boolean isEndOfBatch;
 private final transient long nanoTime;
 public void Log4jLogEvent$LogEventProxy(Log4jLogEvent, boolean);
 public void Log4jLogEvent$LogEventProxy(org.apache.logging.log4j.core.LogEvent, boolean);
 private static org.apache.logging.log4j.message.Message memento(org.apache.logging.log4j.message.ReusableMessage);
 private static org.apache.logging.log4j.util.StringMap memento(org.apache.logging.log4j.util.ReadOnlyStringMap);
 private static java.rmi.MarshalledObject marshall(org.apache.logging.log4j.message.Message);
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 protected Object readResolve();
 private org.apache.logging.log4j.message.Message message();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForCopyOnWriteThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForCopyOnWriteThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForCopyOnWriteThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/Log4jProvider.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jProvider extends org.apache.logging.log4j.spi.Provider {
 public void Log4jProvider();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForDefaultThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForDefaultThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForDefaultThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 private static JdkMapAdapterStringMap frozenStringMap(java.util.Map);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper$CacheEntry.class

package org.apache.logging.log4j.core.impl;
final synchronized class ThrowableProxyHelper$CacheEntry {
 private final ExtendedClassInfo element;
 private final ClassLoader loader;
 private void ThrowableProxyHelper$CacheEntry(ExtendedClassInfo, ClassLoader);
}

org/apache/logging/log4j/core/tools/Generate$LevelInfo.class

package org.apache.logging.log4j.core.tools;
synchronized class Generate$LevelInfo {
 final String name;
 final int intLevel;
 void Generate$LevelInfo(String);
 public static java.util.List parse(java.util.List, Class);
}

org/apache/logging/log4j/core/tools/Generate$Type.class

package org.apache.logging.log4j.core.tools;
abstract synchronized enum Generate$Type {
 public static final Generate$Type CUSTOM;
 public static final Generate$Type EXTEND;
 public static Generate$Type[] values();
 public static Generate$Type valueOf(String);
 private void Generate$Type(String, int);
 abstract String imports();
 abstract String declaration();
 abstract String constructor();
 abstract Class generator();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate$CustomLogger.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate$CustomLogger {
 public static void main(String[]);
 private void Generate$CustomLogger();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MissingParameterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MissingParameterException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 5075678535706338753;
 public void CommandLine$MissingParameterException(CommandLine, String);
 private static CommandLine$MissingParameterException create(CommandLine, java.util.Collection, String);
 private static String describe(reflect.Field, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BigIntegerConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BigIntegerConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BigIntegerConverter();
 public java.math.BigInteger convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Command.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Command extends annotation.Annotation {
 public abstract String name();
 public abstract Class[] subcommands();
 public abstract String separator();
 public abstract String[] version();
 public abstract String headerHeading();
 public abstract String[] header();
 public abstract String synopsisHeading();
 public abstract boolean abbreviateSynopsis();
 public abstract String[] customSynopsis();
 public abstract String descriptionHeading();
 public abstract String[] description();
 public abstract String parameterListHeading();
 public abstract String optionListHeading();
 public abstract boolean sortOptions();
 public abstract char requiredOptionMarker();
 public abstract boolean showDefaultValues();
 public abstract String commandListHeading();
 public abstract String footerHeading();
 public abstract String[] footer();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultParamLabelRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultParamLabelRenderer implements CommandLine$Help$IParamLabelRenderer {
 public final String separator;
 public void CommandLine$Help$DefaultParamLabelRenderer(String);
 public String separator();
 public CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 private static String renderParameterName(reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$ColorScheme.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$ColorScheme {
 public final java.util.List commandStyles;
 public final java.util.List optionStyles;
 public final java.util.List parameterStyles;
 public final java.util.List optionParamStyles;
 private final CommandLine$Help$Ansi ansi;
 public void CommandLine$Help$ColorScheme();
 public void CommandLine$Help$ColorScheme(CommandLine$Help$Ansi);
 public transient CommandLine$Help$ColorScheme commands(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme options(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme parameters(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme optionParams(CommandLine$Help$Ansi$IStyle[]);
 public CommandLine$Help$Ansi$Text commandText(String);
 public CommandLine$Help$Ansi$Text optionText(String);
 public CommandLine$Help$Ansi$Text parameterText(String);
 public CommandLine$Help$Ansi$Text optionParamText(String);
 public CommandLine$Help$ColorScheme applySystemProperties();
 private void replace(java.util.List, String);
 private transient CommandLine$Help$ColorScheme addAll(java.util.List, CommandLine$Help$Ansi$IStyle[]);
 public CommandLine$Help$Ansi ansi();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ITypeConverter.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$ITypeConverter {
 public abstract Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$MinimalOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$MinimalOptionRenderer implements CommandLine$Help$IOptionRenderer {
 void CommandLine$Help$MinimalOptionRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$PicocliException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$PicocliException extends RuntimeException {
 private static final long serialVersionUID = -2574128880125050818;
 public void CommandLine$PicocliException(String);
 public void CommandLine$PicocliException(String, Exception);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$1.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Column$Overflow.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Column$Overflow {
 public static final CommandLine$Help$Column$Overflow TRUNCATE;
 public static final CommandLine$Help$Column$Overflow SPAN;
 public static final CommandLine$Help$Column$Overflow WRAP;
 public static CommandLine$Help$Column$Overflow[] values();
 public static CommandLine$Help$Column$Overflow valueOf(String);
 private void CommandLine$Help$Column$Overflow(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$UUIDConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$UUIDConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$UUIDConverter();
 public java.util.UUID convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Ansi {
 public static final CommandLine$Help$Ansi AUTO;
 public static final CommandLine$Help$Ansi ON;
 public static final CommandLine$Help$Ansi OFF;
 static CommandLine$Help$Ansi$Text EMPTY_TEXT;
 static final boolean isWindows;
 static final boolean isXterm;
 static final boolean ISATTY;
 public static CommandLine$Help$Ansi[] values();
 public static CommandLine$Help$Ansi valueOf(String);
 private void CommandLine$Help$Ansi(String, int);
 static final boolean calcTTY();
 private static boolean ansiPossible();
 public boolean enabled();
 public CommandLine$Help$Ansi$Text apply(String, java.util.List);
 private static Object[] reverse(Object[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate {
 static final String PACKAGE_DECLARATION = package %s;%n%n;
 static final String FQCN_FIELD = private static final String FQCN = %s.class.getName();%n;
 static final String LEVEL_FIELD = private static final Level %s = Level.forName("%s", %d);%n;
 static final String FACTORY_METHODS = %n /**%n * Returns a custom Logger with the name of the calling class.%n * %n * @return The custom Logger for the calling class.%n */%n public static CLASSNAME create() {%n final Logger wrapped = LogManager.getLogger();%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified name of the Class as%n * the Logger name.%n * %n * @param loggerName The Class whose name should be used as the Logger name.%n * If null it will default to the calling class.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Class<?> loggerName) {%n final Logger wrapped = LogManager.getLogger(loggerName);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified name of the Class as%n * the Logger name.%n * %n * @param loggerName The Class whose name should be used as the Logger name.%n * If null it will default to the calling class.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Class<?> loggerName, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(loggerName, messageFactory);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified class name of the value%n * as the Logger name.%n * %n * @param value The value whose class name should be used as the Logger%n * name. If null the name of the calling class will be used as%n * the logger name.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Object value) {%n final Logger wrapped = LogManager.getLogger(value);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified class name of the value%n * as the Logger name.%n * %n * @param value The value whose class name should be used as the Logger%n * name. If null the name of the calling class will be used as%n * the logger name.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Object value, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(value, messageFactory);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger with the specified name.%n * %n * @param name The logger name. If null the name of the calling class will%n * be used.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final String name) {%n final Logger wrapped = LogManager.getLogger(name);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger with the specified name.%n * %n * @param name The logger name. If null the name of the calling class will%n * be used.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final String name, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(name, messageFactory);%n return new CLASSNAME(wrapped);%n }%n;
 static final String METHODS = %n /**%n * Logs a message with the specific Marker at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param msg the message string to be logged%n */%n public void methodName(final Marker marker, final Message msg) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msg, (Throwable) null);%n }%n%n /**%n * Logs a message with the specific Marker at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param msg the message string to be logged%n * @param t A Throwable or null.%n */%n public void methodName(final Marker marker, final Message msg, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msg, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message object to log.%n */%n public void methodName(final Marker marker, final Object message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message CharSequence with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message CharSequence to log.%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final CharSequence message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Marker marker, final Object message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the CharSequence to log.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final CharSequence message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message object to log.%n */%n public void methodName(final Marker marker, final String message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param params parameters to the message.%n * @see #getMessageFactory()%n */%n public void methodName(final Marker marker, final String message, final Object... params) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, params);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7, p8);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @param p9 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8, final Object p9) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Marker marker, final String message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs the specified Message at the {@code CUSTOM_LEVEL} level.%n * %n * @param msg the message string to be logged%n */%n public void methodName(final Message msg) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msg, (Throwable) null);%n }%n%n /**%n * Logs the specified Message at the {@code CUSTOM_LEVEL} level.%n * %n * @param msg the message string to be logged%n * @param t A Throwable or null.%n */%n public void methodName(final Message msg, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msg, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message object to log.%n */%n public void methodName(final Object message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Object message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message CharSequence with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message CharSequence to log.%n * @since Log4j-2.6%n */%n public void methodName(final CharSequence message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a CharSequence at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the CharSequence to log.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.6%n */%n public void methodName(final CharSequence message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message object to log.%n */%n public void methodName(final String message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param params parameters to the message.%n * @see #getMessageFactory()%n */%n public void methodName(final String message, final Object... params) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, params);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7, p8);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @param p9 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8, final Object p9) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final String message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the {@code CUSTOM_LEVEL}level.%n *%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @since Log4j-2.4%n */%n public void methodName(final Supplier<?> msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) including the stack trace of the {@link Throwable} <code>t</code> passed as parameter.%n *%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.4%n */%n public void methodName(final Supplier<?> msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level with the specified Marker.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final Supplier<?> msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters which are only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level.%n *%n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param paramSuppliers An array of functions, which when called, produce the desired log message parameters.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final String message, final Supplier<?>... paramSuppliers) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, paramSuppliers);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) with the specified Marker and including the stack trace of the {@link Throwable}%n * <code>t</code> passed as parameter.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @param t A Throwable or null.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final Supplier<?> msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, t);%n }%n%n /**%n * Logs a message with parameters which are only to be constructed if the logging level is%n * the {@code CUSTOM_LEVEL} level.%n *%n * @param message the message to log; the format depends on the message factory.%n * @param paramSuppliers An array of functions, which when called, produce the desired log message parameters.%n * @since Log4j-2.4%n */%n public void methodName(final String message, final Supplier<?>... paramSuppliers) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, paramSuppliers);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level with the specified Marker. The {@code MessageSupplier} may or may%n * not use the {@link MessageFactory} to construct the {@code Message}.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final MessageSupplier msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) with the specified Marker and including the stack trace of the {@link Throwable}%n * <code>t</code> passed as parameter. The {@code MessageSupplier} may or may not use the%n * {@link MessageFactory} to construct the {@code Message}.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @param t A Throwable or null.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final MessageSupplier msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level. The {@code MessageSupplier} may or may not use the%n * {@link MessageFactory} to construct the {@code Message}.%n *%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @since Log4j-2.4%n */%n public void methodName(final MessageSupplier msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) including the stack trace of the {@link Throwable} <code>t</code> passed as parameter.%n * The {@code MessageSupplier} may or may not use the {@link MessageFactory} to construct the%n * {@code Message}.%n *%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.4%n */%n public void methodName(final MessageSupplier msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, t);%n }%n;
 private void Generate();
 private static void generate(String[], Generate$Type);
 static void generate(String[], Generate$Type, java.io.PrintStream);
 static boolean validate(String[]);
 private static void usage(java.io.PrintStream, Class);
 static String generateSource(String, java.util.List, Generate$Type);
 static String javadocDescription(java.util.List);
 static String camelCase(String);
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationDefaults.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationDefaults {
 public static final String KEYSTORE_TYPE = JKS;
 public static final String PROTOCOL = SSL;
 public void SslConfigurationDefaults();
}

org/apache/logging/log4j/core/net/SslSocketManager$SslFactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$SslFactoryData extends TcpSocketManager$FactoryData {
 protected ssl.SslConfiguration sslConfiguration;
 public void SslSocketManager$SslFactoryData(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public String toString();
}

org/apache/logging/log4j/core/net/Severity.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Severity {
 public static final Severity EMERG;
 public static final Severity ALERT;
 public static final Severity CRITICAL;
 public static final Severity ERROR;
 public static final Severity WARNING;
 public static final Severity NOTICE;
 public static final Severity INFO;
 public static final Severity DEBUG;
 private final int code;
 public static Severity[] values();
 public static Severity valueOf(String);
 private void Severity(String, int, int);
 public int getCode();
 public boolean isEqual(String);
 public static Severity getSeverity(org.apache.logging.log4j.Level);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/DatagramSocketManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$1 {
}

org/apache/logging/log4j/core/net/Severity$1.class

package org.apache.logging.log4j.core.net;
synchronized class Severity$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SmtpManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$FactoryData {
 private final String to;
 private final String cc;
 private final String bcc;
 private final String from;
 private final String replyto;
 private final org.apache.logging.log4j.core.layout.AbstractStringLayout$Serializer subject;
 private final String protocol;
 private final String host;
 private final int port;
 private final String username;
 private final String password;
 private final boolean isDebug;
 private final int numElements;
 private final ssl.SslConfiguration sslConfiguration;
 public void SmtpManager$FactoryData(String, String, String, String, String, org.apache.logging.log4j.core.layout.AbstractStringLayout$Serializer, String, String, int, String, String, boolean, int, ssl.SslConfiguration);
}

org/apache/logging/log4j/core/net/DatagramSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class DatagramSocketManager extends AbstractSocketManager {
 private static final DatagramSocketManager$DatagramSocketManagerFactory FACTORY;
 protected void DatagramSocketManager(String, java.io.OutputStream, java.net.InetAddress, String, int, org.apache.logging.log4j.core.Layout, int);
 public static DatagramSocketManager getSocketManager(String, int, org.apache.logging.log4j.core.Layout, int);
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SocketOptions.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketOptions implements org.apache.logging.log4j.core.util.Builder, Cloneable {
 private Boolean keepAlive;
 private Boolean oobInline;
 private SocketPerformancePreferences performancePreferences;
 private Integer receiveBufferSize;
 private Boolean reuseAddress;
 private Rfc1349TrafficClass rfc1349TrafficClass;
 private Integer sendBufferSize;
 private Integer soLinger;
 private Integer soTimeout;
 private Boolean tcpNoDelay;
 private Integer trafficClass;
 public void SocketOptions();
 public static SocketOptions newBuilder();
 public void apply(java.net.Socket) throws java.net.SocketException;
 public SocketOptions build();
 public Integer getActualTrafficClass();
 public SocketPerformancePreferences getPerformancePreferences();
 public Integer getReceiveBufferSize();
 public Rfc1349TrafficClass getRfc1349TrafficClass();
 public Integer getSendBufferSize();
 public Integer getSoLinger();
 public Integer getSoTimeout();
 public Integer getTrafficClass();
 public Boolean isKeepAlive();
 public Boolean isOobInline();
 public Boolean isReuseAddress();
 public Boolean isTcpNoDelay();
 public SocketOptions setKeepAlive(boolean);
 public SocketOptions setOobInline(boolean);
 public SocketOptions setPerformancePreferences(SocketPerformancePreferences);
 public SocketOptions setReceiveBufferSize(int);
 public SocketOptions setReuseAddress(boolean);
 public SocketOptions setRfc1349TrafficClass(Rfc1349TrafficClass);
 public SocketOptions setSendBufferSize(int);
 public SocketOptions setSoLinger(int);
 public SocketOptions setSoTimeout(int);
 public SocketOptions setTcpNoDelay(boolean);
 public SocketOptions setTrafficClass(int);
 public String toString();
}

org/apache/logging/log4j/core/util/Log4jThreadFactory.class

package org.apache.logging.log4j.core.util;
public synchronized class Log4jThreadFactory implements java.util.concurrent.ThreadFactory {
 private static final String PREFIX = TF-;
 private static final java.util.concurrent.atomic.AtomicInteger FACTORY_NUMBER;
 private static final java.util.concurrent.atomic.AtomicInteger THREAD_NUMBER;
 private final boolean daemon;
 private final ThreadGroup group;
 private final int priority;
 private final String threadNamePrefix;
 public static Log4jThreadFactory createDaemonThreadFactory(String);
 public static Log4jThreadFactory createThreadFactory(String);
 public void Log4jThreadFactory(String, boolean, int);
 public Thread newThread(Runnable);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemMillisClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemMillisClock implements Clock {
 public void SystemMillisClock();
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/util/datetime/FastDateFormat.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDateFormat extends Format implements DateParser, DatePrinter {
 private static final long serialVersionUID = 2;
 public static final int FULL = 0;
 public static final int LONG = 1;
 public static final int MEDIUM = 2;
 public static final int SHORT = 3;
 private static final FormatCache cache;
 private final FastDatePrinter printer;
 private final FastDateParser parser;
 public static FastDateFormat getInstance();
 public static FastDateFormat getInstance(String);
 public static FastDateFormat getInstance(String, java.util.TimeZone);
 public static FastDateFormat getInstance(String, java.util.Locale);
 public static FastDateFormat getInstance(String, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getDateInstance(int);
 public static FastDateFormat getDateInstance(int, java.util.Locale);
 public static FastDateFormat getDateInstance(int, java.util.TimeZone);
 public static FastDateFormat getDateInstance(int, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getTimeInstance(int);
 public static FastDateFormat getTimeInstance(int, java.util.Locale);
 public static FastDateFormat getTimeInstance(int, java.util.TimeZone);
 public static FastDateFormat getTimeInstance(int, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getDateTimeInstance(int, int);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.Locale);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.TimeZone);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.TimeZone, java.util.Locale);
 protected void FastDateFormat(String, java.util.TimeZone, java.util.Locale);
 protected void FastDateFormat(String, java.util.TimeZone, java.util.Locale, java.util.Date);
 public StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 public String format(long);
 public String format(java.util.Date);
 public String format(java.util.Calendar);
 public Appendable format(long, Appendable);
 public Appendable format(java.util.Date, Appendable);
 public Appendable format(java.util.Calendar, Appendable);
 public java.util.Date parse(String) throws java.text.ParseException;
 public java.util.Date parse(String, java.text.ParsePosition);
 public boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 public Object parseObject(String, java.text.ParsePosition);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public int getMaxLengthEstimate();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwentyFourHourField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwentyFourHourField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$TwentyFourHourField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/OptionConverter.class

package org.apache.logging.log4j.core.util;
public final synchronized class OptionConverter {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int ONE_K = 1024;
 private void OptionConverter();
 public static String[] concatenateArrays(String[], String[]);
 public static String convertSpecialChars(String);
 public static Object instantiateByKey(java.util.Properties, String, Class, Object);
 public static boolean toBoolean(String, boolean);
 public static int toInt(String, int);
 public static org.apache.logging.log4j.Level toLevel(String, org.apache.logging.log4j.Level);
 public static long toFileSize(String, long);
 public static String findAndSubst(String, java.util.Properties);
 public static Object instantiateByClassName(String, Class, Object);
 public static String substVars(String, java.util.Properties) throws IllegalArgumentException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Transform.class

package org.apache.logging.log4j.core.util;
public final synchronized class Transform {
 private static final String CDATA_START = <![CDATA[;
 private static final String CDATA_END =]]>;
 private static final String CDATA_PSEUDO_END =]]>;
 private static final String CDATA_EMBEDED_END =]]>]]><![CDATA[;
 private static final int CDATA_END_LEN;
 private void Transform();
 public static String escapeHtmlTags(String);
 public static void appendEscapingCData(StringBuilder, String);
 public static String escapeJsonControlCharacters(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemNanoClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemNanoClock implements NanoClock {
 public void SystemNanoClock();
 public long nanoTime();
}

org/apache/logging/log4j/core/util/FileUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class FileUtils {
 private static final String PROTOCOL_FILE = file;
 private static final String JBOSS_FILE = vfsfile;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void FileUtils();
 public static java.io.File fileFromUri(java.net.URI);
 public static boolean isFile(java.net.URL);
 public static String getFileExtension(java.io.File);
 public static void mkdir(java.io.File, boolean) throws java.io.IOException;
 public static void makeParentDirs(java.io.File) throws java.io.IOException;
 public static void defineFilePosixAttributeView(java.nio.file.Path, java.util.Set, String, String) throws java.io.IOException;
 public static boolean isFilePosixAttributeViewSupported();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Throwables.class

package org.apache.logging.log4j.core.util;
public final synchronized class Throwables {
 private void Throwables();
 public static Throwable getRootCause(Throwable);
 public static java.util.List toStringList(Throwable);
 public static void rethrow(Throwable);
 private static void rethrow0(Throwable) throws Throwable;
}

org/apache/logging/log4j/core/util/AbstractWatcher.class

package org.apache.logging.log4j.core.util;
public abstract synchronized class AbstractWatcher implements Watcher {
 private final org.apache.logging.log4j.core.config.Reconfigurable reconfigurable;
 private final java.util.List configurationListeners;
 private final Log4jThreadFactory threadFactory;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private Source source;
 public void AbstractWatcher(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List);
 public java.util.List getListeners();
 public void modified();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public abstract long getLastModified();
 public abstract boolean isModified();
 public void watching(Source);
 public Source getSource();
}

org/apache/logging/log4j/core/config/LockingReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class LockingReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private final LoggerConfig loggerConfig;
 private final java.util.concurrent.locks.ReadWriteLock reconfigureLock;
 private volatile boolean isStopping;
 public void LockingReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 private boolean beforeLogEvent();
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ClassArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final String ATTR_CLASS_NAME = className;
 private String className;
 public void ClassArbiter$Builder();
 public ClassArbiter$Builder setClassName(String);
 public ClassArbiter$Builder asBuilder();
 public ClassArbiter build();
}

org/apache/logging/log4j/core/config/plugins/PluginBuilderAttribute.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginBuilderAttribute extends annotation.Annotation {
 public abstract String value();
 public abstract boolean sensitive();
}

org/apache/logging/log4j/core/config/plugins/util/PluginUtil.class

package org.apache.logging.log4j.core.config.plugins.util;
public final synchronized class PluginUtil {
 private void PluginUtil();
 public static java.util.Map collectPluginsByCategory(String);
 public static java.util.Map collectPluginsByCategoryAndPackage(String, java.util.List);
 public static Object instantiatePlugin(Class);
 public static reflect.Method findPluginFactoryMethod(Class);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$PluginElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$PluginElementVisitor extends javax.lang.model.util.SimpleElementVisitor7 {
 private final javax.lang.model.util.Elements elements;
 private void PluginProcessor$PluginElementVisitor(javax.lang.model.util.Elements);
 public PluginEntry visitType(javax.lang.model.element.TypeElement, org.apache.logging.log4j.core.config.plugins.Plugin);
}

org/apache/logging/log4j/core/config/plugins/PluginElement.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginElement extends annotation.Annotation {
 public abstract String value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BigIntegerConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BigIntegerConverter implements TypeConverter {
 public void TypeConverters$BigIntegerConverter();
 public java.math.BigInteger convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public abstract interface TypeConverter {
 public abstract Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$SecurityProviderConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$SecurityProviderConverter implements TypeConverter {
 public void TypeConverters$SecurityProviderConverter();
 public java.security.Provider convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$StringConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$StringConverter implements TypeConverter {
 public void TypeConverters$StringConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/config/Reconfigurable.class

package org.apache.logging.log4j.core.config;
public abstract interface Reconfigurable {
 public abstract Configuration reconfigure();
}

org/apache/logging/log4j/core/config/ConfigurationException.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationException extends RuntimeException {
 private static final long serialVersionUID = -2413951820300775294;
 public void ConfigurationException(String);
 public void ConfigurationException(String, Throwable);
 public void ConfigurationException(Throwable);
}

org/apache/logging/log4j/core/config/status/StatusConfiguration$Verbosity.class

package org.apache.logging.log4j.core.config.status;
public final synchronized enum StatusConfiguration$Verbosity {
 public static final StatusConfiguration$Verbosity QUIET;
 public static final StatusConfiguration$Verbosity VERBOSE;
 public static StatusConfiguration$Verbosity[] values();
 public static StatusConfiguration$Verbosity valueOf(String);
 private void StatusConfiguration$Verbosity(String, int);
 public static StatusConfiguration$Verbosity toVerbosity(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration$ErrorType.class

package org.apache.logging.log4j.core.config.xml;
final synchronized enum XmlConfiguration$ErrorType {
 public static final XmlConfiguration$ErrorType CLASS_NOT_FOUND;
 public static XmlConfiguration$ErrorType[] values();
 public static XmlConfiguration$ErrorType valueOf(String);
 private void XmlConfiguration$ErrorType(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration$Status.class

package org.apache.logging.log4j.core.config.xml;
synchronized class XmlConfiguration$Status {
 private final org.w3c.dom.Element element;
 private final String name;
 private final XmlConfiguration$ErrorType errorType;
 public void XmlConfiguration$Status(String, org.w3c.dom.Element, XmlConfiguration$ErrorType);
 public String toString();
}

org/apache/logging/log4j/core/config/json/JsonConfigurationFactory.class

package org.apache.logging.log4j.core.config.json;
public synchronized class JsonConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 private static final String[] SUFFIXES;
 private static final String[] dependencies;
 private final boolean isActive;
 public void JsonConfigurationFactory();
 protected boolean isActive();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$1.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$1 {
 void LoggerConfig$LoggerConfigPredicate$1(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/ConfigurationAware.class

package org.apache.logging.log4j.core.config;
public abstract interface ConfigurationAware {
 public abstract void setConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/ReliabilityStrategyFactory.class

package org.apache.logging.log4j.core.config;
public final synchronized class ReliabilityStrategyFactory {
 private void ReliabilityStrategyFactory();
 public static ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultLoggerComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder {
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, boolean);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, String);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultPropertyComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultPropertyComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.PropertyComponentBuilder {
 public void DefaultPropertyComponentBuilder(DefaultConfigurationBuilder, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
public synchronized class DefaultConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder {
 private static final String INDENT = ;
 private final org.apache.logging.log4j.core.config.builder.api.Component root;
 private org.apache.logging.log4j.core.config.builder.api.Component loggers;
 private org.apache.logging.log4j.core.config.builder.api.Component appenders;
 private org.apache.logging.log4j.core.config.builder.api.Component filters;
 private org.apache.logging.log4j.core.config.builder.api.Component properties;
 private org.apache.logging.log4j.core.config.builder.api.Component customLevels;
 private org.apache.logging.log4j.core.config.builder.api.Component scripts;
 private final Class clazz;
 private org.apache.logging.log4j.core.config.ConfigurationSource source;
 private int monitorInterval;
 private org.apache.logging.log4j.Level level;
 private String verbosity;
 private String destination;
 private String packages;
 private String shutdownFlag;
 private long shutdownTimeoutMillis;
 private String advertiser;
 private org.apache.logging.log4j.core.LoggerContext loggerContext;
 private String name;
 public static void formatXml(javax.xml.transform.Source, javax.xml.transform.Result) throws javax.xml.transform.TransformerConfigurationException, javax.xml.transform.TransformerFactoryConfigurationError, javax.xml.transform.TransformerException;
 public void DefaultConfigurationBuilder();
 public void DefaultConfigurationBuilder(Class);
 protected org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.Component, org.apache.logging.log4j.core.config.builder.api.ComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder addProperty(String, String);
 public BuiltConfiguration build();
 public BuiltConfiguration build(boolean);
 private String formatXml(String) throws javax.xml.transform.TransformerConfigurationException, javax.xml.transform.TransformerException, javax.xml.transform.TransformerFactoryConfigurationError;
 public void writeXmlConfiguration(java.io.OutputStream) throws java.io.IOException;
 public String toXmlConfiguration();
 private void writeXmlConfiguration(javax.xml.stream.XMLStreamWriter) throws javax.xml.stream.XMLStreamException;
 private void writeXmlSection(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 private void writeXmlComponent(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 private void writeXmlAttributes(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 public org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder newScript(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder newScriptFile(String);
 public org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder newScriptFile(String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder newAppender(String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder newAppenderRef(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger();
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.PropertyComponentBuilder newProperty(String, String);
 public org.apache.logging.log4j.core.config.builder.api.KeyValuePairComponentBuilder newKeyValuePair(String, String);
 public org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder newCustomLevel(String, int);
 public org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder newFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder newFilter(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder newLayout(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger();
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setAdvertiser(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setConfigurationName(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setMonitorInterval(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setPackages(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setShutdownHook(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setShutdownTimeout(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setStatusLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setVerbosity(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setDestination(String);
 public void setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder addRootProperty(String, String);
}

org/apache/logging/log4j/core/layout/JacksonFactory$XML.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$XML extends JacksonFactory {
 static final int DEFAULT_INDENT = 1;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 public void JacksonFactory$XML(boolean, boolean);
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForContextMap();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/TextEncoderHelper.class

package org.apache.logging.log4j.core.layout;
public synchronized class TextEncoderHelper {
 private void TextEncoderHelper();
 static void encodeTextFallBack(java.nio.charset.Charset, StringBuilder, ByteBufferDestination);
 static void encodeText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, StringBuilder, ByteBufferDestination) throws java.nio.charset.CharacterCodingException;
 private static void writeEncodedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, ByteBufferDestination, java.nio.charset.CoderResult);
 private static void writeChunkedEncodedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void encodeChunkedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, StringBuilder, ByteBufferDestination);
 public static void encodeText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, ByteBufferDestination);
 private static java.nio.ByteBuffer writeAndEncodeAsMuchAsPossible(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, boolean, ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void throwException(java.nio.charset.CoderResult);
 private static java.nio.ByteBuffer encodeAsMuchAsPossible(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, boolean, ByteBufferDestination, java.nio.ByteBuffer);
 private static java.nio.ByteBuffer drainIfByteBufferFull(ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void flushRemainingBytes(java.nio.charset.CharsetEncoder, ByteBufferDestination, java.nio.ByteBuffer);
 static int copy(StringBuilder, int, java.nio.CharBuffer);
}

org/apache/logging/log4j/core/layout/internal/ListChecker.class

package org.apache.logging.log4j.core.layout.internal;
public abstract interface ListChecker {
 public static final ListChecker$NoopChecker NOOP_CHECKER;
 public abstract boolean check(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/internal/ExcludeChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class ExcludeChecker implements ListChecker {
 private final java.util.List list;
 public void ExcludeChecker(java.util.List);
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/LockingStringBuilderEncoder.class

package org.apache.logging.log4j.core.layout;
public synchronized class LockingStringBuilderEncoder implements Encoder {
 private final java.nio.charset.Charset charset;
 private final java.nio.charset.CharsetEncoder charsetEncoder;
 private final java.nio.CharBuffer cachedCharBuffer;
 public void LockingStringBuilderEncoder(java.nio.charset.Charset);
 public void LockingStringBuilderEncoder(java.nio.charset.Charset, int);
 private java.nio.CharBuffer getCharBuffer();
 public void encode(StringBuilder, ByteBufferDestination);
 private void logEncodeTextException(Exception, StringBuilder, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$LogEventWithAdditionalFields.class

package org.apache.logging.log4j.core.layout;
public synchronized class AbstractJacksonLayout$LogEventWithAdditionalFields {
 private final Object logEvent;
 private final java.util.Map additionalFields;
 public void AbstractJacksonLayout$LogEventWithAdditionalFields(Object, java.util.Map);
 public Object getLogEvent();
 public java.util.Map getAdditionalFields();
}

org/apache/logging/log4j/core/layout/JsonLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class JsonLayout extends AbstractJacksonLayout {
 private static final String DEFAULT_FOOTER =];
 private static final String DEFAULT_HEADER = [;
 static final String CONTENT_TYPE = application/json;
 protected void JsonLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean);
 private void JsonLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[], boolean);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static JsonLayout createLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 public static JsonLayout$Builder newBuilder();
 public static JsonLayout createDefaultLayout();
 public void toSerializable(org.apache.logging.log4j.core.LogEvent, java.io.Writer) throws java.io.IOException;
}

org/apache/logging/log4j/core/Version.class

package org.apache.logging.log4j.core;
public synchronized class Version {
 public void Version();
 public static void main(String[]);
 public static String getProductString();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfig extends org.apache.logging.log4j.core.config.LoggerConfig {
 private static final ThreadLocal ASYNC_LOGGER_ENTERED;
 private final AsyncLoggerConfigDelegate delegate;
 protected void AsyncLoggerConfig(String, java.util.List, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.Level, boolean, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, boolean);
 protected void log(org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.config.LoggerConfig$LoggerConfigPredicate);
 protected void callAppenders(org.apache.logging.log4j.core.LogEvent);
 private void logToAsyncDelegate(org.apache.logging.log4j.core.LogEvent);
 private void handleQueueFull(org.apache.logging.log4j.core.LogEvent);
 private void populateLazilyInitializedFields(org.apache.logging.log4j.core.LogEvent);
 void logInBackgroundThread(org.apache.logging.log4j.core.LogEvent);
 void logToAsyncLoggerConfigsOnCurrentThread(org.apache.logging.log4j.core.LogEvent);
 private String displayName();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, String, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(boolean, org.apache.logging.log4j.Level, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 protected static boolean includeLocation(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$Log4jEventWrapper.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDisruptor$Log4jEventWrapper {
 private AsyncLoggerConfig loggerConfig;
 private org.apache.logging.log4j.core.LogEvent event;
 public void AsyncLoggerConfigDisruptor$Log4jEventWrapper();
 public void AsyncLoggerConfigDisruptor$Log4jEventWrapper(org.apache.logging.log4j.core.impl.MutableLogEvent);
 public void clear();
 public String toString();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy$2.class

package org.apache.logging.log4j.core.async;
final synchronized enum ThreadNameCachingStrategy$2 {
 void ThreadNameCachingStrategy$2(String, int);
 public String getThreadName();
}

org/apache/logging/log4j/core/async/LinkedTransferQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class LinkedTransferQueueFactory implements BlockingQueueFactory {
 public void LinkedTransferQueueFactory();
 public java.util.concurrent.BlockingQueue create(int);
 public static LinkedTransferQueueFactory createFactory();
}

org/apache/logging/log4j/core/async/AsyncLogger$2.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$2 extends AsyncLogger$TranslatorType {
 void AsyncLogger$2(AsyncLogger);
 void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/ArrayBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class ArrayBlockingQueueFactory implements BlockingQueueFactory {
 public void ArrayBlockingQueueFactory();
 public java.util.concurrent.BlockingQueue create(int);
 public static ArrayBlockingQueueFactory createFactory();
}

org/apache/logging/log4j/core/lookup/AbstractLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class AbstractLookup implements StrLookup {
 public void AbstractLookup();
 public String lookup(String);
}

org/apache/logging/log4j/core/lookup/Log4jLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class Log4jLookup extends AbstractConfigurationAwareLookup {
 public static final String KEY_CONFIG_LOCATION = configLocation;
 public static final String KEY_CONFIG_PARENT_LOCATION = configParentLocation;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void Log4jLookup();
 private static String asPath(java.net.URI);
 private static java.net.URI getParent(java.net.URI) throws java.net.URISyntaxException;
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/XmlLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class XmlLogEventParser extends AbstractJacksonLogEventParser {
 public void XmlLogEventParser();
}

org/apache/logging/log4j/core/time/MutableInstant.class

package org.apache.logging.log4j.core.time;
public synchronized class MutableInstant implements Instant, java.io.Serializable, java.time.temporal.TemporalAccessor {
 private static final int MILLIS_PER_SECOND = 1000;
 private static final int NANOS_PER_MILLI = 1000000;
 private static final int NANOS_PER_SECOND = 1000000000;
 private long epochSecond;
 private int nanoOfSecond;
 public void MutableInstant();
 public long getEpochSecond();
 public int getNanoOfSecond();
 public long getEpochMillisecond();
 public int getNanoOfMillisecond();
 public void initFrom(Instant);
 public void initFromEpochMilli(long, int);
 private void validateNanoOfMillisecond(int);
 public void initFrom(org.apache.logging.log4j.core.util.Clock);
 public void initFromEpochSecond(long, int);
 private void validateNanoOfSecond(int);
 public static void instantToMillisAndNanos(long, int, long[]);
 public boolean isSupported(java.time.temporal.TemporalField);
 public long getLong(java.time.temporal.TemporalField);
 public java.time.temporal.ValueRange range(java.time.temporal.TemporalField);
 public int get(java.time.temporal.TemporalField);
 public Object query(java.time.temporal.TemporalQuery);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public void formatTo(StringBuilder);
}

org/apache/logging/log4j/core/Core.class

package org.apache.logging.log4j.core;
public synchronized class Core {
 public static final String CATEGORY_NAME = Core;
 public void Core();
}

org/apache/logging/log4j/core/LogEvent.class

package org.apache.logging.log4j.core;
public abstract interface LogEvent extends java.io.Serializable {
 public abstract LogEvent toImmutable();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract String getLoggerFqcn();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract long getTimeMillis();
 public abstract time.Instant getInstant();
 public abstract StackTraceElement getSource();
 public abstract String getThreadName();
 public abstract long getThreadId();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract impl.ThrowableProxy getThrownProxy();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
 public abstract long getNanoTime();
}

org/apache/logging/log4j/core/filter/MapFilter.class

package org.apache.logging.log4j.core.filter;
public synchronized class MapFilter extends AbstractFilter {
 private final org.apache.logging.log4j.util.IndexedStringMap map;
 private final boolean isAnd;
 protected void MapFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 protected boolean filter(org.apache.logging.log4j.message.MapMessage);
 protected boolean filter(java.util.Map);
 protected boolean filter(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 protected boolean isAnd();
 protected java.util.Map getMap();
 protected org.apache.logging.log4j.util.IndexedReadOnlyStringMap getStringMap();
 public static MapFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/DenyAllFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class DenyAllFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void DenyAllFilter$Builder();
 public DenyAllFilter build();
}

org/apache/logging/log4j/core/filter/AbstractFilter.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilter extends org.apache.logging.log4j.core.AbstractLifeCycle implements org.apache.logging.log4j.core.Filter {
 protected final org.apache.logging.log4j.core.Filter$Result onMatch;
 protected final org.apache.logging.log4j.core.Filter$Result onMismatch;
 protected void AbstractFilter();
 protected void AbstractFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 protected boolean equalsImpl(Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public final org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public final org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 protected int hashCodeImpl();
 public String toString();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class NoMarkerFilter extends AbstractFilter {
 private void NoMarkerFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public static NoMarkerFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/filter/DynamicThresholdFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class DynamicThresholdFilter extends AbstractFilter {
 private org.apache.logging.log4j.Level defaultThreshold;
 private final String key;
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 private java.util.Map levelMap;
 public static DynamicThresholdFilter createFilter(String, org.apache.logging.log4j.core.util.KeyValuePair[], org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private void DynamicThresholdFilter(String, java.util.Map, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public boolean equals(Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.ReadOnlyStringMap);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String getKey();
 public java.util.Map getLevelMap();
 public int hashCode();
 public String toString();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$UnixFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$UnixFormatter extends DatePatternConverter$Formatter {
 private void DatePatternConverter$UnixFormatter();
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ArrayPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract interface ArrayPatternConverter extends PatternConverter {
 public abstract transient void format(StringBuilder, Object[]);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EncodingPatternConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final EncodingPatternConverter$EscapeFormat escapeFormat;
 private void EncodingPatternConverter(java.util.List, EncodingPatternConverter$EscapeFormat);
 public boolean handlesThrowable();
 public static EncodingPatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EqualsBaseReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class EqualsBaseReplacementConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final java.util.List substitutionFormatters;
 private final String substitution;
 private final String testString;
 protected void EqualsBaseReplacementConverter(String, String, java.util.List, String, String, PatternParser);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 protected abstract boolean equals(String, StringBuilder, int, int);
 void parseSubstitution(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/LoggerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LoggerPatternConverter extends NamePatternConverter {
 private static final LoggerPatternConverter INSTANCE;
 private void LoggerPatternConverter(String[]);
 public static LoggerPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class LevelPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class MessagePatternConverter extends LogEventPatternConverter {
 private static final String LOOKUPS = lookups;
 private static final String NOLOOKUPS = nolookups;
 private void MessagePatternConverter();
 private static TextRenderer loadMessageRenderer(String[]);
 public static MessagePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private static String[] withoutLookupOptions(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy$2.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy$2 {
 void NameAbbreviator$MaxElementAbbreviator$Strategy$2(String, int, int);
 void abbreviate(int, String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$MaxElementAbbreviator extends NameAbbreviator {
 private final int count;
 private final NameAbbreviator$MaxElementAbbreviator$Strategy strategy;
 public void NameAbbreviator$MaxElementAbbreviator(int, NameAbbreviator$MaxElementAbbreviator$Strategy);
 public void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/VariablesNotEmptyReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class VariablesNotEmptyReplacementConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private void VariablesNotEmptyReplacementConverter(java.util.List);
 public static VariablesNotEmptyReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/jackson/ContextDataSerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataSerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 private static final org.apache.logging.log4j.util.TriConsumer WRITE_STRING_FIELD_INTO;
 protected void ContextDataSerializer();
 public void serialize(org.apache.logging.log4j.util.ReadOnlyStringMap, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListSerializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ContextDataAsEntryListSerializer$1 implements org.apache.logging.log4j.util.BiConsumer {
 int i;
 void ContextDataAsEntryListSerializer$1(ContextDataAsEntryListSerializer, MapEntry[]);
 public void accept(String, Object);
}

META-INF/versions/9/org/apache/logging/log4j/core/util/SystemClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemClock implements Clock, org.apache.logging.log4j.core.time.PreciseClock {
 public void SystemClock();
 public long currentTimeMillis();
 public void init(org.apache.logging.log4j.core.time.MutableInstant);
}

META-INF/NOTICE

Apache Log4j Core
Copyright 1999-2012 Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).

ResolverUtil.java
Copyright 2005-2006 Tim Fennell

org/apache/logging/log4j/core/appender/rewrite/RewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public abstract interface RewritePolicy {
 public abstract org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/OutputStreamManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class OutputStreamManager extends AbstractManager implements org.apache.logging.log4j.core.layout.ByteBufferDestination {
 protected final org.apache.logging.log4j.core.Layout layout;
 protected java.nio.ByteBuffer byteBuffer;
 private volatile java.io.OutputStream outputStream;
 private boolean skipFooter;
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean);
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean, int);
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void OutputStreamManager(org.apache.logging.log4j.core.LoggerContext, java.io.OutputStream, String, boolean, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 public static OutputStreamManager getManager(String, Object, ManagerFactory);
 protected java.io.OutputStream createOutputStream() throws java.io.IOException;
 public void skipFooter(boolean);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected void writeHeader(java.io.OutputStream);
 protected void writeFooter();
 public boolean isOpen();
 public boolean hasOutputStream();
 protected java.io.OutputStream getOutputStream() throws java.io.IOException;
 protected void setOutputStream(java.io.OutputStream);
 protected void write(byte[]);
 protected void write(byte[], boolean);
 public void writeBytes(byte[], int, int);
 protected void write(byte[], int, int);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 protected synchronized void flushDestination();
 protected synchronized void flushBuffer(java.nio.ByteBuffer);
 public synchronized void flush();
 protected synchronized boolean closeOutputStream();
 public java.nio.ByteBuffer getByteBuffer();
 public java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 public void writeBytes(java.nio.ByteBuffer);
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$1 {
}

org/apache/logging/log4j/core/appender/rolling/RolloverDescription.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverDescription {
 public abstract String getActiveFileName();
 public abstract boolean getAppend();
 public abstract action.Action getSynchronous();
 public abstract action.Action getAsynchronous();
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class TimeBasedTriggeringPolicy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private int interval;
 private boolean modulate;
 private int maxRandomDelay;
 public void TimeBasedTriggeringPolicy$Builder();
 public TimeBasedTriggeringPolicy build();
 public int getInterval();
 public boolean isModulate();
 public int getMaxRandomDelay();
 public TimeBasedTriggeringPolicy$Builder withInterval(int);
 public TimeBasedTriggeringPolicy$Builder withModulate(boolean);
 public TimeBasedTriggeringPolicy$Builder withMaxRandomDelay(int);
}

org/apache/logging/log4j/core/appender/rolling/FileSize.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class FileSize {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long KB = 1024;
 private static final long MB = 1048576;
 private static final long GB = 1073741824;
 private static final java.util.regex.Pattern VALUE_PATTERN;
 private void FileSize();
 public static long parse(String, long);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/DirectWriteRolloverStrategy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DirectWriteRolloverStrategy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String maxFiles;
 private String compressionLevelStr;
 private action.Action[] customActions;
 private boolean stopCustomActionsOnError;
 private String tempCompressedFilePattern;
 private org.apache.logging.log4j.core.config.Configuration config;
 public void DirectWriteRolloverStrategy$Builder();
 public DirectWriteRolloverStrategy build();
 public String getMaxFiles();
 public DirectWriteRolloverStrategy$Builder withMaxFiles(String);
 public String getCompressionLevelStr();
 public DirectWriteRolloverStrategy$Builder withCompressionLevelStr(String);
 public action.Action[] getCustomActions();
 public DirectWriteRolloverStrategy$Builder withCustomActions(action.Action[]);
 public boolean isStopCustomActionsOnError();
 public DirectWriteRolloverStrategy$Builder withStopCustomActionsOnError(boolean);
 public String getTempCompressedFilePattern();
 public DirectWriteRolloverStrategy$Builder withTempCompressedFilePattern(String);
 public org.apache.logging.log4j.core.config.Configuration getConfig();
 public DirectWriteRolloverStrategy$Builder withConfig(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/PatternProcessor.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class PatternProcessor {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final String KEY = FileConverter;
 private static final char YEAR_CHAR = 121;
 private static final char MONTH_CHAR = 77;
 private static final char[] WEEK_CHARS;
 private static final char[] DAY_CHARS;
 private static final char[] HOUR_CHARS;
 private static final char MINUTE_CHAR = 109;
 private static final char SECOND_CHAR = 115;
 private static final char MILLIS_CHAR = 83;
 private final org.apache.logging.log4j.core.pattern.ArrayPatternConverter[] patternConverters;
 private final org.apache.logging.log4j.core.pattern.FormattingInfo[] patternFields;
 private final FileExtension fileExtension;
 private long prevFileTime;
 private long nextFileTime;
 private long currentFileTime;
 private boolean isTimeBased;
 private RolloverFrequency frequency;
 private final String pattern;
 public String getPattern();
 public String toString();
 public void PatternProcessor(String);
 public void PatternProcessor(String, PatternProcessor);
 public void setTimeBased(boolean);
 public long getCurrentFileTime();
 public void setCurrentFileTime(long);
 public long getPrevFileTime();
 public void setPrevFileTime(long);
 public FileExtension getFileExtension();
 public long getNextTime(long, int, boolean);
 public void updateTime();
 private long debugGetNextTime(long);
 private String format(long);
 private void increment(java.util.Calendar, int, int, boolean);
 public final void formatFileName(StringBuilder, boolean, Object);
 public final void formatFileName(org.apache.logging.log4j.core.lookup.StrSubstitutor, StringBuilder, Object);
 public final void formatFileName(org.apache.logging.log4j.core.lookup.StrSubstitutor, StringBuilder, boolean, Object);
 protected final transient void formatFileName(StringBuilder, Object[]);
 private RolloverFrequency calculateFrequency(String);
 private org.apache.logging.log4j.core.pattern.PatternParser createPatternParser();
 private transient boolean patternContains(String, char[]);
 private boolean patternContains(String, char);
 public RolloverFrequency getFrequency();
 public long getNextFileTime();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractOutputStreamAppender$Builder extends AbstractAppender$Builder {
 private boolean bufferedIo;
 private int bufferSize;
 private boolean immediateFlush;
 public void AbstractOutputStreamAppender$Builder();
 public int getBufferSize();
 public boolean isBufferedIo();
 public boolean isImmediateFlush();
 public AbstractOutputStreamAppender$Builder withImmediateFlush(boolean);
 public AbstractOutputStreamAppender$Builder withBufferedIo(boolean);
 public AbstractOutputStreamAppender$Builder withBufferSize(int);
}

org/apache/logging/log4j/core/appender/WriterAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$FactoryData {
 private final org.apache.logging.log4j.core.StringLayout layout;
 private final String name;
 private final java.io.Writer writer;
 public void WriterAppender$FactoryData(java.io.Writer, String, org.apache.logging.log4j.core.StringLayout);
}

org/apache/logging/log4j/core/appender/HttpAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class HttpAppender$1 {
}

org/apache/logging/log4j/core/appender/RollingFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RollingFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private String filePattern;
 private boolean append;
 private boolean locking;
 private rolling.TriggeringPolicy policy;
 private rolling.RolloverStrategy strategy;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void RollingFileAppender$Builder();
 public RollingFileAppender build();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public RollingFileAppender$Builder withAdvertise(boolean);
 public RollingFileAppender$Builder withAdvertiseUri(String);
 public RollingFileAppender$Builder withAppend(boolean);
 public RollingFileAppender$Builder withFileName(String);
 public RollingFileAppender$Builder withCreateOnDemand(boolean);
 public RollingFileAppender$Builder withLocking(boolean);
 public String getFilePattern();
 public rolling.TriggeringPolicy getPolicy();
 public rolling.RolloverStrategy getStrategy();
 public RollingFileAppender$Builder withFilePattern(String);
 public RollingFileAppender$Builder withPolicy(rolling.TriggeringPolicy);
 public RollingFileAppender$Builder withStrategy(rolling.RolloverStrategy);
 public RollingFileAppender$Builder withFilePermissions(String);
 public RollingFileAppender$Builder withFileOwner(String);
 public RollingFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/WriterAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class WriterAppender extends AbstractWriterAppender {
 private static WriterAppender$WriterManagerFactory factory;
 public static WriterAppender createAppender(org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, java.io.Writer, String, boolean, boolean);
 private static WriterManager getManager(java.io.Writer, boolean, org.apache.logging.log4j.core.StringLayout);
 public static WriterAppender$Builder newBuilder();
 private void WriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, WriterManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SocketAppender$AbstractBuilder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class SocketAppender$AbstractBuilder extends AbstractOutputStreamAppender$Builder {
 private boolean advertise;
 private int connectTimeoutMillis;
 private String host;
 private boolean immediateFail;
 private int port;
 private org.apache.logging.log4j.core.net.Protocol protocol;
 private int reconnectDelayMillis;
 private org.apache.logging.log4j.core.net.SocketOptions socketOptions;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 public void SocketAppender$AbstractBuilder();
 public boolean getAdvertise();
 public int getConnectTimeoutMillis();
 public String getHost();
 public int getPort();
 public org.apache.logging.log4j.core.net.Protocol getProtocol();
 public org.apache.logging.log4j.core.net.ssl.SslConfiguration getSslConfiguration();
 public boolean getImmediateFail();
 public SocketAppender$AbstractBuilder withAdvertise(boolean);
 public SocketAppender$AbstractBuilder withConnectTimeoutMillis(int);
 public SocketAppender$AbstractBuilder withHost(String);
 public SocketAppender$AbstractBuilder withImmediateFail(boolean);
 public SocketAppender$AbstractBuilder withPort(int);
 public SocketAppender$AbstractBuilder withProtocol(org.apache.logging.log4j.core.net.Protocol);
 public SocketAppender$AbstractBuilder withReconnectDelayMillis(int);
 public SocketAppender$AbstractBuilder withSocketOptions(org.apache.logging.log4j.core.net.SocketOptions);
 public SocketAppender$AbstractBuilder withSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public int getReconnectDelayMillis();
 public org.apache.logging.log4j.core.net.SocketOptions getSocketOptions();
}

org/apache/logging/log4j/core/appender/db/ColumnMapping$Builder.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class ColumnMapping$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.StringLayout layout;
 private String literal;
 private String name;
 private String parameter;
 private String pattern;
 private String source;
 private Class type;
 public void ColumnMapping$Builder();
 public ColumnMapping build();
 public ColumnMapping$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ColumnMapping$Builder setLayout(org.apache.logging.log4j.core.StringLayout);
 public ColumnMapping$Builder setLiteral(String);
 public ColumnMapping$Builder setName(String);
 public ColumnMapping$Builder setParameter(String);
 public ColumnMapping$Builder setPattern(String);
 public ColumnMapping$Builder setSource(String);
 public ColumnMapping$Builder setType(Class);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class ColumnConfig {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String columnName;
 private final String columnNameKey;
 private final org.apache.logging.log4j.core.layout.PatternLayout layout;
 private final String literalValue;
 private final boolean eventTimestamp;
 private final boolean unicode;
 private final boolean clob;
 public static ColumnConfig createColumnConfig(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String);
 public static ColumnConfig$Builder newBuilder();
 private void ColumnConfig(String, org.apache.logging.log4j.core.layout.PatternLayout, String, boolean, boolean, boolean);
 public String getColumnName();
 public String getColumnNameKey();
 public org.apache.logging.log4j.core.layout.PatternLayout getLayout();
 public String getLiteralValue();
 public boolean isClob();
 public boolean isEventTimestamp();
 public boolean isUnicode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/DataSourceConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class DataSourceConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final javax.sql.DataSource dataSource;
 private final String description;
 private void DataSourceConnectionSource(String, javax.sql.DataSource);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String toString();
 public static DataSourceConnectionSource createConnectionSource(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/ColumnMapping.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class ColumnMapping {
 public static final ColumnMapping[] EMPTY_ARRAY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.StringLayout layout;
 private final String literalValue;
 private final String name;
 private final String nameKey;
 private final String parameter;
 private final String source;
 private final Class type;
 public static ColumnMapping$Builder newBuilder();
 public static String toKey(String);
 private void ColumnMapping(String, String, org.apache.logging.log4j.core.StringLayout, String, String, Class);
 public org.apache.logging.log4j.core.StringLayout getLayout();
 public String getLiteralValue();
 public String getName();
 public String getNameKey();
 public String getParameter();
 public String getSource();
 public Class getType();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/HttpManager.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class HttpManager extends AbstractManager {
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 protected void HttpManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.LoggerContext, String);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public void startup();
 public abstract void send(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent) throws Exception;
}

org/apache/logging/log4j/core/appender/FailoversPlugin.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FailoversPlugin {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void FailoversPlugin();
 public static transient String[] createFailovers(org.apache.logging.log4j.core.config.AppenderRef[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$CreatedRouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
final synchronized class RoutingAppender$CreatedRouteAppenderControl extends RoutingAppender$RouteAppenderControl {
 private volatile boolean pendingDeletion;
 private final java.util.concurrent.atomic.AtomicInteger depth;
 void RoutingAppender$CreatedRouteAppenderControl(org.apache.logging.log4j.core.Appender);
 void checkout();
 void release();
 void tryStopAppender();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$1.class

package org.apache.logging.log4j.core.appender.routing;
synchronized class RoutingAppender$1 {
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$RouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
abstract synchronized class RoutingAppender$RouteAppenderControl extends org.apache.logging.log4j.core.config.AppenderControl {
 void RoutingAppender$RouteAppenderControl(org.apache.logging.log4j.core.Appender);
 abstract void checkout();
 abstract void release();
}

org/apache/logging/log4j/core/appender/routing/Routes$1.class

package org.apache.logging.log4j.core.appender.routing;
synchronized class Routes$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender$Builder.class

package org.apache.logging.log4j.core.appender.nosql;
public synchronized class NoSqlAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private int bufferSize;
 private NoSqlProvider provider;
 public void NoSqlAppender$Builder();
 public NoSqlAppender build();
 public NoSqlAppender$Builder setBufferSize(int);
 public NoSqlAppender$Builder setProvider(NoSqlProvider);
}

org/apache/logging/log4j/core/appender/mom/JmsManager$1.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender$Builder.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class KafkaAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String retryCount;
 private String topic;
 private String key;
 private boolean syncSend;
 public void KafkaAppender$Builder();
 public KafkaAppender build();
 public Integer getRetryCount();
 public String getTopic();
 public boolean isSyncSend();
 public KafkaAppender$Builder setKey(String);
 public KafkaAppender$Builder setSyncSend(boolean);
 public KafkaAppender$Builder setTopic(String);
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqAppender.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
public final synchronized class JeroMqAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private static final int DEFAULT_BACKLOG = 100;
 private static final int DEFAULT_IVL = 100;
 private static final int DEFAULT_RCV_HWM = 1000;
 private static final int DEFAULT_SND_HWM = 1000;
 private final JeroMqManager manager;
 private final java.util.List endpoints;
 private int sendRcFalse;
 private int sendRcTrue;
 private void JeroMqAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, java.util.List, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, org.apache.logging.log4j.core.config.Property[]);
 public static JeroMqAppender createAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Property[], boolean, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean);
 public synchronized void append(org.apache.logging.log4j.core.LogEvent);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 int getSendRcFalse();
 int getSendRcTrue();
 void resetSendRcs();
 public String toString();
}

org/apache/logging/log4j/core/impl/ContextAnchor.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ContextAnchor {
 public static final ThreadLocal THREAD_CONTEXT;
 private void ContextAnchor();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LogEventFactory.class

package org.apache.logging.log4j.core.impl;
public abstract interface LogEventFactory extends LocationAwareLogEventFactory {
 public abstract org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
}

org/apache/logging/log4j/core/impl/ThrowableFormatOptions.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ThrowableFormatOptions {
 private static final int DEFAULT_LINES = 2147483647;
 protected static final ThrowableFormatOptions DEFAULT;
 private static final String FULL = full;
 private static final String NONE = none;
 private static final String SHORT = short;
 private final org.apache.logging.log4j.core.pattern.TextRenderer textRenderer;
 private final int lines;
 private final String separator;
 private final String suffix;
 private final java.util.List ignorePackages;
 public static final String CLASS_NAME = short.className;
 public static final String METHOD_NAME = short.methodName;
 public static final String LINE_NUMBER = short.lineNumber;
 public static final String FILE_NAME = short.fileName;
 public static final String MESSAGE = short.message;
 public static final String LOCALIZED_MESSAGE = short.localizedMessage;
 protected void ThrowableFormatOptions(int, String, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 protected void ThrowableFormatOptions(java.util.List);
 protected void ThrowableFormatOptions();
 public int getLines();
 public String getSeparator();
 public org.apache.logging.log4j.core.pattern.TextRenderer getTextRenderer();
 public java.util.List getIgnorePackages();
 public boolean allLines();
 public boolean anyLines();
 public int minLines(int);
 public boolean hasPackages();
 public String toString();
 public static ThrowableFormatOptions newInstance(String[]);
 public String getSuffix();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate$Type$2.class

package org.apache.logging.log4j.core.tools;
final synchronized enum Generate$Type$2 {
 void Generate$Type$2(String, int);
 String imports();
 String declaration();
 String constructor();
 Class generator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Interpreter$1.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Interpreter$1 implements CommandLine$ITypeConverter {
 void CommandLine$Interpreter$1(CommandLine$Interpreter, Class);
 public Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$TextTable.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$TextTable {
 public final CommandLine$Help$Column[] columns;
 protected final java.util.List columnValues;
 public int indentWrappedLines;
 private final CommandLine$Help$Ansi ansi;
 public void CommandLine$Help$TextTable(CommandLine$Help$Ansi);
 public transient void CommandLine$Help$TextTable(CommandLine$Help$Ansi, int[]);
 public transient void CommandLine$Help$TextTable(CommandLine$Help$Ansi, CommandLine$Help$Column[]);
 public CommandLine$Help$Ansi$Text textAt(int, int);
 public CommandLine$Help$Ansi$Text cellAt(int, int);
 public int rowCount();
 public void addEmptyRow();
 public transient void addRowValues(String[]);
 public transient void addRowValues(CommandLine$Help$Ansi$Text[]);
 public CommandLine$Help$TextTable$Cell putValue(int, int, CommandLine$Help$Ansi$Text);
 private static int length(CommandLine$Help$Ansi$Text);
 private int copy(java.text.BreakIterator, CommandLine$Help$Ansi$Text, CommandLine$Help$Ansi$Text, int);
 private static int copy(CommandLine$Help$Ansi$Text, CommandLine$Help$Ansi$Text, int);
 public StringBuilder toString(StringBuilder);
 public String toString();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BigDecimalConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BigDecimalConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BigDecimalConverter();
 public java.math.BigDecimal convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IOptionRenderer {
 public abstract CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$OverwrittenOptionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$OverwrittenOptionException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 1338029208271055776;
 public void CommandLine$OverwrittenOptionException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Parameters.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Parameters extends annotation.Annotation {
 public abstract String index();
 public abstract String[] description();
 public abstract String arity();
 public abstract String paramLabel();
 public abstract Class[] type();
 public abstract String split();
 public abstract boolean hidden();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$IntegerConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$IntegerConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$IntegerConverter();
 public Integer convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharSequenceConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharSequenceConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharSequenceConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunLast.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunLast implements CommandLine$IParseResultHandler {
 public void CommandLine$RunLast();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/net/TcpSocketManager$Reconnector.class

package org.apache.logging.log4j.core.net;
synchronized class TcpSocketManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private boolean shutdown;
 private final Object owner;
 public void TcpSocketManager$Reconnector(TcpSocketManager, org.apache.logging.log4j.core.appender.OutputStreamManager);
 public void latch();
 public void shutdown();
 public void run();
 void reconnect() throws java.io.IOException;
 private void connect(java.net.InetSocketAddress) throws java.io.IOException;
 public String toString();
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationException extends Exception {
 private static final long serialVersionUID = 1;
 public void SslConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/ssl/FilePasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class FilePasswordProvider implements PasswordProvider {
 private final java.nio.file.Path passwordPath;
 public void FilePasswordProvider(String) throws java.nio.file.NoSuchFileException;
 public char[] getPassword();
}

org/apache/logging/log4j/core/net/ssl/PasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
public abstract interface PasswordProvider {
 public abstract char[] getPassword();
}

org/apache/logging/log4j/core/net/JndiManager$JndiManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class JndiManager$JndiManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JndiManager$JndiManagerFactory();
 public JndiManager createManager(String, java.util.Properties);
}

org/apache/logging/log4j/core/net/UrlConnectionFactory.class

package org.apache.logging.log4j.core.net;
public synchronized class UrlConnectionFactory {
 private static int DEFAULT_TIMEOUT;
 private static int connectTimeoutMillis;
 private static int readTimeoutMillis;
 private static final String JSON = application/json;
 private static final String XML = application/xml;
 private static final String PROPERTIES = text/x-java-properties;
 private static final String TEXT = text/plain;
 private static final String HTTP = http;
 private static final String HTTPS = https;
 public void UrlConnectionFactory();
 public static java.net.HttpURLConnection createConnection(java.net.URL, long, ssl.SslConfiguration) throws java.io.IOException;
 public static java.net.URLConnection createConnection(java.net.URL) throws java.io.IOException;
 private static boolean isXml(String);
 private static boolean isJson(String);
 private static boolean isProperties(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/MimeMessageBuilder.class

package org.apache.logging.log4j.core.net;
public synchronized class MimeMessageBuilder implements org.apache.logging.log4j.core.util.Builder {
 private final javax.mail.internet.MimeMessage message;
 public void MimeMessageBuilder(javax.mail.Session);
 public MimeMessageBuilder setFrom(String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setReplyTo(String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setRecipients(javax.mail.Message$RecipientType, String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setSubject(String) throws javax.mail.MessagingException;
 public javax.mail.internet.MimeMessage getMimeMessage();
 public javax.mail.internet.MimeMessage build();
 private static javax.mail.internet.InternetAddress parseAddress(String) throws javax.mail.internet.AddressException;
 private static javax.mail.internet.InternetAddress[] parseAddresses(String) throws javax.mail.internet.AddressException;
}

org/apache/logging/log4j/core/net/JndiManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class JndiManager$1 {
}

org/apache/logging/log4j/core/util/Clock.class

package org.apache.logging.log4j.core.util;
public abstract interface Clock {
 public abstract long currentTimeMillis();
}

org/apache/logging/log4j/core/util/Integers.class

package org.apache.logging.log4j.core.util;
public final synchronized class Integers {
 private static final int BITS_PER_INT = 32;
 private void Integers();
 public static int parseInt(String, int);
 public static int parseInt(String);
 public static int ceilingNextPowerOfTwo(int);
}

org/apache/logging/log4j/core/util/WatchEventService.class

package org.apache.logging.log4j.core.util;
public abstract interface WatchEventService {
 public abstract void subscribe(WatchManager);
 public abstract void unsubscribe(WatchManager);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneNameRule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneNameRule implements FastDatePrinter$Rule {
 private final java.util.Locale mLocale;
 private final int mStyle;
 private final String mStandard;
 private final String mDaylight;
 void FastDatePrinter$TimeZoneNameRule(java.util.TimeZone, java.util.Locale, int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDateParser implements DateParser, java.io.Serializable {
 private static final long serialVersionUID = 3;
 static final java.util.Locale JAPANESE_IMPERIAL;
 private final String pattern;
 private final java.util.TimeZone timeZone;
 private final java.util.Locale locale;
 private final int century;
 private final int startYear;
 private transient java.util.List patterns;
 private static final java.util.Comparator LONGER_FIRST_LOWERCASE;
 private static final java.util.concurrent.ConcurrentMap[] caches;
 private static final FastDateParser$Strategy ABBREVIATED_YEAR_STRATEGY;
 private static final FastDateParser$Strategy NUMBER_MONTH_STRATEGY;
 private static final FastDateParser$Strategy LITERAL_YEAR_STRATEGY;
 private static final FastDateParser$Strategy WEEK_OF_YEAR_STRATEGY;
 private static final FastDateParser$Strategy WEEK_OF_MONTH_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_YEAR_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_MONTH_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_WEEK_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_WEEK_IN_MONTH_STRATEGY;
 private static final FastDateParser$Strategy HOUR_OF_DAY_STRATEGY;
 private static final FastDateParser$Strategy HOUR24_OF_DAY_STRATEGY;
 private static final FastDateParser$Strategy HOUR12_STRATEGY;
 private static final FastDateParser$Strategy HOUR_STRATEGY;
 private static final FastDateParser$Strategy MINUTE_STRATEGY;
 private static final FastDateParser$Strategy SECOND_STRATEGY;
 private static final FastDateParser$Strategy MILLISECOND_STRATEGY;
 protected void FastDateParser(String, java.util.TimeZone, java.util.Locale);
 protected void FastDateParser(String, java.util.TimeZone, java.util.Locale, java.util.Date);
 private void init(java.util.Calendar);
 private static boolean isFormatLetter(char);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Object parseObject(String) throws java.text.ParseException;
 public java.util.Date parse(String) throws java.text.ParseException;
 public Object parseObject(String, java.text.ParsePosition);
 public java.util.Date parse(String, java.text.ParsePosition);
 public boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 private static StringBuilder simpleQuote(StringBuilder, String);
 private static java.util.Map appendDisplayNames(java.util.Calendar, java.util.Locale, int, StringBuilder);
 private int adjustYear(int);
 private FastDateParser$Strategy getStrategy(char, int, java.util.Calendar);
 private static java.util.concurrent.ConcurrentMap getCache(int);
 private FastDateParser$Strategy getLocaleSpecificStrategy(int, java.util.Calendar);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/JndiCloser.class

package org.apache.logging.log4j.core.util;
public final synchronized class JndiCloser {
 private void JndiCloser();
 public static void close(javax.naming.Context) throws javax.naming.NamingException;
 public static boolean closeSilently(javax.naming.Context);
}

org/apache/logging/log4j/core/util/NanoClock.class

package org.apache.logging.log4j.core.util;
public abstract interface NanoClock {
 public abstract long nanoTime();
}

org/apache/logging/log4j/core/util/ExtensionLanguageMapping.class

package org.apache.logging.log4j.core.util;
public final synchronized enum ExtensionLanguageMapping {
 public static final ExtensionLanguageMapping JS;
 public static final ExtensionLanguageMapping JAVASCRIPT;
 public static final ExtensionLanguageMapping GVY;
 public static final ExtensionLanguageMapping GROOVY;
 public static final ExtensionLanguageMapping BSH;
 public static final ExtensionLanguageMapping BEANSHELL;
 public static final ExtensionLanguageMapping JY;
 public static final ExtensionLanguageMapping JYTHON;
 public static final ExtensionLanguageMapping FTL;
 public static final ExtensionLanguageMapping FREEMARKER;
 public static final ExtensionLanguageMapping VM;
 public static final ExtensionLanguageMapping VELOCITY;
 public static final ExtensionLanguageMapping AWK;
 public static final ExtensionLanguageMapping EJS;
 public static final ExtensionLanguageMapping TCL;
 public static final ExtensionLanguageMapping HS;
 public static final ExtensionLanguageMapping JELLY;
 public static final ExtensionLanguageMapping JEP;
 public static final ExtensionLanguageMapping JEXL;
 public static final ExtensionLanguageMapping JEXL2;
 public static final ExtensionLanguageMapping RB;
 public static final ExtensionLanguageMapping RUBY;
 public static final ExtensionLanguageMapping JUDO;
 public static final ExtensionLanguageMapping JUDI;
 public static final ExtensionLanguageMapping SCALA;
 public static final ExtensionLanguageMapping CLJ;
 private final String extension;
 private final String language;
 public static ExtensionLanguageMapping[] values();
 public static ExtensionLanguageMapping valueOf(String);
 private void ExtensionLanguageMapping(String, int, String, String);
 public String getExtension();
 public String getLanguage();
 public static ExtensionLanguageMapping getByExtension(String);
 public static java.util.List getByLanguage(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DefaultShutdownCallbackRegistry$RegisteredCancellable.class

package org.apache.logging.log4j.core.util;
synchronized class DefaultShutdownCallbackRegistry$RegisteredCancellable implements Cancellable {
 private Runnable callback;
 private java.util.Collection registered;
 void DefaultShutdownCallbackRegistry$RegisteredCancellable(Runnable, java.util.Collection);
 public void cancel();
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/util/TypeUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class TypeUtil {
 private void TypeUtil();
 public static java.util.List getAllDeclaredFields(Class);
 public static boolean isAssignable(reflect.Type, reflect.Type);
 private static boolean isParameterizedAssignable(reflect.ParameterizedType, reflect.ParameterizedType);
 private static boolean isWildcardAssignable(reflect.WildcardType, reflect.Type);
 private static reflect.Type[] getEffectiveUpperBounds(reflect.WildcardType);
 private static reflect.Type[] getEffectiveLowerBounds(reflect.WildcardType);
 private static boolean isBoundAssignable(reflect.Type, reflect.Type);
}

org/apache/logging/log4j/core/config/Loggers.class

package org.apache.logging.log4j.core.config;
public synchronized class Loggers {
 private final java.util.concurrent.ConcurrentMap map;
 private final LoggerConfig root;
 public void Loggers(java.util.concurrent.ConcurrentMap, LoggerConfig);
 public java.util.concurrent.ConcurrentMap getMap();
 public LoggerConfig getRoot();
}

org/apache/logging/log4j/core/config/LoggersPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class LoggersPlugin {
 private void LoggersPlugin();
 public static Loggers createLoggers(LoggerConfig[]);
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SystemPropertyArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final String ATTR_PROPERTY_NAME = propertyName;
 public static final String ATTR_PROPERTY_VALUE = propertyValue;
 private String propertyName;
 private String propertyValue;
 public void SystemPropertyArbiter$Builder();
 public SystemPropertyArbiter$Builder setPropertyName(String);
 public SystemPropertyArbiter$Builder setPropertyValue(String);
 public SystemPropertyArbiter$Builder asBuilder();
 public SystemPropertyArbiter build();
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginBuilderAttributeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginBuilderAttributeVisitor extends AbstractPluginVisitor {
 public void PluginBuilderAttributeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/AbstractPluginVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public abstract synchronized class AbstractPluginVisitor implements PluginVisitor {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected final Class clazz;
 protected annotation.Annotation annotation;
 protected String[] aliases;
 protected Class conversionType;
 protected org.apache.logging.log4j.core.lookup.StrSubstitutor substitutor;
 protected reflect.Member member;
 protected void AbstractPluginVisitor(Class);
 public PluginVisitor setAnnotation(annotation.Annotation);
 public transient PluginVisitor setAliases(String[]);
 public PluginVisitor setConversionType(Class);
 public PluginVisitor setStrSubstitutor(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public PluginVisitor setMember(reflect.Member);
 protected static transient String removeAttributeValue(java.util.Map, String, String[]);
 protected Object convert(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginVisitors.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public final synchronized class PluginVisitors {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void PluginVisitors();
 public static PluginVisitor findVisitor(Class);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/ResolverUtil.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class ResolverUtil {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String VFSZIP = vfszip;
 private static final String VFS = vfs;
 private static final String JAR = jar;
 private static final String BUNDLE_RESOURCE = bundleresource;
 private final java.util.Set classMatches;
 private final java.util.Set resourceMatches;
 private ClassLoader classloader;
 public void ResolverUtil();
 public java.util.Set getClasses();
 public java.util.Set getResources();
 public ClassLoader getClassLoader();
 public void setClassLoader(ClassLoader);
 public transient void find(ResolverUtil$Test, String[]);
 public void findInPackage(ResolverUtil$Test, String);
 String extractPath(java.net.URL) throws java.io.UnsupportedEncodingException, java.net.URISyntaxException;
 private void loadImplementationsInBundle(ResolverUtil$Test, String);
 private void loadImplementationsInDirectory(ResolverUtil$Test, String, java.io.File);
 private boolean isTestApplicable(ResolverUtil$Test, String);
 private void loadImplementationsInJar(ResolverUtil$Test, String, java.net.URL);
 private void loadImplementationsInJar(ResolverUtil$Test, String, java.io.File);
 private void close(java.util.jar.JarInputStream, Object);
 private void loadImplementationsInJar(ResolverUtil$Test, String, String, java.util.jar.JarInputStream);
 protected void addIfMatching(ResolverUtil$Test, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/validation/validators/ValidHostValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class ValidHostValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidHost annotation;
 public void ValidHostValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidHost);
 public boolean isValid(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/validation/Constraint.class

package org.apache.logging.log4j.core.config.plugins.validation;
public abstract interface Constraint extends annotation.Annotation {
 public abstract Class value();
}

org/apache/logging/log4j/core/config/plugins/validation/ConstraintValidator.class

package org.apache.logging.log4j.core.config.plugins.validation;
public abstract interface ConstraintValidator {
 public abstract void initialize(annotation.Annotation);
 public abstract boolean isValid(String, Object);
}

org/apache/logging/log4j/core/config/plugins/PluginValue.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginValue extends annotation.Annotation {
 public abstract String value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$FileConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$FileConverter implements TypeConverter {
 public void TypeConverters$FileConverter();
 public java.io.File convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$LevelConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$LevelConverter implements TypeConverter {
 public void TypeConverters$LevelConverter();
 public org.apache.logging.log4j.Level convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$LongConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$LongConverter implements TypeConverter {
 public void TypeConverters$LongConverter();
 public Long convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$DurationConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$DurationConverter implements TypeConverter {
 public void TypeConverters$DurationConverter();
 public org.apache.logging.log4j.core.appender.rolling.action.Duration convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$InetAddressConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$InetAddressConverter implements TypeConverter {
 public void TypeConverters$InetAddressConverter();
 public java.net.InetAddress convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UuidConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UuidConverter implements TypeConverter {
 public void TypeConverters$UuidConverter();
 public java.util.UUID convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/CustomLevelConfig.class

package org.apache.logging.log4j.core.config;
public final synchronized class CustomLevelConfig {
 static final CustomLevelConfig[] EMPTY_ARRAY;
 private final String levelName;
 private final int intLevel;
 private void CustomLevelConfig(String, int);
 public static CustomLevelConfig createLevel(String, int);
 public String getLevelName();
 public int getIntLevel();
 public int hashCode();
 public boolean equals(Object);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$1.class

package org.apache.logging.log4j.core.config;
synchronized class LoggerConfig$1 {
}

org/apache/logging/log4j/core/config/builder/impl/DefaultScriptComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultScriptComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder {
 public void DefaultScriptComponentBuilder(DefaultConfigurationBuilder, String, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultAppenderRefComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultAppenderRefComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder {
 public void DefaultAppenderRefComponentBuilder(DefaultConfigurationBuilder, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/FilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface FilterComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/ComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ComponentBuilder extends org.apache.logging.log4j.core.util.Builder {
 public abstract ComponentBuilder addAttribute(String, String);
 public abstract ComponentBuilder addAttribute(String, org.apache.logging.log4j.Level);
 public abstract ComponentBuilder addAttribute(String, Enum);
 public abstract ComponentBuilder addAttribute(String, int);
 public abstract ComponentBuilder addAttribute(String, boolean);
 public abstract ComponentBuilder addAttribute(String, Object);
 public abstract ComponentBuilder addComponent(ComponentBuilder);
 public abstract String getName();
 public abstract ConfigurationBuilder getBuilder();
}

org/apache/logging/log4j/core/config/builder/api/LoggableComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LoggableComponentBuilder extends FilterableComponentBuilder {
 public abstract ComponentBuilder add(AppenderRefComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/LayoutComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LayoutComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/CompositeFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface CompositeFilterComponentBuilder extends FilterableComponentBuilder {
}

org/apache/logging/log4j/core/config/CronScheduledFuture$FutureData.class

package org.apache.logging.log4j.core.config;
synchronized class CronScheduledFuture$FutureData {
 private final java.util.concurrent.ScheduledFuture scheduledFuture;
 private final java.util.Date runDate;
 void CronScheduledFuture$FutureData(CronScheduledFuture, java.util.concurrent.ScheduledFuture, java.util.Date);
}

org/apache/logging/log4j/core/jmx/RingBufferAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class RingBufferAdmin implements RingBufferAdminMBean {
 private final com.lmax.disruptor.RingBuffer ringBuffer;
 private final javax.management.ObjectName objectName;
 public static RingBufferAdmin forAsyncLogger(com.lmax.disruptor.RingBuffer, String);
 public static RingBufferAdmin forAsyncLoggerConfig(com.lmax.disruptor.RingBuffer, String, String);
 protected void RingBufferAdmin(com.lmax.disruptor.RingBuffer, String);
 public long getBufferSize();
 public long getRemainingCapacity();
 public javax.management.ObjectName getObjectName();
}

org/apache/logging/log4j/core/layout/Rfc5424Layout$StructuredDataElement.class

package org.apache.logging.log4j.core.layout;
synchronized class Rfc5424Layout$StructuredDataElement {
 private final java.util.Map fields;
 private final boolean discardIfEmpty;
 private final String prefix;
 public void Rfc5424Layout$StructuredDataElement(Rfc5424Layout, java.util.Map, String, boolean);
 boolean discard();
 void union(java.util.Map);
 java.util.Map getFields();
 String getPrefix();
}

org/apache/logging/log4j/core/layout/SerializedLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class SerializedLayout extends AbstractLayout {
 private static byte[] serializedHeader;
 private void SerializedLayout();
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.LogEvent toSerializable(org.apache.logging.log4j.core.LogEvent);
 public static SerializedLayout createLayout();
 public byte[] getHeader();
 public String getContentType();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class PatternLayout extends AbstractStringLayout {
 public static final String DEFAULT_CONVERSION_PATTERN = %m%n;
 public static final String TTCC_CONVERSION_PATTERN = %r [%t] %p %c %notEmpty{%x }- %m%n;
 public static final String SIMPLE_CONVERSION_PATTERN = %d [%t] %p %c - %m%n;
 public static final String KEY = Converter;
 private final String conversionPattern;
 private final PatternSelector patternSelector;
 private final AbstractStringLayout$Serializer eventSerializer;
 private void PatternLayout(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, String, PatternSelector, java.nio.charset.Charset, boolean, boolean, boolean, String, String);
 public static PatternLayout$SerializerBuilder newSerializerBuilder();
 public boolean requiresLocation();
 public static AbstractStringLayout$Serializer createSerializer(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, String, String, PatternSelector, boolean, boolean);
 public String getConversionPattern();
 public java.util.Map getContentFormat();
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public void serialize(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 private StringBuilder toText(AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public static org.apache.logging.log4j.core.pattern.PatternParser createPatternParser(org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 public static PatternLayout createLayout(String, PatternSelector, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, java.nio.charset.Charset, boolean, boolean, String, String);
 public static PatternLayout createDefaultLayout();
 public static PatternLayout createDefaultLayout(org.apache.logging.log4j.core.config.Configuration);
 public static PatternLayout$Builder newBuilder();
 public AbstractStringLayout$Serializer getEventSerializer();
}

org/apache/logging/log4j/core/layout/ByteBufferDestinationHelper.class

package org.apache.logging.log4j.core.layout;
public final synchronized class ByteBufferDestinationHelper {
 private void ByteBufferDestinationHelper();
 public static void writeToUnsynchronized(java.nio.ByteBuffer, ByteBufferDestination);
 public static void writeToUnsynchronized(byte[], int, int, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/PatternSelector.class

package org.apache.logging.log4j.core.layout;
public abstract interface PatternSelector {
 public static final String ELEMENT_TYPE = patternSelector;
 public abstract org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class ScriptPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.script.AbstractScript script;
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptPatternSelector$Builder();
 public ScriptPatternSelector build();
 public ScriptPatternSelector$Builder setScript(org.apache.logging.log4j.core.script.AbstractScript);
 public ScriptPatternSelector$Builder setProperties(PatternMatch[]);
 public ScriptPatternSelector$Builder setDefaultPattern(String);
 public ScriptPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public ScriptPatternSelector$Builder setDisableAnsi(boolean);
 public ScriptPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public ScriptPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/osgi/Activator.class

package org.apache.logging.log4j.core.osgi;
public final synchronized class Activator implements org.osgi.framework.BundleActivator, org.osgi.framework.SynchronousBundleListener {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.concurrent.atomic.AtomicReference contextRef;
 org.osgi.framework.ServiceRegistration provideRegistration;
 org.osgi.framework.ServiceRegistration contextDataRegistration;
 public void Activator();
 public void start(org.osgi.framework.BundleContext) throws Exception;
 private static void scanInstalledBundlesForPlugins(org.osgi.framework.BundleContext);
 private static void scanBundleForPlugins(org.osgi.framework.Bundle);
 private static void loadContextProviders(org.osgi.framework.BundleContext);
 private static void stopBundlePlugins(org.osgi.framework.Bundle);
 public void stop(org.osgi.framework.BundleContext) throws Exception;
 public void bundleChanged(org.osgi.framework.BundleEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler implements com.lmax.disruptor.SequenceReportingEventHandler {
 private static final int NOTIFY_PROGRESS_THRESHOLD = 50;
 private com.lmax.disruptor.Sequence sequenceCallback;
 private int counter;
 private void AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler();
 public void setSequenceCallback(com.lmax.disruptor.Sequence);
 public void onEvent(AsyncLoggerConfigDisruptor$Log4jEventWrapper, long, boolean) throws Exception;
 private void notifyIntermediateProgress(long);
}

org/apache/logging/log4j/core/async/BasicAsyncLoggerContextSelector.class

package org.apache.logging.log4j.core.async;
public synchronized class BasicAsyncLoggerContextSelector implements org.apache.logging.log4j.core.selector.ContextSelector {
 private static final AsyncLoggerContext CONTEXT;
 public void BasicAsyncLoggerContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncQueueFullPolicyFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncQueueFullPolicyFactory {
 static final String PROPERTY_NAME_ASYNC_EVENT_ROUTER = log4j2.AsyncQueueFullPolicy;
 static final String PROPERTY_VALUE_DEFAULT_ASYNC_EVENT_ROUTER = Default;
 static final String PROPERTY_VALUE_DISCARDING_ASYNC_EVENT_ROUTER = Discard;
 static final String PROPERTY_NAME_DISCARDING_THRESHOLD_LEVEL = log4j2.DiscardThreshold;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void AsyncQueueFullPolicyFactory();
 public static AsyncQueueFullPolicy create();
 private static boolean isRouterSelected(String, Class, String);
 private static AsyncQueueFullPolicy createCustomRouter(String);
 private static AsyncQueueFullPolicy createDiscardingAsyncQueueFullPolicy();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/EventRoute$2.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$2 {
 void EventRoute$2(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/async/AsyncLogger$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$1 extends AsyncLogger$TranslatorType {
 void AsyncLogger$1(AsyncLogger);
 void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/RingBufferLogEvent$1.class

package org.apache.logging.log4j.core.async;
synchronized class RingBufferLogEvent$1 {
}

org/apache/logging/log4j/core/async/AsyncLogger$3.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$3 {
 static void <clinit>();
}

org/apache/logging/log4j/core/async/InternalAsyncUtil.class

package org.apache.logging.log4j.core.async;
public synchronized class InternalAsyncUtil {
 public void InternalAsyncUtil();
 public static org.apache.logging.log4j.message.Message makeMessageImmutable(org.apache.logging.log4j.message.Message);
 private static boolean canFormatMessageInBackground(org.apache.logging.log4j.message.Message);
}

org/apache/logging/log4j/core/async/EventRoute$1.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$1 {
 void EventRoute$1(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/lookup/StrMatcher$StringMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$StringMatcher extends StrMatcher {
 private final char[] chars;
 void StrMatcher$StringMatcher(String);
 public int isMatch(char[], int, int, int);
 public String toString();
}

org/apache/logging/log4j/core/lookup/Interpolator.class

package org.apache.logging.log4j.core.lookup;
public synchronized class Interpolator extends AbstractConfigurationAwareLookup {
 public static final char PREFIX_SEPARATOR = 58;
 private static final String LOOKUP_KEY_WEB = web;
 private static final String LOOKUP_KEY_DOCKER = docker;
 private static final String LOOKUP_KEY_KUBERNETES = kubernetes;
 private static final String LOOKUP_KEY_SPRING = spring;
 private static final String LOOKUP_KEY_JNDI = jndi;
 private static final String LOOKUP_KEY_JVMRUNARGS = jvmrunargs;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map strLookupMap;
 private final StrLookup defaultLookup;
 public void Interpolator(StrLookup);
 public void Interpolator(StrLookup, java.util.List);
 public void Interpolator();
 public void Interpolator(java.util.Map);
 public java.util.Map getStrLookupMap();
 private void handleError(String, Throwable);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/RuntimeStrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class RuntimeStrSubstitutor extends StrSubstitutor {
 public void RuntimeStrSubstitutor();
 public void RuntimeStrSubstitutor(java.util.Map);
 public void RuntimeStrSubstitutor(java.util.Properties);
 public void RuntimeStrSubstitutor(StrLookup);
 public void RuntimeStrSubstitutor(StrSubstitutor);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 public String toString();
}

org/apache/logging/log4j/core/lookup/ContextMapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class ContextMapLookup implements StrLookup {
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 public void ContextMapLookup();
 public String lookup(String);
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/message/ExtendedThreadInfoFactory.class

package org.apache.logging.log4j.core.message;
public synchronized class ExtendedThreadInfoFactory implements org.apache.logging.log4j.message.ThreadDumpMessage$ThreadInfoFactory {
 public void ExtendedThreadInfoFactory();
 public java.util.Map createThreadInfo();
}

org/apache/logging/log4j/core/LifeCycle2.class

package org.apache.logging.log4j.core;
public abstract interface LifeCycle2 extends LifeCycle {
 public abstract boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/filter/AbstractFilterable.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilterable extends org.apache.logging.log4j.core.AbstractLifeCycle implements Filterable {
 private volatile org.apache.logging.log4j.core.Filter filter;
 private final org.apache.logging.log4j.core.config.Property[] propertyArray;
 protected void AbstractFilterable();
 protected void AbstractFilterable(org.apache.logging.log4j.core.Filter);
 protected void AbstractFilterable(org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Property[]);
 public synchronized void addFilter(org.apache.logging.log4j.core.Filter);
 public org.apache.logging.log4j.core.Filter getFilter();
 public boolean hasFilter();
 public boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
 public synchronized void removeFilter(org.apache.logging.log4j.core.Filter);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 protected boolean stop(long, java.util.concurrent.TimeUnit, boolean);
 public org.apache.logging.log4j.core.config.Property[] getPropertyArray();
}

org/apache/logging/log4j/core/filter/ScriptFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class ScriptFilter extends AbstractFilter {
 private static org.apache.logging.log4j.Logger logger;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptFilter(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static ScriptFilter createFilter(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/LevelMatchFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class LevelMatchFilter extends AbstractFilter {
 public static final String ATTR_MATCH = match;
 private final org.apache.logging.log4j.Level level;
 private void LevelMatchFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static LevelMatchFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/LineSeparatorPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LineSeparatorPatternConverter extends LogEventPatternConverter {
 private static final LineSeparatorPatternConverter INSTANCE;
 private void LineSeparatorPatternConverter();
 public static LineSeparatorPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public boolean isVariable();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/EndOfBatchPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EndOfBatchPatternConverter extends LogEventPatternConverter {
 private static final EndOfBatchPatternConverter INSTANCE;
 private void EndOfBatchPatternConverter();
 public static EndOfBatchPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MapPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MapPatternConverter extends LogEventPatternConverter {
 private static final String JAVA_UNQUOTED;
 private final String key;
 private final String[] format;
 private transient void MapPatternConverter(String[], String[]);
 public static MapPatternConverter newInstance(String[]);
 public static MapPatternConverter newInstance(String[], org.apache.logging.log4j.message.MapMessage$MapFormat);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$SimpleMessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$SimpleMessagePatternConverter extends MessagePatternConverter {
 private static final MessagePatternConverter INSTANCE;
 private void MessagePatternConverter$SimpleMessagePatternConverter();
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ExtendedThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ExtendedThrowablePatternConverter extends ThrowablePatternConverter {
 private void ExtendedThrowablePatternConverter(org.apache.logging.log4j.core.config.Configuration, String[]);
 public static ExtendedThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$1.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$1 {
 void EncodingPatternConverter$EscapeFormat$1(String, int);
 void escape(StringBuilder, int);
 private String escapeChar(char);
}

org/apache/logging/log4j/core/pattern/NotANumber.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NotANumber {
 public static final NotANumber NAN;
 public static final String VALUE = �;
 private void NotANumber();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$PatternAbbreviator.class

package org.apache.logging.log4j.core.pattern;
final synchronized class NameAbbreviator$PatternAbbreviator extends NameAbbreviator {
 private final NameAbbreviator$PatternAbbreviatorFragment[] fragments;
 void NameAbbreviator$PatternAbbreviator(java.util.List);
 public void abbreviate(String, StringBuilder);
 NameAbbreviator$PatternAbbreviatorFragment fragment(int);
}

org/apache/logging/log4j/core/pattern/PlainTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class PlainTextRenderer implements TextRenderer {
 private static final PlainTextRenderer INSTANCE;
 public void PlainTextRenderer();
 public static PlainTextRenderer getInstance();
 public void render(String, StringBuilder, String);
 public void render(StringBuilder, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/EqualsIgnoreCaseReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EqualsIgnoreCaseReplacementConverter extends EqualsBaseReplacementConverter {
 public static EqualsIgnoreCaseReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void EqualsIgnoreCaseReplacementConverter(java.util.List, String, String, PatternParser);
 protected boolean equals(String, StringBuilder, int, int);
}

org/apache/logging/log4j/core/jackson/Log4jYamlObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jYamlObjectMapper extends com.fasterxml.jackson.dataformat.yaml.YAMLMapper {
 private static final long serialVersionUID = 1;
 public void Log4jYamlObjectMapper();
 public void Log4jYamlObjectMapper(boolean, boolean, boolean);
}

META-INF/LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 1999-2005 The Apache Software Foundation

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy$1.class

package org.apache.logging.log4j.core.appender.rewrite;
synchronized class MapRewritePolicy$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RolloverFrequency.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized enum RolloverFrequency {
 public static final RolloverFrequency ANNUALLY;
 public static final RolloverFrequency MONTHLY;
 public static final RolloverFrequency WEEKLY;
 public static final RolloverFrequency DAILY;
 public static final RolloverFrequency HOURLY;
 public static final RolloverFrequency EVERY_MINUTE;
 public static final RolloverFrequency EVERY_SECOND;
 public static final RolloverFrequency EVERY_MILLISECOND;
 public static RolloverFrequency[] values();
 public static RolloverFrequency valueOf(String);
 private void RolloverFrequency(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory();
 public RollingRandomAccessFileManager createManager(String, RollingRandomAccessFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/RolloverDescriptionImpl.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class RolloverDescriptionImpl implements RolloverDescription {
 private final String activeFileName;
 private final boolean append;
 private final action.Action synchronous;
 private final action.Action asynchronous;
 public void RolloverDescriptionImpl(String, boolean, action.Action, action.Action);
 public String getActiveFileName();
 public boolean getAppend();
 public action.Action getSynchronous();
 public action.Action getAsynchronous();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class RollingRandomAccessFileManager extends RollingFileManager {
 public static final int DEFAULT_BUFFER_SIZE = 262144;
 private static final RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory FACTORY;
 private java.io.RandomAccessFile randomAccessFile;
 public void RollingRandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, String, java.io.OutputStream, boolean, boolean, int, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean);
 public void RollingRandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, String, java.io.OutputStream, boolean, boolean, int, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean);
 private void writeHeader();
 public static RollingRandomAccessFileManager getRollingRandomAccessFileManager(String, String, boolean, boolean, int, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 protected void createFileAfterRollover() throws java.io.IOException;
 private void createFileAfterRollover(String) throws java.io.IOException;
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public int getBufferSize();
 public void updateData(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathWithAttributes.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PathWithAttributes {
 private final java.nio.file.Path path;
 private final java.nio.file.attribute.BasicFileAttributes attributes;
 public void PathWithAttributes(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public String toString();
 public java.nio.file.Path getPath();
 public java.nio.file.attribute.BasicFileAttributes getAttributes();
}

org/apache/logging/log4j/core/appender/rolling/action/GzCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class GzCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 private final int compressionLevel;
 public void GzCompressAction(java.io.File, java.io.File, boolean, int);
 public void GzCompressAction(java.io.File, java.io.File, boolean);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean) throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean, int) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAll.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAll implements PathCondition {
 private final PathCondition[] components;
 private transient void IfAll(PathCondition[]);
 public PathCondition[] getDeleteFilters();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public static boolean accept(PathCondition[], java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static void beforeFileTreeWalk(PathCondition[]);
 public static transient IfAll createAndCondition(PathCondition[]);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/CommonsCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class CommonsCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final String name;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 public void CommonsCompressAction(String, java.io.File, java.io.File, boolean);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(String, java.io.File, java.io.File, boolean) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public String getName();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$6.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$6 {
 void FileExtension$6(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/TlsSyslogFrame.class

package org.apache.logging.log4j.core.appender;
public synchronized class TlsSyslogFrame {
 private final String message;
 private final int byteLength;
 public void TlsSyslogFrame(String);
 public String getMessage();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileAppender$1 {
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class MemoryMappedFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private int regionLength;
 private boolean advertise;
 private String advertiseURI;
 public void MemoryMappedFileAppender$Builder();
 public MemoryMappedFileAppender build();
 public MemoryMappedFileAppender$Builder setFileName(String);
 public MemoryMappedFileAppender$Builder setAppend(boolean);
 public MemoryMappedFileAppender$Builder setRegionLength(int);
 public MemoryMappedFileAppender$Builder setAdvertise(boolean);
 public MemoryMappedFileAppender$Builder setAdvertiseURI(String);
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class RandomAccessFileManager extends OutputStreamManager {
 static final int DEFAULT_BUFFER_SIZE = 262144;
 private static final RandomAccessFileManager$RandomAccessFileManagerFactory FACTORY;
 private final String advertiseURI;
 private final java.io.RandomAccessFile randomAccessFile;
 protected void RandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, java.io.OutputStream, int, String, org.apache.logging.log4j.core.Layout, boolean);
 public static RandomAccessFileManager getFileManager(String, boolean, boolean, int, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Configuration);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected void writeToDestination(byte[], int, int);
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public String getFileName();
 public int getBufferSize();
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$ResultSetColumnMetaData.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$ResultSetColumnMetaData {
 private final String schemaName;
 private final String catalogName;
 private final String tableName;
 private final String name;
 private final String nameKey;
 private final String label;
 private final int displaySize;
 private final int type;
 private final String typeName;
 private final String className;
 private final int precision;
 private final int scale;
 private final boolean isStringType;
 public void JdbcDatabaseManager$ResultSetColumnMetaData(java.sql.ResultSetMetaData, int) throws java.sql.SQLException;
 private void JdbcDatabaseManager$ResultSetColumnMetaData(String, String, String, String, String, int, int, String, String, int, int);
 public String getCatalogName();
 public String getClassName();
 public int getDisplaySize();
 public String getLabel();
 public String getName();
 public String getNameKey();
 public int getPrecision();
 public int getScale();
 public String getSchemaName();
 public String getTableName();
 public int getType();
 public String getTypeName();
 public boolean isStringType();
 public String toString();
 public String truncate(String);
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public abstract synchronized class AbstractConnectionSource extends org.apache.logging.log4j.core.AbstractLifeCycle implements ConnectionSource {
 public void AbstractConnectionSource();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target$1.class

package org.apache.logging.log4j.core.appender;
final synchronized enum ConsoleAppender$Target$1 {
 void ConsoleAppender$Target$1(String, int);
 public java.nio.charset.Charset getDefaultCharset();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForGarbageFreeThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForGarbageFreeThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForGarbageFreeThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/JdkMapAdapterStringMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class JdkMapAdapterStringMap implements org.apache.logging.log4j.util.StringMap {
 private static final long serialVersionUID = -7348247784983193612;
 private static final String FROZEN = Frozen collection cannot be modified;
 private static final java.util.Comparator NULL_FIRST_COMPARATOR;
 private final java.util.Map map;
 private boolean immutable;
 private transient String[] sortedKeys;
 private static org.apache.logging.log4j.util.TriConsumer PUT_ALL;
 public void JdkMapAdapterStringMap();
 public void JdkMapAdapterStringMap(java.util.Map);
 public java.util.Map toMap();
 private void assertNotFrozen();
 public boolean containsKey(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 private String[] getSortedKeys();
 public Object getValue(String);
 public boolean isEmpty();
 public int size();
 public void clear();
 public void freeze();
 public boolean isFrozen();
 public void putAll(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public void putValue(String, Object);
 public void remove(String);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LocationAwareLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public abstract interface LocationAwareLogEventFactory {
 public abstract org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector {
 private static final org.apache.logging.log4j.Logger LOGGER;
 public static java.util.Collection contextDataProviders;
 private static volatile java.util.List serviceProviders;
 private static final java.util.concurrent.locks.Lock providerLock;
 public void ThreadContextDataInjector();
 public static void initServiceProviders();
 private static java.util.List getServiceProviders();
 public static void copyProperties(java.util.List, org.apache.logging.log4j.util.StringMap);
 private static java.util.List getProviders();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ExecutionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ExecutionException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 7764539594267007998;
 private final CommandLine commandLine;
 public void CommandLine$ExecutionException(CommandLine, String);
 public void CommandLine$ExecutionException(CommandLine, String, Exception);
 public CommandLine getCommandLine();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$IStyle.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$Ansi$IStyle {
 public static final String CSI = �[;
 public abstract String on();
 public abstract String off();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$DuplicateOptionAnnotationsException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$DuplicateOptionAnnotationsException extends CommandLine$InitializationException {
 private static final long serialVersionUID = -3355128012575075641;
 public void CommandLine$DuplicateOptionAnnotationsException(String);
 private static CommandLine$DuplicateOptionAnnotationsException create(String, reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$DefaultExceptionHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$DefaultExceptionHandler implements CommandLine$IExceptionHandler {
 public void CommandLine$DefaultExceptionHandler();
 public transient java.util.List handleException(CommandLine$ParameterException, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$PatternConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$PatternConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$PatternConverter();
 public java.util.regex.Pattern convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$StringConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$StringConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$StringConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Style.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Ansi$Style {
 public static final CommandLine$Help$Ansi$Style reset;
 public static final CommandLine$Help$Ansi$Style bold;
 public static final CommandLine$Help$Ansi$Style faint;
 public static final CommandLine$Help$Ansi$Style italic;
 public static final CommandLine$Help$Ansi$Style underline;
 public static final CommandLine$Help$Ansi$Style blink;
 public static final CommandLine$Help$Ansi$Style reverse;
 public static final CommandLine$Help$Ansi$Style fg_black;
 public static final CommandLine$Help$Ansi$Style fg_red;
 public static final CommandLine$Help$Ansi$Style fg_green;
 public static final CommandLine$Help$Ansi$Style fg_yellow;
 public static final CommandLine$Help$Ansi$Style fg_blue;
 public static final CommandLine$Help$Ansi$Style fg_magenta;
 public static final CommandLine$Help$Ansi$Style fg_cyan;
 public static final CommandLine$Help$Ansi$Style fg_white;
 public static final CommandLine$Help$Ansi$Style bg_black;
 public static final CommandLine$Help$Ansi$Style bg_red;
 public static final CommandLine$Help$Ansi$Style bg_green;
 public static final CommandLine$Help$Ansi$Style bg_yellow;
 public static final CommandLine$Help$Ansi$Style bg_blue;
 public static final CommandLine$Help$Ansi$Style bg_magenta;
 public static final CommandLine$Help$Ansi$Style bg_cyan;
 public static final CommandLine$Help$Ansi$Style bg_white;
 private final int startCode;
 private final int endCode;
 public static CommandLine$Help$Ansi$Style[] values();
 public static CommandLine$Help$Ansi$Style valueOf(String);
 private void CommandLine$Help$Ansi$Style(String, int, int, int);
 public String on();
 public String off();
 public static transient String on(CommandLine$Help$Ansi$IStyle[]);
 public static transient String off(CommandLine$Help$Ansi$IStyle[]);
 public static CommandLine$Help$Ansi$IStyle fg(String);
 public static CommandLine$Help$Ansi$IStyle bg(String);
 public static CommandLine$Help$Ansi$IStyle[] parse(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$StyledSection.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$Ansi$StyledSection {
 int startIndex;
 int length;
 String startStyles;
 String endStyles;
 void CommandLine$Help$Ansi$StyledSection(int, int, String, String);
 CommandLine$Help$Ansi$StyledSection withStartIndex(int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Column.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Column {
 public final int width;
 public final int indent;
 public final CommandLine$Help$Column$Overflow overflow;
 public void CommandLine$Help$Column(int, int, CommandLine$Help$Column$Overflow);
}

org/apache/logging/log4j/core/tools/Generate$1.class

package org.apache.logging.log4j.core.tools;
synchronized class Generate$1 {
}

org/apache/logging/log4j/core/net/SslSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class SslSocketManager extends TcpSocketManager {
 public static final int DEFAULT_PORT = 6514;
 private static final SslSocketManager$SslSocketManagerFactory FACTORY;
 private final ssl.SslConfiguration sslConfig;
 public void SslSocketManager(String, java.io.OutputStream, java.net.Socket, ssl.SslConfiguration, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public void SslSocketManager(String, java.io.OutputStream, java.net.Socket, ssl.SslConfiguration, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public static SslSocketManager getSocketManager(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public static SslSocketManager getSocketManager(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 protected java.net.Socket createSocket(java.net.InetSocketAddress) throws java.io.IOException;
 private static javax.net.ssl.SSLSocketFactory createSslSocketFactory(ssl.SslConfiguration);
 static java.net.Socket createSocket(java.net.InetSocketAddress, int, ssl.SslConfiguration, SocketOptions) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ReflectionUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class ReflectionUtil {
 private void ReflectionUtil();
 public static boolean isAccessible(reflect.AccessibleObject);
 public static void makeAccessible(reflect.AccessibleObject);
 public static void makeAccessible(reflect.Field);
 public static Object getFieldValue(reflect.Field, Object);
 public static Object getStaticFieldValue(reflect.Field);
 public static void setFieldValue(reflect.Field, Object, Object);
 public static void setStaticFieldValue(reflect.Field, Object);
 public static reflect.Constructor getDefaultConstructor(Class);
 public static Object instantiate(Class);
}

org/apache/logging/log4j/core/util/Source.class

package org.apache.logging.log4j.core.util;
public synchronized class Source {
 private final java.io.File file;
 private final java.net.URI uri;
 private final String location;
 public void Source(org.apache.logging.log4j.core.config.ConfigurationSource);
 public void Source(java.io.File);
 public void Source(java.net.URI, long);
 public java.io.File getFile();
 public java.net.URI getURI();
 public String getLocation();
 public String toString();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/util/CronExpression$1.class

package org.apache.logging.log4j.core.util;
synchronized class CronExpression$1 {
}

org/apache/logging/log4j/core/util/KeyValuePair$Builder.class

package org.apache.logging.log4j.core.util;
public synchronized class KeyValuePair$Builder implements Builder {
 private String key;
 private String value;
 public void KeyValuePair$Builder();
 public KeyValuePair$Builder setKey(String);
 public KeyValuePair$Builder setValue(String);
 public KeyValuePair build();
}

org/apache/logging/log4j/core/util/JsonUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class JsonUtils {
 private static final char[] HC;
 private static final int[] ESC_CODES;
 private static final ThreadLocal _qbufLocal;
 public void JsonUtils();
 private static char[] getQBuf();
 public static void quoteAsString(CharSequence, StringBuilder);
 private static int _appendNumeric(int, char[]);
 private static int _appendNamed(int, char[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemClock implements Clock {
 public void SystemClock();
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$PaddedNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$PaddedNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 private final int mSize;
 void FastDatePrinter$PaddedNumberField(int, int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$4.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$4 extends FastDateParser$NumberStrategy {
 void FastDateParser$4(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$3.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$3 extends FastDateParser$NumberStrategy {
 void FastDateParser$3(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/Patterns.class

package org.apache.logging.log4j.core.util;
public final synchronized class Patterns {
 public static final String COMMA_SEPARATOR;
 public static final String WHITESPACE = \s*;
 private void Patterns();
 public static String toWhitespaceSeparator(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ClockFactory.class

package org.apache.logging.log4j.core.util;
public final synchronized class ClockFactory {
 public static final String PROPERTY_NAME = log4j.Clock;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private void ClockFactory();
 public static Clock getClock();
 private static java.util.Map aliases();
 private static Clock createClock();
 private static Clock logSupportedPrecision(Clock);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatchManager$ConfigurationMonitor.class

package org.apache.logging.log4j.core.util;
final synchronized class WatchManager$ConfigurationMonitor {
 private final Watcher watcher;
 private volatile long lastModifiedMillis;
 public void WatchManager$ConfigurationMonitor(WatchManager, long, Watcher);
 public Watcher getWatcher();
 private void setLastModifiedMillis(long);
 public String toString();
}

org/apache/logging/log4j/core/util/CachedClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class CachedClock implements Clock {
 private static final int UPDATE_THRESHOLD = 1000;
 private static volatile CachedClock instance;
 private static final Object INSTANCE_LOCK;
 private volatile long millis;
 private short count;
 private void CachedClock();
 public static CachedClock instance();
 public long currentTimeMillis();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CronExpression$ValueSet.class

package org.apache.logging.log4j.core.util;
synchronized class CronExpression$ValueSet {
 public int value;
 public int pos;
 private void CronExpression$ValueSet(CronExpression);
}

org/apache/logging/log4j/core/config/AwaitCompletionReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class AwaitCompletionReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private static final int MAX_RETRIES = 3;
 private final java.util.concurrent.atomic.AtomicInteger counter;
 private final java.util.concurrent.atomic.AtomicBoolean shutdown;
 private final java.util.concurrent.locks.Lock shutdownLock;
 private final java.util.concurrent.locks.Condition noLogEvents;
 private final LoggerConfig loggerConfig;
 public void AwaitCompletionReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 private boolean beforeLogEvent();
 public void afterLogEvent();
 private void signalCompletionIfShutdown();
 public void beforeStopAppenders();
 private void waitForCompletion();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/LocationAwareReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public abstract interface LocationAwareReliabilityStrategy {
 public abstract void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SystemPropertyArbiter implements Arbiter {
 private final String propertyName;
 private final String propertyValue;
 private void SystemPropertyArbiter(String, String);
 public boolean isCondition();
 public static SystemPropertyArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/SelectArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SelectArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void SelectArbiter$Builder();
 public SelectArbiter$Builder asBuilder();
 public SelectArbiter build();
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class ScriptArbiter$1 {
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ScriptArbiter implements Arbiter {
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptArbiter(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.script.AbstractScript);
 public boolean isCondition();
 public static ScriptArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class ClassArbiter$1 {
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginValueVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginValueVisitor extends AbstractPluginVisitor {
 public void PluginValueVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginProcessor extends javax.annotation.processing.AbstractProcessor {
 public static final String PLUGIN_CACHE_FILE = META-INF/org/apache/logging/log4j/core/config/plugins/Log4j2Plugins.dat;
 private final PluginCache pluginCache;
 public void PluginProcessor();
 public javax.lang.model.SourceVersion getSupportedSourceVersion();
 public boolean process(java.util.Set, javax.annotation.processing.RoundEnvironment);
 private void error(CharSequence);
 private void collectPlugins(Iterable);
 private transient void writeCacheFile(javax.lang.model.element.Element[]) throws java.io.IOException;
}

org/apache/logging/log4j/core/config/plugins/PluginAliases.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginAliases extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/core/config/ReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public abstract interface ReliabilityStrategy {
 public abstract void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public abstract LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public abstract void afterLogEvent();
 public abstract void beforeStopAppenders();
 public abstract void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/DefaultAdvertiser.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultAdvertiser implements org.apache.logging.log4j.core.net.Advertiser {
 public void DefaultAdvertiser();
 public Object advertise(java.util.Map);
 public void unadvertise(Object);
}

org/apache/logging/log4j/core/config/json/JsonConfiguration.class

package org.apache.logging.log4j.core.config.json;
public synchronized class JsonConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 private static final String[] VERBOSE_CLASSES;
 private final java.util.List status;
 private com.fasterxml.jackson.databind.JsonNode root;
 public void JsonConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 protected com.fasterxml.jackson.databind.ObjectMapper getObjectMapper();
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private org.apache.logging.log4j.core.config.Node constructNode(String, org.apache.logging.log4j.core.config.Node, com.fasterxml.jackson.databind.JsonNode);
 private String getType(com.fasterxml.jackson.databind.JsonNode, String);
 private void processAttributes(org.apache.logging.log4j.core.config.Node, com.fasterxml.jackson.databind.JsonNode);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultCustomLevelComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultCustomLevelComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder {
 public void DefaultCustomLevelComponentBuilder(DefaultConfigurationBuilder, String, int);
}

org/apache/logging/log4j/core/config/builder/api/RootLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface RootLoggerComponentBuilder extends LoggableComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/AppenderComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface AppenderComponentBuilder extends FilterableComponentBuilder {
 public abstract AppenderComponentBuilder add(LayoutComponentBuilder);
 public abstract String getName();
}

org/apache/logging/log4j/core/config/builder/api/ScriptComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ScriptComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/layout/StringBuilderEncoder.class

package org.apache.logging.log4j.core.layout;
public synchronized class StringBuilderEncoder implements Encoder {
 private static final int DEFAULT_BYTE_BUFFER_SIZE = 8192;
 private final ThreadLocal threadLocal;
 private final java.nio.charset.Charset charset;
 private final int charBufferSize;
 private final int byteBufferSize;
 public void StringBuilderEncoder(java.nio.charset.Charset);
 public void StringBuilderEncoder(java.nio.charset.Charset, int, int);
 public void encode(StringBuilder, ByteBufferDestination);
 private Object[] getThreadLocalState();
 private void logEncodeTextException(Exception, StringBuilder, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class MarkerPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/GelfLayout$FieldWriter.class

package org.apache.logging.log4j.core.layout;
synchronized class GelfLayout$FieldWriter implements org.apache.logging.log4j.util.TriConsumer {
 private final internal.ListChecker checker;
 private final String prefix;
 void GelfLayout$FieldWriter(GelfLayout, internal.ListChecker, String);
 public void accept(String, Object, StringBuilder);
 public internal.ListChecker getChecker();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSerializer.class

package org.apache.logging.log4j.core.layout;
abstract interface PatternLayout$PatternSerializer extends AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
}

org/apache/logging/log4j/core/layout/Rfc5424Layout$FieldFormatter.class

package org.apache.logging.log4j.core.layout;
synchronized class Rfc5424Layout$FieldFormatter {
 private final java.util.Map delegateMap;
 private final boolean discardIfEmpty;
 public void Rfc5424Layout$FieldFormatter(Rfc5424Layout, java.util.Map, boolean);
 public Rfc5424Layout$StructuredDataElement format(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/LoggerContextAccessor.class

package org.apache.logging.log4j.core;
public abstract interface LoggerContextAccessor {
 public abstract LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class JCToolsBlockingQueueFactory implements BlockingQueueFactory {
 private final JCToolsBlockingQueueFactory$WaitStrategy waitStrategy;
 private void JCToolsBlockingQueueFactory(JCToolsBlockingQueueFactory$WaitStrategy);
 public java.util.concurrent.BlockingQueue create(int);
 public static JCToolsBlockingQueueFactory createFactory(JCToolsBlockingQueueFactory$WaitStrategy);
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$MpscBlockingQueue.class

package org.apache.logging.log4j.core.async;
final synchronized class JCToolsBlockingQueueFactory$MpscBlockingQueue extends org.jctools.queues.MpscArrayQueue implements java.util.concurrent.BlockingQueue {
 private final JCToolsBlockingQueueFactory$WaitStrategy waitStrategy;
 void JCToolsBlockingQueueFactory$MpscBlockingQueue(int, JCToolsBlockingQueueFactory$WaitStrategy);
 public int drainTo(java.util.Collection);
 public int drainTo(java.util.Collection, int);
 public boolean offer(Object, long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public Object poll(long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public void put(Object) throws InterruptedException;
 public boolean offer(Object);
 public int remainingCapacity();
 public Object take() throws InterruptedException;
}

org/apache/logging/log4j/core/async/EventRoute$3.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$3 {
 void EventRoute$3(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/Logger.class

package org.apache.logging.log4j.core;
public synchronized class Logger extends org.apache.logging.log4j.spi.AbstractLogger implements org.apache.logging.log4j.util.Supplier {
 private static final long serialVersionUID = 1;
 protected volatile Logger$PrivateConfig privateConfig;
 private final LoggerContext context;
 protected void Logger(LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 protected Object writeReplace() throws java.io.ObjectStreamException;
 public Logger getParent();
 public LoggerContext getContext();
 public synchronized void setLevel(org.apache.logging.log4j.Level);
 public config.LoggerConfig get();
 protected boolean requiresLocation();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 protected void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void addAppender(Appender);
 public void removeAppender(Appender);
 public java.util.Map getAppenders();
 public java.util.Iterator getFilters();
 public org.apache.logging.log4j.Level getLevel();
 public int filterCount();
 public void addFilter(Filter);
 public boolean isAdditive();
 public void setAdditive(boolean);
 protected void updateConfiguration(config.Configuration);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/lookup/ResourceBundleLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class ResourceBundleLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void ResourceBundleLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class StrMatcher {
 private static final StrMatcher COMMA_MATCHER;
 private static final StrMatcher TAB_MATCHER;
 private static final StrMatcher SPACE_MATCHER;
 private static final StrMatcher SPLIT_MATCHER;
 private static final StrMatcher TRIM_MATCHER;
 private static final StrMatcher SINGLE_QUOTE_MATCHER;
 private static final StrMatcher DOUBLE_QUOTE_MATCHER;
 private static final StrMatcher QUOTE_MATCHER;
 private static final StrMatcher NONE_MATCHER;
 protected void StrMatcher();
 public static StrMatcher commaMatcher();
 public static StrMatcher tabMatcher();
 public static StrMatcher spaceMatcher();
 public static StrMatcher splitMatcher();
 public static StrMatcher trimMatcher();
 public static StrMatcher singleQuoteMatcher();
 public static StrMatcher doubleQuoteMatcher();
 public static StrMatcher quoteMatcher();
 public static StrMatcher noneMatcher();
 public static StrMatcher charMatcher(char);
 public static StrMatcher charSetMatcher(char[]);
 public static StrMatcher charSetMatcher(String);
 public static StrMatcher stringMatcher(String);
 public abstract int isMatch(char[], int, int, int);
 public int isMatch(char[], int);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/MarkerLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MarkerLookup extends AbstractLookup {
 static final String MARKER = marker;
 public void MarkerLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
}

org/apache/logging/log4j/core/script/ScriptManager$MainScriptRunner.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$MainScriptRunner extends ScriptManager$AbstractScriptRunner {
 private final AbstractScript script;
 private final javax.script.CompiledScript compiledScript;
 private final javax.script.ScriptEngine scriptEngine;
 public void ScriptManager$MainScriptRunner(ScriptManager, javax.script.ScriptEngine, AbstractScript);
 public javax.script.ScriptEngine getScriptEngine();
 public Object execute(javax.script.Bindings);
 public AbstractScript getScript();
}

org/apache/logging/log4j/core/time/Instant.class

package org.apache.logging.log4j.core.time;
public abstract interface Instant extends org.apache.logging.log4j.util.StringBuilderFormattable {
 public abstract long getEpochSecond();
 public abstract int getNanoOfSecond();
 public abstract long getEpochMillisecond();
 public abstract int getNanoOfMillisecond();
}

org/apache/logging/log4j/core/filter/RegexFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class RegexFilter extends AbstractFilter {
 private static final int DEFAULT_PATTERN_FLAGS = 0;
 private final java.util.regex.Pattern pattern;
 private final boolean useRawMessage;
 private void RegexFilter(boolean, java.util.regex.Pattern, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(String);
 public String toString();
 public static RegexFilter createFilter(String, String[], Boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result) throws IllegalArgumentException, IllegalAccessException;
 private static int toPatternFlags(String[]) throws IllegalArgumentException, IllegalAccessException;
}

org/apache/logging/log4j/core/filter/DenyAllFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class DenyAllFilter$1 {
}

org/apache/logging/log4j/core/filter/StringMatchFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class StringMatchFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private String text;
 public void StringMatchFilter$Builder();
 public StringMatchFilter$Builder setMatchString(String);
 public StringMatchFilter build();
}

org/apache/logging/log4j/core/filter/AbstractFilter$AbstractFilterBuilder.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilter$AbstractFilterBuilder {
 public static final String ATTR_ON_MISMATCH = onMismatch;
 public static final String ATTR_ON_MATCH = onMatch;
 private org.apache.logging.log4j.core.Filter$Result onMatch;
 private org.apache.logging.log4j.core.Filter$Result onMismatch;
 public void AbstractFilter$AbstractFilterBuilder();
 public org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 public AbstractFilter$AbstractFilterBuilder setOnMatch(org.apache.logging.log4j.core.Filter$Result);
 public AbstractFilter$AbstractFilterBuilder setOnMismatch(org.apache.logging.log4j.core.Filter$Result);
 public AbstractFilter$AbstractFilterBuilder asBuilder();
}

org/apache/logging/log4j/core/filter/LevelMatchFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class LevelMatchFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.Level level;
 public void LevelMatchFilter$Builder();
 public LevelMatchFilter$Builder setLevel(org.apache.logging.log4j.Level);
 public LevelMatchFilter build();
}

org/apache/logging/log4j/core/pattern/MarkerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MarkerPatternConverter extends LogEventPatternConverter {
 private void MarkerPatternConverter(String[]);
 public static MarkerPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/FullLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FullLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final FullLocationPatternConverter INSTANCE;
 private void FullLocationPatternConverter();
 public static FullLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NdcPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NdcPatternConverter extends LogEventPatternConverter {
 private static final NdcPatternConverter INSTANCE;
 private void NdcPatternConverter();
 public static NdcPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$White.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$White extends AbstractStyleNameConverter {
 protected static final String NAME = white;
 public void AbstractStyleNameConverter$White(java.util.List, String);
 public static AbstractStyleNameConverter$White newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/PatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract interface PatternConverter {
 public static final String CATEGORY = Converter;
 public abstract void format(Object, StringBuilder);
 public abstract String getName();
 public abstract String getStyleClass(Object);
}

org/apache/logging/log4j/core/pattern/PatternParser.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class PatternParser {
 static final String DISABLE_ANSI = disableAnsi;
 static final String NO_CONSOLE_NO_ANSI = noConsoleNoAnsi;
 private static final char ESCAPE_CHAR = 37;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int BUF_SIZE = 32;
 private static final int DECIMAL = 10;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final java.util.Map converterRules;
 public void PatternParser(String);
 public void PatternParser(org.apache.logging.log4j.core.config.Configuration, String, Class);
 public void PatternParser(org.apache.logging.log4j.core.config.Configuration, String, Class, Class);
 public java.util.List parse(String);
 public java.util.List parse(String, boolean, boolean);
 public java.util.List parse(String, boolean, boolean, boolean);
 private static int extractConverter(char, String, int, StringBuilder, StringBuilder);
 private static int extractOptions(String, int, java.util.List);
 public void parse(String, java.util.List, java.util.List, boolean, boolean);
 public void parse(String, java.util.List, java.util.List, boolean, boolean, boolean);
 private PatternConverter createConverter(String, StringBuilder, java.util.Map, java.util.List, boolean, boolean);
 private static boolean areValidNewInstanceParameters(Class[]);
 private int finalizeConverter(char, String, int, StringBuilder, FormattingInfo, java.util.Map, java.util.List, java.util.List, boolean, boolean, boolean);
 private LogEventPatternConverter literalPattern(String, boolean);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/UuidPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class UuidPatternConverter extends LogEventPatternConverter {
 private final boolean isRandom;
 private void UuidPatternConverter(boolean);
 public static UuidPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ProcessIdPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ProcessIdPatternConverter extends LogEventPatternConverter {
 private static final String DEFAULT_DEFAULT_VALUE = ???;
 private final String pid;
 private transient void ProcessIdPatternConverter(String[]);
 public String getProcessId();
 public static void main(String[]);
 public static ProcessIdPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$2.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$2 {
 void EncodingPatternConverter$EscapeFormat$2(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$CachedTime.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$CachedTime {
 public long epochSecond;
 public int nanoOfSecond;
 public String formatted;
 public void DatePatternConverter$CachedTime(DatePatternConverter, org.apache.logging.log4j.core.time.Instant);
}

org/apache/logging/log4j/core/pattern/MarkerSimpleNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MarkerSimpleNamePatternConverter extends LogEventPatternConverter {
 private void MarkerSimpleNamePatternConverter(String[]);
 public static MarkerSimpleNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListSerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataAsEntryListSerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 protected void ContextDataAsEntryListSerializer();
 public void serialize(org.apache.logging.log4j.util.ReadOnlyStringMap, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

org/apache/logging/log4j/core/jackson/JsonConstants.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class JsonConstants {
 public static final String ELT_CAUSE = cause;
 public static final String ELT_CONTEXT_MAP = contextMap;
 public static final String ELT_CONTEXT_STACK = contextStack;
 public static final String ELT_MARKER = marker;
 public static final String ELT_PARENTS = parents;
 public static final String ELT_SOURCE = source;
 public static final String ELT_SUPPRESSED = suppressed;
 public static final String ELT_THROWN = thrown;
 public static final String ELT_MESSAGE = message;
 public static final String ELT_EXTENDED_STACK_TRACE = extendedStackTrace;
 public static final String ELT_NANO_TIME = nanoTime;
 public static final String ELT_INSTANT = instant;
 public static final String ELT_TIME_MILLIS = timeMillis;
 public void JsonConstants();
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataAsEntryListDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ContextDataAsEntryListDeserializer();
 public org.apache.logging.log4j.util.StringMap deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jJsonObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jJsonObjectMapper extends com.fasterxml.jackson.databind.ObjectMapper {
 private static final long serialVersionUID = 1;
 public void Log4jJsonObjectMapper();
 public void Log4jJsonObjectMapper(boolean, boolean, boolean, boolean);
}

org/apache/logging/log4j/core/jackson/MapEntry.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MapEntry {
 private String key;
 private String value;
 public void MapEntry(String, String);
 public boolean equals(Object);
 public String getKey();
 public String getValue();
 public int hashCode();
 public void setKey(String);
 public void setValue(String);
 public String toString();
}

org/apache/logging/log4j/core/jackson/MutableThreadContextStackDeserializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MutableThreadContextStackDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void MutableThreadContextStackDeserializer();
 public org.apache.logging.log4j.spi.MutableThreadContextStack deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

log4j-api-2.17.1.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Bundle-License: https://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-SymbolicName: org.apache.logging.log4j.api

Log4jSigningUserName: mattsicker@apache.org

Built-By: matt

Bnd-LastModified: 1640647808261

Implementation-Vendor-Id: org.apache.logging.log4j

Specification-Title: Apache Log4j API

Log4jReleaseManager: Matt Sicker

Bundle-DocURL: https://www.apache.org/

Import-Package: org.apache.logging.log4j,org.apache.logging.log4j.inte

 rnal,org.apache.logging.log4j.message,org.apache.logging.log4j.simple

 ,org.apache.logging.log4j.spi,org.apache.logging.log4j.status,org.apa

 che.logging.log4j.util,org.osgi.framework;version="[1.6,2)",org.osgi.

 framework.wiring;version="[1.0,2)",sun.reflect;resolution:=optional

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

Export-Package: org.apache.logging.log4j;uses:="org.apache.logging.log

 4j.message,org.apache.logging.log4j.spi,org.apache.logging.log4j.util

 ";version="2.17.1",org.apache.logging.log4j.internal;uses:="org.apach

 e.logging.log4j,org.apache.logging.log4j.message,org.apache.logging.l

 og4j.util";version="2.17.1",org.apache.logging.log4j.message;uses:="o

 rg.apache.logging.log4j.util";version="2.17.1",org.apache.logging.log

 4j.simple;uses:="org.apache.logging.log4j,org.apache.logging.log4j.me

 ssage,org.apache.logging.log4j.spi,org.apache.logging.log4j.util";ver

 sion="2.17.1",org.apache.logging.log4j.spi;uses:="org.apache.logging.

 log4j,org.apache.logging.log4j.internal,org.apache.logging.log4j.mess

 age,org.apache.logging.log4j.util";version="2.17.1",org.apache.loggin

 g.log4j.status;uses:="org.apache.logging.log4j,org.apache.logging.log

 4j.message,org.apache.logging.log4j.spi";version="2.17.1",org.apache.

 logging.log4j.util;uses:="org.apache.logging.log4j.message,org.apache

 .logging.log4j.spi,org.osgi.framework";version="2.17.1"

Bundle-Name: Apache Log4j API

Log4jReleaseVersionJava6: 2.3.1

Multi-Release: true

Bundle-Activator: org.apache.logging.log4j.util.Activator

Log4jReleaseVersionJava7: 2.12.3

Log4jReleaseVersion: 2.17.1

Implementation-Title: Apache Log4j API

Bundle-Description: The Apache Log4j API

Implementation-Version: 2.17.1

Specification-Vendor: The Apache Software Foundation

Bundle-ManifestVersion: 2

Bundle-Vendor: The Apache Software Foundation

Tool: Bnd-3.5.0.201709291849

Implementation-Vendor: The Apache Software Foundation

Bundle-Version: 2.17.1

X-Compile-Target-JDK: 1.8

X-Compile-Source-JDK: 1.8

Created-By: Apache Maven Bundle Plugin

Build-Jdk: 1.8.0_312

Specification-Version: 2.17.1

Implementation-URL: https://logging.apache.org/log4j/2.x/log4j-api/

Log4jReleaseKey: D7C92B70FA1C814D

Log4j-charsets.properties

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.

Mapping based on https://msdn.microsoft.com/en-us/en-en/library/windows/desktop/dd317756(v=vs.85).aspx
Reference for supported Java encodings: https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
cp65001 = UTF-8
cp20127 = US-ASCII
cp54936 = gb18030
cp28592 = iso-8859-2
cp28593 = iso-8859-3
cp28594 = iso-8859-4
cp28595 = iso-8859-5
cp28596 = iso-8859-6
cp28597 = iso-8859-7
cp28598 = iso-8859-8
cp28599 = iso-8859-9
cp28603 = iso-8859-13
cp28605 = iso-8859-15
cp51949 = euc-kr
cp20866 = koi8-r
cp21866 = koi8-u
cp10000 = x-MacRoman
cp10006 = x-MacGreek
cp10007 = x-MacCyrillic
cp10029 = x-MacCentralEurope
cp10081 = x-MacTurkish
cp57002 = x-ISCII91
cp57003 = x-ISCII91
cp57011 = x-ISCII91
cp57010 = x-ISCII91
cp57007 = x-ISCII91
cp57004 = x-ISCII91
cp57005 = x-ISCII91
cp57008 = x-ISCII91
cp57009 = x-ISCII91
cp708 = ISO-8859-6

org/apache/logging/log4j/util/PropertiesUtil$TimeUnit.class

package org.apache.logging.log4j.util;
final synchronized enum PropertiesUtil$TimeUnit {
 public static final PropertiesUtil$TimeUnit NANOS;
 public static final PropertiesUtil$TimeUnit MICROS;
 public static final PropertiesUtil$TimeUnit MILLIS;
 public static final PropertiesUtil$TimeUnit SECONDS;
 public static final PropertiesUtil$TimeUnit MINUTES;
 public static final PropertiesUtil$TimeUnit HOURS;
 public static final PropertiesUtil$TimeUnit DAYS;
 private final String[] descriptions;
 private final java.time.temporal.ChronoUnit timeUnit;
 public static PropertiesUtil$TimeUnit[] values();
 public static PropertiesUtil$TimeUnit valueOf(String);
 private void PropertiesUtil$TimeUnit(String, int, String, java.time.temporal.ChronoUnit);
 java.time.temporal.ChronoUnit getTimeUnit();
 static java.time.Duration getDuration(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/SortedArrayStringMap.class

package org.apache.logging.log4j.util;
public synchronized class SortedArrayStringMap implements IndexedStringMap {
 private static final int DEFAULT_INITIAL_CAPACITY = 4;
 private static final long serialVersionUID = -5748905872274478116;
 private static final int HASHVAL = 31;
 private static final TriConsumer PUT_ALL;
 private static final String[] EMPTY;
 private static final String FROZEN = Frozen collection cannot be modified;
 private transient String[] keys;
 private transient Object[] values;
 private transient int size;
 private static final reflect.Method setObjectInputFilter;
 private static final reflect.Method getObjectInputFilter;
 private static final reflect.Method newObjectInputFilter;
 private int threshold;
 private boolean immutable;
 private transient boolean iterating;
 public void SortedArrayStringMap();
 public void SortedArrayStringMap(int);
 public void SortedArrayStringMap(ReadOnlyStringMap);
 public void SortedArrayStringMap(java.util.Map);
 private void assertNotFrozen();
 private void assertNoConcurrentModification();
 public void clear();
 public boolean containsKey(String);
 public java.util.Map toMap();
 public void freeze();
 public boolean isFrozen();
 public Object getValue(String);
 public boolean isEmpty();
 public int indexOfKey(String);
 private int nullKeyIndex();
 public void putValue(String, Object);
 private void insertAt(int, String, Object);
 public void putAll(ReadOnlyStringMap);
 private void initFrom0(SortedArrayStringMap);
 private void merge(SortedArrayStringMap);
 private void ensureCapacity();
 private void resize(int);
 private void inflateTable(int);
 public void remove(String);
 public String getKeyAt(int);
 public Object getValueAt(int);
 public int size();
 public void forEach(BiConsumer);
 public void forEach(TriConsumer, Object);
 public boolean equals(Object);
 public int hashCode();
 private static int hashCode(Object[], int);
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private static byte[] marshall(Object) throws java.io.IOException;
 private static Object unmarshall(byte[], java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private static int ceilingNextPowerOfTwo(int);
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private void handleSerializationException(Throwable, int, String);
 static void <clinit>();
}

org/apache/logging/log4j/util/Unbox$1.class

package org.apache.logging.log4j.util;
synchronized class Unbox$1 {
}

org/apache/logging/log4j/LogBuilder$1.class

package org.apache.logging.log4j;
final synchronized class LogBuilder$1 implements LogBuilder {
 void LogBuilder$1();
}

org/apache/logging/log4j/internal/LogManagerStatus.class

package org.apache.logging.log4j.internal;
public synchronized class LogManagerStatus {
 private static boolean initialized;
 public void LogManagerStatus();
 public static void setInitialized(boolean);
 public static boolean isInitialized();
 static void <clinit>();
}

org/apache/logging/log4j/message/StructuredDataMessage.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataMessage extends MapMessage {
 private static final long serialVersionUID = 1703221292892071920;
 private static final int MAX_LENGTH = 32;
 private static final int HASHVAL = 31;
 private StructuredDataId id;
 private String message;
 private String type;
 private final int maxLength;
 public void StructuredDataMessage(String, String, String);
 public void StructuredDataMessage(String, String, String, int);
 public void StructuredDataMessage(String, String, String, java.util.Map);
 public void StructuredDataMessage(String, String, String, java.util.Map, int);
 public void StructuredDataMessage(StructuredDataId, String, String);
 public void StructuredDataMessage(StructuredDataId, String, String, int);
 public void StructuredDataMessage(StructuredDataId, String, String, java.util.Map);
 public void StructuredDataMessage(StructuredDataId, String, String, java.util.Map, int);
 private void StructuredDataMessage(StructuredDataMessage, java.util.Map);
 protected void StructuredDataMessage();
 public String[] getFormats();
 public StructuredDataId getId();
 protected void setId(String);
 protected void setId(StructuredDataId);
 public String getType();
 protected void setType(String);
 public void formatTo(StringBuilder);
 public void formatTo(String[], StringBuilder);
 public String getFormat();
 protected void setMessageFormat(String);
 public String asString();
 public String asString(String);
 public final String asString(StructuredDataMessage$Format, StructuredDataId);
 public final void asString(StructuredDataMessage$Format, StructuredDataId, StringBuilder);
 private void asXml(StructuredDataId, StringBuilder);
 public String getFormattedMessage();
 public String getFormattedMessage(String[]);
 private StructuredDataMessage$Format getFormat(String[]);
 public String toString();
 public StructuredDataMessage newInstance(java.util.Map);
 public boolean equals(Object);
 public int hashCode();
 protected void validate(String, boolean);
 protected void validate(String, byte);
 protected void validate(String, char);
 protected void validate(String, double);
 protected void validate(String, float);
 protected void validate(String, int);
 protected void validate(String, long);
 protected void validate(String, Object);
 protected void validate(String, short);
 protected void validate(String, String);
 protected void validateKey(String);
}

org/apache/logging/log4j/message/MessageFormatMessage.class

package org.apache.logging.log4j.message;
public synchronized class MessageFormatMessage implements Message {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long serialVersionUID = 1;
 private static final int HASHVAL = 31;
 private String messagePattern;
 private transient Object[] parameters;
 private String[] serializedParameters;
 private transient String formattedMessage;
 private transient Throwable throwable;
 private final java.util.Locale locale;
 public transient void MessageFormatMessage(java.util.Locale, String, Object[]);
 public transient void MessageFormatMessage(String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 protected transient String formatMessage(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException;
 public Throwable getThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterizedMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ParameterizedMessageFactory extends AbstractMessageFactory {
 public static final ParameterizedMessageFactory INSTANCE;
 private static final long serialVersionUID = -8970940216592525651;
 public void ParameterizedMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/ReusableSimpleMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableSimpleMessage implements ReusableMessage, CharSequence, ParameterVisitable, Clearable {
 private static final long serialVersionUID = -9199974506498249809;
 private CharSequence charSequence;
 public void ReusableSimpleMessage();
 public void set(String);
 public void set(CharSequence);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 public void clear();
}

org/apache/logging/log4j/message/ParameterConsumer.class

package org.apache.logging.log4j.message;
public abstract interface ParameterConsumer {
 public abstract void accept(Object, int, Object);
}

org/apache/logging/log4j/message/ExitMessage.class

package org.apache.logging.log4j.message;
public abstract interface ExitMessage extends FlowMessage {
}

org/apache/logging/log4j/message/ThreadInformation.class

package org.apache.logging.log4j.message;
public abstract interface ThreadInformation {
 public abstract void printThreadInfo(StringBuilder);
 public abstract void printStack(StringBuilder, StackTraceElement[]);
}

org/apache/logging/log4j/message/ReusableObjectMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableObjectMessage implements ReusableMessage, ParameterVisitable, Clearable {
 private static final long serialVersionUID = 6922476812535519960;
 private transient Object obj;
 public void ReusableObjectMessage();
 public void set(Object);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object getParameter();
 public Object[] getParameters();
 public String toString();
 public Throwable getThrowable();
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 public void clear();
}

org/apache/logging/log4j/message/Clearable.class

package org.apache.logging.log4j.message;
abstract interface Clearable {
 public abstract void clear();
}

org/apache/logging/log4j/message/MessageFormatMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class MessageFormatMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 3584821740584192453;
 public void MessageFormatMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/ThreadDumpMessage.class

package org.apache.logging.log4j.message;
public synchronized class ThreadDumpMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = -1103400781608841088;
 private static ThreadDumpMessage$ThreadInfoFactory FACTORY;
 private volatile java.util.Map threads;
 private final String title;
 private String formattedMessage;
 public void ThreadDumpMessage(String);
 private void ThreadDumpMessage(String, String);
 private static ThreadDumpMessage$ThreadInfoFactory getFactory();
 private static ThreadDumpMessage$ThreadInfoFactory initFactory(ClassLoader);
 public String toString();
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object[] getParameters();
 protected Object writeReplace();
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/LocalizedMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class LocalizedMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = -1996295808703146741;
 private final transient java.util.ResourceBundle resourceBundle;
 private final String baseName;
 public void LocalizedMessageFactory(java.util.ResourceBundle);
 public void LocalizedMessageFactory(String);
 public String getBaseName();
 public java.util.ResourceBundle getResourceBundle();
 public Message newMessage(String);
 public transient Message newMessage(String, Object[]);
}

org/apache/logging/log4j/status/StatusLogger.class

package org.apache.logging.log4j.status;
public final synchronized class StatusLogger extends org.apache.logging.log4j.spi.AbstractLogger {
 public static final String MAX_STATUS_ENTRIES = log4j2.status.entries;
 public static final String DEFAULT_STATUS_LISTENER_LEVEL = log4j2.StatusLogger.level;
 public static final String STATUS_DATE_FORMAT = log4j2.StatusLogger.DateFormat;
 private static final long serialVersionUID = 2;
 private static final String NOT_AVAIL = ?;
 private static final org.apache.logging.log4j.util.PropertiesUtil PROPS;
 private static final int MAX_ENTRIES;
 private static final String DEFAULT_STATUS_LEVEL;
 private static final StatusLogger STATUS_LOGGER;
 private final org.apache.logging.log4j.simple.SimpleLogger logger;
 private final java.util.Collection listeners;
 private final java.util.concurrent.locks.ReadWriteLock listenersLock;
 private final java.util.Queue messages;
 private final java.util.concurrent.locks.Lock msgLock;
 private int listenersLevel;
 private void StatusLogger(String, org.apache.logging.log4j.message.MessageFactory);
 private boolean isDebugPropertyEnabled();
 public static StatusLogger getLogger();
 public void setLevel(org.apache.logging.log4j.Level);
 public void registerListener(StatusListener);
 public void removeListener(StatusListener);
 public void updateListenerLevel(org.apache.logging.log4j.Level);
 public Iterable getListeners();
 public void reset();
 private static void closeSilently(java.io.Closeable);
 public java.util.List getStatusData();
 public void clear();
 public org.apache.logging.log4j.Level getLevel();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement getStackTraceElement(String, StackTraceElement[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker);
 static void <clinit>();
}

org/apache/logging/log4j/spi/LocationAwareLogger.class

package org.apache.logging.log4j.spi;
public abstract interface LocationAwareLogger {
 public abstract void logMessage(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/CloseableThreadContext.class

package org.apache.logging.log4j;
public synchronized class CloseableThreadContext {
 private void CloseableThreadContext();
 public static CloseableThreadContext$Instance push(String);
 public static transient CloseableThreadContext$Instance push(String, Object[]);
 public static CloseableThreadContext$Instance put(String, String);
 public static CloseableThreadContext$Instance pushAll(java.util.List);
 public static CloseableThreadContext$Instance putAll(java.util.Map);
}

org/apache/logging/log4j/util/LoaderUtil$ThreadContextClassLoaderGetter.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$ThreadContextClassLoaderGetter implements java.security.PrivilegedAction {
 private void LoaderUtil$ThreadContextClassLoaderGetter();
 public ClassLoader run();
}

org/apache/logging/log4j/util/PerformanceSensitive.class

package org.apache.logging.log4j.util;
public abstract interface PerformanceSensitive extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/util/StackLocatorUtil.class

package org.apache.logging.log4j.util;
public final synchronized class StackLocatorUtil {
 private static StackLocator stackLocator;
 private static volatile boolean errorLogged;
 private void StackLocatorUtil();
 public static Class getCallerClass(int);
 public static StackTraceElement getStackTraceElement(int);
 public static Class getCallerClass(String);
 public static Class getCallerClass(String, String);
 public static Class getCallerClass(Class, java.util.function.Predicate);
 public static Class getCallerClass(Class);
 public static java.util.Stack getCurrentStackTrace();
 public static StackTraceElement calcLocation(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/LoaderUtil.class

package org.apache.logging.log4j.util;
public final synchronized class LoaderUtil {
 public static final String IGNORE_TCCL_PROPERTY = log4j.ignoreTCL;
 private static final SecurityManager SECURITY_MANAGER;
 private static Boolean ignoreTCCL;
 private static final boolean GET_CLASS_LOADER_DISABLED;
 private static final java.security.PrivilegedAction TCCL_GETTER;
 private void LoaderUtil();
 public static ClassLoader getThreadContextClassLoader();
 public static ClassLoader[] getClassLoaders();
 private static void accumulateClassLoaders(ClassLoader, java.util.Collection);
 public static boolean isClassAvailable(String);
 public static Class loadClass(String) throws ClassNotFoundException;
 public static Object newInstanceOf(Class) throws InstantiationException, IllegalAccessException, reflect.InvocationTargetException;
 public static Object newInstanceOf(String) throws ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, reflect.InvocationTargetException;
 public static Object newCheckedInstanceOf(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 public static Object newCheckedInstanceOfProperty(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 private static boolean isIgnoreTccl();
 public static java.util.Collection findResources(String);
 static java.util.Collection findUrlResources(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/MessageSupplier.class

package org.apache.logging.log4j.util;
public abstract interface MessageSupplier {
 public abstract org.apache.logging.log4j.message.Message get();
}

org/apache/logging/log4j/util/Timer$2.class

package org.apache.logging.log4j.util;
synchronized class Timer$2 {
 static void <clinit>();
}

org/apache/logging/log4j/util/LambdaUtil.class

package org.apache.logging.log4j.util;
public final synchronized class LambdaUtil {
 private void LambdaUtil();
 public static transient Object[] getAll(Supplier[]);
 public static Object get(Supplier);
 public static org.apache.logging.log4j.message.Message get(MessageSupplier);
 public static org.apache.logging.log4j.message.Message getMessage(Supplier, org.apache.logging.log4j.message.MessageFactory);
}

org/apache/logging/log4j/internal/DefaultLogBuilder.class

package org.apache.logging.log4j.internal;
public synchronized class DefaultLogBuilder implements org.apache.logging.log4j.LogBuilder {
 private static org.apache.logging.log4j.message.Message EMPTY_MESSAGE;
 private static final String FQCN;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.Logger logger;
 private org.apache.logging.log4j.Level level;
 private org.apache.logging.log4j.Marker marker;
 private Throwable throwable;
 private StackTraceElement location;
 private volatile boolean inUse;
 private long threadId;
 public void DefaultLogBuilder(org.apache.logging.log4j.Logger, org.apache.logging.log4j.Level);
 public void DefaultLogBuilder(org.apache.logging.log4j.Logger);
 public org.apache.logging.log4j.LogBuilder reset(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.LogBuilder withMarker(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.LogBuilder withThrowable(Throwable);
 public org.apache.logging.log4j.LogBuilder withLocation();
 public org.apache.logging.log4j.LogBuilder withLocation(StackTraceElement);
 public boolean isInUse();
 public void log(org.apache.logging.log4j.message.Message);
 public void log(CharSequence);
 public void log(String);
 public transient void log(String, Object[]);
 public transient void log(String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.util.Supplier);
 public void log(Object);
 public void log(String, Object);
 public void log(String, Object, Object);
 public void log(String, Object, Object, Object);
 public void log(String, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log();
 private void logMessage(org.apache.logging.log4j.message.Message);
 private boolean isValid();
 static void <clinit>();
}

org/apache/logging/log4j/message/ReusableParameterizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableParameterizedMessage implements ReusableMessage, ParameterVisitable, Clearable {
 private static final int MIN_BUILDER_SIZE = 512;
 private static final int MAX_PARMS = 10;
 private static final long serialVersionUID = 7800075879295123856;
 private transient ThreadLocal buffer;
 private String messagePattern;
 private int argCount;
 private int usedCount;
 private final int[] indices;
 private transient Object[] varargs;
 private transient Object[] params;
 private transient Throwable throwable;
 transient boolean reserved;
 public void ReusableParameterizedMessage();
 private Object[] getTrimmedParams();
 private Object[] getParams();
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 private void init(String, int, Object[]);
 private static int count(String, int[]);
 private void initThrowable(Object[], int, int);
 transient ReusableParameterizedMessage set(String, Object[]);
 ReusableParameterizedMessage set(String, Object);
 ReusableParameterizedMessage set(String, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public String getFormattedMessage();
 private StringBuilder getBuffer();
 public void formatTo(StringBuilder);
 ReusableParameterizedMessage reserve();
 public String toString();
 public void clear();
}

org/apache/logging/log4j/message/ParameterVisitable.class

package org.apache.logging.log4j.message;
public abstract interface ParameterVisitable {
 public abstract void forEachParameter(ParameterConsumer, Object);
}

org/apache/logging/log4j/message/SimpleMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class SimpleMessageFactory extends AbstractMessageFactory {
 public static final SimpleMessageFactory INSTANCE;
 private static final long serialVersionUID = 4418995198790088516;
 public void SimpleMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/FlowMessage.class

package org.apache.logging.log4j.message;
public abstract interface FlowMessage extends Message {
 public abstract String getText();
 public abstract Message getMessage();
}

org/apache/logging/log4j/message/MapMessage$MapFormat.class

package org.apache.logging.log4j.message;
public final synchronized enum MapMessage$MapFormat {
 public static final MapMessage$MapFormat XML;
 public static final MapMessage$MapFormat JSON;
 public static final MapMessage$MapFormat JAVA;
 public static final MapMessage$MapFormat JAVA_UNQUOTED;
 public static MapMessage$MapFormat[] values();
 public static MapMessage$MapFormat valueOf(String);
 private void MapMessage$MapFormat(String, int);
 public static MapMessage$MapFormat lookupIgnoreCase(String);
 public static String[] names();
 static void <clinit>();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class DefaultFlowMessageFactory implements FlowMessageFactory, java.io.Serializable {
 private static final String EXIT_DEFAULT_PREFIX = Exit;
 private static final String ENTRY_DEFAULT_PREFIX = Enter;
 private static final long serialVersionUID = 8578655591131397576;
 private final String entryText;
 private final String exitText;
 public void DefaultFlowMessageFactory();
 public void DefaultFlowMessageFactory(String, String);
 public String getEntryText();
 public String getExitText();
 public EntryMessage newEntryMessage(Message);
 private Message makeImmutable(Message);
 public ExitMessage newExitMessage(EntryMessage);
 public ExitMessage newExitMessage(Object, EntryMessage);
 public ExitMessage newExitMessage(Object, Message);
}

org/apache/logging/log4j/message/MapMessage.class

package org.apache.logging.log4j.message;
public synchronized class MapMessage implements org.apache.logging.log4j.util.MultiFormatStringBuilderFormattable {
 private static final long serialVersionUID = -5031471831131487120;
 private final org.apache.logging.log4j.util.IndexedStringMap data;
 public void MapMessage();
 public void MapMessage(int);
 public void MapMessage(java.util.Map);
 public String[] getFormats();
 public Object[] getParameters();
 public String getFormat();
 public java.util.Map getData();
 public org.apache.logging.log4j.util.IndexedReadOnlyStringMap getIndexedReadOnlyStringMap();
 public void clear();
 public boolean containsKey(String);
 public void put(String, String);
 public void putAll(java.util.Map);
 public String get(String);
 public String remove(String);
 public String asString();
 public String asString(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 private StringBuilder format(MapMessage$MapFormat, StringBuilder);
 public void asXml(StringBuilder);
 public String getFormattedMessage();
 public String getFormattedMessage(String[]);
 private MapMessage$MapFormat getFormat(String[]);
 protected void appendMap(StringBuilder);
 protected void asJson(StringBuilder);
 protected void asJavaUnquoted(StringBuilder);
 protected void asJava(StringBuilder);
 private void asJava(StringBuilder, boolean);
 public MapMessage newInstance(java.util.Map);
 public String toString();
 public void formatTo(StringBuilder);
 public void formatTo(String[], StringBuilder);
 public boolean equals(Object);
 public int hashCode();
 public Throwable getThrowable();
 protected void validate(String, boolean);
 protected void validate(String, byte);
 protected void validate(String, char);
 protected void validate(String, double);
 protected void validate(String, float);
 protected void validate(String, int);
 protected void validate(String, long);
 protected void validate(String, Object);
 protected void validate(String, short);
 protected void validate(String, String);
 protected String toKey(String);
 public MapMessage with(String, boolean);
 public MapMessage with(String, byte);
 public MapMessage with(String, char);
 public MapMessage with(String, double);
 public MapMessage with(String, float);
 public MapMessage with(String, int);
 public MapMessage with(String, long);
 public MapMessage with(String, Object);
 public MapMessage with(String, short);
 public MapMessage with(String, String);
}

org/apache/logging/log4j/message/ReusableMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ReusableMessageFactory implements MessageFactory2, java.io.Serializable {
 public static final ReusableMessageFactory INSTANCE;
 private static final long serialVersionUID = -8970940216592525651;
 private static ThreadLocal threadLocalParameterized;
 private static ThreadLocal threadLocalSimpleMessage;
 private static ThreadLocal threadLocalObjectMessage;
 public void ReusableMessageFactory();
 private static ReusableParameterizedMessage getParameterized();
 private static ReusableSimpleMessage getSimple();
 private static ReusableObjectMessage getObject();
 public static void release(Message);
 public Message newMessage(CharSequence);
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String);
 public Message newMessage(Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$AbstractFlowMessage.class

package org.apache.logging.log4j.message;
synchronized class DefaultFlowMessageFactory$AbstractFlowMessage implements FlowMessage {
 private static final long serialVersionUID = 1;
 private final Message message;
 private final String text;
 void DefaultFlowMessageFactory$AbstractFlowMessage(String, Message);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public Message getMessage();
 public String getText();
}

org/apache/logging/log4j/status/StatusData.class

package org.apache.logging.log4j.status;
public synchronized class StatusData implements java.io.Serializable {
 private static final long serialVersionUID = -4341916115118014017;
 private final long timestamp;
 private final StackTraceElement caller;
 private final org.apache.logging.log4j.Level level;
 private final org.apache.logging.log4j.message.Message msg;
 private String threadName;
 private final Throwable throwable;
 public void StatusData(StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, String);
 public long getTimestamp();
 public StackTraceElement getStackTraceElement();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.message.Message getMessage();
 public String getThreadName();
 public Throwable getThrowable();
 public String getFormattedStatus();
}

org/apache/logging/log4j/CloseableThreadContext$Instance.class

package org.apache.logging.log4j;
public synchronized class CloseableThreadContext$Instance implements AutoCloseable {
 private int pushCount;
 private final java.util.Map originalValues;
 private void CloseableThreadContext$Instance();
 public CloseableThreadContext$Instance push(String);
 public CloseableThreadContext$Instance push(String, Object[]);
 public CloseableThreadContext$Instance put(String, String);
 public CloseableThreadContext$Instance putAll(java.util.Map);
 public CloseableThreadContext$Instance pushAll(java.util.List);
 public void close();
 private void closeMap();
 private void closeStack();
}

org/apache/logging/log4j/spi/StandardLevel.class

package org.apache.logging.log4j.spi;
public final synchronized enum StandardLevel {
 public static final StandardLevel OFF;
 public static final StandardLevel FATAL;
 public static final StandardLevel ERROR;
 public static final StandardLevel WARN;
 public static final StandardLevel INFO;
 public static final StandardLevel DEBUG;
 public static final StandardLevel TRACE;
 public static final StandardLevel ALL;
 private static final java.util.EnumSet LEVELSET;
 private final int intLevel;
 public static StandardLevel[] values();
 public static StandardLevel valueOf(String);
 private void StandardLevel(String, int, int);
 public int intLevel();
 public static StandardLevel getStandardLevel(int);
 static void <clinit>();
}

org/apache/logging/log4j/spi/MutableThreadContextStack.class

package org.apache.logging.log4j.spi;
public synchronized class MutableThreadContextStack implements ThreadContextStack, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = 50505011;
 private final java.util.List list;
 private boolean frozen;
 public void MutableThreadContextStack();
 public void MutableThreadContextStack(java.util.List);
 private void MutableThreadContextStack(MutableThreadContextStack);
 private void checkInvariants();
 public String pop();
 public String peek();
 public void push(String);
 public int getDepth();
 public java.util.List asList();
 public void trim(int);
 public ThreadContextStack copy();
 public void clear();
 public int size();
 public boolean isEmpty();
 public boolean contains(Object);
 public java.util.Iterator iterator();
 public Object[] toArray();
 public Object[] toArray(Object[]);
 public boolean add(String);
 public boolean remove(Object);
 public boolean containsAll(java.util.Collection);
 public boolean addAll(java.util.Collection);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public String toString();
 public void formatTo(StringBuilder);
 public int hashCode();
 public boolean equals(Object);
 public org.apache.logging.log4j.ThreadContext$ContextStack getImmutableStackOrNull();
 public void freeze();
 public boolean isFrozen();
}

org/apache/logging/log4j/spi/Provider.class

package org.apache.logging.log4j.spi;
public synchronized class Provider {
 public static final String FACTORY_PRIORITY = FactoryPriority;
 public static final String THREAD_CONTEXT_MAP = ThreadContextMap;
 public static final String LOGGER_CONTEXT_FACTORY = LoggerContextFactory;
 private static final Integer DEFAULT_PRIORITY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final Integer priority;
 private final String className;
 private final Class loggerContextFactoryClass;
 private final String threadContextMap;
 private final Class threadContextMapClass;
 private final String versions;
 private final java.net.URL url;
 private final ref.WeakReference classLoader;
 public void Provider(java.util.Properties, java.net.URL, ClassLoader);
 public void Provider(Integer, String, Class);
 public void Provider(Integer, String, Class, Class);
 public String getVersions();
 public Integer getPriority();
 public String getClassName();
 public Class loadLoggerContextFactory();
 public String getThreadContextMap();
 public Class loadThreadContextMap();
 public java.net.URL getUrl();
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/spi/LoggerRegistry$WeakMapFactory.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry$WeakMapFactory implements LoggerRegistry$MapFactory {
 public void LoggerRegistry$WeakMapFactory();
 public java.util.Map createInnerMap();
 public java.util.Map createOuterMap();
 public void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/ThreadContextMap2.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextMap2 extends ThreadContextMap {
 public abstract void putAll(java.util.Map);
 public abstract org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
}

org/apache/logging/log4j/spi/Terminable.class

package org.apache.logging.log4j.spi;
public abstract interface Terminable {
 public abstract void terminate();
}

org/apache/logging/log4j/spi/LoggerContext.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContext {
 public abstract Object getExternalContext();
 public Object getObject(String);
 public Object putObject(String, Object);
 public Object putObjectIfAbsent(String, Object);
 public Object removeObject(String);
 public boolean removeObject(String, Object);
 public abstract ExtendedLogger getLogger(String);
 public ExtendedLogger getLogger(Class);
 public abstract ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public ExtendedLogger getLogger(Class, org.apache.logging.log4j.message.MessageFactory);
 public abstract boolean hasLogger(String);
 public abstract boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public abstract boolean hasLogger(String, Class);
}

org/apache/logging/log4j/spi/GarbageFreeSortedArrayThreadContextMap$1.class

package org.apache.logging.log4j.spi;
synchronized class GarbageFreeSortedArrayThreadContextMap$1 extends InheritableThreadLocal {
 void GarbageFreeSortedArrayThreadContextMap$1(GarbageFreeSortedArrayThreadContextMap);
 protected org.apache.logging.log4j.util.StringMap childValue(org.apache.logging.log4j.util.StringMap);
}

org/apache/logging/log4j/spi/ThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextMap {
 public abstract void clear();
 public abstract boolean containsKey(String);
 public abstract String get(String);
 public abstract java.util.Map getCopy();
 public abstract java.util.Map getImmutableMapOrNull();
 public abstract boolean isEmpty();
 public abstract void put(String, String);
 public abstract void remove(String);
}

org/apache/logging/log4j/spi/ThreadContextMapFactory.class

package org.apache.logging.log4j.spi;
public final synchronized class ThreadContextMapFactory {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String THREAD_CONTEXT_KEY = log4j2.threadContextMap;
 private static final String GC_FREE_THREAD_CONTEXT_KEY = log4j2.garbagefree.threadContextMap;
 private static boolean GcFreeThreadContextKey;
 private static String ThreadContextMapName;
 public static void init();
 private static void initPrivate();
 private void ThreadContextMapFactory();
 public static ThreadContextMap createThreadContextMap();
 private static ThreadContextMap createDefaultThreadContextMap();
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/Base64Util.class

package org.apache.logging.log4j.util;
public final synchronized class Base64Util {
 private static final java.util.Base64$Encoder encoder;
 private void Base64Util();
 public static String encode(String);
 static void <clinit>();
}

META-INF/NOTICE

Apache Log4j API
Copyright 1999-1969 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil.class

package org.apache.logging.log4j.util;
final synchronized class PrivateSecurityManagerStackTraceUtil {
 private static final PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager SECURITY_MANAGER;
 private void PrivateSecurityManagerStackTraceUtil();
 static boolean isEnabled();
 static java.util.Stack getCurrentStackTrace();
 static void <clinit>();
}

org/apache/logging/log4j/util/Base64Util.class

package org.apache.logging.log4j.util;
public final synchronized class Base64Util {
 private static reflect.Method encodeMethod;
 private static Object encoder;
 private void Base64Util();
 public static String encode(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/LoaderUtil$UrlResource.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$UrlResource {
 private final ClassLoader classLoader;
 private final java.net.URL url;
 void LoaderUtil$UrlResource(ClassLoader, java.net.URL);
 public ClassLoader getClassLoader();
 public java.net.URL getUrl();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/util/Unbox.class

package org.apache.logging.log4j.util;
public synchronized class Unbox {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int BITS_PER_INT = 32;
 private static final int RINGBUFFER_MIN_SIZE = 32;
 private static final int RINGBUFFER_SIZE;
 private static final int MASK;
 private static ThreadLocal threadLocalState;
 private static Unbox$WebSafeState webSafeState;
 private void Unbox();
 private static int calculateRingBufferSize(String);
 private static int ceilingNextPowerOfTwo(int);
 public static StringBuilder box(float);
 public static StringBuilder box(double);
 public static StringBuilder box(short);
 public static StringBuilder box(int);
 public static StringBuilder box(char);
 public static StringBuilder box(long);
 public static StringBuilder box(byte);
 public static StringBuilder box(boolean);
 private static Unbox$State getState();
 private static StringBuilder getSB();
 static int getRingbufferSize();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertiesUtil$Environment.class

package org.apache.logging.log4j.util;
synchronized class PropertiesUtil$Environment {
 private final java.util.Set sources;
 private final java.util.Map literal;
 private final java.util.Map normalized;
 private final java.util.Map tokenized;
 private void PropertiesUtil$Environment(PropertySource);
 private synchronized void reload();
 private static boolean hasSystemProperty(String);
 private String get(String);
 private boolean containsKey(String);
}

org/apache/logging/log4j/util/StringMap.class

package org.apache.logging.log4j.util;
public abstract interface StringMap extends ReadOnlyStringMap {
 public abstract void clear();
 public abstract boolean equals(Object);
 public abstract void freeze();
 public abstract int hashCode();
 public abstract boolean isFrozen();
 public abstract void putAll(ReadOnlyStringMap);
 public abstract void putValue(String, Object);
 public abstract void remove(String);
}

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil$1.class

package org.apache.logging.log4j.util;
synchronized class PrivateSecurityManagerStackTraceUtil$1 {
}

org/apache/logging/log4j/util/Chars.class

package org.apache.logging.log4j.util;
public final synchronized class Chars {
 public static final char CR = 13;
 public static final char DQUOTE = 34;
 public static final char EQ = 61;
 public static final char LF = 10;
 public static final char NUL = 0;
 public static final char QUOTE = 39;
 public static final char SPACE = 32;
 public static final char TAB = 9;
 public static char getUpperCaseHex(int);
 public static char getLowerCaseHex(int);
 private static char getNumericalDigit(int);
 private static char getUpperCaseAlphaDigit(int);
 private static char getLowerCaseAlphaDigit(int);
 private void Chars();
}

org/apache/logging/log4j/util/EnglishEnums.class

package org.apache.logging.log4j.util;
public final synchronized class EnglishEnums {
 private void EnglishEnums();
 public static Enum valueOf(Class, String);
 public static Enum valueOf(Class, String, Enum);
}

org/apache/logging/log4j/util/StringBuilders.class

package org.apache.logging.log4j.util;
public final synchronized class StringBuilders {
 private void StringBuilders();
 public static StringBuilder appendDqValue(StringBuilder, Object);
 public static StringBuilder appendKeyDqValue(StringBuilder, java.util.Map$Entry);
 public static StringBuilder appendKeyDqValue(StringBuilder, String, Object);
 public static void appendValue(StringBuilder, Object);
 public static boolean appendSpecificTypes(StringBuilder, Object);
 public static boolean equals(CharSequence, int, int, CharSequence, int, int);
 public static boolean equalsIgnoreCase(CharSequence, int, int, CharSequence, int, int);
 public static void trimToMaxSize(StringBuilder, int);
 public static void escapeJson(StringBuilder, int);
 private static int escapeAndDecrement(StringBuilder, int, char);
 public static void escapeXml(StringBuilder, int);
}

org/apache/logging/log4j/util/Supplier.class

package org.apache.logging.log4j.util;
public abstract interface Supplier {
 public abstract Object get();
}

org/apache/logging/log4j/MarkerManager.class

package org.apache.logging.log4j;
public final synchronized class MarkerManager {
 private static final java.util.concurrent.ConcurrentMap MARKERS;
 private void MarkerManager();
 public static void clear();
 public static boolean exists(String);
 public static Marker getMarker(String);
 public static Marker getMarker(String, String);
 public static Marker getMarker(String, Marker);
 private static void requireNonNull(Object, String);
 static void <clinit>();
}

org/apache/logging/log4j/ThreadContext$1.class

package org.apache.logging.log4j;
synchronized class ThreadContext$1 {
}

org/apache/logging/log4j/spi/ExtendedLogger.class

package org.apache.logging.log4j.spi;
public abstract interface ExtendedLogger extends org.apache.logging.log4j.Logger {
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public abstract transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public abstract transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public abstract transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
}

org/apache/logging/log4j/ThreadContext$ContextStack.class

package org.apache.logging.log4j;
public abstract interface ThreadContext$ContextStack extends java.io.Serializable, java.util.Collection {
 public abstract String pop();
 public abstract String peek();
 public abstract void push(String);
 public abstract int getDepth();
 public abstract java.util.List asList();
 public abstract void trim(int);
 public abstract ThreadContext$ContextStack copy();
 public abstract ThreadContext$ContextStack getImmutableStackOrNull();
}

org/apache/logging/log4j/CloseableThreadContext$1.class

package org.apache.logging.log4j;
synchronized class CloseableThreadContext$1 {
}

META-INF/LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

org/apache/logging/log4j/util/Strings.class

package org.apache.logging.log4j.util;
public final synchronized class Strings {
 private static final ThreadLocal tempStr;
 public static final String EMPTY = ;
 public static final String[] EMPTY_ARRAY;
 public static final String LINE_SEPARATOR;
 public static String dquote(String);
 public static boolean isBlank(String);
 public static boolean isEmpty(CharSequence);
 public static boolean isNotBlank(String);
 public static boolean isNotEmpty(CharSequence);
 public static String join(Iterable, char);
 public static String join(java.util.Iterator, char);
 public static String left(String, int);
 public static String quote(String);
 public static String trimToNull(String);
 private void Strings();
 public static String toRootUpperCase(String);
 public static String concat(String, String);
 public static String repeat(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertiesUtil$1.class

package org.apache.logging.log4j.util;
synchronized class PropertiesUtil$1 {
}

org/apache/logging/log4j/util/IndexedStringMap.class

package org.apache.logging.log4j.util;
public abstract interface IndexedStringMap extends IndexedReadOnlyStringMap, StringMap {
}

org/apache/logging/log4j/status/StatusConsoleListener.class

package org.apache.logging.log4j.status;
public synchronized class StatusConsoleListener implements StatusListener {
 private org.apache.logging.log4j.Level level;
 private String[] filters;
 private final java.io.PrintStream stream;
 public void StatusConsoleListener(org.apache.logging.log4j.Level);
 public void StatusConsoleListener(org.apache.logging.log4j.Level, java.io.PrintStream);
 public void setLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.Level getStatusLevel();
 public void log(StatusData);
 public transient void setFilters(String[]);
 private boolean filtered(StatusData);
 public void close() throws java.io.IOException;
}

org/apache/logging/log4j/spi/CleanableThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface CleanableThreadContextMap extends ThreadContextMap2 {
 public abstract void removeAll(Iterable);
}

org/apache/logging/log4j/spi/AbstractLogger$LocalLogBuilder.class

package org.apache.logging.log4j.spi;
synchronized class AbstractLogger$LocalLogBuilder extends ThreadLocal {
 private AbstractLogger logger;
 void AbstractLogger$LocalLogBuilder(AbstractLogger, AbstractLogger);
 protected org.apache.logging.log4j.internal.DefaultLogBuilder initialValue();
}

org/apache/logging/log4j/spi/CopyOnWriteSortedArrayThreadContextMap.class

package org.apache.logging.log4j.spi;
synchronized class CopyOnWriteSortedArrayThreadContextMap implements ReadOnlyThreadContextMap, ObjectThreadContextMap, CopyOnWrite {
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 protected static final int DEFAULT_INITIAL_CAPACITY = 16;
 protected static final String PROPERTY_NAME_INITIAL_CAPACITY = log4j2.ThreadContext.initial.capacity;
 private static final org.apache.logging.log4j.util.StringMap EMPTY_CONTEXT_DATA;
 private static volatile int initialCapacity;
 private static volatile boolean inheritableMap;
 private final ThreadLocal localMap;
 static void init();
 public void CopyOnWriteSortedArrayThreadContextMap();
 private ThreadLocal createThreadLocalMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public void put(String, String);
 public void putValue(String, Object);
 public void putAll(java.util.Map);
 public void putAllValues(java.util.Map);
 public String get(String);
 public Object getValue(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public boolean containsKey(String);
 public java.util.Map getCopy();
 public org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/LogBuilder.class

package org.apache.logging.log4j;
public abstract interface LogBuilder {
 public static final LogBuilder NOOP;
 public LogBuilder withMarker(Marker);
 public LogBuilder withThrowable(Throwable);
 public LogBuilder withLocation();
 public LogBuilder withLocation(StackTraceElement);
 public void log(CharSequence);
 public void log(String);
 public transient void log(String, Object[]);
 public transient void log(String, util.Supplier[]);
 public void log(message.Message);
 public void log(util.Supplier);
 public void log(Object);
 public void log(String, Object);
 public void log(String, Object, Object);
 public void log(String, Object, Object, Object);
 public void log(String, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log();
 static void <clinit>();
}

org/apache/logging/log4j/LogManager.class

package org.apache.logging.log4j;
public synchronized class LogManager {
 public static final String FACTORY_PROPERTY_NAME = log4j2.loggerContextFactory;
 public static final String ROOT_LOGGER_NAME = ;
 private static final Logger LOGGER;
 private static final String FQCN;
 private static volatile spi.LoggerContextFactory factory;
 protected void LogManager();
 public static boolean exists(String);
 public static spi.LoggerContext getContext();
 public static spi.LoggerContext getContext(boolean);
 public static spi.LoggerContext getContext(ClassLoader, boolean);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object);
 public static spi.LoggerContext getContext(ClassLoader, boolean, java.net.URI);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object, java.net.URI);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object, java.net.URI, String);
 protected static spi.LoggerContext getContext(String, boolean);
 protected static spi.LoggerContext getContext(String, ClassLoader, boolean);
 protected static spi.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI, String);
 public static void shutdown();
 public static void shutdown(boolean);
 public static void shutdown(boolean, boolean);
 public static void shutdown(spi.LoggerContext);
 public static spi.LoggerContextFactory getFactory();
 public static void setFactory(spi.LoggerContextFactory);
 public static Logger getFormatterLogger();
 public static Logger getFormatterLogger(Class);
 public static Logger getFormatterLogger(Object);
 public static Logger getFormatterLogger(String);
 private static Class callerClass(Class);
 public static Logger getLogger();
 public static Logger getLogger(Class);
 public static Logger getLogger(Class, message.MessageFactory);
 public static Logger getLogger(message.MessageFactory);
 public static Logger getLogger(Object);
 public static Logger getLogger(Object, message.MessageFactory);
 public static Logger getLogger(String);
 public static Logger getLogger(String, message.MessageFactory);
 protected static Logger getLogger(String, String);
 public static Logger getRootLogger();
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/ProcessIdUtil.class

package org.apache.logging.log4j.util;
public synchronized class ProcessIdUtil {
 public static final String DEFAULT_PROCESSID = -;
 public void ProcessIdUtil();
 public static String getProcessId();
}

META-INF/versions/9/org/apache/logging/log4j/util/StackLocator.class

package org.apache.logging.log4j.util;
public synchronized class StackLocator {
 private static final StackWalker walker;
 private static final StackWalker stackWalker;
 private static final StackLocator INSTANCE;
 public static StackLocator getInstance();
 private void StackLocator();
 public Class getCallerClass(Class, java.util.function.Predicate);
 public Class getCallerClass(String);
 public Class getCallerClass(String, String);
 public Class getCallerClass(Class);
 public Class getCallerClass(int);
 public java.util.Stack getCurrentStackTrace();
 public StackTraceElement calcLocation(String);
 public StackTraceElement getStackTraceElement(int);
 static void <clinit>();
}

org/apache/logging/log4j/util/Constants.class

package org.apache.logging.log4j.util;
public final synchronized class Constants {
 public static final boolean IS_WEB_APP;
 public static final boolean ENABLE_THREADLOCALS;
 public static final int JAVA_MAJOR_VERSION;
 public static final int MAX_REUSABLE_MESSAGE_SIZE;
 public static final String LOG4J2_DEBUG = log4j2.debug;
 public static final Object[] EMPTY_OBJECT_ARRAY;
 public static final byte[] EMPTY_BYTE_ARRAY;
 private static int size(String, int);
 private static boolean isClassAvailable(String);
 private void Constants();
 private static int getMajorVersion();
 static int getMajorVersion(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/StringBuilderFormattable.class

package org.apache.logging.log4j.util;
public abstract interface StringBuilderFormattable {
 public abstract void formatTo(StringBuilder);
}

org/apache/logging/log4j/util/PropertiesUtil.class

package org.apache.logging.log4j.util;
public final synchronized class PropertiesUtil {
 private static final String LOG4J_PROPERTIES_FILE_NAME = log4j2.component.properties;
 private static final String LOG4J_SYSTEM_PROPERTIES_FILE_NAME = log4j2.system.properties;
 private static final String SYSTEM = system:;
 private static final PropertiesUtil LOG4J_PROPERTIES;
 private final PropertiesUtil$Environment environment;
 public void PropertiesUtil(java.util.Properties);
 public void PropertiesUtil(String);
 static java.util.Properties loadClose(java.io.InputStream, Object);
 public static PropertiesUtil getProperties();
 public boolean hasProperty(String);
 public boolean getBooleanProperty(String);
 public boolean getBooleanProperty(String, boolean);
 public boolean getBooleanProperty(String, boolean, boolean);
 public Boolean getBooleanProperty(String[], String, Supplier);
 public java.nio.charset.Charset getCharsetProperty(String);
 public java.nio.charset.Charset getCharsetProperty(String, java.nio.charset.Charset);
 public double getDoubleProperty(String, double);
 public int getIntegerProperty(String, int);
 public Integer getIntegerProperty(String[], String, Supplier);
 public long getLongProperty(String, long);
 public Long getLongProperty(String[], String, Supplier);
 public java.time.Duration getDurationProperty(String, java.time.Duration);
 public java.time.Duration getDurationProperty(String[], String, Supplier);
 public String getStringProperty(String[], String, Supplier);
 public String getStringProperty(String);
 public String getStringProperty(String, String);
 public static java.util.Properties getSystemProperties();
 public void reload();
 public static java.util.Properties extractSubset(java.util.Properties, String);
 static java.util.ResourceBundle getCharsetsResourceBundle();
 public static java.util.Map partitionOnCommonPrefixes(java.util.Properties);
 public boolean isOsWindows();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertySource$Util.class

package org.apache.logging.log4j.util;
public final synchronized class PropertySource$Util {
 private static final String PREFIXES = (?i:^log4j2?[-._/]?|^org\.apache\.logging\.log4j\.)?;
 private static final java.util.regex.Pattern PROPERTY_TOKENIZER;
 private static final java.util.Map CACHE;
 public static java.util.List tokenize(CharSequence);
 public static CharSequence joinAsCamelCase(Iterable);
 private void PropertySource$Util();
 static void <clinit>();
}

org/apache/logging/log4j/util/Unbox$WebSafeState.class

package org.apache.logging.log4j.util;
synchronized class Unbox$WebSafeState {
 private final ThreadLocal ringBuffer;
 private final ThreadLocal current;
 private void Unbox$WebSafeState();
 public StringBuilder getStringBuilder();
 public boolean isBoxedPrimitive(StringBuilder);
}

org/apache/logging/log4j/message/MultiformatMessage.class

package org.apache.logging.log4j.message;
public abstract interface MultiformatMessage extends Message {
 public abstract String getFormattedMessage(String[]);
 public abstract String[] getFormats();
}

org/apache/logging/log4j/message/ThreadDumpMessage$BasicThreadInfoFactory.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$BasicThreadInfoFactory implements ThreadDumpMessage$ThreadInfoFactory {
 private void ThreadDumpMessage$BasicThreadInfoFactory();
 public java.util.Map createThreadInfo();
}

org/apache/logging/log4j/message/MapMessage$1.class

package org.apache.logging.log4j.message;
synchronized class MapMessage$1 {
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class ParameterizedMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final int DEFAULT_STRING_BUILDER_SIZE = 255;
 public static final String RECURSION_PREFIX = [...;
 public static final String RECURSION_SUFFIX = ...];
 public static final String ERROR_PREFIX = [!!!;
 public static final String ERROR_SEPARATOR = =>;
 public static final String ERROR_MSG_SEPARATOR = :;
 public static final String ERROR_SUFFIX = !!!];
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private static ThreadLocal threadLocalStringBuilder;
 private String messagePattern;
 private transient Object[] argArray;
 private String formattedMessage;
 private transient Throwable throwable;
 private int[] indices;
 private int usedCount;
 public void ParameterizedMessage(String, String[], Throwable);
 public void ParameterizedMessage(String, Object[], Throwable);
 public transient void ParameterizedMessage(String, Object[]);
 public void ParameterizedMessage(String, Object);
 public void ParameterizedMessage(String, Object, Object);
 private void init(String);
 private void initThrowable(Object[], int);
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public String getFormattedMessage();
 private static StringBuilder getThreadLocalStringBuilder();
 public void formatTo(StringBuilder);
 public static String format(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public static int countArgumentPlaceholders(String);
 public static String deepToString(Object);
 public static String identityToString(Object);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/status/StatusLogger$BoundedQueue.class

package org.apache.logging.log4j.status;
synchronized class StatusLogger$BoundedQueue extends java.util.concurrent.ConcurrentLinkedQueue {
 private static final long serialVersionUID = -3945953719763255337;
 private final int size;
 void StatusLogger$BoundedQueue(StatusLogger, int);
 public boolean add(Object);
}

org/apache/logging/log4j/simple/SimpleLoggerContextFactory.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLoggerContextFactory implements org.apache.logging.log4j.spi.LoggerContextFactory {
 private static org.apache.logging.log4j.spi.LoggerContext context;
 public void SimpleLoggerContextFactory();
 public org.apache.logging.log4j.spi.LoggerContext getContext(String, ClassLoader, Object, boolean);
 public org.apache.logging.log4j.spi.LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public void removeContext(org.apache.logging.log4j.spi.LoggerContext);
 public boolean isClassLoaderDependent();
 static void <clinit>();
}

org/apache/logging/log4j/spi/ThreadContextStack.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextStack extends org.apache.logging.log4j.ThreadContext$ContextStack {
}

org/apache/logging/log4j/spi/LoggerRegistry$MapFactory.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerRegistry$MapFactory {
 public abstract java.util.Map createInnerMap();
 public abstract java.util.Map createOuterMap();
 public abstract void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/LoggerAdapter.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerAdapter extends java.io.Closeable {
 public abstract Object getLogger(String);
}

org/apache/logging/log4j/Marker.class

package org.apache.logging.log4j;
public abstract interface Marker extends java.io.Serializable {
 public abstract transient Marker addParents(Marker[]);
 public abstract boolean equals(Object);
 public abstract String getName();
 public abstract Marker[] getParents();
 public abstract int hashCode();
 public abstract boolean hasParents();
 public abstract boolean isInstanceOf(Marker);
 public abstract boolean isInstanceOf(String);
 public abstract boolean remove(Marker);
 public abstract transient Marker setParents(Marker[]);
}

org/apache/logging/log4j/Level.class

package org.apache.logging.log4j;
public final synchronized class Level implements Comparable, java.io.Serializable {
 public static final Level OFF;
 public static final Level FATAL;
 public static final Level ERROR;
 public static final Level WARN;
 public static final Level INFO;
 public static final Level DEBUG;
 public static final Level TRACE;
 public static final Level ALL;
 public static final String CATEGORY = Level;
 private static final java.util.concurrent.ConcurrentMap LEVELS;
 private static final long serialVersionUID = 1581082;
 private final String name;
 private final int intLevel;
 private final spi.StandardLevel standardLevel;
 private void Level(String, int);
 public int intLevel();
 public spi.StandardLevel getStandardLevel();
 public boolean isInRange(Level, Level);
 public boolean isLessSpecificThan(Level);
 public boolean isMoreSpecificThan(Level);
 public Level clone() throws CloneNotSupportedException;
 public int compareTo(Level);
 public boolean equals(Object);
 public Class getDeclaringClass();
 public int hashCode();
 public String name();
 public String toString();
 public static Level forName(String, int);
 public static Level getLevel(String);
 public static Level toLevel(String);
 public static Level toLevel(String, Level);
 private static String toUpperCase(String);
 public static Level[] values();
 public static Level valueOf(String);
 public static Enum valueOf(Class, String);
 protected Object readResolve();
 static void <clinit>();
}

META-INF/versions/9/module-info.class

class module-info {
}

META-INF/maven/org.apache.logging.log4j/log4j-api/pom.xml

 4.0.0

 org.apache.logging.log4j
 log4j
 2.17.1
 ../

 log4j-api
 jar
 Apache Log4j API
 The Apache Log4j API

 ${basedir}/..
 API Documentation
 /api
 true

 org.apache.felix
 org.apache.felix.framework
 test

 org.osgi
 org.osgi.core
 provided

 org.junit.vintage
 junit-vintage-engine

 org.junit.jupiter
 junit-jupiter-migrationsupport

 org.junit.jupiter
 junit-jupiter-params

 org.junit.jupiter
 junit-jupiter-engine

 org.assertj
 assertj-core

 org.eclipse.tycho
 org.eclipse.osgi
 test

 org.apache.maven
 maven-core
 test

 org.apache.commons
 commons-lang3
 test

 com.fasterxml.jackson.core
 jackson-core
 test

 com.fasterxml.jackson.core
 jackson-databind
 test

 org.apache.maven.plugins
 maven-dependency-plugin
 3.0.2

 unpack-classes
 prepare-package

 unpack

 org.apache.logging.log4j
 log4j-api-java9
 ${project.version}
 zip
 false

 **/*.class
 **/*.java
 ${project.build.directory}
 false
 true

 org.codehaus.mojo
 build-helper-maven-plugin
 1.7

 add-source
 generate-sources

 add-source

 ${project.build.directory}/log4j-api-java9

 org.apache.maven.plugins
 maven-compiler-plugin

 default-compile

 1.8
 1.8

 org.apache.maven.plugins
 maven-surefire-plugin

 junit.jupiter.execution.parallel.enabled = true
 junit.jupiter.execution.parallel.mode.default = concurrent

 true
 true
 performance,smoke

 org.apache.maven.plugins
 maven-jar-plugin

 default-jar

 jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}
 true

 default

 test-jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}

 org.apache.maven.plugins
 maven-remote-resources-plugin

 process

 false

 org.apache.felix
 maven-bundle-plugin

 org.apache.logging.log4j.*

 sun.reflect;resolution:=optional,
 *

 org.apache.logging.log4j.util.Activator
 "Classes found in the wrong directory";is:=warning

 org.apache.maven.plugins
 maven-deploy-plugin
 ${deploy.plugin.version}

 org.apache.maven.plugins
 maven-changes-plugin
 ${changes.plugin.version}

 changes-report

 %URL%/show_bug.cgi?id=%ISSUE%
 true

 org.apache.maven.plugins
 maven-checkstyle-plugin
 ${checkstyle.plugin.version}

 ${log4jParentDir}/checkstyle.xml
 ${log4jParentDir}/checkstyle-suppressions.xml
 false
 basedir=${basedir}
 licensedir=${log4jParentDir}/checkstyle-header.txt

 org.apache.maven.plugins
 maven-javadoc-plugin
 ${javadoc.plugin.version}

 <p align="center">Copyright © {inceptionYear}-{currentYear} {organizationName}. All Rights Reserved.

 Apache Logging, Apache Log4j, Log4j, Apache, the Apache feather logo, the Apache Logging project logo,
 and the Apache Log4j logo are trademarks of The Apache Software Foundation.</p>

 none
 false
 true

 http://www.osgi.org/javadoc/r4v43/core/

 non-aggregate

 javadoc

 com.github.spotbugs
 spotbugs-maven-plugin

 org.apache.maven.plugins
 maven-jxr-plugin
 ${jxr.plugin.version}

 non-aggregate

 jxr

 aggregate

 aggregate

 org.apache.maven.plugins
 maven-pmd-plugin
 ${pmd.plugin.version}

 ${maven.compiler.target}

org/apache/logging/log4j/util/PropertiesPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class PropertiesPropertySource implements PropertySource {
 private static final String PREFIX = log4j2.;
 private final java.util.Properties properties;
 public void PropertiesPropertySource(java.util.Properties);
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/LoaderUtil$1.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$1 {
}

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager.class

package org.apache.logging.log4j.util;
final synchronized class PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager extends SecurityManager {
 private void PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager();
 protected Class[] getClassContext();
}

org/apache/logging/log4j/util/Timer.class

package org.apache.logging.log4j.util;
public synchronized class Timer implements java.io.Serializable, StringBuilderFormattable {
 private static final long serialVersionUID = 9175191792439630013;
 private final String name;
 private Timer$Status status;
 private long elapsedTime;
 private final int iterations;
 private static long NANO_PER_SECOND;
 private static long NANO_PER_MINUTE;
 private static long NANO_PER_HOUR;
 private ThreadLocal startTime;
 public void Timer(String);
 public void Timer(String, int);
 public synchronized void start();
 public synchronized void startOrResume();
 public synchronized String stop();
 public synchronized void pause();
 public synchronized void resume();
 public String getName();
 public long getElapsedTime();
 public long getElapsedNanoTime();
 public Timer$Status getStatus();
 public String toString();
 public void formatTo(StringBuilder);
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertySource.class

package org.apache.logging.log4j.util;
public abstract interface PropertySource {
 public abstract int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
 public String getProperty(String);
 public boolean containsProperty(String);
}

org/apache/logging/log4j/message/FormattedMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class FormattedMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 1;
 public void FormattedMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/LocalizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class LocalizedMessage implements Message, LoggerNameAwareMessage {
 private static final long serialVersionUID = 3893703791567290742;
 private String baseName;
 private transient java.util.ResourceBundle resourceBundle;
 private final java.util.Locale locale;
 private transient org.apache.logging.log4j.status.StatusLogger logger;
 private String loggerName;
 private String key;
 private String[] stringArgs;
 private transient Object[] argArray;
 private String formattedMessage;
 private transient Throwable throwable;
 public void LocalizedMessage(String, Object[]);
 public void LocalizedMessage(String, String, Object[]);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object[]);
 public void LocalizedMessage(String, java.util.Locale, String, Object[]);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object[]);
 public void LocalizedMessage(java.util.Locale, String, Object[]);
 public void LocalizedMessage(String, Object);
 public void LocalizedMessage(String, String, Object);
 public void LocalizedMessage(java.util.ResourceBundle, String);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object);
 public void LocalizedMessage(String, java.util.Locale, String, Object);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object);
 public void LocalizedMessage(java.util.Locale, String, Object);
 public void LocalizedMessage(String, Object, Object);
 public void LocalizedMessage(String, String, Object, Object);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object, Object);
 public void LocalizedMessage(String, java.util.Locale, String, Object, Object);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object, Object);
 public void LocalizedMessage(java.util.Locale, String, Object, Object);
 public void setLoggerName(String);
 public String getLoggerName();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 protected java.util.ResourceBundle getResourceBundle(String, java.util.Locale, boolean);
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
}

org/apache/logging/log4j/util/PropertySource$Comparator.class

package org.apache.logging.log4j.util;
public synchronized class PropertySource$Comparator implements java.util.Comparator, java.io.Serializable {
 private static final long serialVersionUID = 1;
 public void PropertySource$Comparator();
 public int compare(PropertySource, PropertySource);
}

org/apache/logging/log4j/util/FilteredObjectInputStream.class

package org.apache.logging.log4j.util;
public synchronized class FilteredObjectInputStream extends java.io.ObjectInputStream {
 private static final java.util.Set REQUIRED_JAVA_CLASSES;
 private static final java.util.Set REQUIRED_JAVA_PACKAGES;
 private final java.util.Collection allowedExtraClasses;
 public void FilteredObjectInputStream() throws java.io.IOException, SecurityException;
 public void FilteredObjectInputStream(java.io.InputStream) throws java.io.IOException;
 public void FilteredObjectInputStream(java.util.Collection) throws java.io.IOException, SecurityException;
 public void FilteredObjectInputStream(java.io.InputStream, java.util.Collection) throws java.io.IOException;
 public java.util.Collection getAllowedClasses();
 protected Class resolveClass(java.io.ObjectStreamClass) throws java.io.IOException, ClassNotFoundException;
 private static boolean isAllowedByDefault(String);
 private static boolean isRequiredPackage(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/Timer$1.class

package org.apache.logging.log4j.util;
synchronized class Timer$1 extends ThreadLocal {
 void Timer$1(Timer);
 protected Long initialValue();
}

org/apache/logging/log4j/util/ProviderUtil.class

package org.apache.logging.log4j.util;
public final synchronized class ProviderUtil {
 protected static final String PROVIDER_RESOURCE = META-INF/log4j-provider.properties;
 protected static final java.util.Collection PROVIDERS;
 protected static final java.util.concurrent.locks.Lock STARTUP_LOCK;
 private static final String API_VERSION = Log4jAPIVersion;
 private static final String[] COMPATIBLE_API_VERSIONS;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile ProviderUtil instance;
 private void ProviderUtil();
 protected static void addProvider(org.apache.logging.log4j.spi.Provider);
 protected static void loadProvider(java.net.URL, ClassLoader);
 protected static void loadProviders(ClassLoader);
 protected static void loadProviders(java.util.Enumeration, ClassLoader);
 public static Iterable getProviders();
 public static boolean hasProviders();
 protected static void lazyInit();
 public static ClassLoader findClassLoader();
 private static boolean validVersion(String);
 static void <clinit>();
}

org/apache/logging/log4j/message/MapMessageJsonFormatter.class

package org.apache.logging.log4j.message;
final synchronized enum MapMessageJsonFormatter {
 public static final int MAX_DEPTH;
 private static final char DQUOTE = 34;
 private static final char RBRACE = 93;
 private static final char LBRACE = 91;
 private static final char COMMA = 44;
 private static final char RCURLY = 125;
 private static final char LCURLY = 123;
 private static final char COLON = 58;
 public static MapMessageJsonFormatter[] values();
 public static MapMessageJsonFormatter valueOf(String);
 private void MapMessageJsonFormatter(String, int);
 private static int readMaxDepth();
 static void format(StringBuilder, Object);
 private static void format(StringBuilder, Object, int);
 private static void formatIndexedStringMap(StringBuilder, org.apache.logging.log4j.util.IndexedStringMap, int);
 private static void formatMap(StringBuilder, java.util.Map, int);
 private static void formatList(StringBuilder, java.util.List, int);
 private static void formatCollection(StringBuilder, java.util.Collection, int);
 private static void formatNumber(StringBuilder, Number);
 private static void formatBoolean(StringBuilder, boolean);
 private static void formatFormattable(StringBuilder, org.apache.logging.log4j.util.StringBuilderFormattable);
 private static void formatCharArray(StringBuilder, char[]);
 private static void formatBooleanArray(StringBuilder, boolean[]);
 private static void formatByteArray(StringBuilder, byte[]);
 private static void formatShortArray(StringBuilder, short[]);
 private static void formatIntArray(StringBuilder, int[]);
 private static void formatLongArray(StringBuilder, long[]);
 private static void formatFloatArray(StringBuilder, float[]);
 private static void formatDoubleArray(StringBuilder, double[]);
 private static void formatObjectArray(StringBuilder, Object[], int);
 private static void formatString(StringBuilder, Object);
 static void <clinit>();
}

org/apache/logging/log4j/status/StatusListener.class

package org.apache.logging.log4j.status;
public abstract interface StatusListener extends java.io.Closeable, java.util.EventListener {
 public abstract void log(StatusData);
 public abstract org.apache.logging.log4j.Level getStatusLevel();
}

org/apache/logging/log4j/simple/SimpleLoggerContext.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLoggerContext implements org.apache.logging.log4j.spi.LoggerContext {
 private static final String SYSTEM_OUT = system.out;
 private static final String SYSTEM_ERR = system.err;
 protected static final String DEFAULT_DATE_TIME_FORMAT = yyyy/MM/dd HH:mm:ss:SSS zzz;
 protected static final String SYSTEM_PREFIX = org.apache.logging.log4j.simplelog.;
 private final org.apache.logging.log4j.util.PropertiesUtil props;
 private final boolean showLogName;
 private final boolean showShortName;
 private final boolean showDateTime;
 private final boolean showContextMap;
 private final String dateTimeFormat;
 private final org.apache.logging.log4j.Level defaultLevel;
 private final java.io.PrintStream stream;
 private final org.apache.logging.log4j.spi.LoggerRegistry loggerRegistry;
 public void SimpleLoggerContext();
 public org.apache.logging.log4j.spi.ExtendedLogger getLogger(String);
 public org.apache.logging.log4j.spi.ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public Object getExternalContext();
}

org/apache/logging/log4j/spi/CopyOnWrite.class

package org.apache.logging.log4j.spi;
public abstract interface CopyOnWrite {
}

org/apache/logging/log4j/spi/ExtendedLoggerWrapper.class

package org.apache.logging.log4j.spi;
public synchronized class ExtendedLoggerWrapper extends AbstractLogger {
 private static final long serialVersionUID = 1;
 protected final ExtendedLogger logger;
 public void ExtendedLoggerWrapper(ExtendedLogger, String, org.apache.logging.log4j.message.MessageFactory);
 public org.apache.logging.log4j.Level getLevel();
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/spi/NoOpThreadContextMap.class

package org.apache.logging.log4j.spi;
public synchronized class NoOpThreadContextMap implements ThreadContextMap {
 public void NoOpThreadContextMap();
 public void clear();
 public boolean containsKey(String);
 public String get(String);
 public java.util.Map getCopy();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public void put(String, String);
 public void remove(String);
}

org/apache/logging/log4j/spi/DefaultThreadContextMap$1.class

package org.apache.logging.log4j.spi;
final synchronized class DefaultThreadContextMap$1 extends InheritableThreadLocal {
 void DefaultThreadContextMap$1(boolean);
 protected java.util.Map childValue(java.util.Map);
}

org/apache/logging/log4j/spi/GarbageFreeSortedArrayThreadContextMap.class

package org.apache.logging.log4j.spi;
synchronized class GarbageFreeSortedArrayThreadContextMap implements ReadOnlyThreadContextMap, ObjectThreadContextMap {
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 protected static final int DEFAULT_INITIAL_CAPACITY = 16;
 protected static final String PROPERTY_NAME_INITIAL_CAPACITY = log4j2.ThreadContext.initial.capacity;
 protected final ThreadLocal localMap;
 private static volatile int initialCapacity;
 private static volatile boolean inheritableMap;
 static void init();
 public void GarbageFreeSortedArrayThreadContextMap();
 private ThreadLocal createThreadLocalMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap(org.apache.logging.log4j.util.ReadOnlyStringMap);
 private org.apache.logging.log4j.util.StringMap getThreadLocalMap();
 public void put(String, String);
 public void putValue(String, Object);
 public void putAll(java.util.Map);
 public void putAllValues(java.util.Map);
 public String get(String);
 public Object getValue(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public boolean containsKey(String);
 public java.util.Map getCopy();
 public org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/spi/ObjectThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ObjectThreadContextMap extends CleanableThreadContextMap {
 public abstract Object getValue(String);
 public abstract void putValue(String, Object);
 public abstract void putAllValues(java.util.Map);
}

org/apache/logging/log4j/spi/AbstractLogger.class

package org.apache.logging.log4j.spi;
public abstract synchronized class AbstractLogger implements ExtendedLogger, LocationAwareLogger, java.io.Serializable {
 public static final org.apache.logging.log4j.Marker FLOW_MARKER;
 public static final org.apache.logging.log4j.Marker ENTRY_MARKER;
 public static final org.apache.logging.log4j.Marker EXIT_MARKER;
 public static final org.apache.logging.log4j.Marker EXCEPTION_MARKER;
 public static final org.apache.logging.log4j.Marker THROWING_MARKER;
 public static final org.apache.logging.log4j.Marker CATCHING_MARKER;
 public static final Class DEFAULT_MESSAGE_FACTORY_CLASS;
 public static final Class DEFAULT_FLOW_MESSAGE_FACTORY_CLASS;
 private static final long serialVersionUID = 2;
 private static final String FQCN;
 private static final String THROWING = Throwing;
 private static final String CATCHING = Catching;
 protected final String name;
 private final org.apache.logging.log4j.message.MessageFactory2 messageFactory;
 private final org.apache.logging.log4j.message.FlowMessageFactory flowMessageFactory;
 private static final ThreadLocal recursionDepthHolder;
 protected final transient ThreadLocal logBuilder;
 public void AbstractLogger();
 public void AbstractLogger(String);
 public void AbstractLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public static void checkMessageFactory(ExtendedLogger, org.apache.logging.log4j.message.MessageFactory);
 public void catching(org.apache.logging.log4j.Level, Throwable);
 protected void catching(String, org.apache.logging.log4j.Level, Throwable);
 public void catching(Throwable);
 protected org.apache.logging.log4j.message.Message catchingMsg(Throwable);
 private static Class createClassForProperty(String, Class, Class);
 private static Class createFlowClassForProperty(String, Class);
 private static org.apache.logging.log4j.message.MessageFactory2 createDefaultMessageFactory();
 private static org.apache.logging.log4j.message.MessageFactory2 narrow(org.apache.logging.log4j.message.MessageFactory);
 private static org.apache.logging.log4j.message.FlowMessageFactory createDefaultFlowMessageFactory();
 public void debug(org.apache.logging.log4j.Marker, CharSequence);
 public void debug(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void debug(org.apache.logging.log4j.Marker, Object);
 public void debug(org.apache.logging.log4j.Marker, Object, Throwable);
 public void debug(org.apache.logging.log4j.Marker, String);
 public transient void debug(org.apache.logging.log4j.Marker, String, Object[]);
 public void debug(org.apache.logging.log4j.Marker, String, Throwable);
 public void debug(org.apache.logging.log4j.message.Message);
 public void debug(org.apache.logging.log4j.message.Message, Throwable);
 public void debug(CharSequence);
 public void debug(CharSequence, Throwable);
 public void debug(Object);
 public void debug(Object, Throwable);
 public void debug(String);
 public transient void debug(String, Object[]);
 public void debug(String, Throwable);
 public void debug(org.apache.logging.log4j.util.Supplier);
 public void debug(org.apache.logging.log4j.util.Supplier, Throwable);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void debug(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void debug(String, org.apache.logging.log4j.util.Supplier[]);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void debug(org.apache.logging.log4j.util.MessageSupplier);
 public void debug(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void debug(org.apache.logging.log4j.Marker, String, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object);
 public void debug(String, Object, Object);
 public void debug(String, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, org.apache.logging.log4j.util.Supplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, org.apache.logging.log4j.util.MessageSupplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, Object[]);
 protected org.apache.logging.log4j.message.EntryMessage enter(String, org.apache.logging.log4j.util.MessageSupplier);
 protected org.apache.logging.log4j.message.EntryMessage enter(String, org.apache.logging.log4j.message.Message);
 public void entry();
 public transient void entry(Object[]);
 protected transient void entry(String, Object[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, Object[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, org.apache.logging.log4j.util.MessageSupplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void error(org.apache.logging.log4j.Marker, CharSequence);
 public void error(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void error(org.apache.logging.log4j.Marker, Object);
 public void error(org.apache.logging.log4j.Marker, Object, Throwable);
 public void error(org.apache.logging.log4j.Marker, String);
 public transient void error(org.apache.logging.log4j.Marker, String, Object[]);
 public void error(org.apache.logging.log4j.Marker, String, Throwable);
 public void error(org.apache.logging.log4j.message.Message);
 public void error(org.apache.logging.log4j.message.Message, Throwable);
 public void error(CharSequence);
 public void error(CharSequence, Throwable);
 public void error(Object);
 public void error(Object, Throwable);
 public void error(String);
 public transient void error(String, Object[]);
 public void error(String, Throwable);
 public void error(org.apache.logging.log4j.util.Supplier);
 public void error(org.apache.logging.log4j.util.Supplier, Throwable);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void error(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void error(String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void error(org.apache.logging.log4j.util.MessageSupplier);
 public void error(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void error(org.apache.logging.log4j.Marker, String, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object);
 public void error(String, Object, Object);
 public void error(String, Object, Object, Object);
 public void error(String, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void exit();
 public Object exit(Object);
 protected Object exit(String, Object);
 protected Object exit(String, String, Object);
 protected org.apache.logging.log4j.message.Message exitMsg(String, Object);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, CharSequence);
 public void fatal(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, Object);
 public void fatal(org.apache.logging.log4j.Marker, Object, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, String);
 public transient void fatal(org.apache.logging.log4j.Marker, String, Object[]);
 public void fatal(org.apache.logging.log4j.Marker, String, Throwable);
 public void fatal(org.apache.logging.log4j.message.Message);
 public void fatal(org.apache.logging.log4j.message.Message, Throwable);
 public void fatal(CharSequence);
 public void fatal(CharSequence, Throwable);
 public void fatal(Object);
 public void fatal(Object, Throwable);
 public void fatal(String);
 public transient void fatal(String, Object[]);
 public void fatal(String, Throwable);
 public void fatal(org.apache.logging.log4j.util.Supplier);
 public void fatal(org.apache.logging.log4j.util.Supplier, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void fatal(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void fatal(String, org.apache.logging.log4j.util.Supplier[]);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void fatal(org.apache.logging.log4j.util.MessageSupplier);
 public void fatal(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, String, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object);
 public void fatal(String, Object, Object);
 public void fatal(String, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.MessageFactory getMessageFactory();
 public String getName();
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void info(org.apache.logging.log4j.Marker, CharSequence);
 public void info(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void info(org.apache.logging.log4j.Marker, Object);
 public void info(org.apache.logging.log4j.Marker, Object, Throwable);
 public void info(org.apache.logging.log4j.Marker, String);
 public transient void info(org.apache.logging.log4j.Marker, String, Object[]);
 public void info(org.apache.logging.log4j.Marker, String, Throwable);
 public void info(org.apache.logging.log4j.message.Message);
 public void info(org.apache.logging.log4j.message.Message, Throwable);
 public void info(CharSequence);
 public void info(CharSequence, Throwable);
 public void info(Object);
 public void info(Object, Throwable);
 public void info(String);
 public transient void info(String, Object[]);
 public void info(String, Throwable);
 public void info(org.apache.logging.log4j.util.Supplier);
 public void info(org.apache.logging.log4j.util.Supplier, Throwable);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void info(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void info(String, org.apache.logging.log4j.util.Supplier[]);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void info(org.apache.logging.log4j.util.MessageSupplier);
 public void info(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void info(org.apache.logging.log4j.Marker, String, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object);
 public void info(String, Object, Object);
 public void info(String, Object, Object, Object);
 public void info(String, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isDebugEnabled();
 public boolean isDebugEnabled(org.apache.logging.log4j.Marker);
 public boolean isEnabled(org.apache.logging.log4j.Level);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker);
 public boolean isErrorEnabled();
 public boolean isErrorEnabled(org.apache.logging.log4j.Marker);
 public boolean isFatalEnabled();
 public boolean isFatalEnabled(org.apache.logging.log4j.Marker);
 public boolean isInfoEnabled();
 public boolean isInfoEnabled(org.apache.logging.log4j.Marker);
 public boolean isTraceEnabled();
 public boolean isTraceEnabled(org.apache.logging.log4j.Marker);
 public boolean isWarnEnabled();
 public boolean isWarnEnabled(org.apache.logging.log4j.Marker);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, CharSequence);
 public void log(org.apache.logging.log4j.Level, CharSequence, Throwable);
 public void log(org.apache.logging.log4j.Level, Object);
 public void log(org.apache.logging.log4j.Level, Object, Throwable);
 public void log(org.apache.logging.log4j.Level, String);
 public transient void log(org.apache.logging.log4j.Level, String, Object[]);
 public void log(org.apache.logging.log4j.Level, String, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.Supplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.Supplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void log(org.apache.logging.log4j.Level, String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.MessageSupplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 protected transient void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected transient void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void logMessage(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 protected void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 public transient void printf(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public transient void printf(org.apache.logging.log4j.Level, String, Object[]);
 private void logMessageSafely(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logMessageTrackRecursion(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private static int[] getRecursionDepthHolder();
 private static void incrementRecursionDepth();
 private static void decrementRecursionDepth();
 public static int getRecursionDepth();
 private void tryLogMessage(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement getLocation(String);
 private void handleLogMessageException(Throwable, String, org.apache.logging.log4j.message.Message);
 public Throwable throwing(Throwable);
 public Throwable throwing(org.apache.logging.log4j.Level, Throwable);
 protected Throwable throwing(String, org.apache.logging.log4j.Level, Throwable);
 protected org.apache.logging.log4j.message.Message throwingMsg(Throwable);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void trace(org.apache.logging.log4j.Marker, CharSequence);
 public void trace(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void trace(org.apache.logging.log4j.Marker, Object);
 public void trace(org.apache.logging.log4j.Marker, Object, Throwable);
 public void trace(org.apache.logging.log4j.Marker, String);
 public transient void trace(org.apache.logging.log4j.Marker, String, Object[]);
 public void trace(org.apache.logging.log4j.Marker, String, Throwable);
 public void trace(org.apache.logging.log4j.message.Message);
 public void trace(org.apache.logging.log4j.message.Message, Throwable);
 public void trace(CharSequence);
 public void trace(CharSequence, Throwable);
 public void trace(Object);
 public void trace(Object, Throwable);
 public void trace(String);
 public transient void trace(String, Object[]);
 public void trace(String, Throwable);
 public void trace(org.apache.logging.log4j.util.Supplier);
 public void trace(org.apache.logging.log4j.util.Supplier, Throwable);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void trace(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void trace(String, org.apache.logging.log4j.util.Supplier[]);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void trace(org.apache.logging.log4j.util.MessageSupplier);
 public void trace(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void trace(org.apache.logging.log4j.Marker, String, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object);
 public void trace(String, Object, Object);
 public void trace(String, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.EntryMessage traceEntry();
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(String, Object[]);
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(org.apache.logging.log4j.util.Supplier[]);
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(String, org.apache.logging.log4j.util.Supplier[]);
 public org.apache.logging.log4j.message.EntryMessage traceEntry(org.apache.logging.log4j.message.Message);
 public void traceExit();
 public Object traceExit(Object);
 public Object traceExit(String, Object);
 public void traceExit(org.apache.logging.log4j.message.EntryMessage);
 public Object traceExit(org.apache.logging.log4j.message.EntryMessage, Object);
 public Object traceExit(org.apache.logging.log4j.message.Message, Object);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void warn(org.apache.logging.log4j.Marker, CharSequence);
 public void warn(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void warn(org.apache.logging.log4j.Marker, Object);
 public void warn(org.apache.logging.log4j.Marker, Object, Throwable);
 public void warn(org.apache.logging.log4j.Marker, String);
 public transient void warn(org.apache.logging.log4j.Marker, String, Object[]);
 public void warn(org.apache.logging.log4j.Marker, String, Throwable);
 public void warn(org.apache.logging.log4j.message.Message);
 public void warn(org.apache.logging.log4j.message.Message, Throwable);
 public void warn(CharSequence);
 public void warn(CharSequence, Throwable);
 public void warn(Object);
 public void warn(Object, Throwable);
 public void warn(String);
 public transient void warn(String, Object[]);
 public void warn(String, Throwable);
 public void warn(org.apache.logging.log4j.util.Supplier);
 public void warn(org.apache.logging.log4j.util.Supplier, Throwable);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void warn(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void warn(String, org.apache.logging.log4j.util.Supplier[]);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void warn(org.apache.logging.log4j.util.MessageSupplier);
 public void warn(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void warn(org.apache.logging.log4j.Marker, String, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object);
 public void warn(String, Object, Object);
 public void warn(String, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected boolean requiresLocation();
 public org.apache.logging.log4j.LogBuilder atTrace();
 public org.apache.logging.log4j.LogBuilder atDebug();
 public org.apache.logging.log4j.LogBuilder atInfo();
 public org.apache.logging.log4j.LogBuilder atWarn();
 public org.apache.logging.log4j.LogBuilder atError();
 public org.apache.logging.log4j.LogBuilder atFatal();
 public org.apache.logging.log4j.LogBuilder always();
 public org.apache.logging.log4j.LogBuilder atLevel(org.apache.logging.log4j.Level);
 private org.apache.logging.log4j.internal.DefaultLogBuilder getLogBuilder(org.apache.logging.log4j.Level);
 private void readObject(java.io.ObjectInputStream) throws ClassNotFoundException, java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/util/MultiFormatStringBuilderFormattable.class

package org.apache.logging.log4j.util;
public abstract interface MultiFormatStringBuilderFormattable extends org.apache.logging.log4j.message.MultiformatMessage, StringBuilderFormattable {
 public abstract void formatTo(String[], StringBuilder);
}

org/apache/logging/log4j/util/Timer$Status.class

package org.apache.logging.log4j.util;
public final synchronized enum Timer$Status {
 public static final Timer$Status Started;
 public static final Timer$Status Stopped;
 public static final Timer$Status Paused;
 public static Timer$Status[] values();
 public static Timer$Status valueOf(String);
 private void Timer$Status(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertyFilePropertySource.class

package org.apache.logging.log4j.util;
public synchronized class PropertyFilePropertySource extends PropertiesPropertySource {
 public void PropertyFilePropertySource(String);
 private static java.util.Properties loadPropertiesFile(String);
 public int getPriority();
}

org/apache/logging/log4j/util/ProcessIdUtil.class

package org.apache.logging.log4j.util;
public synchronized class ProcessIdUtil {
 public static final String DEFAULT_PROCESSID = -;
 public void ProcessIdUtil();
 public static String getProcessId();
}

org/apache/logging/log4j/ThreadContext$EmptyThreadContextStack.class

package org.apache.logging.log4j;
synchronized class ThreadContext$EmptyThreadContextStack extends java.util.AbstractCollection implements spi.ThreadContextStack {
 private static final long serialVersionUID = 1;
 private static final java.util.Iterator EMPTY_ITERATOR;
 private void ThreadContext$EmptyThreadContextStack();
 public String pop();
 public String peek();
 public void push(String);
 public int getDepth();
 public java.util.List asList();
 public void trim(int);
 public boolean equals(Object);
 public int hashCode();
 public ThreadContext$ContextStack copy();
 public Object[] toArray(Object[]);
 public boolean add(String);
 public boolean containsAll(java.util.Collection);
 public boolean addAll(java.util.Collection);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public java.util.Iterator iterator();
 public int size();
 public ThreadContext$ContextStack getImmutableStackOrNull();
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterFormatter.class

package org.apache.logging.log4j.message;
final synchronized class ParameterFormatter {
 static final String RECURSION_PREFIX = [...;
 static final String RECURSION_SUFFIX = ...];
 static final String ERROR_PREFIX = [!!!;
 static final String ERROR_SEPARATOR = =>;
 static final String ERROR_MSG_SEPARATOR = :;
 static final String ERROR_SUFFIX = !!!];
 private static final char DELIM_START = 123;
 private static final char DELIM_STOP = 125;
 private static final char ESCAPE_CHAR = 92;
 private static final ThreadLocal SIMPLE_DATE_FORMAT_REF;
 private void ParameterFormatter();
 static int countArgumentPlaceholders(String);
 static int countArgumentPlaceholders2(String, int[]);
 static int countArgumentPlaceholders3(char[], int, int[]);
 static String format(String, Object[]);
 static void formatMessage2(StringBuilder, String, Object[], int, int[]);
 static void formatMessage3(StringBuilder, char[], int, Object[], int, int[]);
 static void formatMessage(StringBuilder, String, Object[], int);
 private static boolean isDelimPair(char, String, int);
 private static void handleRemainingCharIfAny(String, int, StringBuilder, int, int);
 private static void handleLastChar(StringBuilder, int, char);
 private static void handleLiteralChar(StringBuilder, int, char);
 private static void writeDelimPair(StringBuilder);
 private static boolean isOdd(int);
 private static void writeEscapedEscapeChars(int, StringBuilder);
 private static void writeUnescapedEscapeChars(int, StringBuilder);
 private static void writeArgOrDelimPair(Object[], int, int, StringBuilder);
 static String deepToString(Object);
 static void recursiveDeepToString(Object, StringBuilder);
 private static void recursiveDeepToString(Object, StringBuilder, java.util.Set);
 private static boolean appendSpecialTypes(Object, StringBuilder);
 private static boolean appendDate(Object, StringBuilder);
 private static boolean isMaybeRecursive(Object);
 private static void appendPotentiallyRecursiveValue(Object, StringBuilder, java.util.Set);
 private static void appendArray(Object, StringBuilder, java.util.Set, Class);
 private static void appendMap(Object, StringBuilder, java.util.Set);
 private static void appendCollection(Object, StringBuilder, java.util.Set);
 private static java.util.Set getOrCreateDejaVu(java.util.Set);
 private static java.util.Set createDejaVu();
 private static java.util.Set cloneDejaVu(java.util.Set);
 private static void tryObjectToString(Object, StringBuilder);
 private static void handleErrorInObjectToString(Object, StringBuilder, Throwable);
 static String identityToString(Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/ObjectMessage.class

package org.apache.logging.log4j.message;
public synchronized class ObjectMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = -5903272448334166185;
 private transient Object obj;
 private transient String objectString;
 public void ObjectMessage(Object);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object getParameter();
 public Object[] getParameters();
 public boolean equals(Object);
 private boolean equalObjectsOrStrings(Object, Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$SimpleEntryMessage.class

package org.apache.logging.log4j.message;
final synchronized class DefaultFlowMessageFactory$SimpleEntryMessage extends DefaultFlowMessageFactory$AbstractFlowMessage implements EntryMessage {
 private static final long serialVersionUID = 1;
 void DefaultFlowMessageFactory$SimpleEntryMessage(String, Message);
}

org/apache/logging/log4j/message/FormattedMessage.class

package org.apache.logging.log4j.message;
public synchronized class FormattedMessage implements Message {
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private static final String FORMAT_SPECIFIER = %(\d+\$)?([-#+ 0,(\<]*)?(\d+)?(\.\d+)?([tT])?([a-zA-Z%]);
 private static final java.util.regex.Pattern MSG_PATTERN;
 private String messagePattern;
 private transient Object[] argArray;
 private String[] stringArgs;
 private transient String formattedMessage;
 private final Throwable throwable;
 private Message message;
 private final java.util.Locale locale;
 public void FormattedMessage(java.util.Locale, String, Object);
 public void FormattedMessage(java.util.Locale, String, Object, Object);
 public transient void FormattedMessage(java.util.Locale, String, Object[]);
 public void FormattedMessage(java.util.Locale, String, Object[], Throwable);
 public void FormattedMessage(String, Object);
 public void FormattedMessage(String, Object, Object);
 public transient void FormattedMessage(String, Object[]);
 public void FormattedMessage(String, Object[], Throwable);
 public boolean equals(Object);
 public String getFormat();
 public String getFormattedMessage();
 protected Message getMessage(String, Object[], Throwable);
 public Object[] getParameters();
 public Throwable getThrowable();
 public int hashCode();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/simple/SimpleLogger.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLogger extends org.apache.logging.log4j.spi.AbstractLogger {
 private static final long serialVersionUID = 1;
 private static final char SPACE = 32;
 private final java.text.DateFormat dateFormatter;
 private org.apache.logging.log4j.Level level;
 private final boolean showDateTime;
 private final boolean showContextMap;
 private java.io.PrintStream stream;
 private final String logName;
 public void SimpleLogger(String, org.apache.logging.log4j.Level, boolean, boolean, boolean, boolean, String, org.apache.logging.log4j.message.MessageFactory, org.apache.logging.log4j.util.PropertiesUtil, java.io.PrintStream);
 public org.apache.logging.log4j.Level getLevel();
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void setLevel(org.apache.logging.log4j.Level);
 public void setStream(java.io.PrintStream);
}

org/apache/logging/log4j/ThreadContext$EmptyIterator.class

package org.apache.logging.log4j;
synchronized class ThreadContext$EmptyIterator implements java.util.Iterator {
 private void ThreadContext$EmptyIterator();
 public boolean hasNext();
 public Object next();
 public void remove();
}

org/apache/logging/log4j/MarkerManager$Log4jMarker.class

package org.apache.logging.log4j;
public synchronized class MarkerManager$Log4jMarker implements Marker, util.StringBuilderFormattable {
 private static final long serialVersionUID = 100;
 private final String name;
 private volatile Marker[] parents;
 private void MarkerManager$Log4jMarker();
 public void MarkerManager$Log4jMarker(String);
 public synchronized transient Marker addParents(Marker[]);
 public synchronized boolean remove(Marker);
 public transient Marker setParents(Marker[]);
 public String getName();
 public Marker[] getParents();
 public boolean hasParents();
 public boolean isInstanceOf(Marker);
 public boolean isInstanceOf(String);
 private static boolean checkParent(Marker, Marker);
 private static transient boolean contains(Marker, Marker[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public void formatTo(StringBuilder);
 private static transient void addParentInfo(StringBuilder, Marker[]);
}

org/apache/logging/log4j/LoggingException.class

package org.apache.logging.log4j;
public synchronized class LoggingException extends RuntimeException {
 private static final long serialVersionUID = 6366395965071580537;
 public void LoggingException(String);
 public void LoggingException(String, Throwable);
 public void LoggingException(Throwable);
}

org/apache/logging/log4j/ThreadContext.class

package org.apache.logging.log4j;
public final synchronized class ThreadContext {
 public static final java.util.Map EMPTY_MAP;
 public static final spi.ThreadContextStack EMPTY_STACK;
 private static final String DISABLE_MAP = disableThreadContextMap;
 private static final String DISABLE_STACK = disableThreadContextStack;
 private static final String DISABLE_ALL = disableThreadContext;
 private static boolean useStack;
 private static spi.ThreadContextMap contextMap;
 private static spi.ThreadContextStack contextStack;
 private static spi.ReadOnlyThreadContextMap readOnlyContextMap;
 private void ThreadContext();
 static void init();
 public static void put(String, String);
 public static void putIfNull(String, String);
 public static void putAll(java.util.Map);
 public static String get(String);
 public static void remove(String);
 public static void removeAll(Iterable);
 public static void clearMap();
 public static void clearAll();
 public static boolean containsKey(String);
 public static java.util.Map getContext();
 public static java.util.Map getImmutableContext();
 public static spi.ReadOnlyThreadContextMap getThreadContextMap();
 public static boolean isEmpty();
 public static void clearStack();
 public static ThreadContext$ContextStack cloneStack();
 public static ThreadContext$ContextStack getImmutableStack();
 public static void setStack(java.util.Collection);
 public static int getDepth();
 public static String pop();
 public static String peek();
 public static void push(String);
 public static transient void push(String, Object[]);
 public static void removeStack();
 public static void trim(int);
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/internal/DefaultObjectInputFilter.class

package org.apache.logging.log4j.util.internal;
public synchronized class DefaultObjectInputFilter implements java.io.ObjectInputFilter {
 private static final java.util.List REQUIRED_JAVA_CLASSES;
 private static final java.util.List REQUIRED_JAVA_PACKAGES;
 private final java.io.ObjectInputFilter delegate;
 public void DefaultObjectInputFilter();
 public void DefaultObjectInputFilter(java.io.ObjectInputFilter);
 public static DefaultObjectInputFilter newInstance(java.io.ObjectInputFilter);
 public java.io.ObjectInputFilter$Status checkInput(java.io.ObjectInputFilter$FilterInfo);
 private static boolean isAllowedByDefault(String);
 private static boolean isRequiredPackage(String);
 static void <clinit>();
}

META-INF/DEPENDENCIES

// --
// Transitive dependencies of this project determined from the
// maven pom organized by organization.
// --

Apache Log4j API

META-INF/services/org.apache.logging.log4j.util.PropertySource

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.
org.apache.logging.log4j.util.EnvironmentPropertySource
org.apache.logging.log4j.util.SystemPropertiesPropertySource

META-INF/maven/org.apache.logging.log4j/log4j-api/pom.properties

#Created by Apache Maven 3.8.4
version=2.17.1
groupId=org.apache.logging.log4j
artifactId=log4j-api

org/apache/logging/log4j/util/Unbox$State.class

package org.apache.logging.log4j.util;
synchronized class Unbox$State {
 private final StringBuilder[] ringBuffer;
 private int current;
 void Unbox$State();
 public StringBuilder getStringBuilder();
 public boolean isBoxedPrimitive(StringBuilder);
}

org/apache/logging/log4j/util/IndexedReadOnlyStringMap.class

package org.apache.logging.log4j.util;
public abstract interface IndexedReadOnlyStringMap extends ReadOnlyStringMap {
 public abstract String getKeyAt(int);
 public abstract Object getValueAt(int);
 public abstract int indexOfKey(String);
}

org/apache/logging/log4j/util/LowLevelLogUtil.class

package org.apache.logging.log4j.util;
final synchronized class LowLevelLogUtil {
 private static java.io.PrintWriter writer;
 public static void log(String);
 public static void logException(Throwable);
 public static void logException(String, Throwable);
 public static void setOutputStream(java.io.OutputStream);
 public static void setWriter(java.io.Writer);
 private void LowLevelLogUtil();
 static void <clinit>();
}

org/apache/logging/log4j/util/SystemPropertiesPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class SystemPropertiesPropertySource implements PropertySource {
 private static final int DEFAULT_PRIORITY = 100;
 private static final String PREFIX = log4j2.;
 public void SystemPropertiesPropertySource();
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/BiConsumer.class

package org.apache.logging.log4j.util;
public abstract interface BiConsumer {
 public abstract void accept(Object, Object);
}

org/apache/logging/log4j/util/StackLocator.class

package org.apache.logging.log4j.util;
public final synchronized class StackLocator {
 static final int JDK_7u25_OFFSET;
 private static final reflect.Method GET_CALLER_CLASS;
 private static final StackLocator INSTANCE;
 public static StackLocator getInstance();
 private void StackLocator();
 public Class getCallerClass(Class, java.util.function.Predicate);
 public Class getCallerClass(int);
 public Class getCallerClass(String, String);
 public Class getCallerClass(Class);
 public java.util.Stack getCurrentStackTrace();
 public StackTraceElement calcLocation(String);
 public StackTraceElement getStackTraceElement(int);
 private boolean isValid(StackTraceElement);
 static void <clinit>();
}

org/apache/logging/log4j/message/BasicThreadInformation.class

package org.apache.logging.log4j.message;
synchronized class BasicThreadInformation implements ThreadInformation {
 private static final int HASH_SHIFT = 32;
 private static final int HASH_MULTIPLIER = 31;
 private final long id;
 private final String name;
 private final String longName;
 private final Thread$State state;
 private final int priority;
 private final boolean isAlive;
 private final boolean isDaemon;
 private final String threadGroupName;
 void BasicThreadInformation(Thread);
 public boolean equals(Object);
 public int hashCode();
 public void printThreadInfo(StringBuilder);
 public void printStack(StringBuilder, StackTraceElement[]);
}

org/apache/logging/log4j/message/StringMapMessage.class

package org.apache.logging.log4j.message;
public synchronized class StringMapMessage extends MapMessage {
 private static final long serialVersionUID = 1;
 public void StringMapMessage();
 public void StringMapMessage(int);
 public void StringMapMessage(java.util.Map);
 public StringMapMessage newInstance(java.util.Map);
}

org/apache/logging/log4j/message/ThreadDumpMessage$ThreadDumpMessageProxy.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$ThreadDumpMessageProxy implements java.io.Serializable {
 private static final long serialVersionUID = -3476620450287648269;
 private final String formattedMsg;
 private final String title;
 void ThreadDumpMessage$ThreadDumpMessageProxy(ThreadDumpMessage);
 protected Object readResolve();
}

org/apache/logging/log4j/message/SimpleMessage.class

package org.apache.logging.log4j.message;
public synchronized class SimpleMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable, CharSequence {
 private static final long serialVersionUID = -8398002534962715992;
 private String message;
 private transient CharSequence charSequence;
 public void SimpleMessage();
 public void SimpleMessage(String);
 public void SimpleMessage(CharSequence);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object[] getParameters();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public Throwable getThrowable();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
}

org/apache/logging/log4j/message/StructuredDataCollectionMessage.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataCollectionMessage implements org.apache.logging.log4j.util.StringBuilderFormattable, MessageCollectionMessage {
 private static final long serialVersionUID = 5725337076388822924;
 private final java.util.List structuredDataMessageList;
 public void StructuredDataCollectionMessage(java.util.List);
 public java.util.Iterator iterator();
 public String getFormattedMessage();
 public String getFormat();
 public void formatTo(StringBuilder);
 public Object[] getParameters();
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/LoggerNameAwareMessage.class

package org.apache.logging.log4j.message;
public abstract interface LoggerNameAwareMessage {
 public abstract void setLoggerName(String);
 public abstract String getLoggerName();
}

org/apache/logging/log4j/message/MessageCollectionMessage.class

package org.apache.logging.log4j.message;
public abstract interface MessageCollectionMessage extends Message, Iterable {
}

org/apache/logging/log4j/message/MessageFactory2.class

package org.apache.logging.log4j.message;
public abstract interface MessageFactory2 extends MessageFactory {
 public abstract Message newMessage(CharSequence);
 public abstract Message newMessage(String, Object);
 public abstract Message newMessage(String, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/StructuredDataMessage$Format.class

package org.apache.logging.log4j.message;
public final synchronized enum StructuredDataMessage$Format {
 public static final StructuredDataMessage$Format XML;
 public static final StructuredDataMessage$Format FULL;
 public static StructuredDataMessage$Format[] values();
 public static StructuredDataMessage$Format valueOf(String);
 private void StructuredDataMessage$Format(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/message/ThreadDumpMessage$ThreadInfoFactory.class

package org.apache.logging.log4j.message;
public abstract interface ThreadDumpMessage$ThreadInfoFactory {
 public abstract java.util.Map createThreadInfo();
}

org/apache/logging/log4j/spi/DefaultThreadContextStack.class

package org.apache.logging.log4j.spi;
public synchronized class DefaultThreadContextStack implements ThreadContextStack, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = 5050501;
 private static final ThreadLocal STACK;
 private final boolean useStack;
 public void DefaultThreadContextStack(boolean);
 private MutableThreadContextStack getNonNullStackCopy();
 public boolean add(String);
 public boolean addAll(java.util.Collection);
 public java.util.List asList();
 public void clear();
 public boolean contains(Object);
 public boolean containsAll(java.util.Collection);
 public ThreadContextStack copy();
 public boolean equals(Object);
 public int getDepth();
 public int hashCode();
 public boolean isEmpty();
 public java.util.Iterator iterator();
 public String peek();
 public String pop();
 public void push(String);
 public boolean remove(Object);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public int size();
 public Object[] toArray();
 public Object[] toArray(Object[]);
 public String toString();
 public void formatTo(StringBuilder);
 public void trim(int);
 public org.apache.logging.log4j.ThreadContext$ContextStack getImmutableStackOrNull();
 static void <clinit>();
}

org/apache/logging/log4j/spi/DefaultThreadContextMap.class

package org.apache.logging.log4j.spi;
public synchronized class DefaultThreadContextMap implements ThreadContextMap, org.apache.logging.log4j.util.ReadOnlyStringMap {
 private static final long serialVersionUID = 8218007901108944053;
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 private final boolean useMap;
 private final ThreadLocal localMap;
 private static boolean inheritableMap;
 static ThreadLocal createThreadLocalMap(boolean);
 static void init();
 public void DefaultThreadContextMap();
 public void DefaultThreadContextMap(boolean);
 public void put(String, String);
 public void putAll(java.util.Map);
 public String get(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public java.util.Map toMap();
 public boolean containsKey(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 public Object getValue(String);
 public java.util.Map getCopy();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public int size();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/spi/AbstractLoggerAdapter.class

package org.apache.logging.log4j.spi;
public abstract synchronized class AbstractLoggerAdapter implements LoggerAdapter, LoggerContextShutdownAware {
 protected final java.util.Map registry;
 private final java.util.concurrent.locks.ReadWriteLock lock;
 public void AbstractLoggerAdapter();
 public Object getLogger(String);
 public void contextShutdown(LoggerContext);
 public java.util.concurrent.ConcurrentMap getLoggersInContext(LoggerContext);
 public java.util.Set getLoggerContexts();
 protected abstract Object newLogger(String, LoggerContext);
 protected abstract LoggerContext getContext();
 protected LoggerContext getContext(Class);
 public void close();
}

org/apache/logging/log4j/spi/LoggerContextFactory.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextFactory {
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public abstract LoggerContext getContext(String, ClassLoader, Object, boolean);
 public abstract LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public abstract void removeContext(LoggerContext);
 public boolean isClassLoaderDependent();
}

org/apache/logging/log4j/spi/LoggerContextKey.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerContextKey {
 public void LoggerContextKey();
 public static String create(String);
 public static String create(String, org.apache.logging.log4j.message.MessageFactory);
 public static String create(String, Class);
}

org/apache/logging/log4j/spi/LoggerRegistry.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry {
 private static final String DEFAULT_FACTORY_KEY;
 private final LoggerRegistry$MapFactory factory;
 private final java.util.Map map;
 public void LoggerRegistry();
 public void LoggerRegistry(LoggerRegistry$MapFactory);
 private static String factoryClassKey(Class);
 private static String factoryKey(org.apache.logging.log4j.message.MessageFactory);
 public ExtendedLogger getLogger(String);
 public ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public java.util.Collection getLoggers();
 public java.util.Collection getLoggers(java.util.Collection);
 private java.util.Map getOrCreateInnerMap(String);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public void putIfAbsent(String, org.apache.logging.log4j.message.MessageFactory, ExtendedLogger);
 static void <clinit>();
}

org/apache/logging/log4j/spi/CopyOnWriteSortedArrayThreadContextMap$1.class

package org.apache.logging.log4j.spi;
synchronized class CopyOnWriteSortedArrayThreadContextMap$1 extends InheritableThreadLocal {
 void CopyOnWriteSortedArrayThreadContextMap$1(CopyOnWriteSortedArrayThreadContextMap);
 protected org.apache.logging.log4j.util.StringMap childValue(org.apache.logging.log4j.util.StringMap);
}

org/apache/logging/log4j/spi/MessageFactory2Adapter.class

package org.apache.logging.log4j.spi;
public synchronized class MessageFactory2Adapter implements org.apache.logging.log4j.message.MessageFactory2 {
 private final org.apache.logging.log4j.message.MessageFactory wrapped;
 public void MessageFactory2Adapter(org.apache.logging.log4j.message.MessageFactory);
 public org.apache.logging.log4j.message.MessageFactory getOriginal();
 public org.apache.logging.log4j.message.Message newMessage(CharSequence);
 public org.apache.logging.log4j.message.Message newMessage(String, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(Object);
 public org.apache.logging.log4j.message.Message newMessage(String);
 public transient org.apache.logging.log4j.message.Message newMessage(String, Object[]);
}

org/apache/logging/log4j/spi/LoggerContextShutdownEnabled.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextShutdownEnabled {
 public abstract void addShutdownListener(LoggerContextShutdownAware);
 public abstract java.util.List getListeners();
}

org/apache/logging/log4j/util/ReadOnlyStringMap.class

package org.apache.logging.log4j.util;
public abstract interface ReadOnlyStringMap extends java.io.Serializable {
 public abstract java.util.Map toMap();
 public abstract boolean containsKey(String);
 public abstract void forEach(BiConsumer);
 public abstract void forEach(TriConsumer, Object);
 public abstract Object getValue(String);
 public abstract boolean isEmpty();
 public abstract int size();
}

org/apache/logging/log4j/util/TriConsumer.class

package org.apache.logging.log4j.util;
public abstract interface TriConsumer {
 public abstract void accept(Object, Object, Object);
}

org/apache/logging/log4j/util/EnvironmentPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class EnvironmentPropertySource implements PropertySource {
 private static final String PREFIX = LOG4J_;
 private static final int DEFAULT_PRIORITY = -100;
 public void EnvironmentPropertySource();
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/Activator.class

package org.apache.logging.log4j.util;
public synchronized class Activator implements org.osgi.framework.BundleActivator, org.osgi.framework.SynchronousBundleListener {
 private static final SecurityManager SECURITY_MANAGER;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private boolean lockingProviderUtil;
 public void Activator();
 private static void checkPermission(java.security.Permission);
 private void loadProvider(org.osgi.framework.Bundle);
 private String toStateString(int);
 private void loadProvider(org.osgi.framework.BundleContext, org.osgi.framework.wiring.BundleWiring);
 public void start(org.osgi.framework.BundleContext) throws Exception;
 private void unlockIfReady();
 public void stop(org.osgi.framework.BundleContext) throws Exception;
 public void bundleChanged(org.osgi.framework.BundleEvent);
 static void <clinit>();
}

org/apache/logging/log4j/EventLogger.class

package org.apache.logging.log4j;
public final synchronized class EventLogger {
 public static final Marker EVENT_MARKER;
 private static final String NAME = EventLogger;
 private static final String FQCN;
 private static final spi.ExtendedLogger LOGGER;
 private void EventLogger();
 public static void logEvent(message.StructuredDataMessage);
 public static void logEvent(message.StructuredDataMessage, Level);
 static void <clinit>();
}

org/apache/logging/log4j/Logger.class

package org.apache.logging.log4j;
public abstract interface Logger {
 public abstract void catching(Level, Throwable);
 public abstract void catching(Throwable);
 public abstract void debug(Marker, message.Message);
 public abstract void debug(Marker, message.Message, Throwable);
 public abstract void debug(Marker, util.MessageSupplier);
 public abstract void debug(Marker, util.MessageSupplier, Throwable);
 public abstract void debug(Marker, CharSequence);
 public abstract void debug(Marker, CharSequence, Throwable);
 public abstract void debug(Marker, Object);
 public abstract void debug(Marker, Object, Throwable);
 public abstract void debug(Marker, String);
 public abstract transient void debug(Marker, String, Object[]);
 public abstract transient void debug(Marker, String, util.Supplier[]);
 public abstract void debug(Marker, String, Throwable);
 public abstract void debug(Marker, util.Supplier);
 public abstract void debug(Marker, util.Supplier, Throwable);
 public abstract void debug(message.Message);
 public abstract void debug(message.Message, Throwable);
 public abstract void debug(util.MessageSupplier);
 public abstract void debug(util.MessageSupplier, Throwable);
 public abstract void debug(CharSequence);
 public abstract void debug(CharSequence, Throwable);
 public abstract void debug(Object);
 public abstract void debug(Object, Throwable);
 public abstract void debug(String);
 public abstract transient void debug(String, Object[]);
 public abstract transient void debug(String, util.Supplier[]);
 public abstract void debug(String, Throwable);
 public abstract void debug(util.Supplier);
 public abstract void debug(util.Supplier, Throwable);
 public abstract void debug(Marker, String, Object);
 public abstract void debug(Marker, String, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object);
 public abstract void debug(String, Object, Object);
 public abstract void debug(String, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void entry();
 public abstract transient void entry(Object[]);
 public abstract void error(Marker, message.Message);
 public abstract void error(Marker, message.Message, Throwable);
 public abstract void error(Marker, util.MessageSupplier);
 public abstract void error(Marker, util.MessageSupplier, Throwable);
 public abstract void error(Marker, CharSequence);
 public abstract void error(Marker, CharSequence, Throwable);
 public abstract void error(Marker, Object);
 public abstract void error(Marker, Object, Throwable);
 public abstract void error(Marker, String);
 public abstract transient void error(Marker, String, Object[]);
 public abstract transient void error(Marker, String, util.Supplier[]);
 public abstract void error(Marker, String, Throwable);
 public abstract void error(Marker, util.Supplier);
 public abstract void error(Marker, util.Supplier, Throwable);
 public abstract void error(message.Message);
 public abstract void error(message.Message, Throwable);
 public abstract void error(util.MessageSupplier);
 public abstract void error(util.MessageSupplier, Throwable);
 public abstract void error(CharSequence);
 public abstract void error(CharSequence, Throwable);
 public abstract void error(Object);
 public abstract void error(Object, Throwable);
 public abstract void error(String);
 public abstract transient void error(String, Object[]);
 public abstract transient void error(String, util.Supplier[]);
 public abstract void error(String, Throwable);
 public abstract void error(util.Supplier);
 public abstract void error(util.Supplier, Throwable);
 public abstract void error(Marker, String, Object);
 public abstract void error(Marker, String, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object);
 public abstract void error(String, Object, Object);
 public abstract void error(String, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void exit();
 public abstract Object exit(Object);
 public abstract void fatal(Marker, message.Message);
 public abstract void fatal(Marker, message.Message, Throwable);
 public abstract void fatal(Marker, util.MessageSupplier);
 public abstract void fatal(Marker, util.MessageSupplier, Throwable);
 public abstract void fatal(Marker, CharSequence);
 public abstract void fatal(Marker, CharSequence, Throwable);
 public abstract void fatal(Marker, Object);
 public abstract void fatal(Marker, Object, Throwable);
 public abstract void fatal(Marker, String);
 public abstract transient void fatal(Marker, String, Object[]);
 public abstract transient void fatal(Marker, String, util.Supplier[]);
 public abstract void fatal(Marker, String, Throwable);
 public abstract void fatal(Marker, util.Supplier);
 public abstract void fatal(Marker, util.Supplier, Throwable);
 public abstract void fatal(message.Message);
 public abstract void fatal(message.Message, Throwable);
 public abstract void fatal(util.MessageSupplier);
 public abstract void fatal(util.MessageSupplier, Throwable);
 public abstract void fatal(CharSequence);
 public abstract void fatal(CharSequence, Throwable);
 public abstract void fatal(Object);
 public abstract void fatal(Object, Throwable);
 public abstract void fatal(String);
 public abstract transient void fatal(String, Object[]);
 public abstract transient void fatal(String, util.Supplier[]);
 public abstract void fatal(String, Throwable);
 public abstract void fatal(util.Supplier);
 public abstract void fatal(util.Supplier, Throwable);
 public abstract void fatal(Marker, String, Object);
 public abstract void fatal(Marker, String, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object);
 public abstract void fatal(String, Object, Object);
 public abstract void fatal(String, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Level getLevel();
 public abstract message.MessageFactory getMessageFactory();
 public abstract String getName();
 public abstract void info(Marker, message.Message);
 public abstract void info(Marker, message.Message, Throwable);
 public abstract void info(Marker, util.MessageSupplier);
 public abstract void info(Marker, util.MessageSupplier, Throwable);
 public abstract void info(Marker, CharSequence);
 public abstract void info(Marker, CharSequence, Throwable);
 public abstract void info(Marker, Object);
 public abstract void info(Marker, Object, Throwable);
 public abstract void info(Marker, String);
 public abstract transient void info(Marker, String, Object[]);
 public abstract transient void info(Marker, String, util.Supplier[]);
 public abstract void info(Marker, String, Throwable);
 public abstract void info(Marker, util.Supplier);
 public abstract void info(Marker, util.Supplier, Throwable);
 public abstract void info(message.Message);
 public abstract void info(message.Message, Throwable);
 public abstract void info(util.MessageSupplier);
 public abstract void info(util.MessageSupplier, Throwable);
 public abstract void info(CharSequence);
 public abstract void info(CharSequence, Throwable);
 public abstract void info(Object);
 public abstract void info(Object, Throwable);
 public abstract void info(String);
 public abstract transient void info(String, Object[]);
 public abstract transient void info(String, util.Supplier[]);
 public abstract void info(String, Throwable);
 public abstract void info(util.Supplier);
 public abstract void info(util.Supplier, Throwable);
 public abstract void info(Marker, String, Object);
 public abstract void info(Marker, String, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object);
 public abstract void info(String, Object, Object);
 public abstract void info(String, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isDebugEnabled();
 public abstract boolean isDebugEnabled(Marker);
 public abstract boolean isEnabled(Level);
 public abstract boolean isEnabled(Level, Marker);
 public abstract boolean isErrorEnabled();
 public abstract boolean isErrorEnabled(Marker);
 public abstract boolean isFatalEnabled();
 public abstract boolean isFatalEnabled(Marker);
 public abstract boolean isInfoEnabled();
 public abstract boolean isInfoEnabled(Marker);
 public abstract boolean isTraceEnabled();
 public abstract boolean isTraceEnabled(Marker);
 public abstract boolean isWarnEnabled();
 public abstract boolean isWarnEnabled(Marker);
 public abstract void log(Level, Marker, message.Message);
 public abstract void log(Level, Marker, message.Message, Throwable);
 public abstract void log(Level, Marker, util.MessageSupplier);
 public abstract void log(Level, Marker, util.MessageSupplier, Throwable);
 public abstract void log(Level, Marker, CharSequence);
 public abstract void log(Level, Marker, CharSequence, Throwable);
 public abstract void log(Level, Marker, Object);
 public abstract void log(Level, Marker, Object, Throwable);
 public abstract void log(Level, Marker, String);
 public abstract transient void log(Level, Marker, String, Object[]);
 public abstract transient void log(Level, Marker, String, util.Supplier[]);
 public abstract void log(Level, Marker, String, Throwable);
 public abstract void log(Level, Marker, util.Supplier);
 public abstract void log(Level, Marker, util.Supplier, Throwable);
 public abstract void log(Level, message.Message);
 public abstract void log(Level, message.Message, Throwable);
 public abstract void log(Level, util.MessageSupplier);
 public abstract void log(Level, util.MessageSupplier, Throwable);
 public abstract void log(Level, CharSequence);
 public abstract void log(Level, CharSequence, Throwable);
 public abstract void log(Level, Object);
 public abstract void log(Level, Object, Throwable);
 public abstract void log(Level, String);
 public abstract transient void log(Level, String, Object[]);
 public abstract transient void log(Level, String, util.Supplier[]);
 public abstract void log(Level, String, Throwable);
 public abstract void log(Level, util.Supplier);
 public abstract void log(Level, util.Supplier, Throwable);
 public abstract void log(Level, Marker, String, Object);
 public abstract void log(Level, Marker, String, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object);
 public abstract void log(Level, String, Object, Object);
 public abstract void log(Level, String, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract transient void printf(Level, Marker, String, Object[]);
 public abstract transient void printf(Level, String, Object[]);
 public abstract Throwable throwing(Level, Throwable);
 public abstract Throwable throwing(Throwable);
 public abstract void trace(Marker, message.Message);
 public abstract void trace(Marker, message.Message, Throwable);
 public abstract void trace(Marker, util.MessageSupplier);
 public abstract void trace(Marker, util.MessageSupplier, Throwable);
 public abstract void trace(Marker, CharSequence);
 public abstract void trace(Marker, CharSequence, Throwable);
 public abstract void trace(Marker, Object);
 public abstract void trace(Marker, Object, Throwable);
 public abstract void trace(Marker, String);
 public abstract transient void trace(Marker, String, Object[]);
 public abstract transient void trace(Marker, String, util.Supplier[]);
 public abstract void trace(Marker, String, Throwable);
 public abstract void trace(Marker, util.Supplier);
 public abstract void trace(Marker, util.Supplier, Throwable);
 public abstract void trace(message.Message);
 public abstract void trace(message.Message, Throwable);
 public abstract void trace(util.MessageSupplier);
 public abstract void trace(util.MessageSupplier, Throwable);
 public abstract void trace(CharSequence);
 public abstract void trace(CharSequence, Throwable);
 public abstract void trace(Object);
 public abstract void trace(Object, Throwable);
 public abstract void trace(String);
 public abstract transient void trace(String, Object[]);
 public abstract transient void trace(String, util.Supplier[]);
 public abstract void trace(String, Throwable);
 public abstract void trace(util.Supplier);
 public abstract void trace(util.Supplier, Throwable);
 public abstract void trace(Marker, String, Object);
 public abstract void trace(Marker, String, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object);
 public abstract void trace(String, Object, Object);
 public abstract void trace(String, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract message.EntryMessage traceEntry();
 public abstract transient message.EntryMessage traceEntry(String, Object[]);
 public abstract transient message.EntryMessage traceEntry(util.Supplier[]);
 public abstract transient message.EntryMessage traceEntry(String, util.Supplier[]);
 public abstract message.EntryMessage traceEntry(message.Message);
 public abstract void traceExit();
 public abstract Object traceExit(Object);
 public abstract Object traceExit(String, Object);
 public abstract void traceExit(message.EntryMessage);
 public abstract Object traceExit(message.EntryMessage, Object);
 public abstract Object traceExit(message.Message, Object);
 public abstract void warn(Marker, message.Message);
 public abstract void warn(Marker, message.Message, Throwable);
 public abstract void warn(Marker, util.MessageSupplier);
 public abstract void warn(Marker, util.MessageSupplier, Throwable);
 public abstract void warn(Marker, CharSequence);
 public abstract void warn(Marker, CharSequence, Throwable);
 public abstract void warn(Marker, Object);
 public abstract void warn(Marker, Object, Throwable);
 public abstract void warn(Marker, String);
 public abstract transient void warn(Marker, String, Object[]);
 public abstract transient void warn(Marker, String, util.Supplier[]);
 public abstract void warn(Marker, String, Throwable);
 public abstract void warn(Marker, util.Supplier);
 public abstract void warn(Marker, util.Supplier, Throwable);
 public abstract void warn(message.Message);
 public abstract void warn(message.Message, Throwable);
 public abstract void warn(util.MessageSupplier);
 public abstract void warn(util.MessageSupplier, Throwable);
 public abstract void warn(CharSequence);
 public abstract void warn(CharSequence, Throwable);
 public abstract void warn(Object);
 public abstract void warn(Object, Throwable);
 public abstract void warn(String);
 public abstract transient void warn(String, Object[]);
 public abstract transient void warn(String, util.Supplier[]);
 public abstract void warn(String, Throwable);
 public abstract void warn(util.Supplier);
 public abstract void warn(util.Supplier, Throwable);
 public abstract void warn(Marker, String, Object);
 public abstract void warn(Marker, String, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object);
 public abstract void warn(String, Object, Object);
 public abstract void warn(String, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logMessage(Level, Marker, String, StackTraceElement, message.Message, Throwable);
 public LogBuilder atTrace();
 public LogBuilder atDebug();
 public LogBuilder atInfo();
 public LogBuilder atWarn();
 public LogBuilder atError();
 public LogBuilder atFatal();
 public LogBuilder always();
 public LogBuilder atLevel(Level);
}

org/apache/logging/log4j/message/TimestampMessage.class

package org.apache.logging.log4j.message;
public abstract interface TimestampMessage {
 public abstract long getTimestamp();
}

org/apache/logging/log4j/message/ThreadDumpMessage$1.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$1 {
}

org/apache/logging/log4j/message/AsynchronouslyFormattable.class

package org.apache.logging.log4j.message;
public abstract interface AsynchronouslyFormattable extends annotation.Annotation {
}

org/apache/logging/log4j/message/EntryMessage.class

package org.apache.logging.log4j.message;
public abstract interface EntryMessage extends FlowMessage {
}

org/apache/logging/log4j/message/ReusableMessage.class

package org.apache.logging.log4j.message;
public abstract interface ReusableMessage extends Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 public abstract Object[] swapParameters(Object[]);
 public abstract short getParameterCount();
 public abstract Message memento();
}

org/apache/logging/log4j/message/StructuredDataId.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataId implements java.io.Serializable, org.apache.logging.log4j.util.StringBuilderFormattable {
 public static final StructuredDataId TIME_QUALITY;
 public static final StructuredDataId ORIGIN;
 public static final StructuredDataId META;
 public static final int RESERVED = -1;
 private static final long serialVersionUID = 9031746276396249990;
 private static final int MAX_LENGTH = 32;
 private static final String AT_SIGN = @;
 private final String name;
 private final int enterpriseNumber;
 private final String[] required;
 private final String[] optional;
 public void StructuredDataId(String);
 public void StructuredDataId(String, int);
 public void StructuredDataId(String, String[], String[]);
 public void StructuredDataId(String, String[], String[], int);
 public void StructuredDataId(String, int, String[], String[]);
 public void StructuredDataId(String, int, String[], String[], int);
 public StructuredDataId makeId(StructuredDataId);
 public StructuredDataId makeId(String, int);
 public String[] getRequired();
 public String[] getOptional();
 public String getName();
 public int getEnterpriseNumber();
 public boolean isReserved();
 public String toString();
 public void formatTo(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/message/FlowMessageFactory.class

package org.apache.logging.log4j.message;
public abstract interface FlowMessageFactory {
 public abstract EntryMessage newEntryMessage(Message);
 public abstract ExitMessage newExitMessage(Object, Message);
 public abstract ExitMessage newExitMessage(EntryMessage);
 public abstract ExitMessage newExitMessage(Object, EntryMessage);
}

org/apache/logging/log4j/message/ObjectArrayMessage.class

package org.apache.logging.log4j.message;
public final synchronized class ObjectArrayMessage implements Message {
 private static final long serialVersionUID = -5903272448334166185;
 private transient Object[] array;
 private transient String arrayString;
 public transient void ObjectArrayMessage(Object[]);
 private boolean equalObjectsOrStrings(Object[], Object[]);
 public boolean equals(Object);
 public String getFormat();
 public String getFormattedMessage();
 public Object[] getParameters();
 public Throwable getThrowable();
 public int hashCode();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/message/StringFormatterMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class StringFormatterMessageFactory extends AbstractMessageFactory {
 public static final StringFormatterMessageFactory INSTANCE;
 private static final long serialVersionUID = -1626332412176965642;
 public void StringFormatterMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/Message.class

package org.apache.logging.log4j.message;
public abstract interface Message extends java.io.Serializable {
 public abstract String getFormattedMessage();
 public abstract String getFormat();
 public abstract Object[] getParameters();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/message/StringFormattedMessage.class

package org.apache.logging.log4j.message;
public synchronized class StringFormattedMessage implements Message {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private String messagePattern;
 private transient Object[] argArray;
 private String[] stringArgs;
 private transient String formattedMessage;
 private transient Throwable throwable;
 private final java.util.Locale locale;
 public transient void StringFormattedMessage(java.util.Locale, String, Object[]);
 public transient void StringFormattedMessage(String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 protected transient String formatMessage(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Throwable getThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/message/MessageFactory.class

package org.apache.logging.log4j.message;
public abstract interface MessageFactory {
 public abstract Message newMessage(Object);
 public abstract Message newMessage(String);
 public abstract transient Message newMessage(String, Object[]);
}

org/apache/logging/log4j/message/ParameterizedNoReferenceMessageFactory$StatusMessage.class

package org.apache.logging.log4j.message;
synchronized class ParameterizedNoReferenceMessageFactory$StatusMessage implements Message {
 private static final long serialVersionUID = 4199272162767841280;
 private final String formattedMessage;
 private final Throwable throwable;
 public void ParameterizedNoReferenceMessageFactory$StatusMessage(String, Throwable);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$SimpleExitMessage.class

package org.apache.logging.log4j.message;
final synchronized class DefaultFlowMessageFactory$SimpleExitMessage extends DefaultFlowMessageFactory$AbstractFlowMessage implements ExitMessage {
 private static final long serialVersionUID = 1;
 private final Object result;
 private final boolean isVoid;
 void DefaultFlowMessageFactory$SimpleExitMessage(String, EntryMessage);
 void DefaultFlowMessageFactory$SimpleExitMessage(String, Object, EntryMessage);
 void DefaultFlowMessageFactory$SimpleExitMessage(String, Object, Message);
 public String getFormattedMessage();
}

org/apache/logging/log4j/message/AbstractMessageFactory.class

package org.apache.logging.log4j.message;
public abstract synchronized class AbstractMessageFactory implements MessageFactory2, java.io.Serializable {
 private static final long serialVersionUID = -1307891137684031187;
 public void AbstractMessageFactory();
 public Message newMessage(CharSequence);
 public Message newMessage(Object);
 public Message newMessage(String);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/ParameterizedNoReferenceMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ParameterizedNoReferenceMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 5027639245636870500;
 public static final ParameterizedNoReferenceMessageFactory INSTANCE;
 public void ParameterizedNoReferenceMessageFactory();
 public transient Message newMessage(String, Object[]);
 static void <clinit>();
}

org/apache/logging/log4j/spi/LoggerContextShutdownAware.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextShutdownAware {
 public abstract void contextShutdown(LoggerContext);
}

org/apache/logging/log4j/spi/LoggerRegistry$ConcurrentMapFactory.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry$ConcurrentMapFactory implements LoggerRegistry$MapFactory {
 public void LoggerRegistry$ConcurrentMapFactory();
 public java.util.Map createInnerMap();
 public java.util.Map createOuterMap();
 public void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/ReadOnlyThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ReadOnlyThreadContextMap {
 public abstract void clear();
 public abstract boolean containsKey(String);
 public abstract String get(String);
 public abstract java.util.Map getCopy();
 public abstract java.util.Map getImmutableMapOrNull();
 public abstract org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public abstract boolean isEmpty();
}

image17.emf
log4j.zip

image18.png
<« C A Fz=2| i 1:8099/getSecuritylnfo.jsp B a v w ¥ 0O0&F

('produclType':"ESearch","produclVersion':'V2.0+KB200300',"securilyVersiosecurilyEnabIed':

=Ry

image19.png
C @& weaver.com.cn/cs/esearchDownload.html?v=20211221

gﬁ E-SEARCHZSHT

AEE1.0R24NT TE 2. 0R2N T T
BARA: 1.03 E{7FEE: Windows/Linux BAhRA: 1.08 IEf73EE: Windows/Linux
EFEAE: 2021-06-22 SEEfE: 2022-07-31
MD5: 9cfe172c53eaab4c7222ec5a26981d0d MD5: ac06513f8a00576988fb5a284422710¢
ElasticSearchZ 2% T

esearch&elasticsearchE B ESRY

BAIRA: 2.18.0 &{TEEE: Windows/Linux ST .
iR BARRA: EfTEREE . Windows/Linux i

ST . . .

image20.png
C @ weaver.com.cn/cs/mobileDownload htmi

ﬂi E-MOBILE Z2HT

EMobile3. 0B LATHRAS2Z 2T EMobile4.0-6.5iAS2Z22 2+ T

BAMRA: 2.5 BT Windows/Linux BAMRA: 25 EFEHES: Windows/Linux
EFfAdE: 2019-05-16 SR 2019-05-16
MD5: 30631b77e70ff387409a18b07b8f3722 MD5: 110c9edecb569b449166a01e75a67bf9

EMobile4.0-6.6iRABAZR 24N T

BAMRA: v1.5 IEfTERE: Windows/Linux
ERAdiE: 2021-07-13

image21.png
A
& ==

M

BINFERTS

x52¢

20210706

image22.png
E-COLOGY iz#é

1 Windows 3735 F 3 % %

245 2 l0gd P
FE2ORARERL, £EHHR

m EHEPE3.05FEF A - Windowhfz docx o EHEPE3.0HEFEEE - WindowhR ° SEHEP 3.0 CEE2EE, - Windowhft
R WindowlRSSERAAF, WSGIIIESTRBIR . ;ST Eecology IRSSHE L i
WEEdiE): 2022-07-31 SRR 20220731 wwndie): 2022-07-31

2 Linux3F3EF o &K
&4 4 logd i B
FE2LOMAREHL, REHE

M ST AR EecologyIRSSHE L, MUREMEY, W R BT AREERRFATERZ /MM AR
: | SISO R AL S
B9: LinuxIRSSHAORF. ISP

e 20220791

-a.

R 2022-07-31 B 2022-07-31

��άƽ̨����log4j©������.zip

运维平台关于log4j漏洞处理.docx

运维平台Log4j漏洞处理方案

若运维平台版本为3.0以下版本：

1、 禁用老版本运维平台

Linux环境：

1. 杀掉运维平台2.0的monitor进程

 查看进程命令： ps -ef | grep monitor

 杀进程命令： kill -9 pid //pid为上面查询到的进程号

备注： 杀进程的时候，注意查看monitor进程对应的路径，确认是运维平台2.0版本的再杀。确认方式为： 2.0版本都是挂在Resin路径下的。

2. 禁用老版本运维平台

 禁用方式： 杀掉老版本的monitor进程后，进入Resin/目录下有个monitorX.conf文件，编辑这个文件，将第一个参数disable值修改为1

--

Windows环境

1. Services.msc（服务）中停止MONITOR_CLIENT进程，并设置为禁用，如下图：

[image:]

2. 禁用老版本运维平台

完成第一步后，修改Resin/下的monitorX.conf文件，将disable修改为1 如下图

[image:]

二、部署新版本运维平台3.0

访问链接 https://www.weaver.com.cn/cs/monitorDownload.html

并自行选择对应部署操作。

若运维平台版本为3.0版本：

1． 停止运维平台主节点，停止运维平台代理子节点

Windows：停止MONITOR3服务及MONITOR_ROBOT服务

Linux：在weaver/monitor3(或monitor_robot)/ 目录下执行sh stop.sh 即可

2． 主节点删除log4j开头的jar包

windows环境:

	删除monitor3_win/app/WEB-INF/lib/下所有关于log4j开头的jar包

	删除monitor3_win/securityFile/下所有文件

	删除weaver/ecology/WEB-INF/monitorX/resin/app/WEB-INF/lib/下所有关于	log4j开头的jar包

linux环境:

	删除monitor3/app/WEB-INF/lib下所有关于log4j开头的jar包

	删除monitor3/securityFile/下所有文件

	删除weaver/ecology/WEB-INF/monitorX/resin/app/WEB-INF/lib/下所有关于	log4j开头的jar包

3． 代理节点删除monitor-robot/monitor-robot/app/WEB-INF/lib 下所有log4j开头的jar包，同时删除weaver/ecology/WEB-INF/monitorX/resin/app/WEB-INF/lib/下所有关于	log4j开头的jar包。

注：2.15、2.16、2.17.0版本也被爆出漏洞，log4j官网现在最新是2.17版本。

 第二步和第三步请务必删除以log4j开头的所有jar包，包括2.15、2.16、2.17.0版本的。

4． 将下面2个jar包，分别拷贝到

主节点：

(windows环境路径monitor3_win/app/WEB-INF/lib)

(linux 环境路径monitor3/app/WEB-INF/lib)

代理节点：

monitor-robot/monitor-robot/app/WEB-INF/lib下

5. 重启运维平台主节点，重启运维平台代理服务

Windows：启动MONITOR3服务及MONITOR_ROBOT服务

Linux：在weaver/monitor3(或monitor_robot)/ 目录下执行sh start.sh 即可

image3.emf

log4j-api-2.17.1.j ar

log4j-api-2.17.1.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Bundle-License: https://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-SymbolicName: org.apache.logging.log4j.api

Log4jSigningUserName: mattsicker@apache.org

Built-By: matt

Bnd-LastModified: 1640647808261

Implementation-Vendor-Id: org.apache.logging.log4j

Specification-Title: Apache Log4j API

Log4jReleaseManager: Matt Sicker

Bundle-DocURL: https://www.apache.org/

Import-Package: org.apache.logging.log4j,org.apache.logging.log4j.inte

 rnal,org.apache.logging.log4j.message,org.apache.logging.log4j.simple

 ,org.apache.logging.log4j.spi,org.apache.logging.log4j.status,org.apa

 che.logging.log4j.util,org.osgi.framework;version="[1.6,2)",org.osgi.

 framework.wiring;version="[1.0,2)",sun.reflect;resolution:=optional

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

Export-Package: org.apache.logging.log4j;uses:="org.apache.logging.log

 4j.message,org.apache.logging.log4j.spi,org.apache.logging.log4j.util

 ";version="2.17.1",org.apache.logging.log4j.internal;uses:="org.apach

 e.logging.log4j,org.apache.logging.log4j.message,org.apache.logging.l

 og4j.util";version="2.17.1",org.apache.logging.log4j.message;uses:="o

 rg.apache.logging.log4j.util";version="2.17.1",org.apache.logging.log

 4j.simple;uses:="org.apache.logging.log4j,org.apache.logging.log4j.me

 ssage,org.apache.logging.log4j.spi,org.apache.logging.log4j.util";ver

 sion="2.17.1",org.apache.logging.log4j.spi;uses:="org.apache.logging.

 log4j,org.apache.logging.log4j.internal,org.apache.logging.log4j.mess

 age,org.apache.logging.log4j.util";version="2.17.1",org.apache.loggin

 g.log4j.status;uses:="org.apache.logging.log4j,org.apache.logging.log

 4j.message,org.apache.logging.log4j.spi";version="2.17.1",org.apache.

 logging.log4j.util;uses:="org.apache.logging.log4j.message,org.apache

 .logging.log4j.spi,org.osgi.framework";version="2.17.1"

Bundle-Name: Apache Log4j API

Log4jReleaseVersionJava6: 2.3.1

Multi-Release: true

Bundle-Activator: org.apache.logging.log4j.util.Activator

Log4jReleaseVersionJava7: 2.12.3

Log4jReleaseVersion: 2.17.1

Implementation-Title: Apache Log4j API

Bundle-Description: The Apache Log4j API

Implementation-Version: 2.17.1

Specification-Vendor: The Apache Software Foundation

Bundle-ManifestVersion: 2

Bundle-Vendor: The Apache Software Foundation

Tool: Bnd-3.5.0.201709291849

Implementation-Vendor: The Apache Software Foundation

Bundle-Version: 2.17.1

X-Compile-Target-JDK: 1.8

X-Compile-Source-JDK: 1.8

Created-By: Apache Maven Bundle Plugin

Build-Jdk: 1.8.0_312

Specification-Version: 2.17.1

Implementation-URL: https://logging.apache.org/log4j/2.x/log4j-api/

Log4jReleaseKey: D7C92B70FA1C814D

Log4j-charsets.properties

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.

Mapping based on https://msdn.microsoft.com/en-us/en-en/library/windows/desktop/dd317756(v=vs.85).aspx
Reference for supported Java encodings: https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
cp65001 = UTF-8
cp20127 = US-ASCII
cp54936 = gb18030
cp28592 = iso-8859-2
cp28593 = iso-8859-3
cp28594 = iso-8859-4
cp28595 = iso-8859-5
cp28596 = iso-8859-6
cp28597 = iso-8859-7
cp28598 = iso-8859-8
cp28599 = iso-8859-9
cp28603 = iso-8859-13
cp28605 = iso-8859-15
cp51949 = euc-kr
cp20866 = koi8-r
cp21866 = koi8-u
cp10000 = x-MacRoman
cp10006 = x-MacGreek
cp10007 = x-MacCyrillic
cp10029 = x-MacCentralEurope
cp10081 = x-MacTurkish
cp57002 = x-ISCII91
cp57003 = x-ISCII91
cp57011 = x-ISCII91
cp57010 = x-ISCII91
cp57007 = x-ISCII91
cp57004 = x-ISCII91
cp57005 = x-ISCII91
cp57008 = x-ISCII91
cp57009 = x-ISCII91
cp708 = ISO-8859-6

org/apache/logging/log4j/util/PropertiesUtil$TimeUnit.class

package org.apache.logging.log4j.util;
final synchronized enum PropertiesUtil$TimeUnit {
 public static final PropertiesUtil$TimeUnit NANOS;
 public static final PropertiesUtil$TimeUnit MICROS;
 public static final PropertiesUtil$TimeUnit MILLIS;
 public static final PropertiesUtil$TimeUnit SECONDS;
 public static final PropertiesUtil$TimeUnit MINUTES;
 public static final PropertiesUtil$TimeUnit HOURS;
 public static final PropertiesUtil$TimeUnit DAYS;
 private final String[] descriptions;
 private final java.time.temporal.ChronoUnit timeUnit;
 public static PropertiesUtil$TimeUnit[] values();
 public static PropertiesUtil$TimeUnit valueOf(String);
 private void PropertiesUtil$TimeUnit(String, int, String, java.time.temporal.ChronoUnit);
 java.time.temporal.ChronoUnit getTimeUnit();
 static java.time.Duration getDuration(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/SortedArrayStringMap.class

package org.apache.logging.log4j.util;
public synchronized class SortedArrayStringMap implements IndexedStringMap {
 private static final int DEFAULT_INITIAL_CAPACITY = 4;
 private static final long serialVersionUID = -5748905872274478116;
 private static final int HASHVAL = 31;
 private static final TriConsumer PUT_ALL;
 private static final String[] EMPTY;
 private static final String FROZEN = Frozen collection cannot be modified;
 private transient String[] keys;
 private transient Object[] values;
 private transient int size;
 private static final reflect.Method setObjectInputFilter;
 private static final reflect.Method getObjectInputFilter;
 private static final reflect.Method newObjectInputFilter;
 private int threshold;
 private boolean immutable;
 private transient boolean iterating;
 public void SortedArrayStringMap();
 public void SortedArrayStringMap(int);
 public void SortedArrayStringMap(ReadOnlyStringMap);
 public void SortedArrayStringMap(java.util.Map);
 private void assertNotFrozen();
 private void assertNoConcurrentModification();
 public void clear();
 public boolean containsKey(String);
 public java.util.Map toMap();
 public void freeze();
 public boolean isFrozen();
 public Object getValue(String);
 public boolean isEmpty();
 public int indexOfKey(String);
 private int nullKeyIndex();
 public void putValue(String, Object);
 private void insertAt(int, String, Object);
 public void putAll(ReadOnlyStringMap);
 private void initFrom0(SortedArrayStringMap);
 private void merge(SortedArrayStringMap);
 private void ensureCapacity();
 private void resize(int);
 private void inflateTable(int);
 public void remove(String);
 public String getKeyAt(int);
 public Object getValueAt(int);
 public int size();
 public void forEach(BiConsumer);
 public void forEach(TriConsumer, Object);
 public boolean equals(Object);
 public int hashCode();
 private static int hashCode(Object[], int);
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private static byte[] marshall(Object) throws java.io.IOException;
 private static Object unmarshall(byte[], java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private static int ceilingNextPowerOfTwo(int);
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private void handleSerializationException(Throwable, int, String);
 static void <clinit>();
}

org/apache/logging/log4j/util/Unbox$1.class

package org.apache.logging.log4j.util;
synchronized class Unbox$1 {
}

org/apache/logging/log4j/LogBuilder$1.class

package org.apache.logging.log4j;
final synchronized class LogBuilder$1 implements LogBuilder {
 void LogBuilder$1();
}

org/apache/logging/log4j/internal/LogManagerStatus.class

package org.apache.logging.log4j.internal;
public synchronized class LogManagerStatus {
 private static boolean initialized;
 public void LogManagerStatus();
 public static void setInitialized(boolean);
 public static boolean isInitialized();
 static void <clinit>();
}

org/apache/logging/log4j/message/StructuredDataMessage.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataMessage extends MapMessage {
 private static final long serialVersionUID = 1703221292892071920;
 private static final int MAX_LENGTH = 32;
 private static final int HASHVAL = 31;
 private StructuredDataId id;
 private String message;
 private String type;
 private final int maxLength;
 public void StructuredDataMessage(String, String, String);
 public void StructuredDataMessage(String, String, String, int);
 public void StructuredDataMessage(String, String, String, java.util.Map);
 public void StructuredDataMessage(String, String, String, java.util.Map, int);
 public void StructuredDataMessage(StructuredDataId, String, String);
 public void StructuredDataMessage(StructuredDataId, String, String, int);
 public void StructuredDataMessage(StructuredDataId, String, String, java.util.Map);
 public void StructuredDataMessage(StructuredDataId, String, String, java.util.Map, int);
 private void StructuredDataMessage(StructuredDataMessage, java.util.Map);
 protected void StructuredDataMessage();
 public String[] getFormats();
 public StructuredDataId getId();
 protected void setId(String);
 protected void setId(StructuredDataId);
 public String getType();
 protected void setType(String);
 public void formatTo(StringBuilder);
 public void formatTo(String[], StringBuilder);
 public String getFormat();
 protected void setMessageFormat(String);
 public String asString();
 public String asString(String);
 public final String asString(StructuredDataMessage$Format, StructuredDataId);
 public final void asString(StructuredDataMessage$Format, StructuredDataId, StringBuilder);
 private void asXml(StructuredDataId, StringBuilder);
 public String getFormattedMessage();
 public String getFormattedMessage(String[]);
 private StructuredDataMessage$Format getFormat(String[]);
 public String toString();
 public StructuredDataMessage newInstance(java.util.Map);
 public boolean equals(Object);
 public int hashCode();
 protected void validate(String, boolean);
 protected void validate(String, byte);
 protected void validate(String, char);
 protected void validate(String, double);
 protected void validate(String, float);
 protected void validate(String, int);
 protected void validate(String, long);
 protected void validate(String, Object);
 protected void validate(String, short);
 protected void validate(String, String);
 protected void validateKey(String);
}

org/apache/logging/log4j/message/MessageFormatMessage.class

package org.apache.logging.log4j.message;
public synchronized class MessageFormatMessage implements Message {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long serialVersionUID = 1;
 private static final int HASHVAL = 31;
 private String messagePattern;
 private transient Object[] parameters;
 private String[] serializedParameters;
 private transient String formattedMessage;
 private transient Throwable throwable;
 private final java.util.Locale locale;
 public transient void MessageFormatMessage(java.util.Locale, String, Object[]);
 public transient void MessageFormatMessage(String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 protected transient String formatMessage(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException;
 public Throwable getThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterizedMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ParameterizedMessageFactory extends AbstractMessageFactory {
 public static final ParameterizedMessageFactory INSTANCE;
 private static final long serialVersionUID = -8970940216592525651;
 public void ParameterizedMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/ReusableSimpleMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableSimpleMessage implements ReusableMessage, CharSequence, ParameterVisitable, Clearable {
 private static final long serialVersionUID = -9199974506498249809;
 private CharSequence charSequence;
 public void ReusableSimpleMessage();
 public void set(String);
 public void set(CharSequence);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 public void clear();
}

org/apache/logging/log4j/message/ParameterConsumer.class

package org.apache.logging.log4j.message;
public abstract interface ParameterConsumer {
 public abstract void accept(Object, int, Object);
}

org/apache/logging/log4j/message/ExitMessage.class

package org.apache.logging.log4j.message;
public abstract interface ExitMessage extends FlowMessage {
}

org/apache/logging/log4j/message/ThreadInformation.class

package org.apache.logging.log4j.message;
public abstract interface ThreadInformation {
 public abstract void printThreadInfo(StringBuilder);
 public abstract void printStack(StringBuilder, StackTraceElement[]);
}

org/apache/logging/log4j/message/ReusableObjectMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableObjectMessage implements ReusableMessage, ParameterVisitable, Clearable {
 private static final long serialVersionUID = 6922476812535519960;
 private transient Object obj;
 public void ReusableObjectMessage();
 public void set(Object);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object getParameter();
 public Object[] getParameters();
 public String toString();
 public Throwable getThrowable();
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 public void clear();
}

org/apache/logging/log4j/message/Clearable.class

package org.apache.logging.log4j.message;
abstract interface Clearable {
 public abstract void clear();
}

org/apache/logging/log4j/message/MessageFormatMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class MessageFormatMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 3584821740584192453;
 public void MessageFormatMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/ThreadDumpMessage.class

package org.apache.logging.log4j.message;
public synchronized class ThreadDumpMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = -1103400781608841088;
 private static ThreadDumpMessage$ThreadInfoFactory FACTORY;
 private volatile java.util.Map threads;
 private final String title;
 private String formattedMessage;
 public void ThreadDumpMessage(String);
 private void ThreadDumpMessage(String, String);
 private static ThreadDumpMessage$ThreadInfoFactory getFactory();
 private static ThreadDumpMessage$ThreadInfoFactory initFactory(ClassLoader);
 public String toString();
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object[] getParameters();
 protected Object writeReplace();
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/LocalizedMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class LocalizedMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = -1996295808703146741;
 private final transient java.util.ResourceBundle resourceBundle;
 private final String baseName;
 public void LocalizedMessageFactory(java.util.ResourceBundle);
 public void LocalizedMessageFactory(String);
 public String getBaseName();
 public java.util.ResourceBundle getResourceBundle();
 public Message newMessage(String);
 public transient Message newMessage(String, Object[]);
}

org/apache/logging/log4j/status/StatusLogger.class

package org.apache.logging.log4j.status;
public final synchronized class StatusLogger extends org.apache.logging.log4j.spi.AbstractLogger {
 public static final String MAX_STATUS_ENTRIES = log4j2.status.entries;
 public static final String DEFAULT_STATUS_LISTENER_LEVEL = log4j2.StatusLogger.level;
 public static final String STATUS_DATE_FORMAT = log4j2.StatusLogger.DateFormat;
 private static final long serialVersionUID = 2;
 private static final String NOT_AVAIL = ?;
 private static final org.apache.logging.log4j.util.PropertiesUtil PROPS;
 private static final int MAX_ENTRIES;
 private static final String DEFAULT_STATUS_LEVEL;
 private static final StatusLogger STATUS_LOGGER;
 private final org.apache.logging.log4j.simple.SimpleLogger logger;
 private final java.util.Collection listeners;
 private final java.util.concurrent.locks.ReadWriteLock listenersLock;
 private final java.util.Queue messages;
 private final java.util.concurrent.locks.Lock msgLock;
 private int listenersLevel;
 private void StatusLogger(String, org.apache.logging.log4j.message.MessageFactory);
 private boolean isDebugPropertyEnabled();
 public static StatusLogger getLogger();
 public void setLevel(org.apache.logging.log4j.Level);
 public void registerListener(StatusListener);
 public void removeListener(StatusListener);
 public void updateListenerLevel(org.apache.logging.log4j.Level);
 public Iterable getListeners();
 public void reset();
 private static void closeSilently(java.io.Closeable);
 public java.util.List getStatusData();
 public void clear();
 public org.apache.logging.log4j.Level getLevel();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement getStackTraceElement(String, StackTraceElement[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker);
 static void <clinit>();
}

org/apache/logging/log4j/spi/LocationAwareLogger.class

package org.apache.logging.log4j.spi;
public abstract interface LocationAwareLogger {
 public abstract void logMessage(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/CloseableThreadContext.class

package org.apache.logging.log4j;
public synchronized class CloseableThreadContext {
 private void CloseableThreadContext();
 public static CloseableThreadContext$Instance push(String);
 public static transient CloseableThreadContext$Instance push(String, Object[]);
 public static CloseableThreadContext$Instance put(String, String);
 public static CloseableThreadContext$Instance pushAll(java.util.List);
 public static CloseableThreadContext$Instance putAll(java.util.Map);
}

org/apache/logging/log4j/util/LoaderUtil$ThreadContextClassLoaderGetter.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$ThreadContextClassLoaderGetter implements java.security.PrivilegedAction {
 private void LoaderUtil$ThreadContextClassLoaderGetter();
 public ClassLoader run();
}

org/apache/logging/log4j/util/PerformanceSensitive.class

package org.apache.logging.log4j.util;
public abstract interface PerformanceSensitive extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/util/StackLocatorUtil.class

package org.apache.logging.log4j.util;
public final synchronized class StackLocatorUtil {
 private static StackLocator stackLocator;
 private static volatile boolean errorLogged;
 private void StackLocatorUtil();
 public static Class getCallerClass(int);
 public static StackTraceElement getStackTraceElement(int);
 public static Class getCallerClass(String);
 public static Class getCallerClass(String, String);
 public static Class getCallerClass(Class, java.util.function.Predicate);
 public static Class getCallerClass(Class);
 public static java.util.Stack getCurrentStackTrace();
 public static StackTraceElement calcLocation(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/LoaderUtil.class

package org.apache.logging.log4j.util;
public final synchronized class LoaderUtil {
 public static final String IGNORE_TCCL_PROPERTY = log4j.ignoreTCL;
 private static final SecurityManager SECURITY_MANAGER;
 private static Boolean ignoreTCCL;
 private static final boolean GET_CLASS_LOADER_DISABLED;
 private static final java.security.PrivilegedAction TCCL_GETTER;
 private void LoaderUtil();
 public static ClassLoader getThreadContextClassLoader();
 public static ClassLoader[] getClassLoaders();
 private static void accumulateClassLoaders(ClassLoader, java.util.Collection);
 public static boolean isClassAvailable(String);
 public static Class loadClass(String) throws ClassNotFoundException;
 public static Object newInstanceOf(Class) throws InstantiationException, IllegalAccessException, reflect.InvocationTargetException;
 public static Object newInstanceOf(String) throws ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, reflect.InvocationTargetException;
 public static Object newCheckedInstanceOf(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 public static Object newCheckedInstanceOfProperty(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 private static boolean isIgnoreTccl();
 public static java.util.Collection findResources(String);
 static java.util.Collection findUrlResources(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/MessageSupplier.class

package org.apache.logging.log4j.util;
public abstract interface MessageSupplier {
 public abstract org.apache.logging.log4j.message.Message get();
}

org/apache/logging/log4j/util/Timer$2.class

package org.apache.logging.log4j.util;
synchronized class Timer$2 {
 static void <clinit>();
}

org/apache/logging/log4j/util/LambdaUtil.class

package org.apache.logging.log4j.util;
public final synchronized class LambdaUtil {
 private void LambdaUtil();
 public static transient Object[] getAll(Supplier[]);
 public static Object get(Supplier);
 public static org.apache.logging.log4j.message.Message get(MessageSupplier);
 public static org.apache.logging.log4j.message.Message getMessage(Supplier, org.apache.logging.log4j.message.MessageFactory);
}

org/apache/logging/log4j/internal/DefaultLogBuilder.class

package org.apache.logging.log4j.internal;
public synchronized class DefaultLogBuilder implements org.apache.logging.log4j.LogBuilder {
 private static org.apache.logging.log4j.message.Message EMPTY_MESSAGE;
 private static final String FQCN;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.Logger logger;
 private org.apache.logging.log4j.Level level;
 private org.apache.logging.log4j.Marker marker;
 private Throwable throwable;
 private StackTraceElement location;
 private volatile boolean inUse;
 private long threadId;
 public void DefaultLogBuilder(org.apache.logging.log4j.Logger, org.apache.logging.log4j.Level);
 public void DefaultLogBuilder(org.apache.logging.log4j.Logger);
 public org.apache.logging.log4j.LogBuilder reset(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.LogBuilder withMarker(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.LogBuilder withThrowable(Throwable);
 public org.apache.logging.log4j.LogBuilder withLocation();
 public org.apache.logging.log4j.LogBuilder withLocation(StackTraceElement);
 public boolean isInUse();
 public void log(org.apache.logging.log4j.message.Message);
 public void log(CharSequence);
 public void log(String);
 public transient void log(String, Object[]);
 public transient void log(String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.util.Supplier);
 public void log(Object);
 public void log(String, Object);
 public void log(String, Object, Object);
 public void log(String, Object, Object, Object);
 public void log(String, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log();
 private void logMessage(org.apache.logging.log4j.message.Message);
 private boolean isValid();
 static void <clinit>();
}

org/apache/logging/log4j/message/ReusableParameterizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableParameterizedMessage implements ReusableMessage, ParameterVisitable, Clearable {
 private static final int MIN_BUILDER_SIZE = 512;
 private static final int MAX_PARMS = 10;
 private static final long serialVersionUID = 7800075879295123856;
 private transient ThreadLocal buffer;
 private String messagePattern;
 private int argCount;
 private int usedCount;
 private final int[] indices;
 private transient Object[] varargs;
 private transient Object[] params;
 private transient Throwable throwable;
 transient boolean reserved;
 public void ReusableParameterizedMessage();
 private Object[] getTrimmedParams();
 private Object[] getParams();
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 private void init(String, int, Object[]);
 private static int count(String, int[]);
 private void initThrowable(Object[], int, int);
 transient ReusableParameterizedMessage set(String, Object[]);
 ReusableParameterizedMessage set(String, Object);
 ReusableParameterizedMessage set(String, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public String getFormattedMessage();
 private StringBuilder getBuffer();
 public void formatTo(StringBuilder);
 ReusableParameterizedMessage reserve();
 public String toString();
 public void clear();
}

org/apache/logging/log4j/message/ParameterVisitable.class

package org.apache.logging.log4j.message;
public abstract interface ParameterVisitable {
 public abstract void forEachParameter(ParameterConsumer, Object);
}

org/apache/logging/log4j/message/SimpleMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class SimpleMessageFactory extends AbstractMessageFactory {
 public static final SimpleMessageFactory INSTANCE;
 private static final long serialVersionUID = 4418995198790088516;
 public void SimpleMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/FlowMessage.class

package org.apache.logging.log4j.message;
public abstract interface FlowMessage extends Message {
 public abstract String getText();
 public abstract Message getMessage();
}

org/apache/logging/log4j/message/MapMessage$MapFormat.class

package org.apache.logging.log4j.message;
public final synchronized enum MapMessage$MapFormat {
 public static final MapMessage$MapFormat XML;
 public static final MapMessage$MapFormat JSON;
 public static final MapMessage$MapFormat JAVA;
 public static final MapMessage$MapFormat JAVA_UNQUOTED;
 public static MapMessage$MapFormat[] values();
 public static MapMessage$MapFormat valueOf(String);
 private void MapMessage$MapFormat(String, int);
 public static MapMessage$MapFormat lookupIgnoreCase(String);
 public static String[] names();
 static void <clinit>();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class DefaultFlowMessageFactory implements FlowMessageFactory, java.io.Serializable {
 private static final String EXIT_DEFAULT_PREFIX = Exit;
 private static final String ENTRY_DEFAULT_PREFIX = Enter;
 private static final long serialVersionUID = 8578655591131397576;
 private final String entryText;
 private final String exitText;
 public void DefaultFlowMessageFactory();
 public void DefaultFlowMessageFactory(String, String);
 public String getEntryText();
 public String getExitText();
 public EntryMessage newEntryMessage(Message);
 private Message makeImmutable(Message);
 public ExitMessage newExitMessage(EntryMessage);
 public ExitMessage newExitMessage(Object, EntryMessage);
 public ExitMessage newExitMessage(Object, Message);
}

org/apache/logging/log4j/message/MapMessage.class

package org.apache.logging.log4j.message;
public synchronized class MapMessage implements org.apache.logging.log4j.util.MultiFormatStringBuilderFormattable {
 private static final long serialVersionUID = -5031471831131487120;
 private final org.apache.logging.log4j.util.IndexedStringMap data;
 public void MapMessage();
 public void MapMessage(int);
 public void MapMessage(java.util.Map);
 public String[] getFormats();
 public Object[] getParameters();
 public String getFormat();
 public java.util.Map getData();
 public org.apache.logging.log4j.util.IndexedReadOnlyStringMap getIndexedReadOnlyStringMap();
 public void clear();
 public boolean containsKey(String);
 public void put(String, String);
 public void putAll(java.util.Map);
 public String get(String);
 public String remove(String);
 public String asString();
 public String asString(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 private StringBuilder format(MapMessage$MapFormat, StringBuilder);
 public void asXml(StringBuilder);
 public String getFormattedMessage();
 public String getFormattedMessage(String[]);
 private MapMessage$MapFormat getFormat(String[]);
 protected void appendMap(StringBuilder);
 protected void asJson(StringBuilder);
 protected void asJavaUnquoted(StringBuilder);
 protected void asJava(StringBuilder);
 private void asJava(StringBuilder, boolean);
 public MapMessage newInstance(java.util.Map);
 public String toString();
 public void formatTo(StringBuilder);
 public void formatTo(String[], StringBuilder);
 public boolean equals(Object);
 public int hashCode();
 public Throwable getThrowable();
 protected void validate(String, boolean);
 protected void validate(String, byte);
 protected void validate(String, char);
 protected void validate(String, double);
 protected void validate(String, float);
 protected void validate(String, int);
 protected void validate(String, long);
 protected void validate(String, Object);
 protected void validate(String, short);
 protected void validate(String, String);
 protected String toKey(String);
 public MapMessage with(String, boolean);
 public MapMessage with(String, byte);
 public MapMessage with(String, char);
 public MapMessage with(String, double);
 public MapMessage with(String, float);
 public MapMessage with(String, int);
 public MapMessage with(String, long);
 public MapMessage with(String, Object);
 public MapMessage with(String, short);
 public MapMessage with(String, String);
}

org/apache/logging/log4j/message/ReusableMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ReusableMessageFactory implements MessageFactory2, java.io.Serializable {
 public static final ReusableMessageFactory INSTANCE;
 private static final long serialVersionUID = -8970940216592525651;
 private static ThreadLocal threadLocalParameterized;
 private static ThreadLocal threadLocalSimpleMessage;
 private static ThreadLocal threadLocalObjectMessage;
 public void ReusableMessageFactory();
 private static ReusableParameterizedMessage getParameterized();
 private static ReusableSimpleMessage getSimple();
 private static ReusableObjectMessage getObject();
 public static void release(Message);
 public Message newMessage(CharSequence);
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String);
 public Message newMessage(Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$AbstractFlowMessage.class

package org.apache.logging.log4j.message;
synchronized class DefaultFlowMessageFactory$AbstractFlowMessage implements FlowMessage {
 private static final long serialVersionUID = 1;
 private final Message message;
 private final String text;
 void DefaultFlowMessageFactory$AbstractFlowMessage(String, Message);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public Message getMessage();
 public String getText();
}

org/apache/logging/log4j/status/StatusData.class

package org.apache.logging.log4j.status;
public synchronized class StatusData implements java.io.Serializable {
 private static final long serialVersionUID = -4341916115118014017;
 private final long timestamp;
 private final StackTraceElement caller;
 private final org.apache.logging.log4j.Level level;
 private final org.apache.logging.log4j.message.Message msg;
 private String threadName;
 private final Throwable throwable;
 public void StatusData(StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, String);
 public long getTimestamp();
 public StackTraceElement getStackTraceElement();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.message.Message getMessage();
 public String getThreadName();
 public Throwable getThrowable();
 public String getFormattedStatus();
}

org/apache/logging/log4j/CloseableThreadContext$Instance.class

package org.apache.logging.log4j;
public synchronized class CloseableThreadContext$Instance implements AutoCloseable {
 private int pushCount;
 private final java.util.Map originalValues;
 private void CloseableThreadContext$Instance();
 public CloseableThreadContext$Instance push(String);
 public CloseableThreadContext$Instance push(String, Object[]);
 public CloseableThreadContext$Instance put(String, String);
 public CloseableThreadContext$Instance putAll(java.util.Map);
 public CloseableThreadContext$Instance pushAll(java.util.List);
 public void close();
 private void closeMap();
 private void closeStack();
}

org/apache/logging/log4j/spi/StandardLevel.class

package org.apache.logging.log4j.spi;
public final synchronized enum StandardLevel {
 public static final StandardLevel OFF;
 public static final StandardLevel FATAL;
 public static final StandardLevel ERROR;
 public static final StandardLevel WARN;
 public static final StandardLevel INFO;
 public static final StandardLevel DEBUG;
 public static final StandardLevel TRACE;
 public static final StandardLevel ALL;
 private static final java.util.EnumSet LEVELSET;
 private final int intLevel;
 public static StandardLevel[] values();
 public static StandardLevel valueOf(String);
 private void StandardLevel(String, int, int);
 public int intLevel();
 public static StandardLevel getStandardLevel(int);
 static void <clinit>();
}

org/apache/logging/log4j/spi/MutableThreadContextStack.class

package org.apache.logging.log4j.spi;
public synchronized class MutableThreadContextStack implements ThreadContextStack, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = 50505011;
 private final java.util.List list;
 private boolean frozen;
 public void MutableThreadContextStack();
 public void MutableThreadContextStack(java.util.List);
 private void MutableThreadContextStack(MutableThreadContextStack);
 private void checkInvariants();
 public String pop();
 public String peek();
 public void push(String);
 public int getDepth();
 public java.util.List asList();
 public void trim(int);
 public ThreadContextStack copy();
 public void clear();
 public int size();
 public boolean isEmpty();
 public boolean contains(Object);
 public java.util.Iterator iterator();
 public Object[] toArray();
 public Object[] toArray(Object[]);
 public boolean add(String);
 public boolean remove(Object);
 public boolean containsAll(java.util.Collection);
 public boolean addAll(java.util.Collection);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public String toString();
 public void formatTo(StringBuilder);
 public int hashCode();
 public boolean equals(Object);
 public org.apache.logging.log4j.ThreadContext$ContextStack getImmutableStackOrNull();
 public void freeze();
 public boolean isFrozen();
}

org/apache/logging/log4j/spi/Provider.class

package org.apache.logging.log4j.spi;
public synchronized class Provider {
 public static final String FACTORY_PRIORITY = FactoryPriority;
 public static final String THREAD_CONTEXT_MAP = ThreadContextMap;
 public static final String LOGGER_CONTEXT_FACTORY = LoggerContextFactory;
 private static final Integer DEFAULT_PRIORITY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final Integer priority;
 private final String className;
 private final Class loggerContextFactoryClass;
 private final String threadContextMap;
 private final Class threadContextMapClass;
 private final String versions;
 private final java.net.URL url;
 private final ref.WeakReference classLoader;
 public void Provider(java.util.Properties, java.net.URL, ClassLoader);
 public void Provider(Integer, String, Class);
 public void Provider(Integer, String, Class, Class);
 public String getVersions();
 public Integer getPriority();
 public String getClassName();
 public Class loadLoggerContextFactory();
 public String getThreadContextMap();
 public Class loadThreadContextMap();
 public java.net.URL getUrl();
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/spi/LoggerRegistry$WeakMapFactory.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry$WeakMapFactory implements LoggerRegistry$MapFactory {
 public void LoggerRegistry$WeakMapFactory();
 public java.util.Map createInnerMap();
 public java.util.Map createOuterMap();
 public void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/ThreadContextMap2.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextMap2 extends ThreadContextMap {
 public abstract void putAll(java.util.Map);
 public abstract org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
}

org/apache/logging/log4j/spi/Terminable.class

package org.apache.logging.log4j.spi;
public abstract interface Terminable {
 public abstract void terminate();
}

org/apache/logging/log4j/spi/LoggerContext.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContext {
 public abstract Object getExternalContext();
 public Object getObject(String);
 public Object putObject(String, Object);
 public Object putObjectIfAbsent(String, Object);
 public Object removeObject(String);
 public boolean removeObject(String, Object);
 public abstract ExtendedLogger getLogger(String);
 public ExtendedLogger getLogger(Class);
 public abstract ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public ExtendedLogger getLogger(Class, org.apache.logging.log4j.message.MessageFactory);
 public abstract boolean hasLogger(String);
 public abstract boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public abstract boolean hasLogger(String, Class);
}

org/apache/logging/log4j/spi/GarbageFreeSortedArrayThreadContextMap$1.class

package org.apache.logging.log4j.spi;
synchronized class GarbageFreeSortedArrayThreadContextMap$1 extends InheritableThreadLocal {
 void GarbageFreeSortedArrayThreadContextMap$1(GarbageFreeSortedArrayThreadContextMap);
 protected org.apache.logging.log4j.util.StringMap childValue(org.apache.logging.log4j.util.StringMap);
}

org/apache/logging/log4j/spi/ThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextMap {
 public abstract void clear();
 public abstract boolean containsKey(String);
 public abstract String get(String);
 public abstract java.util.Map getCopy();
 public abstract java.util.Map getImmutableMapOrNull();
 public abstract boolean isEmpty();
 public abstract void put(String, String);
 public abstract void remove(String);
}

org/apache/logging/log4j/spi/ThreadContextMapFactory.class

package org.apache.logging.log4j.spi;
public final synchronized class ThreadContextMapFactory {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String THREAD_CONTEXT_KEY = log4j2.threadContextMap;
 private static final String GC_FREE_THREAD_CONTEXT_KEY = log4j2.garbagefree.threadContextMap;
 private static boolean GcFreeThreadContextKey;
 private static String ThreadContextMapName;
 public static void init();
 private static void initPrivate();
 private void ThreadContextMapFactory();
 public static ThreadContextMap createThreadContextMap();
 private static ThreadContextMap createDefaultThreadContextMap();
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/Base64Util.class

package org.apache.logging.log4j.util;
public final synchronized class Base64Util {
 private static final java.util.Base64$Encoder encoder;
 private void Base64Util();
 public static String encode(String);
 static void <clinit>();
}

META-INF/NOTICE

Apache Log4j API
Copyright 1999-1969 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil.class

package org.apache.logging.log4j.util;
final synchronized class PrivateSecurityManagerStackTraceUtil {
 private static final PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager SECURITY_MANAGER;
 private void PrivateSecurityManagerStackTraceUtil();
 static boolean isEnabled();
 static java.util.Stack getCurrentStackTrace();
 static void <clinit>();
}

org/apache/logging/log4j/util/Base64Util.class

package org.apache.logging.log4j.util;
public final synchronized class Base64Util {
 private static reflect.Method encodeMethod;
 private static Object encoder;
 private void Base64Util();
 public static String encode(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/LoaderUtil$UrlResource.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$UrlResource {
 private final ClassLoader classLoader;
 private final java.net.URL url;
 void LoaderUtil$UrlResource(ClassLoader, java.net.URL);
 public ClassLoader getClassLoader();
 public java.net.URL getUrl();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/util/Unbox.class

package org.apache.logging.log4j.util;
public synchronized class Unbox {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int BITS_PER_INT = 32;
 private static final int RINGBUFFER_MIN_SIZE = 32;
 private static final int RINGBUFFER_SIZE;
 private static final int MASK;
 private static ThreadLocal threadLocalState;
 private static Unbox$WebSafeState webSafeState;
 private void Unbox();
 private static int calculateRingBufferSize(String);
 private static int ceilingNextPowerOfTwo(int);
 public static StringBuilder box(float);
 public static StringBuilder box(double);
 public static StringBuilder box(short);
 public static StringBuilder box(int);
 public static StringBuilder box(char);
 public static StringBuilder box(long);
 public static StringBuilder box(byte);
 public static StringBuilder box(boolean);
 private static Unbox$State getState();
 private static StringBuilder getSB();
 static int getRingbufferSize();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertiesUtil$Environment.class

package org.apache.logging.log4j.util;
synchronized class PropertiesUtil$Environment {
 private final java.util.Set sources;
 private final java.util.Map literal;
 private final java.util.Map normalized;
 private final java.util.Map tokenized;
 private void PropertiesUtil$Environment(PropertySource);
 private synchronized void reload();
 private static boolean hasSystemProperty(String);
 private String get(String);
 private boolean containsKey(String);
}

org/apache/logging/log4j/util/StringMap.class

package org.apache.logging.log4j.util;
public abstract interface StringMap extends ReadOnlyStringMap {
 public abstract void clear();
 public abstract boolean equals(Object);
 public abstract void freeze();
 public abstract int hashCode();
 public abstract boolean isFrozen();
 public abstract void putAll(ReadOnlyStringMap);
 public abstract void putValue(String, Object);
 public abstract void remove(String);
}

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil$1.class

package org.apache.logging.log4j.util;
synchronized class PrivateSecurityManagerStackTraceUtil$1 {
}

org/apache/logging/log4j/util/Chars.class

package org.apache.logging.log4j.util;
public final synchronized class Chars {
 public static final char CR = 13;
 public static final char DQUOTE = 34;
 public static final char EQ = 61;
 public static final char LF = 10;
 public static final char NUL = 0;
 public static final char QUOTE = 39;
 public static final char SPACE = 32;
 public static final char TAB = 9;
 public static char getUpperCaseHex(int);
 public static char getLowerCaseHex(int);
 private static char getNumericalDigit(int);
 private static char getUpperCaseAlphaDigit(int);
 private static char getLowerCaseAlphaDigit(int);
 private void Chars();
}

org/apache/logging/log4j/util/EnglishEnums.class

package org.apache.logging.log4j.util;
public final synchronized class EnglishEnums {
 private void EnglishEnums();
 public static Enum valueOf(Class, String);
 public static Enum valueOf(Class, String, Enum);
}

org/apache/logging/log4j/util/StringBuilders.class

package org.apache.logging.log4j.util;
public final synchronized class StringBuilders {
 private void StringBuilders();
 public static StringBuilder appendDqValue(StringBuilder, Object);
 public static StringBuilder appendKeyDqValue(StringBuilder, java.util.Map$Entry);
 public static StringBuilder appendKeyDqValue(StringBuilder, String, Object);
 public static void appendValue(StringBuilder, Object);
 public static boolean appendSpecificTypes(StringBuilder, Object);
 public static boolean equals(CharSequence, int, int, CharSequence, int, int);
 public static boolean equalsIgnoreCase(CharSequence, int, int, CharSequence, int, int);
 public static void trimToMaxSize(StringBuilder, int);
 public static void escapeJson(StringBuilder, int);
 private static int escapeAndDecrement(StringBuilder, int, char);
 public static void escapeXml(StringBuilder, int);
}

org/apache/logging/log4j/util/Supplier.class

package org.apache.logging.log4j.util;
public abstract interface Supplier {
 public abstract Object get();
}

org/apache/logging/log4j/MarkerManager.class

package org.apache.logging.log4j;
public final synchronized class MarkerManager {
 private static final java.util.concurrent.ConcurrentMap MARKERS;
 private void MarkerManager();
 public static void clear();
 public static boolean exists(String);
 public static Marker getMarker(String);
 public static Marker getMarker(String, String);
 public static Marker getMarker(String, Marker);
 private static void requireNonNull(Object, String);
 static void <clinit>();
}

org/apache/logging/log4j/ThreadContext$1.class

package org.apache.logging.log4j;
synchronized class ThreadContext$1 {
}

org/apache/logging/log4j/spi/ExtendedLogger.class

package org.apache.logging.log4j.spi;
public abstract interface ExtendedLogger extends org.apache.logging.log4j.Logger {
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public abstract transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public abstract transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public abstract transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
}

org/apache/logging/log4j/ThreadContext$ContextStack.class

package org.apache.logging.log4j;
public abstract interface ThreadContext$ContextStack extends java.io.Serializable, java.util.Collection {
 public abstract String pop();
 public abstract String peek();
 public abstract void push(String);
 public abstract int getDepth();
 public abstract java.util.List asList();
 public abstract void trim(int);
 public abstract ThreadContext$ContextStack copy();
 public abstract ThreadContext$ContextStack getImmutableStackOrNull();
}

org/apache/logging/log4j/CloseableThreadContext$1.class

package org.apache.logging.log4j;
synchronized class CloseableThreadContext$1 {
}

META-INF/LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

org/apache/logging/log4j/util/Strings.class

package org.apache.logging.log4j.util;
public final synchronized class Strings {
 private static final ThreadLocal tempStr;
 public static final String EMPTY = ;
 public static final String[] EMPTY_ARRAY;
 public static final String LINE_SEPARATOR;
 public static String dquote(String);
 public static boolean isBlank(String);
 public static boolean isEmpty(CharSequence);
 public static boolean isNotBlank(String);
 public static boolean isNotEmpty(CharSequence);
 public static String join(Iterable, char);
 public static String join(java.util.Iterator, char);
 public static String left(String, int);
 public static String quote(String);
 public static String trimToNull(String);
 private void Strings();
 public static String toRootUpperCase(String);
 public static String concat(String, String);
 public static String repeat(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertiesUtil$1.class

package org.apache.logging.log4j.util;
synchronized class PropertiesUtil$1 {
}

org/apache/logging/log4j/util/IndexedStringMap.class

package org.apache.logging.log4j.util;
public abstract interface IndexedStringMap extends IndexedReadOnlyStringMap, StringMap {
}

org/apache/logging/log4j/status/StatusConsoleListener.class

package org.apache.logging.log4j.status;
public synchronized class StatusConsoleListener implements StatusListener {
 private org.apache.logging.log4j.Level level;
 private String[] filters;
 private final java.io.PrintStream stream;
 public void StatusConsoleListener(org.apache.logging.log4j.Level);
 public void StatusConsoleListener(org.apache.logging.log4j.Level, java.io.PrintStream);
 public void setLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.Level getStatusLevel();
 public void log(StatusData);
 public transient void setFilters(String[]);
 private boolean filtered(StatusData);
 public void close() throws java.io.IOException;
}

org/apache/logging/log4j/spi/CleanableThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface CleanableThreadContextMap extends ThreadContextMap2 {
 public abstract void removeAll(Iterable);
}

org/apache/logging/log4j/spi/AbstractLogger$LocalLogBuilder.class

package org.apache.logging.log4j.spi;
synchronized class AbstractLogger$LocalLogBuilder extends ThreadLocal {
 private AbstractLogger logger;
 void AbstractLogger$LocalLogBuilder(AbstractLogger, AbstractLogger);
 protected org.apache.logging.log4j.internal.DefaultLogBuilder initialValue();
}

org/apache/logging/log4j/spi/CopyOnWriteSortedArrayThreadContextMap.class

package org.apache.logging.log4j.spi;
synchronized class CopyOnWriteSortedArrayThreadContextMap implements ReadOnlyThreadContextMap, ObjectThreadContextMap, CopyOnWrite {
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 protected static final int DEFAULT_INITIAL_CAPACITY = 16;
 protected static final String PROPERTY_NAME_INITIAL_CAPACITY = log4j2.ThreadContext.initial.capacity;
 private static final org.apache.logging.log4j.util.StringMap EMPTY_CONTEXT_DATA;
 private static volatile int initialCapacity;
 private static volatile boolean inheritableMap;
 private final ThreadLocal localMap;
 static void init();
 public void CopyOnWriteSortedArrayThreadContextMap();
 private ThreadLocal createThreadLocalMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public void put(String, String);
 public void putValue(String, Object);
 public void putAll(java.util.Map);
 public void putAllValues(java.util.Map);
 public String get(String);
 public Object getValue(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public boolean containsKey(String);
 public java.util.Map getCopy();
 public org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/LogBuilder.class

package org.apache.logging.log4j;
public abstract interface LogBuilder {
 public static final LogBuilder NOOP;
 public LogBuilder withMarker(Marker);
 public LogBuilder withThrowable(Throwable);
 public LogBuilder withLocation();
 public LogBuilder withLocation(StackTraceElement);
 public void log(CharSequence);
 public void log(String);
 public transient void log(String, Object[]);
 public transient void log(String, util.Supplier[]);
 public void log(message.Message);
 public void log(util.Supplier);
 public void log(Object);
 public void log(String, Object);
 public void log(String, Object, Object);
 public void log(String, Object, Object, Object);
 public void log(String, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log();
 static void <clinit>();
}

org/apache/logging/log4j/LogManager.class

package org.apache.logging.log4j;
public synchronized class LogManager {
 public static final String FACTORY_PROPERTY_NAME = log4j2.loggerContextFactory;
 public static final String ROOT_LOGGER_NAME = ;
 private static final Logger LOGGER;
 private static final String FQCN;
 private static volatile spi.LoggerContextFactory factory;
 protected void LogManager();
 public static boolean exists(String);
 public static spi.LoggerContext getContext();
 public static spi.LoggerContext getContext(boolean);
 public static spi.LoggerContext getContext(ClassLoader, boolean);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object);
 public static spi.LoggerContext getContext(ClassLoader, boolean, java.net.URI);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object, java.net.URI);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object, java.net.URI, String);
 protected static spi.LoggerContext getContext(String, boolean);
 protected static spi.LoggerContext getContext(String, ClassLoader, boolean);
 protected static spi.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI, String);
 public static void shutdown();
 public static void shutdown(boolean);
 public static void shutdown(boolean, boolean);
 public static void shutdown(spi.LoggerContext);
 public static spi.LoggerContextFactory getFactory();
 public static void setFactory(spi.LoggerContextFactory);
 public static Logger getFormatterLogger();
 public static Logger getFormatterLogger(Class);
 public static Logger getFormatterLogger(Object);
 public static Logger getFormatterLogger(String);
 private static Class callerClass(Class);
 public static Logger getLogger();
 public static Logger getLogger(Class);
 public static Logger getLogger(Class, message.MessageFactory);
 public static Logger getLogger(message.MessageFactory);
 public static Logger getLogger(Object);
 public static Logger getLogger(Object, message.MessageFactory);
 public static Logger getLogger(String);
 public static Logger getLogger(String, message.MessageFactory);
 protected static Logger getLogger(String, String);
 public static Logger getRootLogger();
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/ProcessIdUtil.class

package org.apache.logging.log4j.util;
public synchronized class ProcessIdUtil {
 public static final String DEFAULT_PROCESSID = -;
 public void ProcessIdUtil();
 public static String getProcessId();
}

META-INF/versions/9/org/apache/logging/log4j/util/StackLocator.class

package org.apache.logging.log4j.util;
public synchronized class StackLocator {
 private static final StackWalker walker;
 private static final StackWalker stackWalker;
 private static final StackLocator INSTANCE;
 public static StackLocator getInstance();
 private void StackLocator();
 public Class getCallerClass(Class, java.util.function.Predicate);
 public Class getCallerClass(String);
 public Class getCallerClass(String, String);
 public Class getCallerClass(Class);
 public Class getCallerClass(int);
 public java.util.Stack getCurrentStackTrace();
 public StackTraceElement calcLocation(String);
 public StackTraceElement getStackTraceElement(int);
 static void <clinit>();
}

org/apache/logging/log4j/util/Constants.class

package org.apache.logging.log4j.util;
public final synchronized class Constants {
 public static final boolean IS_WEB_APP;
 public static final boolean ENABLE_THREADLOCALS;
 public static final int JAVA_MAJOR_VERSION;
 public static final int MAX_REUSABLE_MESSAGE_SIZE;
 public static final String LOG4J2_DEBUG = log4j2.debug;
 public static final Object[] EMPTY_OBJECT_ARRAY;
 public static final byte[] EMPTY_BYTE_ARRAY;
 private static int size(String, int);
 private static boolean isClassAvailable(String);
 private void Constants();
 private static int getMajorVersion();
 static int getMajorVersion(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/StringBuilderFormattable.class

package org.apache.logging.log4j.util;
public abstract interface StringBuilderFormattable {
 public abstract void formatTo(StringBuilder);
}

org/apache/logging/log4j/util/PropertiesUtil.class

package org.apache.logging.log4j.util;
public final synchronized class PropertiesUtil {
 private static final String LOG4J_PROPERTIES_FILE_NAME = log4j2.component.properties;
 private static final String LOG4J_SYSTEM_PROPERTIES_FILE_NAME = log4j2.system.properties;
 private static final String SYSTEM = system:;
 private static final PropertiesUtil LOG4J_PROPERTIES;
 private final PropertiesUtil$Environment environment;
 public void PropertiesUtil(java.util.Properties);
 public void PropertiesUtil(String);
 static java.util.Properties loadClose(java.io.InputStream, Object);
 public static PropertiesUtil getProperties();
 public boolean hasProperty(String);
 public boolean getBooleanProperty(String);
 public boolean getBooleanProperty(String, boolean);
 public boolean getBooleanProperty(String, boolean, boolean);
 public Boolean getBooleanProperty(String[], String, Supplier);
 public java.nio.charset.Charset getCharsetProperty(String);
 public java.nio.charset.Charset getCharsetProperty(String, java.nio.charset.Charset);
 public double getDoubleProperty(String, double);
 public int getIntegerProperty(String, int);
 public Integer getIntegerProperty(String[], String, Supplier);
 public long getLongProperty(String, long);
 public Long getLongProperty(String[], String, Supplier);
 public java.time.Duration getDurationProperty(String, java.time.Duration);
 public java.time.Duration getDurationProperty(String[], String, Supplier);
 public String getStringProperty(String[], String, Supplier);
 public String getStringProperty(String);
 public String getStringProperty(String, String);
 public static java.util.Properties getSystemProperties();
 public void reload();
 public static java.util.Properties extractSubset(java.util.Properties, String);
 static java.util.ResourceBundle getCharsetsResourceBundle();
 public static java.util.Map partitionOnCommonPrefixes(java.util.Properties);
 public boolean isOsWindows();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertySource$Util.class

package org.apache.logging.log4j.util;
public final synchronized class PropertySource$Util {
 private static final String PREFIXES = (?i:^log4j2?[-._/]?|^org\.apache\.logging\.log4j\.)?;
 private static final java.util.regex.Pattern PROPERTY_TOKENIZER;
 private static final java.util.Map CACHE;
 public static java.util.List tokenize(CharSequence);
 public static CharSequence joinAsCamelCase(Iterable);
 private void PropertySource$Util();
 static void <clinit>();
}

org/apache/logging/log4j/util/Unbox$WebSafeState.class

package org.apache.logging.log4j.util;
synchronized class Unbox$WebSafeState {
 private final ThreadLocal ringBuffer;
 private final ThreadLocal current;
 private void Unbox$WebSafeState();
 public StringBuilder getStringBuilder();
 public boolean isBoxedPrimitive(StringBuilder);
}

org/apache/logging/log4j/message/MultiformatMessage.class

package org.apache.logging.log4j.message;
public abstract interface MultiformatMessage extends Message {
 public abstract String getFormattedMessage(String[]);
 public abstract String[] getFormats();
}

org/apache/logging/log4j/message/ThreadDumpMessage$BasicThreadInfoFactory.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$BasicThreadInfoFactory implements ThreadDumpMessage$ThreadInfoFactory {
 private void ThreadDumpMessage$BasicThreadInfoFactory();
 public java.util.Map createThreadInfo();
}

org/apache/logging/log4j/message/MapMessage$1.class

package org.apache.logging.log4j.message;
synchronized class MapMessage$1 {
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class ParameterizedMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final int DEFAULT_STRING_BUILDER_SIZE = 255;
 public static final String RECURSION_PREFIX = [...;
 public static final String RECURSION_SUFFIX = ...];
 public static final String ERROR_PREFIX = [!!!;
 public static final String ERROR_SEPARATOR = =>;
 public static final String ERROR_MSG_SEPARATOR = :;
 public static final String ERROR_SUFFIX = !!!];
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private static ThreadLocal threadLocalStringBuilder;
 private String messagePattern;
 private transient Object[] argArray;
 private String formattedMessage;
 private transient Throwable throwable;
 private int[] indices;
 private int usedCount;
 public void ParameterizedMessage(String, String[], Throwable);
 public void ParameterizedMessage(String, Object[], Throwable);
 public transient void ParameterizedMessage(String, Object[]);
 public void ParameterizedMessage(String, Object);
 public void ParameterizedMessage(String, Object, Object);
 private void init(String);
 private void initThrowable(Object[], int);
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public String getFormattedMessage();
 private static StringBuilder getThreadLocalStringBuilder();
 public void formatTo(StringBuilder);
 public static String format(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public static int countArgumentPlaceholders(String);
 public static String deepToString(Object);
 public static String identityToString(Object);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/status/StatusLogger$BoundedQueue.class

package org.apache.logging.log4j.status;
synchronized class StatusLogger$BoundedQueue extends java.util.concurrent.ConcurrentLinkedQueue {
 private static final long serialVersionUID = -3945953719763255337;
 private final int size;
 void StatusLogger$BoundedQueue(StatusLogger, int);
 public boolean add(Object);
}

org/apache/logging/log4j/simple/SimpleLoggerContextFactory.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLoggerContextFactory implements org.apache.logging.log4j.spi.LoggerContextFactory {
 private static org.apache.logging.log4j.spi.LoggerContext context;
 public void SimpleLoggerContextFactory();
 public org.apache.logging.log4j.spi.LoggerContext getContext(String, ClassLoader, Object, boolean);
 public org.apache.logging.log4j.spi.LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public void removeContext(org.apache.logging.log4j.spi.LoggerContext);
 public boolean isClassLoaderDependent();
 static void <clinit>();
}

org/apache/logging/log4j/spi/ThreadContextStack.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextStack extends org.apache.logging.log4j.ThreadContext$ContextStack {
}

org/apache/logging/log4j/spi/LoggerRegistry$MapFactory.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerRegistry$MapFactory {
 public abstract java.util.Map createInnerMap();
 public abstract java.util.Map createOuterMap();
 public abstract void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/LoggerAdapter.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerAdapter extends java.io.Closeable {
 public abstract Object getLogger(String);
}

org/apache/logging/log4j/Marker.class

package org.apache.logging.log4j;
public abstract interface Marker extends java.io.Serializable {
 public abstract transient Marker addParents(Marker[]);
 public abstract boolean equals(Object);
 public abstract String getName();
 public abstract Marker[] getParents();
 public abstract int hashCode();
 public abstract boolean hasParents();
 public abstract boolean isInstanceOf(Marker);
 public abstract boolean isInstanceOf(String);
 public abstract boolean remove(Marker);
 public abstract transient Marker setParents(Marker[]);
}

org/apache/logging/log4j/Level.class

package org.apache.logging.log4j;
public final synchronized class Level implements Comparable, java.io.Serializable {
 public static final Level OFF;
 public static final Level FATAL;
 public static final Level ERROR;
 public static final Level WARN;
 public static final Level INFO;
 public static final Level DEBUG;
 public static final Level TRACE;
 public static final Level ALL;
 public static final String CATEGORY = Level;
 private static final java.util.concurrent.ConcurrentMap LEVELS;
 private static final long serialVersionUID = 1581082;
 private final String name;
 private final int intLevel;
 private final spi.StandardLevel standardLevel;
 private void Level(String, int);
 public int intLevel();
 public spi.StandardLevel getStandardLevel();
 public boolean isInRange(Level, Level);
 public boolean isLessSpecificThan(Level);
 public boolean isMoreSpecificThan(Level);
 public Level clone() throws CloneNotSupportedException;
 public int compareTo(Level);
 public boolean equals(Object);
 public Class getDeclaringClass();
 public int hashCode();
 public String name();
 public String toString();
 public static Level forName(String, int);
 public static Level getLevel(String);
 public static Level toLevel(String);
 public static Level toLevel(String, Level);
 private static String toUpperCase(String);
 public static Level[] values();
 public static Level valueOf(String);
 public static Enum valueOf(Class, String);
 protected Object readResolve();
 static void <clinit>();
}

META-INF/versions/9/module-info.class

class module-info {
}

META-INF/maven/org.apache.logging.log4j/log4j-api/pom.xml

 4.0.0

 org.apache.logging.log4j
 log4j
 2.17.1
 ../

 log4j-api
 jar
 Apache Log4j API
 The Apache Log4j API

 ${basedir}/..
 API Documentation
 /api
 true

 org.apache.felix
 org.apache.felix.framework
 test

 org.osgi
 org.osgi.core
 provided

 org.junit.vintage
 junit-vintage-engine

 org.junit.jupiter
 junit-jupiter-migrationsupport

 org.junit.jupiter
 junit-jupiter-params

 org.junit.jupiter
 junit-jupiter-engine

 org.assertj
 assertj-core

 org.eclipse.tycho
 org.eclipse.osgi
 test

 org.apache.maven
 maven-core
 test

 org.apache.commons
 commons-lang3
 test

 com.fasterxml.jackson.core
 jackson-core
 test

 com.fasterxml.jackson.core
 jackson-databind
 test

 org.apache.maven.plugins
 maven-dependency-plugin
 3.0.2

 unpack-classes
 prepare-package

 unpack

 org.apache.logging.log4j
 log4j-api-java9
 ${project.version}
 zip
 false

 **/*.class
 **/*.java
 ${project.build.directory}
 false
 true

 org.codehaus.mojo
 build-helper-maven-plugin
 1.7

 add-source
 generate-sources

 add-source

 ${project.build.directory}/log4j-api-java9

 org.apache.maven.plugins
 maven-compiler-plugin

 default-compile

 1.8
 1.8

 org.apache.maven.plugins
 maven-surefire-plugin

 junit.jupiter.execution.parallel.enabled = true
 junit.jupiter.execution.parallel.mode.default = concurrent

 true
 true
 performance,smoke

 org.apache.maven.plugins
 maven-jar-plugin

 default-jar

 jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}
 true

 default

 test-jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}

 org.apache.maven.plugins
 maven-remote-resources-plugin

 process

 false

 org.apache.felix
 maven-bundle-plugin

 org.apache.logging.log4j.*

 sun.reflect;resolution:=optional,
 *

 org.apache.logging.log4j.util.Activator
 "Classes found in the wrong directory";is:=warning

 org.apache.maven.plugins
 maven-deploy-plugin
 ${deploy.plugin.version}

 org.apache.maven.plugins
 maven-changes-plugin
 ${changes.plugin.version}

 changes-report

 %URL%/show_bug.cgi?id=%ISSUE%
 true

 org.apache.maven.plugins
 maven-checkstyle-plugin
 ${checkstyle.plugin.version}

 ${log4jParentDir}/checkstyle.xml
 ${log4jParentDir}/checkstyle-suppressions.xml
 false
 basedir=${basedir}
 licensedir=${log4jParentDir}/checkstyle-header.txt

 org.apache.maven.plugins
 maven-javadoc-plugin
 ${javadoc.plugin.version}

 <p align="center">Copyright © {inceptionYear}-{currentYear} {organizationName}. All Rights Reserved.

 Apache Logging, Apache Log4j, Log4j, Apache, the Apache feather logo, the Apache Logging project logo,
 and the Apache Log4j logo are trademarks of The Apache Software Foundation.</p>

 none
 false
 true

 http://www.osgi.org/javadoc/r4v43/core/

 non-aggregate

 javadoc

 com.github.spotbugs
 spotbugs-maven-plugin

 org.apache.maven.plugins
 maven-jxr-plugin
 ${jxr.plugin.version}

 non-aggregate

 jxr

 aggregate

 aggregate

 org.apache.maven.plugins
 maven-pmd-plugin
 ${pmd.plugin.version}

 ${maven.compiler.target}

org/apache/logging/log4j/util/PropertiesPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class PropertiesPropertySource implements PropertySource {
 private static final String PREFIX = log4j2.;
 private final java.util.Properties properties;
 public void PropertiesPropertySource(java.util.Properties);
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/LoaderUtil$1.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$1 {
}

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager.class

package org.apache.logging.log4j.util;
final synchronized class PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager extends SecurityManager {
 private void PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager();
 protected Class[] getClassContext();
}

org/apache/logging/log4j/util/Timer.class

package org.apache.logging.log4j.util;
public synchronized class Timer implements java.io.Serializable, StringBuilderFormattable {
 private static final long serialVersionUID = 9175191792439630013;
 private final String name;
 private Timer$Status status;
 private long elapsedTime;
 private final int iterations;
 private static long NANO_PER_SECOND;
 private static long NANO_PER_MINUTE;
 private static long NANO_PER_HOUR;
 private ThreadLocal startTime;
 public void Timer(String);
 public void Timer(String, int);
 public synchronized void start();
 public synchronized void startOrResume();
 public synchronized String stop();
 public synchronized void pause();
 public synchronized void resume();
 public String getName();
 public long getElapsedTime();
 public long getElapsedNanoTime();
 public Timer$Status getStatus();
 public String toString();
 public void formatTo(StringBuilder);
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertySource.class

package org.apache.logging.log4j.util;
public abstract interface PropertySource {
 public abstract int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
 public String getProperty(String);
 public boolean containsProperty(String);
}

org/apache/logging/log4j/message/FormattedMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class FormattedMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 1;
 public void FormattedMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/LocalizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class LocalizedMessage implements Message, LoggerNameAwareMessage {
 private static final long serialVersionUID = 3893703791567290742;
 private String baseName;
 private transient java.util.ResourceBundle resourceBundle;
 private final java.util.Locale locale;
 private transient org.apache.logging.log4j.status.StatusLogger logger;
 private String loggerName;
 private String key;
 private String[] stringArgs;
 private transient Object[] argArray;
 private String formattedMessage;
 private transient Throwable throwable;
 public void LocalizedMessage(String, Object[]);
 public void LocalizedMessage(String, String, Object[]);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object[]);
 public void LocalizedMessage(String, java.util.Locale, String, Object[]);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object[]);
 public void LocalizedMessage(java.util.Locale, String, Object[]);
 public void LocalizedMessage(String, Object);
 public void LocalizedMessage(String, String, Object);
 public void LocalizedMessage(java.util.ResourceBundle, String);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object);
 public void LocalizedMessage(String, java.util.Locale, String, Object);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object);
 public void LocalizedMessage(java.util.Locale, String, Object);
 public void LocalizedMessage(String, Object, Object);
 public void LocalizedMessage(String, String, Object, Object);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object, Object);
 public void LocalizedMessage(String, java.util.Locale, String, Object, Object);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object, Object);
 public void LocalizedMessage(java.util.Locale, String, Object, Object);
 public void setLoggerName(String);
 public String getLoggerName();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 protected java.util.ResourceBundle getResourceBundle(String, java.util.Locale, boolean);
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
}

org/apache/logging/log4j/util/PropertySource$Comparator.class

package org.apache.logging.log4j.util;
public synchronized class PropertySource$Comparator implements java.util.Comparator, java.io.Serializable {
 private static final long serialVersionUID = 1;
 public void PropertySource$Comparator();
 public int compare(PropertySource, PropertySource);
}

org/apache/logging/log4j/util/FilteredObjectInputStream.class

package org.apache.logging.log4j.util;
public synchronized class FilteredObjectInputStream extends java.io.ObjectInputStream {
 private static final java.util.Set REQUIRED_JAVA_CLASSES;
 private static final java.util.Set REQUIRED_JAVA_PACKAGES;
 private final java.util.Collection allowedExtraClasses;
 public void FilteredObjectInputStream() throws java.io.IOException, SecurityException;
 public void FilteredObjectInputStream(java.io.InputStream) throws java.io.IOException;
 public void FilteredObjectInputStream(java.util.Collection) throws java.io.IOException, SecurityException;
 public void FilteredObjectInputStream(java.io.InputStream, java.util.Collection) throws java.io.IOException;
 public java.util.Collection getAllowedClasses();
 protected Class resolveClass(java.io.ObjectStreamClass) throws java.io.IOException, ClassNotFoundException;
 private static boolean isAllowedByDefault(String);
 private static boolean isRequiredPackage(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/Timer$1.class

package org.apache.logging.log4j.util;
synchronized class Timer$1 extends ThreadLocal {
 void Timer$1(Timer);
 protected Long initialValue();
}

org/apache/logging/log4j/util/ProviderUtil.class

package org.apache.logging.log4j.util;
public final synchronized class ProviderUtil {
 protected static final String PROVIDER_RESOURCE = META-INF/log4j-provider.properties;
 protected static final java.util.Collection PROVIDERS;
 protected static final java.util.concurrent.locks.Lock STARTUP_LOCK;
 private static final String API_VERSION = Log4jAPIVersion;
 private static final String[] COMPATIBLE_API_VERSIONS;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile ProviderUtil instance;
 private void ProviderUtil();
 protected static void addProvider(org.apache.logging.log4j.spi.Provider);
 protected static void loadProvider(java.net.URL, ClassLoader);
 protected static void loadProviders(ClassLoader);
 protected static void loadProviders(java.util.Enumeration, ClassLoader);
 public static Iterable getProviders();
 public static boolean hasProviders();
 protected static void lazyInit();
 public static ClassLoader findClassLoader();
 private static boolean validVersion(String);
 static void <clinit>();
}

org/apache/logging/log4j/message/MapMessageJsonFormatter.class

package org.apache.logging.log4j.message;
final synchronized enum MapMessageJsonFormatter {
 public static final int MAX_DEPTH;
 private static final char DQUOTE = 34;
 private static final char RBRACE = 93;
 private static final char LBRACE = 91;
 private static final char COMMA = 44;
 private static final char RCURLY = 125;
 private static final char LCURLY = 123;
 private static final char COLON = 58;
 public static MapMessageJsonFormatter[] values();
 public static MapMessageJsonFormatter valueOf(String);
 private void MapMessageJsonFormatter(String, int);
 private static int readMaxDepth();
 static void format(StringBuilder, Object);
 private static void format(StringBuilder, Object, int);
 private static void formatIndexedStringMap(StringBuilder, org.apache.logging.log4j.util.IndexedStringMap, int);
 private static void formatMap(StringBuilder, java.util.Map, int);
 private static void formatList(StringBuilder, java.util.List, int);
 private static void formatCollection(StringBuilder, java.util.Collection, int);
 private static void formatNumber(StringBuilder, Number);
 private static void formatBoolean(StringBuilder, boolean);
 private static void formatFormattable(StringBuilder, org.apache.logging.log4j.util.StringBuilderFormattable);
 private static void formatCharArray(StringBuilder, char[]);
 private static void formatBooleanArray(StringBuilder, boolean[]);
 private static void formatByteArray(StringBuilder, byte[]);
 private static void formatShortArray(StringBuilder, short[]);
 private static void formatIntArray(StringBuilder, int[]);
 private static void formatLongArray(StringBuilder, long[]);
 private static void formatFloatArray(StringBuilder, float[]);
 private static void formatDoubleArray(StringBuilder, double[]);
 private static void formatObjectArray(StringBuilder, Object[], int);
 private static void formatString(StringBuilder, Object);
 static void <clinit>();
}

org/apache/logging/log4j/status/StatusListener.class

package org.apache.logging.log4j.status;
public abstract interface StatusListener extends java.io.Closeable, java.util.EventListener {
 public abstract void log(StatusData);
 public abstract org.apache.logging.log4j.Level getStatusLevel();
}

org/apache/logging/log4j/simple/SimpleLoggerContext.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLoggerContext implements org.apache.logging.log4j.spi.LoggerContext {
 private static final String SYSTEM_OUT = system.out;
 private static final String SYSTEM_ERR = system.err;
 protected static final String DEFAULT_DATE_TIME_FORMAT = yyyy/MM/dd HH:mm:ss:SSS zzz;
 protected static final String SYSTEM_PREFIX = org.apache.logging.log4j.simplelog.;
 private final org.apache.logging.log4j.util.PropertiesUtil props;
 private final boolean showLogName;
 private final boolean showShortName;
 private final boolean showDateTime;
 private final boolean showContextMap;
 private final String dateTimeFormat;
 private final org.apache.logging.log4j.Level defaultLevel;
 private final java.io.PrintStream stream;
 private final org.apache.logging.log4j.spi.LoggerRegistry loggerRegistry;
 public void SimpleLoggerContext();
 public org.apache.logging.log4j.spi.ExtendedLogger getLogger(String);
 public org.apache.logging.log4j.spi.ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public Object getExternalContext();
}

org/apache/logging/log4j/spi/CopyOnWrite.class

package org.apache.logging.log4j.spi;
public abstract interface CopyOnWrite {
}

org/apache/logging/log4j/spi/ExtendedLoggerWrapper.class

package org.apache.logging.log4j.spi;
public synchronized class ExtendedLoggerWrapper extends AbstractLogger {
 private static final long serialVersionUID = 1;
 protected final ExtendedLogger logger;
 public void ExtendedLoggerWrapper(ExtendedLogger, String, org.apache.logging.log4j.message.MessageFactory);
 public org.apache.logging.log4j.Level getLevel();
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/spi/NoOpThreadContextMap.class

package org.apache.logging.log4j.spi;
public synchronized class NoOpThreadContextMap implements ThreadContextMap {
 public void NoOpThreadContextMap();
 public void clear();
 public boolean containsKey(String);
 public String get(String);
 public java.util.Map getCopy();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public void put(String, String);
 public void remove(String);
}

org/apache/logging/log4j/spi/DefaultThreadContextMap$1.class

package org.apache.logging.log4j.spi;
final synchronized class DefaultThreadContextMap$1 extends InheritableThreadLocal {
 void DefaultThreadContextMap$1(boolean);
 protected java.util.Map childValue(java.util.Map);
}

org/apache/logging/log4j/spi/GarbageFreeSortedArrayThreadContextMap.class

package org.apache.logging.log4j.spi;
synchronized class GarbageFreeSortedArrayThreadContextMap implements ReadOnlyThreadContextMap, ObjectThreadContextMap {
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 protected static final int DEFAULT_INITIAL_CAPACITY = 16;
 protected static final String PROPERTY_NAME_INITIAL_CAPACITY = log4j2.ThreadContext.initial.capacity;
 protected final ThreadLocal localMap;
 private static volatile int initialCapacity;
 private static volatile boolean inheritableMap;
 static void init();
 public void GarbageFreeSortedArrayThreadContextMap();
 private ThreadLocal createThreadLocalMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap(org.apache.logging.log4j.util.ReadOnlyStringMap);
 private org.apache.logging.log4j.util.StringMap getThreadLocalMap();
 public void put(String, String);
 public void putValue(String, Object);
 public void putAll(java.util.Map);
 public void putAllValues(java.util.Map);
 public String get(String);
 public Object getValue(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public boolean containsKey(String);
 public java.util.Map getCopy();
 public org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/spi/ObjectThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ObjectThreadContextMap extends CleanableThreadContextMap {
 public abstract Object getValue(String);
 public abstract void putValue(String, Object);
 public abstract void putAllValues(java.util.Map);
}

org/apache/logging/log4j/spi/AbstractLogger.class

package org.apache.logging.log4j.spi;
public abstract synchronized class AbstractLogger implements ExtendedLogger, LocationAwareLogger, java.io.Serializable {
 public static final org.apache.logging.log4j.Marker FLOW_MARKER;
 public static final org.apache.logging.log4j.Marker ENTRY_MARKER;
 public static final org.apache.logging.log4j.Marker EXIT_MARKER;
 public static final org.apache.logging.log4j.Marker EXCEPTION_MARKER;
 public static final org.apache.logging.log4j.Marker THROWING_MARKER;
 public static final org.apache.logging.log4j.Marker CATCHING_MARKER;
 public static final Class DEFAULT_MESSAGE_FACTORY_CLASS;
 public static final Class DEFAULT_FLOW_MESSAGE_FACTORY_CLASS;
 private static final long serialVersionUID = 2;
 private static final String FQCN;
 private static final String THROWING = Throwing;
 private static final String CATCHING = Catching;
 protected final String name;
 private final org.apache.logging.log4j.message.MessageFactory2 messageFactory;
 private final org.apache.logging.log4j.message.FlowMessageFactory flowMessageFactory;
 private static final ThreadLocal recursionDepthHolder;
 protected final transient ThreadLocal logBuilder;
 public void AbstractLogger();
 public void AbstractLogger(String);
 public void AbstractLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public static void checkMessageFactory(ExtendedLogger, org.apache.logging.log4j.message.MessageFactory);
 public void catching(org.apache.logging.log4j.Level, Throwable);
 protected void catching(String, org.apache.logging.log4j.Level, Throwable);
 public void catching(Throwable);
 protected org.apache.logging.log4j.message.Message catchingMsg(Throwable);
 private static Class createClassForProperty(String, Class, Class);
 private static Class createFlowClassForProperty(String, Class);
 private static org.apache.logging.log4j.message.MessageFactory2 createDefaultMessageFactory();
 private static org.apache.logging.log4j.message.MessageFactory2 narrow(org.apache.logging.log4j.message.MessageFactory);
 private static org.apache.logging.log4j.message.FlowMessageFactory createDefaultFlowMessageFactory();
 public void debug(org.apache.logging.log4j.Marker, CharSequence);
 public void debug(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void debug(org.apache.logging.log4j.Marker, Object);
 public void debug(org.apache.logging.log4j.Marker, Object, Throwable);
 public void debug(org.apache.logging.log4j.Marker, String);
 public transient void debug(org.apache.logging.log4j.Marker, String, Object[]);
 public void debug(org.apache.logging.log4j.Marker, String, Throwable);
 public void debug(org.apache.logging.log4j.message.Message);
 public void debug(org.apache.logging.log4j.message.Message, Throwable);
 public void debug(CharSequence);
 public void debug(CharSequence, Throwable);
 public void debug(Object);
 public void debug(Object, Throwable);
 public void debug(String);
 public transient void debug(String, Object[]);
 public void debug(String, Throwable);
 public void debug(org.apache.logging.log4j.util.Supplier);
 public void debug(org.apache.logging.log4j.util.Supplier, Throwable);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void debug(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void debug(String, org.apache.logging.log4j.util.Supplier[]);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void debug(org.apache.logging.log4j.util.MessageSupplier);
 public void debug(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void debug(org.apache.logging.log4j.Marker, String, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object);
 public void debug(String, Object, Object);
 public void debug(String, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, org.apache.logging.log4j.util.Supplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, org.apache.logging.log4j.util.MessageSupplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, Object[]);
 protected org.apache.logging.log4j.message.EntryMessage enter(String, org.apache.logging.log4j.util.MessageSupplier);
 protected org.apache.logging.log4j.message.EntryMessage enter(String, org.apache.logging.log4j.message.Message);
 public void entry();
 public transient void entry(Object[]);
 protected transient void entry(String, Object[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, Object[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, org.apache.logging.log4j.util.MessageSupplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void error(org.apache.logging.log4j.Marker, CharSequence);
 public void error(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void error(org.apache.logging.log4j.Marker, Object);
 public void error(org.apache.logging.log4j.Marker, Object, Throwable);
 public void error(org.apache.logging.log4j.Marker, String);
 public transient void error(org.apache.logging.log4j.Marker, String, Object[]);
 public void error(org.apache.logging.log4j.Marker, String, Throwable);
 public void error(org.apache.logging.log4j.message.Message);
 public void error(org.apache.logging.log4j.message.Message, Throwable);
 public void error(CharSequence);
 public void error(CharSequence, Throwable);
 public void error(Object);
 public void error(Object, Throwable);
 public void error(String);
 public transient void error(String, Object[]);
 public void error(String, Throwable);
 public void error(org.apache.logging.log4j.util.Supplier);
 public void error(org.apache.logging.log4j.util.Supplier, Throwable);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void error(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void error(String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void error(org.apache.logging.log4j.util.MessageSupplier);
 public void error(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void error(org.apache.logging.log4j.Marker, String, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object);
 public void error(String, Object, Object);
 public void error(String, Object, Object, Object);
 public void error(String, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void exit();
 public Object exit(Object);
 protected Object exit(String, Object);
 protected Object exit(String, String, Object);
 protected org.apache.logging.log4j.message.Message exitMsg(String, Object);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, CharSequence);
 public void fatal(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, Object);
 public void fatal(org.apache.logging.log4j.Marker, Object, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, String);
 public transient void fatal(org.apache.logging.log4j.Marker, String, Object[]);
 public void fatal(org.apache.logging.log4j.Marker, String, Throwable);
 public void fatal(org.apache.logging.log4j.message.Message);
 public void fatal(org.apache.logging.log4j.message.Message, Throwable);
 public void fatal(CharSequence);
 public void fatal(CharSequence, Throwable);
 public void fatal(Object);
 public void fatal(Object, Throwable);
 public void fatal(String);
 public transient void fatal(String, Object[]);
 public void fatal(String, Throwable);
 public void fatal(org.apache.logging.log4j.util.Supplier);
 public void fatal(org.apache.logging.log4j.util.Supplier, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void fatal(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void fatal(String, org.apache.logging.log4j.util.Supplier[]);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void fatal(org.apache.logging.log4j.util.MessageSupplier);
 public void fatal(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, String, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object);
 public void fatal(String, Object, Object);
 public void fatal(String, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.MessageFactory getMessageFactory();
 public String getName();
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void info(org.apache.logging.log4j.Marker, CharSequence);
 public void info(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void info(org.apache.logging.log4j.Marker, Object);
 public void info(org.apache.logging.log4j.Marker, Object, Throwable);
 public void info(org.apache.logging.log4j.Marker, String);
 public transient void info(org.apache.logging.log4j.Marker, String, Object[]);
 public void info(org.apache.logging.log4j.Marker, String, Throwable);
 public void info(org.apache.logging.log4j.message.Message);
 public void info(org.apache.logging.log4j.message.Message, Throwable);
 public void info(CharSequence);
 public void info(CharSequence, Throwable);
 public void info(Object);
 public void info(Object, Throwable);
 public void info(String);
 public transient void info(String, Object[]);
 public void info(String, Throwable);
 public void info(org.apache.logging.log4j.util.Supplier);
 public void info(org.apache.logging.log4j.util.Supplier, Throwable);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void info(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void info(String, org.apache.logging.log4j.util.Supplier[]);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void info(org.apache.logging.log4j.util.MessageSupplier);
 public void info(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void info(org.apache.logging.log4j.Marker, String, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object);
 public void info(String, Object, Object);
 public void info(String, Object, Object, Object);
 public void info(String, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isDebugEnabled();
 public boolean isDebugEnabled(org.apache.logging.log4j.Marker);
 public boolean isEnabled(org.apache.logging.log4j.Level);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker);
 public boolean isErrorEnabled();
 public boolean isErrorEnabled(org.apache.logging.log4j.Marker);
 public boolean isFatalEnabled();
 public boolean isFatalEnabled(org.apache.logging.log4j.Marker);
 public boolean isInfoEnabled();
 public boolean isInfoEnabled(org.apache.logging.log4j.Marker);
 public boolean isTraceEnabled();
 public boolean isTraceEnabled(org.apache.logging.log4j.Marker);
 public boolean isWarnEnabled();
 public boolean isWarnEnabled(org.apache.logging.log4j.Marker);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, CharSequence);
 public void log(org.apache.logging.log4j.Level, CharSequence, Throwable);
 public void log(org.apache.logging.log4j.Level, Object);
 public void log(org.apache.logging.log4j.Level, Object, Throwable);
 public void log(org.apache.logging.log4j.Level, String);
 public transient void log(org.apache.logging.log4j.Level, String, Object[]);
 public void log(org.apache.logging.log4j.Level, String, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.Supplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.Supplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void log(org.apache.logging.log4j.Level, String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.MessageSupplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 protected transient void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected transient void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void logMessage(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 protected void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 public transient void printf(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public transient void printf(org.apache.logging.log4j.Level, String, Object[]);
 private void logMessageSafely(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logMessageTrackRecursion(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private static int[] getRecursionDepthHolder();
 private static void incrementRecursionDepth();
 private static void decrementRecursionDepth();
 public static int getRecursionDepth();
 private void tryLogMessage(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement getLocation(String);
 private void handleLogMessageException(Throwable, String, org.apache.logging.log4j.message.Message);
 public Throwable throwing(Throwable);
 public Throwable throwing(org.apache.logging.log4j.Level, Throwable);
 protected Throwable throwing(String, org.apache.logging.log4j.Level, Throwable);
 protected org.apache.logging.log4j.message.Message throwingMsg(Throwable);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void trace(org.apache.logging.log4j.Marker, CharSequence);
 public void trace(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void trace(org.apache.logging.log4j.Marker, Object);
 public void trace(org.apache.logging.log4j.Marker, Object, Throwable);
 public void trace(org.apache.logging.log4j.Marker, String);
 public transient void trace(org.apache.logging.log4j.Marker, String, Object[]);
 public void trace(org.apache.logging.log4j.Marker, String, Throwable);
 public void trace(org.apache.logging.log4j.message.Message);
 public void trace(org.apache.logging.log4j.message.Message, Throwable);
 public void trace(CharSequence);
 public void trace(CharSequence, Throwable);
 public void trace(Object);
 public void trace(Object, Throwable);
 public void trace(String);
 public transient void trace(String, Object[]);
 public void trace(String, Throwable);
 public void trace(org.apache.logging.log4j.util.Supplier);
 public void trace(org.apache.logging.log4j.util.Supplier, Throwable);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void trace(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void trace(String, org.apache.logging.log4j.util.Supplier[]);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void trace(org.apache.logging.log4j.util.MessageSupplier);
 public void trace(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void trace(org.apache.logging.log4j.Marker, String, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object);
 public void trace(String, Object, Object);
 public void trace(String, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.EntryMessage traceEntry();
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(String, Object[]);
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(org.apache.logging.log4j.util.Supplier[]);
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(String, org.apache.logging.log4j.util.Supplier[]);
 public org.apache.logging.log4j.message.EntryMessage traceEntry(org.apache.logging.log4j.message.Message);
 public void traceExit();
 public Object traceExit(Object);
 public Object traceExit(String, Object);
 public void traceExit(org.apache.logging.log4j.message.EntryMessage);
 public Object traceExit(org.apache.logging.log4j.message.EntryMessage, Object);
 public Object traceExit(org.apache.logging.log4j.message.Message, Object);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void warn(org.apache.logging.log4j.Marker, CharSequence);
 public void warn(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void warn(org.apache.logging.log4j.Marker, Object);
 public void warn(org.apache.logging.log4j.Marker, Object, Throwable);
 public void warn(org.apache.logging.log4j.Marker, String);
 public transient void warn(org.apache.logging.log4j.Marker, String, Object[]);
 public void warn(org.apache.logging.log4j.Marker, String, Throwable);
 public void warn(org.apache.logging.log4j.message.Message);
 public void warn(org.apache.logging.log4j.message.Message, Throwable);
 public void warn(CharSequence);
 public void warn(CharSequence, Throwable);
 public void warn(Object);
 public void warn(Object, Throwable);
 public void warn(String);
 public transient void warn(String, Object[]);
 public void warn(String, Throwable);
 public void warn(org.apache.logging.log4j.util.Supplier);
 public void warn(org.apache.logging.log4j.util.Supplier, Throwable);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void warn(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void warn(String, org.apache.logging.log4j.util.Supplier[]);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void warn(org.apache.logging.log4j.util.MessageSupplier);
 public void warn(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void warn(org.apache.logging.log4j.Marker, String, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object);
 public void warn(String, Object, Object);
 public void warn(String, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected boolean requiresLocation();
 public org.apache.logging.log4j.LogBuilder atTrace();
 public org.apache.logging.log4j.LogBuilder atDebug();
 public org.apache.logging.log4j.LogBuilder atInfo();
 public org.apache.logging.log4j.LogBuilder atWarn();
 public org.apache.logging.log4j.LogBuilder atError();
 public org.apache.logging.log4j.LogBuilder atFatal();
 public org.apache.logging.log4j.LogBuilder always();
 public org.apache.logging.log4j.LogBuilder atLevel(org.apache.logging.log4j.Level);
 private org.apache.logging.log4j.internal.DefaultLogBuilder getLogBuilder(org.apache.logging.log4j.Level);
 private void readObject(java.io.ObjectInputStream) throws ClassNotFoundException, java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/util/MultiFormatStringBuilderFormattable.class

package org.apache.logging.log4j.util;
public abstract interface MultiFormatStringBuilderFormattable extends org.apache.logging.log4j.message.MultiformatMessage, StringBuilderFormattable {
 public abstract void formatTo(String[], StringBuilder);
}

org/apache/logging/log4j/util/Timer$Status.class

package org.apache.logging.log4j.util;
public final synchronized enum Timer$Status {
 public static final Timer$Status Started;
 public static final Timer$Status Stopped;
 public static final Timer$Status Paused;
 public static Timer$Status[] values();
 public static Timer$Status valueOf(String);
 private void Timer$Status(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertyFilePropertySource.class

package org.apache.logging.log4j.util;
public synchronized class PropertyFilePropertySource extends PropertiesPropertySource {
 public void PropertyFilePropertySource(String);
 private static java.util.Properties loadPropertiesFile(String);
 public int getPriority();
}

org/apache/logging/log4j/util/ProcessIdUtil.class

package org.apache.logging.log4j.util;
public synchronized class ProcessIdUtil {
 public static final String DEFAULT_PROCESSID = -;
 public void ProcessIdUtil();
 public static String getProcessId();
}

org/apache/logging/log4j/ThreadContext$EmptyThreadContextStack.class

package org.apache.logging.log4j;
synchronized class ThreadContext$EmptyThreadContextStack extends java.util.AbstractCollection implements spi.ThreadContextStack {
 private static final long serialVersionUID = 1;
 private static final java.util.Iterator EMPTY_ITERATOR;
 private void ThreadContext$EmptyThreadContextStack();
 public String pop();
 public String peek();
 public void push(String);
 public int getDepth();
 public java.util.List asList();
 public void trim(int);
 public boolean equals(Object);
 public int hashCode();
 public ThreadContext$ContextStack copy();
 public Object[] toArray(Object[]);
 public boolean add(String);
 public boolean containsAll(java.util.Collection);
 public boolean addAll(java.util.Collection);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public java.util.Iterator iterator();
 public int size();
 public ThreadContext$ContextStack getImmutableStackOrNull();
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterFormatter.class

package org.apache.logging.log4j.message;
final synchronized class ParameterFormatter {
 static final String RECURSION_PREFIX = [...;
 static final String RECURSION_SUFFIX = ...];
 static final String ERROR_PREFIX = [!!!;
 static final String ERROR_SEPARATOR = =>;
 static final String ERROR_MSG_SEPARATOR = :;
 static final String ERROR_SUFFIX = !!!];
 private static final char DELIM_START = 123;
 private static final char DELIM_STOP = 125;
 private static final char ESCAPE_CHAR = 92;
 private static final ThreadLocal SIMPLE_DATE_FORMAT_REF;
 private void ParameterFormatter();
 static int countArgumentPlaceholders(String);
 static int countArgumentPlaceholders2(String, int[]);
 static int countArgumentPlaceholders3(char[], int, int[]);
 static String format(String, Object[]);
 static void formatMessage2(StringBuilder, String, Object[], int, int[]);
 static void formatMessage3(StringBuilder, char[], int, Object[], int, int[]);
 static void formatMessage(StringBuilder, String, Object[], int);
 private static boolean isDelimPair(char, String, int);
 private static void handleRemainingCharIfAny(String, int, StringBuilder, int, int);
 private static void handleLastChar(StringBuilder, int, char);
 private static void handleLiteralChar(StringBuilder, int, char);
 private static void writeDelimPair(StringBuilder);
 private static boolean isOdd(int);
 private static void writeEscapedEscapeChars(int, StringBuilder);
 private static void writeUnescapedEscapeChars(int, StringBuilder);
 private static void writeArgOrDelimPair(Object[], int, int, StringBuilder);
 static String deepToString(Object);
 static void recursiveDeepToString(Object, StringBuilder);
 private static void recursiveDeepToString(Object, StringBuilder, java.util.Set);
 private static boolean appendSpecialTypes(Object, StringBuilder);
 private static boolean appendDate(Object, StringBuilder);
 private static boolean isMaybeRecursive(Object);
 private static void appendPotentiallyRecursiveValue(Object, StringBuilder, java.util.Set);
 private static void appendArray(Object, StringBuilder, java.util.Set, Class);
 private static void appendMap(Object, StringBuilder, java.util.Set);
 private static void appendCollection(Object, StringBuilder, java.util.Set);
 private static java.util.Set getOrCreateDejaVu(java.util.Set);
 private static java.util.Set createDejaVu();
 private static java.util.Set cloneDejaVu(java.util.Set);
 private static void tryObjectToString(Object, StringBuilder);
 private static void handleErrorInObjectToString(Object, StringBuilder, Throwable);
 static String identityToString(Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/ObjectMessage.class

package org.apache.logging.log4j.message;
public synchronized class ObjectMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = -5903272448334166185;
 private transient Object obj;
 private transient String objectString;
 public void ObjectMessage(Object);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object getParameter();
 public Object[] getParameters();
 public boolean equals(Object);
 private boolean equalObjectsOrStrings(Object, Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$SimpleEntryMessage.class

package org.apache.logging.log4j.message;
final synchronized class DefaultFlowMessageFactory$SimpleEntryMessage extends DefaultFlowMessageFactory$AbstractFlowMessage implements EntryMessage {
 private static final long serialVersionUID = 1;
 void DefaultFlowMessageFactory$SimpleEntryMessage(String, Message);
}

org/apache/logging/log4j/message/FormattedMessage.class

package org.apache.logging.log4j.message;
public synchronized class FormattedMessage implements Message {
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private static final String FORMAT_SPECIFIER = %(\d+\$)?([-#+ 0,(\<]*)?(\d+)?(\.\d+)?([tT])?([a-zA-Z%]);
 private static final java.util.regex.Pattern MSG_PATTERN;
 private String messagePattern;
 private transient Object[] argArray;
 private String[] stringArgs;
 private transient String formattedMessage;
 private final Throwable throwable;
 private Message message;
 private final java.util.Locale locale;
 public void FormattedMessage(java.util.Locale, String, Object);
 public void FormattedMessage(java.util.Locale, String, Object, Object);
 public transient void FormattedMessage(java.util.Locale, String, Object[]);
 public void FormattedMessage(java.util.Locale, String, Object[], Throwable);
 public void FormattedMessage(String, Object);
 public void FormattedMessage(String, Object, Object);
 public transient void FormattedMessage(String, Object[]);
 public void FormattedMessage(String, Object[], Throwable);
 public boolean equals(Object);
 public String getFormat();
 public String getFormattedMessage();
 protected Message getMessage(String, Object[], Throwable);
 public Object[] getParameters();
 public Throwable getThrowable();
 public int hashCode();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/simple/SimpleLogger.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLogger extends org.apache.logging.log4j.spi.AbstractLogger {
 private static final long serialVersionUID = 1;
 private static final char SPACE = 32;
 private final java.text.DateFormat dateFormatter;
 private org.apache.logging.log4j.Level level;
 private final boolean showDateTime;
 private final boolean showContextMap;
 private java.io.PrintStream stream;
 private final String logName;
 public void SimpleLogger(String, org.apache.logging.log4j.Level, boolean, boolean, boolean, boolean, String, org.apache.logging.log4j.message.MessageFactory, org.apache.logging.log4j.util.PropertiesUtil, java.io.PrintStream);
 public org.apache.logging.log4j.Level getLevel();
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void setLevel(org.apache.logging.log4j.Level);
 public void setStream(java.io.PrintStream);
}

org/apache/logging/log4j/ThreadContext$EmptyIterator.class

package org.apache.logging.log4j;
synchronized class ThreadContext$EmptyIterator implements java.util.Iterator {
 private void ThreadContext$EmptyIterator();
 public boolean hasNext();
 public Object next();
 public void remove();
}

org/apache/logging/log4j/MarkerManager$Log4jMarker.class

package org.apache.logging.log4j;
public synchronized class MarkerManager$Log4jMarker implements Marker, util.StringBuilderFormattable {
 private static final long serialVersionUID = 100;
 private final String name;
 private volatile Marker[] parents;
 private void MarkerManager$Log4jMarker();
 public void MarkerManager$Log4jMarker(String);
 public synchronized transient Marker addParents(Marker[]);
 public synchronized boolean remove(Marker);
 public transient Marker setParents(Marker[]);
 public String getName();
 public Marker[] getParents();
 public boolean hasParents();
 public boolean isInstanceOf(Marker);
 public boolean isInstanceOf(String);
 private static boolean checkParent(Marker, Marker);
 private static transient boolean contains(Marker, Marker[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public void formatTo(StringBuilder);
 private static transient void addParentInfo(StringBuilder, Marker[]);
}

org/apache/logging/log4j/LoggingException.class

package org.apache.logging.log4j;
public synchronized class LoggingException extends RuntimeException {
 private static final long serialVersionUID = 6366395965071580537;
 public void LoggingException(String);
 public void LoggingException(String, Throwable);
 public void LoggingException(Throwable);
}

org/apache/logging/log4j/ThreadContext.class

package org.apache.logging.log4j;
public final synchronized class ThreadContext {
 public static final java.util.Map EMPTY_MAP;
 public static final spi.ThreadContextStack EMPTY_STACK;
 private static final String DISABLE_MAP = disableThreadContextMap;
 private static final String DISABLE_STACK = disableThreadContextStack;
 private static final String DISABLE_ALL = disableThreadContext;
 private static boolean useStack;
 private static spi.ThreadContextMap contextMap;
 private static spi.ThreadContextStack contextStack;
 private static spi.ReadOnlyThreadContextMap readOnlyContextMap;
 private void ThreadContext();
 static void init();
 public static void put(String, String);
 public static void putIfNull(String, String);
 public static void putAll(java.util.Map);
 public static String get(String);
 public static void remove(String);
 public static void removeAll(Iterable);
 public static void clearMap();
 public static void clearAll();
 public static boolean containsKey(String);
 public static java.util.Map getContext();
 public static java.util.Map getImmutableContext();
 public static spi.ReadOnlyThreadContextMap getThreadContextMap();
 public static boolean isEmpty();
 public static void clearStack();
 public static ThreadContext$ContextStack cloneStack();
 public static ThreadContext$ContextStack getImmutableStack();
 public static void setStack(java.util.Collection);
 public static int getDepth();
 public static String pop();
 public static String peek();
 public static void push(String);
 public static transient void push(String, Object[]);
 public static void removeStack();
 public static void trim(int);
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/internal/DefaultObjectInputFilter.class

package org.apache.logging.log4j.util.internal;
public synchronized class DefaultObjectInputFilter implements java.io.ObjectInputFilter {
 private static final java.util.List REQUIRED_JAVA_CLASSES;
 private static final java.util.List REQUIRED_JAVA_PACKAGES;
 private final java.io.ObjectInputFilter delegate;
 public void DefaultObjectInputFilter();
 public void DefaultObjectInputFilter(java.io.ObjectInputFilter);
 public static DefaultObjectInputFilter newInstance(java.io.ObjectInputFilter);
 public java.io.ObjectInputFilter$Status checkInput(java.io.ObjectInputFilter$FilterInfo);
 private static boolean isAllowedByDefault(String);
 private static boolean isRequiredPackage(String);
 static void <clinit>();
}

META-INF/DEPENDENCIES

// --
// Transitive dependencies of this project determined from the
// maven pom organized by organization.
// --

Apache Log4j API

META-INF/services/org.apache.logging.log4j.util.PropertySource

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.
org.apache.logging.log4j.util.EnvironmentPropertySource
org.apache.logging.log4j.util.SystemPropertiesPropertySource

META-INF/maven/org.apache.logging.log4j/log4j-api/pom.properties

#Created by Apache Maven 3.8.4
version=2.17.1
groupId=org.apache.logging.log4j
artifactId=log4j-api

org/apache/logging/log4j/util/Unbox$State.class

package org.apache.logging.log4j.util;
synchronized class Unbox$State {
 private final StringBuilder[] ringBuffer;
 private int current;
 void Unbox$State();
 public StringBuilder getStringBuilder();
 public boolean isBoxedPrimitive(StringBuilder);
}

org/apache/logging/log4j/util/IndexedReadOnlyStringMap.class

package org.apache.logging.log4j.util;
public abstract interface IndexedReadOnlyStringMap extends ReadOnlyStringMap {
 public abstract String getKeyAt(int);
 public abstract Object getValueAt(int);
 public abstract int indexOfKey(String);
}

org/apache/logging/log4j/util/LowLevelLogUtil.class

package org.apache.logging.log4j.util;
final synchronized class LowLevelLogUtil {
 private static java.io.PrintWriter writer;
 public static void log(String);
 public static void logException(Throwable);
 public static void logException(String, Throwable);
 public static void setOutputStream(java.io.OutputStream);
 public static void setWriter(java.io.Writer);
 private void LowLevelLogUtil();
 static void <clinit>();
}

org/apache/logging/log4j/util/SystemPropertiesPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class SystemPropertiesPropertySource implements PropertySource {
 private static final int DEFAULT_PRIORITY = 100;
 private static final String PREFIX = log4j2.;
 public void SystemPropertiesPropertySource();
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/BiConsumer.class

package org.apache.logging.log4j.util;
public abstract interface BiConsumer {
 public abstract void accept(Object, Object);
}

org/apache/logging/log4j/util/StackLocator.class

package org.apache.logging.log4j.util;
public final synchronized class StackLocator {
 static final int JDK_7u25_OFFSET;
 private static final reflect.Method GET_CALLER_CLASS;
 private static final StackLocator INSTANCE;
 public static StackLocator getInstance();
 private void StackLocator();
 public Class getCallerClass(Class, java.util.function.Predicate);
 public Class getCallerClass(int);
 public Class getCallerClass(String, String);
 public Class getCallerClass(Class);
 public java.util.Stack getCurrentStackTrace();
 public StackTraceElement calcLocation(String);
 public StackTraceElement getStackTraceElement(int);
 private boolean isValid(StackTraceElement);
 static void <clinit>();
}

org/apache/logging/log4j/message/BasicThreadInformation.class

package org.apache.logging.log4j.message;
synchronized class BasicThreadInformation implements ThreadInformation {
 private static final int HASH_SHIFT = 32;
 private static final int HASH_MULTIPLIER = 31;
 private final long id;
 private final String name;
 private final String longName;
 private final Thread$State state;
 private final int priority;
 private final boolean isAlive;
 private final boolean isDaemon;
 private final String threadGroupName;
 void BasicThreadInformation(Thread);
 public boolean equals(Object);
 public int hashCode();
 public void printThreadInfo(StringBuilder);
 public void printStack(StringBuilder, StackTraceElement[]);
}

org/apache/logging/log4j/message/StringMapMessage.class

package org.apache.logging.log4j.message;
public synchronized class StringMapMessage extends MapMessage {
 private static final long serialVersionUID = 1;
 public void StringMapMessage();
 public void StringMapMessage(int);
 public void StringMapMessage(java.util.Map);
 public StringMapMessage newInstance(java.util.Map);
}

org/apache/logging/log4j/message/ThreadDumpMessage$ThreadDumpMessageProxy.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$ThreadDumpMessageProxy implements java.io.Serializable {
 private static final long serialVersionUID = -3476620450287648269;
 private final String formattedMsg;
 private final String title;
 void ThreadDumpMessage$ThreadDumpMessageProxy(ThreadDumpMessage);
 protected Object readResolve();
}

org/apache/logging/log4j/message/SimpleMessage.class

package org.apache.logging.log4j.message;
public synchronized class SimpleMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable, CharSequence {
 private static final long serialVersionUID = -8398002534962715992;
 private String message;
 private transient CharSequence charSequence;
 public void SimpleMessage();
 public void SimpleMessage(String);
 public void SimpleMessage(CharSequence);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object[] getParameters();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public Throwable getThrowable();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
}

org/apache/logging/log4j/message/StructuredDataCollectionMessage.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataCollectionMessage implements org.apache.logging.log4j.util.StringBuilderFormattable, MessageCollectionMessage {
 private static final long serialVersionUID = 5725337076388822924;
 private final java.util.List structuredDataMessageList;
 public void StructuredDataCollectionMessage(java.util.List);
 public java.util.Iterator iterator();
 public String getFormattedMessage();
 public String getFormat();
 public void formatTo(StringBuilder);
 public Object[] getParameters();
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/LoggerNameAwareMessage.class

package org.apache.logging.log4j.message;
public abstract interface LoggerNameAwareMessage {
 public abstract void setLoggerName(String);
 public abstract String getLoggerName();
}

org/apache/logging/log4j/message/MessageCollectionMessage.class

package org.apache.logging.log4j.message;
public abstract interface MessageCollectionMessage extends Message, Iterable {
}

org/apache/logging/log4j/message/MessageFactory2.class

package org.apache.logging.log4j.message;
public abstract interface MessageFactory2 extends MessageFactory {
 public abstract Message newMessage(CharSequence);
 public abstract Message newMessage(String, Object);
 public abstract Message newMessage(String, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/StructuredDataMessage$Format.class

package org.apache.logging.log4j.message;
public final synchronized enum StructuredDataMessage$Format {
 public static final StructuredDataMessage$Format XML;
 public static final StructuredDataMessage$Format FULL;
 public static StructuredDataMessage$Format[] values();
 public static StructuredDataMessage$Format valueOf(String);
 private void StructuredDataMessage$Format(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/message/ThreadDumpMessage$ThreadInfoFactory.class

package org.apache.logging.log4j.message;
public abstract interface ThreadDumpMessage$ThreadInfoFactory {
 public abstract java.util.Map createThreadInfo();
}

org/apache/logging/log4j/spi/DefaultThreadContextStack.class

package org.apache.logging.log4j.spi;
public synchronized class DefaultThreadContextStack implements ThreadContextStack, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = 5050501;
 private static final ThreadLocal STACK;
 private final boolean useStack;
 public void DefaultThreadContextStack(boolean);
 private MutableThreadContextStack getNonNullStackCopy();
 public boolean add(String);
 public boolean addAll(java.util.Collection);
 public java.util.List asList();
 public void clear();
 public boolean contains(Object);
 public boolean containsAll(java.util.Collection);
 public ThreadContextStack copy();
 public boolean equals(Object);
 public int getDepth();
 public int hashCode();
 public boolean isEmpty();
 public java.util.Iterator iterator();
 public String peek();
 public String pop();
 public void push(String);
 public boolean remove(Object);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public int size();
 public Object[] toArray();
 public Object[] toArray(Object[]);
 public String toString();
 public void formatTo(StringBuilder);
 public void trim(int);
 public org.apache.logging.log4j.ThreadContext$ContextStack getImmutableStackOrNull();
 static void <clinit>();
}

org/apache/logging/log4j/spi/DefaultThreadContextMap.class

package org.apache.logging.log4j.spi;
public synchronized class DefaultThreadContextMap implements ThreadContextMap, org.apache.logging.log4j.util.ReadOnlyStringMap {
 private static final long serialVersionUID = 8218007901108944053;
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 private final boolean useMap;
 private final ThreadLocal localMap;
 private static boolean inheritableMap;
 static ThreadLocal createThreadLocalMap(boolean);
 static void init();
 public void DefaultThreadContextMap();
 public void DefaultThreadContextMap(boolean);
 public void put(String, String);
 public void putAll(java.util.Map);
 public String get(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public java.util.Map toMap();
 public boolean containsKey(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 public Object getValue(String);
 public java.util.Map getCopy();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public int size();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/spi/AbstractLoggerAdapter.class

package org.apache.logging.log4j.spi;
public abstract synchronized class AbstractLoggerAdapter implements LoggerAdapter, LoggerContextShutdownAware {
 protected final java.util.Map registry;
 private final java.util.concurrent.locks.ReadWriteLock lock;
 public void AbstractLoggerAdapter();
 public Object getLogger(String);
 public void contextShutdown(LoggerContext);
 public java.util.concurrent.ConcurrentMap getLoggersInContext(LoggerContext);
 public java.util.Set getLoggerContexts();
 protected abstract Object newLogger(String, LoggerContext);
 protected abstract LoggerContext getContext();
 protected LoggerContext getContext(Class);
 public void close();
}

org/apache/logging/log4j/spi/LoggerContextFactory.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextFactory {
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public abstract LoggerContext getContext(String, ClassLoader, Object, boolean);
 public abstract LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public abstract void removeContext(LoggerContext);
 public boolean isClassLoaderDependent();
}

org/apache/logging/log4j/spi/LoggerContextKey.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerContextKey {
 public void LoggerContextKey();
 public static String create(String);
 public static String create(String, org.apache.logging.log4j.message.MessageFactory);
 public static String create(String, Class);
}

org/apache/logging/log4j/spi/LoggerRegistry.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry {
 private static final String DEFAULT_FACTORY_KEY;
 private final LoggerRegistry$MapFactory factory;
 private final java.util.Map map;
 public void LoggerRegistry();
 public void LoggerRegistry(LoggerRegistry$MapFactory);
 private static String factoryClassKey(Class);
 private static String factoryKey(org.apache.logging.log4j.message.MessageFactory);
 public ExtendedLogger getLogger(String);
 public ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public java.util.Collection getLoggers();
 public java.util.Collection getLoggers(java.util.Collection);
 private java.util.Map getOrCreateInnerMap(String);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public void putIfAbsent(String, org.apache.logging.log4j.message.MessageFactory, ExtendedLogger);
 static void <clinit>();
}

org/apache/logging/log4j/spi/CopyOnWriteSortedArrayThreadContextMap$1.class

package org.apache.logging.log4j.spi;
synchronized class CopyOnWriteSortedArrayThreadContextMap$1 extends InheritableThreadLocal {
 void CopyOnWriteSortedArrayThreadContextMap$1(CopyOnWriteSortedArrayThreadContextMap);
 protected org.apache.logging.log4j.util.StringMap childValue(org.apache.logging.log4j.util.StringMap);
}

org/apache/logging/log4j/spi/MessageFactory2Adapter.class

package org.apache.logging.log4j.spi;
public synchronized class MessageFactory2Adapter implements org.apache.logging.log4j.message.MessageFactory2 {
 private final org.apache.logging.log4j.message.MessageFactory wrapped;
 public void MessageFactory2Adapter(org.apache.logging.log4j.message.MessageFactory);
 public org.apache.logging.log4j.message.MessageFactory getOriginal();
 public org.apache.logging.log4j.message.Message newMessage(CharSequence);
 public org.apache.logging.log4j.message.Message newMessage(String, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(Object);
 public org.apache.logging.log4j.message.Message newMessage(String);
 public transient org.apache.logging.log4j.message.Message newMessage(String, Object[]);
}

org/apache/logging/log4j/spi/LoggerContextShutdownEnabled.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextShutdownEnabled {
 public abstract void addShutdownListener(LoggerContextShutdownAware);
 public abstract java.util.List getListeners();
}

org/apache/logging/log4j/util/ReadOnlyStringMap.class

package org.apache.logging.log4j.util;
public abstract interface ReadOnlyStringMap extends java.io.Serializable {
 public abstract java.util.Map toMap();
 public abstract boolean containsKey(String);
 public abstract void forEach(BiConsumer);
 public abstract void forEach(TriConsumer, Object);
 public abstract Object getValue(String);
 public abstract boolean isEmpty();
 public abstract int size();
}

org/apache/logging/log4j/util/TriConsumer.class

package org.apache.logging.log4j.util;
public abstract interface TriConsumer {
 public abstract void accept(Object, Object, Object);
}

org/apache/logging/log4j/util/EnvironmentPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class EnvironmentPropertySource implements PropertySource {
 private static final String PREFIX = LOG4J_;
 private static final int DEFAULT_PRIORITY = -100;
 public void EnvironmentPropertySource();
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/Activator.class

package org.apache.logging.log4j.util;
public synchronized class Activator implements org.osgi.framework.BundleActivator, org.osgi.framework.SynchronousBundleListener {
 private static final SecurityManager SECURITY_MANAGER;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private boolean lockingProviderUtil;
 public void Activator();
 private static void checkPermission(java.security.Permission);
 private void loadProvider(org.osgi.framework.Bundle);
 private String toStateString(int);
 private void loadProvider(org.osgi.framework.BundleContext, org.osgi.framework.wiring.BundleWiring);
 public void start(org.osgi.framework.BundleContext) throws Exception;
 private void unlockIfReady();
 public void stop(org.osgi.framework.BundleContext) throws Exception;
 public void bundleChanged(org.osgi.framework.BundleEvent);
 static void <clinit>();
}

org/apache/logging/log4j/EventLogger.class

package org.apache.logging.log4j;
public final synchronized class EventLogger {
 public static final Marker EVENT_MARKER;
 private static final String NAME = EventLogger;
 private static final String FQCN;
 private static final spi.ExtendedLogger LOGGER;
 private void EventLogger();
 public static void logEvent(message.StructuredDataMessage);
 public static void logEvent(message.StructuredDataMessage, Level);
 static void <clinit>();
}

org/apache/logging/log4j/Logger.class

package org.apache.logging.log4j;
public abstract interface Logger {
 public abstract void catching(Level, Throwable);
 public abstract void catching(Throwable);
 public abstract void debug(Marker, message.Message);
 public abstract void debug(Marker, message.Message, Throwable);
 public abstract void debug(Marker, util.MessageSupplier);
 public abstract void debug(Marker, util.MessageSupplier, Throwable);
 public abstract void debug(Marker, CharSequence);
 public abstract void debug(Marker, CharSequence, Throwable);
 public abstract void debug(Marker, Object);
 public abstract void debug(Marker, Object, Throwable);
 public abstract void debug(Marker, String);
 public abstract transient void debug(Marker, String, Object[]);
 public abstract transient void debug(Marker, String, util.Supplier[]);
 public abstract void debug(Marker, String, Throwable);
 public abstract void debug(Marker, util.Supplier);
 public abstract void debug(Marker, util.Supplier, Throwable);
 public abstract void debug(message.Message);
 public abstract void debug(message.Message, Throwable);
 public abstract void debug(util.MessageSupplier);
 public abstract void debug(util.MessageSupplier, Throwable);
 public abstract void debug(CharSequence);
 public abstract void debug(CharSequence, Throwable);
 public abstract void debug(Object);
 public abstract void debug(Object, Throwable);
 public abstract void debug(String);
 public abstract transient void debug(String, Object[]);
 public abstract transient void debug(String, util.Supplier[]);
 public abstract void debug(String, Throwable);
 public abstract void debug(util.Supplier);
 public abstract void debug(util.Supplier, Throwable);
 public abstract void debug(Marker, String, Object);
 public abstract void debug(Marker, String, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object);
 public abstract void debug(String, Object, Object);
 public abstract void debug(String, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void entry();
 public abstract transient void entry(Object[]);
 public abstract void error(Marker, message.Message);
 public abstract void error(Marker, message.Message, Throwable);
 public abstract void error(Marker, util.MessageSupplier);
 public abstract void error(Marker, util.MessageSupplier, Throwable);
 public abstract void error(Marker, CharSequence);
 public abstract void error(Marker, CharSequence, Throwable);
 public abstract void error(Marker, Object);
 public abstract void error(Marker, Object, Throwable);
 public abstract void error(Marker, String);
 public abstract transient void error(Marker, String, Object[]);
 public abstract transient void error(Marker, String, util.Supplier[]);
 public abstract void error(Marker, String, Throwable);
 public abstract void error(Marker, util.Supplier);
 public abstract void error(Marker, util.Supplier, Throwable);
 public abstract void error(message.Message);
 public abstract void error(message.Message, Throwable);
 public abstract void error(util.MessageSupplier);
 public abstract void error(util.MessageSupplier, Throwable);
 public abstract void error(CharSequence);
 public abstract void error(CharSequence, Throwable);
 public abstract void error(Object);
 public abstract void error(Object, Throwable);
 public abstract void error(String);
 public abstract transient void error(String, Object[]);
 public abstract transient void error(String, util.Supplier[]);
 public abstract void error(String, Throwable);
 public abstract void error(util.Supplier);
 public abstract void error(util.Supplier, Throwable);
 public abstract void error(Marker, String, Object);
 public abstract void error(Marker, String, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object);
 public abstract void error(String, Object, Object);
 public abstract void error(String, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void exit();
 public abstract Object exit(Object);
 public abstract void fatal(Marker, message.Message);
 public abstract void fatal(Marker, message.Message, Throwable);
 public abstract void fatal(Marker, util.MessageSupplier);
 public abstract void fatal(Marker, util.MessageSupplier, Throwable);
 public abstract void fatal(Marker, CharSequence);
 public abstract void fatal(Marker, CharSequence, Throwable);
 public abstract void fatal(Marker, Object);
 public abstract void fatal(Marker, Object, Throwable);
 public abstract void fatal(Marker, String);
 public abstract transient void fatal(Marker, String, Object[]);
 public abstract transient void fatal(Marker, String, util.Supplier[]);
 public abstract void fatal(Marker, String, Throwable);
 public abstract void fatal(Marker, util.Supplier);
 public abstract void fatal(Marker, util.Supplier, Throwable);
 public abstract void fatal(message.Message);
 public abstract void fatal(message.Message, Throwable);
 public abstract void fatal(util.MessageSupplier);
 public abstract void fatal(util.MessageSupplier, Throwable);
 public abstract void fatal(CharSequence);
 public abstract void fatal(CharSequence, Throwable);
 public abstract void fatal(Object);
 public abstract void fatal(Object, Throwable);
 public abstract void fatal(String);
 public abstract transient void fatal(String, Object[]);
 public abstract transient void fatal(String, util.Supplier[]);
 public abstract void fatal(String, Throwable);
 public abstract void fatal(util.Supplier);
 public abstract void fatal(util.Supplier, Throwable);
 public abstract void fatal(Marker, String, Object);
 public abstract void fatal(Marker, String, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object);
 public abstract void fatal(String, Object, Object);
 public abstract void fatal(String, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Level getLevel();
 public abstract message.MessageFactory getMessageFactory();
 public abstract String getName();
 public abstract void info(Marker, message.Message);
 public abstract void info(Marker, message.Message, Throwable);
 public abstract void info(Marker, util.MessageSupplier);
 public abstract void info(Marker, util.MessageSupplier, Throwable);
 public abstract void info(Marker, CharSequence);
 public abstract void info(Marker, CharSequence, Throwable);
 public abstract void info(Marker, Object);
 public abstract void info(Marker, Object, Throwable);
 public abstract void info(Marker, String);
 public abstract transient void info(Marker, String, Object[]);
 public abstract transient void info(Marker, String, util.Supplier[]);
 public abstract void info(Marker, String, Throwable);
 public abstract void info(Marker, util.Supplier);
 public abstract void info(Marker, util.Supplier, Throwable);
 public abstract void info(message.Message);
 public abstract void info(message.Message, Throwable);
 public abstract void info(util.MessageSupplier);
 public abstract void info(util.MessageSupplier, Throwable);
 public abstract void info(CharSequence);
 public abstract void info(CharSequence, Throwable);
 public abstract void info(Object);
 public abstract void info(Object, Throwable);
 public abstract void info(String);
 public abstract transient void info(String, Object[]);
 public abstract transient void info(String, util.Supplier[]);
 public abstract void info(String, Throwable);
 public abstract void info(util.Supplier);
 public abstract void info(util.Supplier, Throwable);
 public abstract void info(Marker, String, Object);
 public abstract void info(Marker, String, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object);
 public abstract void info(String, Object, Object);
 public abstract void info(String, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isDebugEnabled();
 public abstract boolean isDebugEnabled(Marker);
 public abstract boolean isEnabled(Level);
 public abstract boolean isEnabled(Level, Marker);
 public abstract boolean isErrorEnabled();
 public abstract boolean isErrorEnabled(Marker);
 public abstract boolean isFatalEnabled();
 public abstract boolean isFatalEnabled(Marker);
 public abstract boolean isInfoEnabled();
 public abstract boolean isInfoEnabled(Marker);
 public abstract boolean isTraceEnabled();
 public abstract boolean isTraceEnabled(Marker);
 public abstract boolean isWarnEnabled();
 public abstract boolean isWarnEnabled(Marker);
 public abstract void log(Level, Marker, message.Message);
 public abstract void log(Level, Marker, message.Message, Throwable);
 public abstract void log(Level, Marker, util.MessageSupplier);
 public abstract void log(Level, Marker, util.MessageSupplier, Throwable);
 public abstract void log(Level, Marker, CharSequence);
 public abstract void log(Level, Marker, CharSequence, Throwable);
 public abstract void log(Level, Marker, Object);
 public abstract void log(Level, Marker, Object, Throwable);
 public abstract void log(Level, Marker, String);
 public abstract transient void log(Level, Marker, String, Object[]);
 public abstract transient void log(Level, Marker, String, util.Supplier[]);
 public abstract void log(Level, Marker, String, Throwable);
 public abstract void log(Level, Marker, util.Supplier);
 public abstract void log(Level, Marker, util.Supplier, Throwable);
 public abstract void log(Level, message.Message);
 public abstract void log(Level, message.Message, Throwable);
 public abstract void log(Level, util.MessageSupplier);
 public abstract void log(Level, util.MessageSupplier, Throwable);
 public abstract void log(Level, CharSequence);
 public abstract void log(Level, CharSequence, Throwable);
 public abstract void log(Level, Object);
 public abstract void log(Level, Object, Throwable);
 public abstract void log(Level, String);
 public abstract transient void log(Level, String, Object[]);
 public abstract transient void log(Level, String, util.Supplier[]);
 public abstract void log(Level, String, Throwable);
 public abstract void log(Level, util.Supplier);
 public abstract void log(Level, util.Supplier, Throwable);
 public abstract void log(Level, Marker, String, Object);
 public abstract void log(Level, Marker, String, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object);
 public abstract void log(Level, String, Object, Object);
 public abstract void log(Level, String, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract transient void printf(Level, Marker, String, Object[]);
 public abstract transient void printf(Level, String, Object[]);
 public abstract Throwable throwing(Level, Throwable);
 public abstract Throwable throwing(Throwable);
 public abstract void trace(Marker, message.Message);
 public abstract void trace(Marker, message.Message, Throwable);
 public abstract void trace(Marker, util.MessageSupplier);
 public abstract void trace(Marker, util.MessageSupplier, Throwable);
 public abstract void trace(Marker, CharSequence);
 public abstract void trace(Marker, CharSequence, Throwable);
 public abstract void trace(Marker, Object);
 public abstract void trace(Marker, Object, Throwable);
 public abstract void trace(Marker, String);
 public abstract transient void trace(Marker, String, Object[]);
 public abstract transient void trace(Marker, String, util.Supplier[]);
 public abstract void trace(Marker, String, Throwable);
 public abstract void trace(Marker, util.Supplier);
 public abstract void trace(Marker, util.Supplier, Throwable);
 public abstract void trace(message.Message);
 public abstract void trace(message.Message, Throwable);
 public abstract void trace(util.MessageSupplier);
 public abstract void trace(util.MessageSupplier, Throwable);
 public abstract void trace(CharSequence);
 public abstract void trace(CharSequence, Throwable);
 public abstract void trace(Object);
 public abstract void trace(Object, Throwable);
 public abstract void trace(String);
 public abstract transient void trace(String, Object[]);
 public abstract transient void trace(String, util.Supplier[]);
 public abstract void trace(String, Throwable);
 public abstract void trace(util.Supplier);
 public abstract void trace(util.Supplier, Throwable);
 public abstract void trace(Marker, String, Object);
 public abstract void trace(Marker, String, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object);
 public abstract void trace(String, Object, Object);
 public abstract void trace(String, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract message.EntryMessage traceEntry();
 public abstract transient message.EntryMessage traceEntry(String, Object[]);
 public abstract transient message.EntryMessage traceEntry(util.Supplier[]);
 public abstract transient message.EntryMessage traceEntry(String, util.Supplier[]);
 public abstract message.EntryMessage traceEntry(message.Message);
 public abstract void traceExit();
 public abstract Object traceExit(Object);
 public abstract Object traceExit(String, Object);
 public abstract void traceExit(message.EntryMessage);
 public abstract Object traceExit(message.EntryMessage, Object);
 public abstract Object traceExit(message.Message, Object);
 public abstract void warn(Marker, message.Message);
 public abstract void warn(Marker, message.Message, Throwable);
 public abstract void warn(Marker, util.MessageSupplier);
 public abstract void warn(Marker, util.MessageSupplier, Throwable);
 public abstract void warn(Marker, CharSequence);
 public abstract void warn(Marker, CharSequence, Throwable);
 public abstract void warn(Marker, Object);
 public abstract void warn(Marker, Object, Throwable);
 public abstract void warn(Marker, String);
 public abstract transient void warn(Marker, String, Object[]);
 public abstract transient void warn(Marker, String, util.Supplier[]);
 public abstract void warn(Marker, String, Throwable);
 public abstract void warn(Marker, util.Supplier);
 public abstract void warn(Marker, util.Supplier, Throwable);
 public abstract void warn(message.Message);
 public abstract void warn(message.Message, Throwable);
 public abstract void warn(util.MessageSupplier);
 public abstract void warn(util.MessageSupplier, Throwable);
 public abstract void warn(CharSequence);
 public abstract void warn(CharSequence, Throwable);
 public abstract void warn(Object);
 public abstract void warn(Object, Throwable);
 public abstract void warn(String);
 public abstract transient void warn(String, Object[]);
 public abstract transient void warn(String, util.Supplier[]);
 public abstract void warn(String, Throwable);
 public abstract void warn(util.Supplier);
 public abstract void warn(util.Supplier, Throwable);
 public abstract void warn(Marker, String, Object);
 public abstract void warn(Marker, String, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object);
 public abstract void warn(String, Object, Object);
 public abstract void warn(String, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logMessage(Level, Marker, String, StackTraceElement, message.Message, Throwable);
 public LogBuilder atTrace();
 public LogBuilder atDebug();
 public LogBuilder atInfo();
 public LogBuilder atWarn();
 public LogBuilder atError();
 public LogBuilder atFatal();
 public LogBuilder always();
 public LogBuilder atLevel(Level);
}

org/apache/logging/log4j/message/TimestampMessage.class

package org.apache.logging.log4j.message;
public abstract interface TimestampMessage {
 public abstract long getTimestamp();
}

org/apache/logging/log4j/message/ThreadDumpMessage$1.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$1 {
}

org/apache/logging/log4j/message/AsynchronouslyFormattable.class

package org.apache.logging.log4j.message;
public abstract interface AsynchronouslyFormattable extends annotation.Annotation {
}

org/apache/logging/log4j/message/EntryMessage.class

package org.apache.logging.log4j.message;
public abstract interface EntryMessage extends FlowMessage {
}

org/apache/logging/log4j/message/ReusableMessage.class

package org.apache.logging.log4j.message;
public abstract interface ReusableMessage extends Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 public abstract Object[] swapParameters(Object[]);
 public abstract short getParameterCount();
 public abstract Message memento();
}

org/apache/logging/log4j/message/StructuredDataId.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataId implements java.io.Serializable, org.apache.logging.log4j.util.StringBuilderFormattable {
 public static final StructuredDataId TIME_QUALITY;
 public static final StructuredDataId ORIGIN;
 public static final StructuredDataId META;
 public static final int RESERVED = -1;
 private static final long serialVersionUID = 9031746276396249990;
 private static final int MAX_LENGTH = 32;
 private static final String AT_SIGN = @;
 private final String name;
 private final int enterpriseNumber;
 private final String[] required;
 private final String[] optional;
 public void StructuredDataId(String);
 public void StructuredDataId(String, int);
 public void StructuredDataId(String, String[], String[]);
 public void StructuredDataId(String, String[], String[], int);
 public void StructuredDataId(String, int, String[], String[]);
 public void StructuredDataId(String, int, String[], String[], int);
 public StructuredDataId makeId(StructuredDataId);
 public StructuredDataId makeId(String, int);
 public String[] getRequired();
 public String[] getOptional();
 public String getName();
 public int getEnterpriseNumber();
 public boolean isReserved();
 public String toString();
 public void formatTo(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/message/FlowMessageFactory.class

package org.apache.logging.log4j.message;
public abstract interface FlowMessageFactory {
 public abstract EntryMessage newEntryMessage(Message);
 public abstract ExitMessage newExitMessage(Object, Message);
 public abstract ExitMessage newExitMessage(EntryMessage);
 public abstract ExitMessage newExitMessage(Object, EntryMessage);
}

org/apache/logging/log4j/message/ObjectArrayMessage.class

package org.apache.logging.log4j.message;
public final synchronized class ObjectArrayMessage implements Message {
 private static final long serialVersionUID = -5903272448334166185;
 private transient Object[] array;
 private transient String arrayString;
 public transient void ObjectArrayMessage(Object[]);
 private boolean equalObjectsOrStrings(Object[], Object[]);
 public boolean equals(Object);
 public String getFormat();
 public String getFormattedMessage();
 public Object[] getParameters();
 public Throwable getThrowable();
 public int hashCode();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/message/StringFormatterMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class StringFormatterMessageFactory extends AbstractMessageFactory {
 public static final StringFormatterMessageFactory INSTANCE;
 private static final long serialVersionUID = -1626332412176965642;
 public void StringFormatterMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/Message.class

package org.apache.logging.log4j.message;
public abstract interface Message extends java.io.Serializable {
 public abstract String getFormattedMessage();
 public abstract String getFormat();
 public abstract Object[] getParameters();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/message/StringFormattedMessage.class

package org.apache.logging.log4j.message;
public synchronized class StringFormattedMessage implements Message {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private String messagePattern;
 private transient Object[] argArray;
 private String[] stringArgs;
 private transient String formattedMessage;
 private transient Throwable throwable;
 private final java.util.Locale locale;
 public transient void StringFormattedMessage(java.util.Locale, String, Object[]);
 public transient void StringFormattedMessage(String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 protected transient String formatMessage(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Throwable getThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/message/MessageFactory.class

package org.apache.logging.log4j.message;
public abstract interface MessageFactory {
 public abstract Message newMessage(Object);
 public abstract Message newMessage(String);
 public abstract transient Message newMessage(String, Object[]);
}

org/apache/logging/log4j/message/ParameterizedNoReferenceMessageFactory$StatusMessage.class

package org.apache.logging.log4j.message;
synchronized class ParameterizedNoReferenceMessageFactory$StatusMessage implements Message {
 private static final long serialVersionUID = 4199272162767841280;
 private final String formattedMessage;
 private final Throwable throwable;
 public void ParameterizedNoReferenceMessageFactory$StatusMessage(String, Throwable);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$SimpleExitMessage.class

package org.apache.logging.log4j.message;
final synchronized class DefaultFlowMessageFactory$SimpleExitMessage extends DefaultFlowMessageFactory$AbstractFlowMessage implements ExitMessage {
 private static final long serialVersionUID = 1;
 private final Object result;
 private final boolean isVoid;
 void DefaultFlowMessageFactory$SimpleExitMessage(String, EntryMessage);
 void DefaultFlowMessageFactory$SimpleExitMessage(String, Object, EntryMessage);
 void DefaultFlowMessageFactory$SimpleExitMessage(String, Object, Message);
 public String getFormattedMessage();
}

org/apache/logging/log4j/message/AbstractMessageFactory.class

package org.apache.logging.log4j.message;
public abstract synchronized class AbstractMessageFactory implements MessageFactory2, java.io.Serializable {
 private static final long serialVersionUID = -1307891137684031187;
 public void AbstractMessageFactory();
 public Message newMessage(CharSequence);
 public Message newMessage(Object);
 public Message newMessage(String);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/ParameterizedNoReferenceMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ParameterizedNoReferenceMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 5027639245636870500;
 public static final ParameterizedNoReferenceMessageFactory INSTANCE;
 public void ParameterizedNoReferenceMessageFactory();
 public transient Message newMessage(String, Object[]);
 static void <clinit>();
}

org/apache/logging/log4j/spi/LoggerContextShutdownAware.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextShutdownAware {
 public abstract void contextShutdown(LoggerContext);
}

org/apache/logging/log4j/spi/LoggerRegistry$ConcurrentMapFactory.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry$ConcurrentMapFactory implements LoggerRegistry$MapFactory {
 public void LoggerRegistry$ConcurrentMapFactory();
 public java.util.Map createInnerMap();
 public java.util.Map createOuterMap();
 public void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/ReadOnlyThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ReadOnlyThreadContextMap {
 public abstract void clear();
 public abstract boolean containsKey(String);
 public abstract String get(String);
 public abstract java.util.Map getCopy();
 public abstract java.util.Map getImmutableMapOrNull();
 public abstract org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public abstract boolean isEmpty();
}

image4.emf

log4j-core-2.17.1. jar

log4j-core-2.17.1.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Bundle-License: https://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-SymbolicName: org.apache.logging.log4j.core

Log4jSigningUserName: mattsicker@apache.org

Built-By: matt

Bnd-LastModified: 1640647839891

Implementation-Vendor-Id: org.apache.logging.log4j

Specification-Title: Apache Log4j Core

Log4jReleaseManager: Matt Sicker

Bundle-DocURL: https://www.apache.org/

Import-Package: com.conversantmedia.util.concurrent;resolution:=option

 al,com.fasterxml.jackson.annotation;version="[2.12,3)";resolution:=op

 tional,com.fasterxml.jackson.core;version="[2.12,3)";resolution:=opti

 onal,com.fasterxml.jackson.core.type;version="[2.12,3)";resolution:=o

 ptional,com.fasterxml.jackson.core.util;version="[2.12,3)";resolution

 :=optional,com.fasterxml.jackson.databind;version="[2.12,3)";resoluti

 on:=optional,com.fasterxml.jackson.databind.annotation;version="[2.12

 ,3)";resolution:=optional,com.fasterxml.jackson.databind.deser.std;ve

 rsion="[2.12,3)";resolution:=optional,com.fasterxml.jackson.databind.

 module;version="[2.12,3)";resolution:=optional,com.fasterxml.jackson.

 databind.node;version="[2.12,3)";resolution:=optional,com.fasterxml.j

 ackson.databind.ser;version="[2.12,3)";resolution:=optional,com.faste

 rxml.jackson.databind.ser.impl;version="[2.12,3)";resolution:=optiona

 l,com.fasterxml.jackson.databind.ser.std;version="[2.12,3)";resolutio

 n:=optional,com.fasterxml.jackson.dataformat.xml;version="[2.12,3)";r

 esolution:=optional,com.fasterxml.jackson.dataformat.xml.annotation;v

 ersion="[2.12,3)";resolution:=optional,com.fasterxml.jackson.dataform

 at.xml.util;version="[2.12,3)";resolution:=optional,com.fasterxml.jac

 kson.dataformat.yaml;version="[2.12,3)";resolution:=optional,com.lmax

 .disruptor;version="[3.4,4)";resolution:=optional,com.lmax.disruptor.

 dsl;version="[3.4,4)";resolution:=optional,javax.activation;version="

 [1.2,2)";resolution:=optional,javax.annotation.processing,javax.crypt

 o,javax.jms;version="[1.1,2)";resolution:=optional,javax.lang.model,j

 avax.lang.model.element,javax.lang.model.util,javax.mail;version="[1.

 6,2)";resolution:=optional,javax.mail.internet;version="[1.6,2)";reso

 lution:=optional,javax.mail.util;version="[1.6,2)";resolution:=option

 al,javax.management,javax.naming,javax.net,javax.net.ssl,javax.script

 ,javax.sql,javax.tools,javax.xml.parsers,javax.xml.stream,javax.xml.t

 ransform,javax.xml.transform.stream,javax.xml.validation,org.apache.c

 ommons.compress.compressors;version="[1.21,2)";resolution:=optional,o

 rg.apache.commons.compress.utils;version="[1.21,2)";resolution:=optio

 nal,org.apache.commons.csv;version="[1.9,2)";resolution:=optional,org

 .apache.kafka.clients.producer;resolution:=optional,org.apache.loggin

 g.log4j;version="[2.17,3)",org.apache.logging.log4j.core,org.apache.l

 ogging.log4j.core.appender,org.apache.logging.log4j.core.appender.db,

 org.apache.logging.log4j.core.appender.rewrite,org.apache.logging.log

 4j.core.appender.rolling,org.apache.logging.log4j.core.appender.rolli

 ng.action,org.apache.logging.log4j.core.async,org.apache.logging.log4

 j.core.config,org.apache.logging.log4j.core.config.arbiters,org.apach

 e.logging.log4j.core.config.builder.api,org.apache.logging.log4j.core

 .config.builder.impl,org.apache.logging.log4j.core.config.composite,o

 rg.apache.logging.log4j.core.config.json,org.apache.logging.log4j.cor

 e.config.plugins,org.apache.logging.log4j.core.config.plugins.convert

 ,org.apache.logging.log4j.core.config.plugins.processor,org.apache.lo

 gging.log4j.core.config.plugins.util,org.apache.logging.log4j.core.co

 nfig.plugins.validation,org.apache.logging.log4j.core.config.plugins.

 validation.constraints,org.apache.logging.log4j.core.config.plugins.v

 alidation.validators,org.apache.logging.log4j.core.config.plugins.vis

 itors,org.apache.logging.log4j.core.config.status,org.apache.logging.

 log4j.core.filter,org.apache.logging.log4j.core.impl,org.apache.loggi

 ng.log4j.core.jackson,org.apache.logging.log4j.core.jmx,org.apache.lo

 gging.log4j.core.layout,org.apache.logging.log4j.core.layout.internal

 ,org.apache.logging.log4j.core.lookup,org.apache.logging.log4j.core.n

 et,org.apache.logging.log4j.core.net.ssl,org.apache.logging.log4j.cor

 e.pattern,org.apache.logging.log4j.core.script,org.apache.logging.log

 4j.core.selector,org.apache.logging.log4j.core.time,org.apache.loggin

 g.log4j.core.tools.picocli,org.apache.logging.log4j.core.util,org.apa

 che.logging.log4j.core.util.datetime,org.apache.logging.log4j.message

 ;version="[2.17,3)",org.apache.logging.log4j.spi;version="[2.17,3)",o

 rg.apache.logging.log4j.status;version="[2.17,3)",org.apache.logging.

 log4j.util;version="[2.17,3)",org.codehaus.stax2;version="[4.2,5)";re

 solution:=optional,org.fusesource.jansi;version="[2.3,3)";resolution:

 =optional,org.jctools.queues;resolution:=optional,org.osgi.framework;

 version="[1.6,2)",org.osgi.framework.wiring;version="[1.0,2)",org.w3c

 .dom,org.xml.sax,org.zeromq;version="[0.4,1)";resolution:=optional,su

 n.reflect;resolution:=optional

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

Export-Package: org.apache.logging.log4j.core;uses:="org.apache.loggin

 g.log4j,org.apache.logging.log4j.core.config,org.apache.logging.log4j

 .core.impl,org.apache.logging.log4j.core.layout,org.apache.logging.lo

 g4j.core.time,org.apache.logging.log4j.message,org.apache.logging.log

 4j.spi,org.apache.logging.log4j.status,org.apache.logging.log4j.util"

 ;version="2.17.1",org.apache.logging.log4j.core.appender;uses:="org.a

 pache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.

 log4j.core.appender.rolling,org.apache.logging.log4j.core.async,org.a

 pache.logging.log4j.core.config,org.apache.logging.log4j.core.config.

 plugins,org.apache.logging.log4j.core.config.plugins.validation.const

 raints,org.apache.logging.log4j.core.filter,org.apache.logging.log4j.

 core.impl,org.apache.logging.log4j.core.layout,org.apache.logging.log

 4j.core.net,org.apache.logging.log4j.core.net.ssl,org.apache.logging.

 log4j.core.script,org.apache.logging.log4j.core.util,org.apache.loggi

 ng.log4j.status";version="2.17.1",org.apache.logging.log4j.core.appen

 der.db;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.

 core.appender,org.apache.logging.log4j.core.config,org.apache.logging

 .log4j.core.config.plugins,org.apache.logging.log4j.core.util";versio

 n="2.17.1",org.apache.logging.log4j.core.appender.db.jdbc;uses:="org.

 apache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging

 .log4j.core.appender.db,org.apache.logging.log4j.core.config,org.apac

 he.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.co

 nfig.plugins.validation.constraints,org.apache.logging.log4j.core.lay

 out,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.l

 ogging.log4j.core.appender.mom;uses:="javax.jms,org.apache.logging.lo

 g4j.core,org.apache.logging.log4j.core.appender,org.apache.logging.lo

 g4j.core.config,org.apache.logging.log4j.core.config.plugins,org.apac

 he.logging.log4j.core.net,org.apache.logging.log4j.core.util";version

 ="2.17.1",org.apache.logging.log4j.core.appender.mom.jeromq;uses:="or

 g.apache.logging.log4j.core,org.apache.logging.log4j.core.appender,or

 g.apache.logging.log4j.core.config,org.apache.logging.log4j.core.conf

 ig.plugins,org.apache.logging.log4j.core.config.plugins.validation.co

 nstraints,org.zeromq";version="2.17.1",org.apache.logging.log4j.core.

 appender.mom.kafka;uses:="org.apache.kafka.clients.producer,org.apach

 e.logging.log4j.core,org.apache.logging.log4j.core.appender,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.l

 ogging.log4j.core.appender.nosql;uses:="org.apache.logging.log4j.core

 ,org.apache.logging.log4j.core.appender,org.apache.logging.log4j.core

 .appender.db,org.apache.logging.log4j.core.config.plugins,org.apache.

 logging.log4j.core.util";version="2.17.1",org.apache.logging.log4j.co

 re.appender.rewrite;uses:="org.apache.logging.log4j,org.apache.loggin

 g.log4j.core,org.apache.logging.log4j.core.appender,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.config.plugins,org.

 apache.logging.log4j.core.util";version="2.17.1",org.apache.logging.l

 og4j.core.appender.rolling;uses:="org.apache.logging.log4j,org.apache

 .logging.log4j.core,org.apache.logging.log4j.core.appender,org.apache

 .logging.log4j.core.appender.rolling.action,org.apache.logging.log4j.

 core.config,org.apache.logging.log4j.core.config.plugins,org.apache.l

 ogging.log4j.core.lookup,org.apache.logging.log4j.core.util";version=

 "2.17.1",org.apache.logging.log4j.core.appender.rolling.action;uses:=

 "org.apache.logging.log4j,org.apache.logging.log4j.core.config,org.ap

 ache.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.

 lookup,org.apache.logging.log4j.core.script,org.apache.logging.log4j.

 core.util";version="2.17.1",org.apache.logging.log4j.core.appender.ro

 uting;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.c

 ore.appender,org.apache.logging.log4j.core.appender.rewrite,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins,org.apache.logging.log4j.core.script,org.apache.logging.log4j.cor

 e.util";version="2.17.1",org.apache.logging.log4j.core.async;uses:="c

 om.conversantmedia.util.concurrent,com.lmax.disruptor,org.apache.logg

 ing.log4j,org.apache.logging.log4j.core,org.apache.logging.log4j.core

 .appender,org.apache.logging.log4j.core.config,org.apache.logging.log

 4j.core.config.plugins,org.apache.logging.log4j.core.config.plugins.v

 alidation.constraints,org.apache.logging.log4j.core.impl,org.apache.l

 ogging.log4j.core.jmx,org.apache.logging.log4j.core.selector,org.apac

 he.logging.log4j.core.time,org.apache.logging.log4j.core.util,org.apa

 che.logging.log4j.message,org.apache.logging.log4j.util";version="2.1

 7.1",org.apache.logging.log4j.core.config;uses:="org.apache.logging.l

 og4j,org.apache.logging.log4j.core,org.apache.logging.log4j.core.asyn

 c,org.apache.logging.log4j.core.config.builder.api,org.apache.logging

 .log4j.core.config.plugins,org.apache.logging.log4j.core.config.plugi

 ns.util,org.apache.logging.log4j.core.config.plugins.validation.const

 raints,org.apache.logging.log4j.core.filter,org.apache.logging.log4j.

 core.impl,org.apache.logging.log4j.core.lookup,org.apache.logging.log

 4j.core.net,org.apache.logging.log4j.core.script,org.apache.logging.l

 og4j.core.util,org.apache.logging.log4j.message,org.apache.logging.lo

 g4j.util";version="2.17.1",org.apache.logging.log4j.core.config.arbit

 ers;uses:="org.apache.logging.log4j.core.config,org.apache.logging.lo

 g4j.core.config.plugins,org.apache.logging.log4j.core.util";version="

 2.17.1",org.apache.logging.log4j.core.config.builder.api;uses:="org.a

 pache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.

 log4j.core.config,org.apache.logging.log4j.core.config.builder.impl,o

 rg.apache.logging.log4j.core.util";version="2.17.1",org.apache.loggin

 g.log4j.core.config.builder.impl;uses:="javax.xml.transform,org.apach

 e.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.log4

 j.core.config,org.apache.logging.log4j.core.config.builder.api,org.ap

 ache.logging.log4j.core.config.plugins.util,org.apache.logging.log4j.

 core.config.status";version="2.17.1",org.apache.logging.log4j.core.co

 nfig.composite;uses:="org.apache.logging.log4j.core.config,org.apache

 .logging.log4j.core.config.plugins.util";version="2.17.1",org.apache.

 logging.log4j.core.config.json;uses:="com.fasterxml.jackson.databind,

 org.apache.logging.log4j.core,org.apache.logging.log4j.core.config,or

 g.apache.logging.log4j.core.config.plugins";version="2.17.1",org.apac

 he.logging.log4j.core.config.plugins;uses:="org.apache.logging.log4j.

 core.config.plugins.visitors";version="2.17.1",org.apache.logging.log

 4j.core.config.plugins.convert;uses:="org.apache.logging.log4j,org.ap

 ache.logging.log4j.core.appender.rolling.action,org.apache.logging.lo

 g4j.core.config.plugins,org.apache.logging.log4j.core.util";version="

 2.17.1",org.apache.logging.log4j.core.config.plugins.processor;uses:=

 "javax.annotation.processing,javax.lang.model,javax.lang.model.elemen

 t";version="2.17.1",org.apache.logging.log4j.core.config.plugins.util

 ;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.core.c

 onfig,org.apache.logging.log4j.core.config.plugins.processor,org.apac

 he.logging.log4j.core.util";version="2.17.1",org.apache.logging.log4j

 .core.config.plugins.validation;version="2.17.1",org.apache.logging.l

 og4j.core.config.plugins.validation.constraints;uses:="org.apache.log

 ging.log4j.core.config.plugins.validation,org.apache.logging.log4j.co

 re.config.plugins.validation.validators";version="2.17.1",org.apache.

 logging.log4j.core.config.plugins.validation.validators;uses:="org.ap

 ache.logging.log4j.core.config.plugins.validation,org.apache.logging.

 log4j.core.config.plugins.validation.constraints";version="2.17.1",or

 g.apache.logging.log4j.core.config.plugins.visitors;uses:="org.apache

 .logging.log4j,org.apache.logging.log4j.core,org.apache.logging.log4j

 .core.config,org.apache.logging.log4j.core.config.plugins,org.apache.

 logging.log4j.core.lookup";version="2.17.1",org.apache.logging.log4j.

 core.config.properties;uses:="org.apache.logging.log4j.core,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.buil

 der.api,org.apache.logging.log4j.core.config.builder.impl,org.apache.

 logging.log4j.core.config.plugins,org.apache.logging.log4j.core.util"

 ;version="2.17.1",org.apache.logging.log4j.core.config.status;uses:="

 org.apache.logging.log4j";version="2.17.1",org.apache.logging.log4j.c

 ore.config.xml;uses:="org.apache.logging.log4j.core,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.config.plugins";ver

 sion="2.17.1",org.apache.logging.log4j.core.config.yaml;uses:="com.fa

 sterxml.jackson.databind,org.apache.logging.log4j.core,org.apache.log

 ging.log4j.core.config,org.apache.logging.log4j.core.config.json,org.

 apache.logging.log4j.core.config.plugins";version="2.17.1",org.apache

 .logging.log4j.core.filter;uses:="org.apache.logging.log4j,org.apache

 .logging.log4j.core,org.apache.logging.log4j.core.config,org.apache.l

 ogging.log4j.core.config.plugins,org.apache.logging.log4j.core.script

 ,org.apache.logging.log4j.core.util,org.apache.logging.log4j.message,

 org.apache.logging.log4j.util";version="2.17.1",org.apache.logging.lo

 g4j.core.impl;uses:="org.apache.logging.log4j,org.apache.logging.log4

 j.core,org.apache.logging.log4j.core.config,org.apache.logging.log4j.

 core.pattern,org.apache.logging.log4j.core.selector,org.apache.loggin

 g.log4j.core.time,org.apache.logging.log4j.core.util,org.apache.loggi

 ng.log4j.message,org.apache.logging.log4j.spi,org.apache.logging.log4

 j.util";version="2.17.1",org.apache.logging.log4j.core.jackson;uses:=

 "com.fasterxml.jackson.core,com.fasterxml.jackson.databind,com.faster

 xml.jackson.databind.deser.std,com.fasterxml.jackson.databind.ser.std

 ,com.fasterxml.jackson.dataformat.xml,com.fasterxml.jackson.dataforma

 t.yaml,org.apache.logging.log4j.message,org.apache.logging.log4j.util

 ";version="2.17.1",org.apache.logging.log4j.core.jmx;uses:="com.lmax.

 disruptor,javax.management,org.apache.logging.log4j,org.apache.loggin

 g.log4j.core,org.apache.logging.log4j.core.appender,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.selector,org.apache

 .logging.log4j.status";version="2.17.1",org.apache.logging.log4j.core

 .layout;uses:="com.fasterxml.jackson.annotation,com.fasterxml.jackson

 .core,com.fasterxml.jackson.databind,com.fasterxml.jackson.dataformat

 .xml.annotation,org.apache.commons.csv,org.apache.logging.log4j,org.a

 pache.logging.log4j.core,org.apache.logging.log4j.core.config,org.apa

 che.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.i

 mpl,org.apache.logging.log4j.core.net,org.apache.logging.log4j.core.p

 attern,org.apache.logging.log4j.core.script,org.apache.logging.log4j.

 core.util,org.apache.logging.log4j.message";version="2.17.1",org.apac

 he.logging.log4j.core.layout.internal;version="2.17.1",org.apache.log

 ging.log4j.core.lookup;uses:="org.apache.logging.log4j.core,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins";version="2.17.1",org.apache.logging.log4j.core.message;uses:="or

 g.apache.logging.log4j.message";version="2.17.1",org.apache.logging.l

 og4j.core.net;uses:="javax.mail,javax.mail.internet,javax.naming,org.

 apache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging

 .log4j.core.appender,org.apache.logging.log4j.core.config,org.apache.

 logging.log4j.core.config.plugins,org.apache.logging.log4j.core.net.s

 sl,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.lo

 gging.log4j.core.net.ssl;uses:="javax.net.ssl,org.apache.logging.log4

 j.core.config.plugins,org.apache.logging.log4j.status";version="2.17.

 1",org.apache.logging.log4j.core.osgi;uses:="org.apache.logging.log4j

 .core,org.apache.logging.log4j.core.selector,org.osgi.framework";vers

 ion="2.17.1",org.apache.logging.log4j.core.parser;uses:="org.apache.l

 ogging.log4j.core";version="2.17.1",org.apache.logging.log4j.core.pat

 tern;uses:="org.apache.logging.log4j,org.apache.logging.log4j.core,or

 g.apache.logging.log4j.core.config,org.apache.logging.log4j.core.conf

 ig.plugins,org.apache.logging.log4j.core.impl,org.apache.logging.log4

 j.core.time,org.apache.logging.log4j.message,org.fusesource.jansi";ve

 rsion="2.17.1",org.apache.logging.log4j.core.script;uses:="javax.scri

 pt,org.apache.logging.log4j,org.apache.logging.log4j.core.config,org.

 apache.logging.log4j.core.config.plugins,org.apache.logging.log4j.cor

 e.util";version="2.17.1",org.apache.logging.log4j.core.selector;uses:

 ="org.apache.logging.log4j.core,org.apache.logging.log4j.spi,org.apac

 he.logging.log4j.status";version="2.17.1",org.apache.logging.log4j.co

 re.time;uses:="org.apache.logging.log4j.core.util,org.apache.logging.

 log4j.util";version="2.17.1",org.apache.logging.log4j.core.time.inter

 nal;uses:="org.apache.logging.log4j.core.time";version="2.17.1",org.a

 pache.logging.log4j.core.tools;version="2.17.1",org.apache.logging.lo

 g4j.core.tools.picocli;version="2.17.1",org.apache.logging.log4j.core

 .util;uses:="javax.crypto,javax.naming,org.apache.logging.log4j,org.a

 pache.logging.log4j.core,org.apache.logging.log4j.core.config,org.apa

 che.logging.log4j.core.config.plugins,org.apache.logging.log4j.util";

 version="2.17.1",org.apache.logging.log4j.core.util.datetime;uses:="o

 rg.apache.logging.log4j.core.time";version="2.17.1"

Bundle-Name: Apache Log4j Core

Log4jReleaseVersionJava6: 2.3.1

Multi-Release: true

Bundle-Activator: org.apache.logging.log4j.core.osgi.Activator

Log4jReleaseVersionJava7: 2.12.3

Log4jReleaseVersion: 2.17.1

Implementation-Title: Apache Log4j Core

Bundle-Description: The Apache Log4j Implementation

Automatic-Module-Name: org.apache.logging.log4j.core

Implementation-Version: 2.17.1

Specification-Vendor: The Apache Software Foundation

Bundle-ManifestVersion: 2

Bundle-Vendor: The Apache Software Foundation

Tool: Bnd-3.5.0.201709291849

Implementation-Vendor: The Apache Software Foundation

Bundle-Version: 2.17.1

X-Compile-Target-JDK: 1.8

X-Compile-Source-JDK: 1.8

Created-By: Apache Maven Bundle Plugin

Build-Jdk: 1.8.0_312

Specification-Version: 2.17.1

Implementation-URL: https://logging.apache.org/log4j/2.x/log4j-core/

Log4jReleaseKey: D7C92B70FA1C814D

Log4j-levels.xsd

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy$Mode.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized enum MapRewritePolicy$Mode {
 public static final MapRewritePolicy$Mode Add;
 public static final MapRewritePolicy$Mode Update;
 public static MapRewritePolicy$Mode[] values();
 public static MapRewritePolicy$Mode valueOf(String);
 private void MapRewritePolicy$Mode(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rewrite/RewriteAppender.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class RewriteAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final java.util.concurrent.ConcurrentMap appenders;
 private final RewritePolicy rewritePolicy;
 private final org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private void RewriteAppender(String, org.apache.logging.log4j.core.Filter, boolean, org.apache.logging.log4j.core.config.AppenderRef[], RewritePolicy, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public static RewriteAppender createAppender(String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Configuration, RewritePolicy, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class OutputStreamAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean follow;
 private final boolean ignoreExceptions;
 private java.io.OutputStream target;
 public void OutputStreamAppender$Builder();
 public OutputStreamAppender build();
 public OutputStreamAppender$Builder setFollow(boolean);
 public OutputStreamAppender$Builder setTarget(java.io.OutputStream);
}

org/apache/logging/log4j/core/appender/rolling/RolloverListener.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverListener {
 public abstract void rolloverTriggered(String);
 public abstract void rolloverComplete(String);
}

org/apache/logging/log4j/core/appender/rolling/NoOpTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class NoOpTriggeringPolicy extends AbstractTriggeringPolicy {
 public static final NoOpTriggeringPolicy INSTANCE;
 public void NoOpTriggeringPolicy();
 public static NoOpTriggeringPolicy createPolicy();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$AsyncAction.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$AsyncAction extends action.AbstractAction {
 private final action.Action action;
 private final RollingFileManager manager;
 public void RollingFileManager$AsyncAction(action.Action, RollingFileManager);
 public boolean execute() throws java.io.IOException;
 public void close();
 public boolean isComplete();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/SortingVisitor.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class SortingVisitor extends java.nio.file.SimpleFileVisitor {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final PathSorter sorter;
 private final java.util.List collected;
 public void SortingVisitor(PathSorter);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
 public java.nio.file.FileVisitResult visitFileFailed(java.nio.file.Path, java.io.IOException) throws java.io.IOException;
 public java.util.List getSortedPaths();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class RollingFileManager extends org.apache.logging.log4j.core.appender.FileManager {
 private static RollingFileManager$RollingFileManagerFactory factory;
 private static final int MAX_TRIES = 3;
 private static final int MIN_DURATION = 100;
 private static final java.nio.file.attribute.FileTime EPOCH;
 protected long size;
 private long initialTime;
 private volatile PatternProcessor patternProcessor;
 private final java.util.concurrent.Semaphore semaphore;
 private final org.apache.logging.log4j.core.util.Log4jThreadFactory threadFactory;
 private volatile TriggeringPolicy triggeringPolicy;
 private volatile RolloverStrategy rolloverStrategy;
 private volatile boolean renameEmptyFiles;
 private volatile boolean initialized;
 private volatile String fileName;
 private final boolean directWrite;
 private final java.util.concurrent.CopyOnWriteArrayList rolloverListeners;
 private final java.util.concurrent.ExecutorService asyncExecutor;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater triggeringPolicyUpdater;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater rolloverStrategyUpdater;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater patternProcessorUpdater;
 protected void RollingFileManager(String, String, java.io.OutputStream, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean);
 protected void RollingFileManager(String, String, java.io.OutputStream, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void RollingFileManager(org.apache.logging.log4j.core.LoggerContext, String, String, java.io.OutputStream, boolean, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void RollingFileManager(org.apache.logging.log4j.core.LoggerContext, String, String, java.io.OutputStream, boolean, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean, java.nio.ByteBuffer);
 public void initialize();
 public static RollingFileManager getFileManager(String, String, boolean, boolean, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean, boolean, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public void addRolloverListener(RolloverListener);
 public void removeRolloverListener(RolloverListener);
 public String getFileName();
 protected void createParentDir(java.io.File);
 public boolean isDirectWrite();
 public FileExtension getFileExtension();
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 public boolean isRenameEmptyFiles();
 public void setRenameEmptyFiles(boolean);
 public long getFileSize();
 public long getFileTime();
 public synchronized void checkRollover(org.apache.logging.log4j.core.LogEvent);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public synchronized void rollover(java.util.Date, java.util.Date);
 public synchronized void rollover();
 protected void createFileAfterRollover() throws java.io.IOException;
 public PatternProcessor getPatternProcessor();
 public void setTriggeringPolicy(TriggeringPolicy);
 public void setRolloverStrategy(RolloverStrategy);
 public void setPatternProcessor(PatternProcessor);
 public TriggeringPolicy getTriggeringPolicy();
 java.util.concurrent.Semaphore getSemaphore();
 public RolloverStrategy getRolloverStrategy();
 private boolean rollover(RolloverStrategy);
 public void updateData(Object);
 private static long initialFileTime(java.io.File);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/OutputStreamAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class OutputStreamAppender extends AbstractOutputStreamAppender {
 private static OutputStreamAppender$OutputStreamManagerFactory factory;
 public static OutputStreamAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, java.io.OutputStream, String, boolean, boolean);
 private static OutputStreamManager getManager(java.io.OutputStream, boolean, org.apache.logging.log4j.core.Layout);
 public static OutputStreamAppender$Builder newBuilder();
 private void OutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/WriterAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$1 {
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RandomAccessFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RandomAccessFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, RandomAccessFileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getFileName();
 public int getBufferSize();
 public static RandomAccessFileAppender createAppender(String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RandomAccessFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/db/DbAppenderLoggingException.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class DbAppenderLoggingException extends org.apache.logging.log4j.core.appender.AppenderLoggingException {
 private static final long serialVersionUID = 1;
 public transient void DbAppenderLoggingException(String, Object[]);
 public void DbAppenderLoggingException(String, Throwable);
 public transient void DbAppenderLoggingException(Throwable, String, Object[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class JdbcDatabaseManager$1 {
}

org/apache/logging/log4j/core/appender/ConsoleAppender$SystemErrStream.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$SystemErrStream extends java.io.OutputStream {
 public void ConsoleAppender$SystemErrStream();
 public void close();
 public void flush();
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int);
}

org/apache/logging/log4j/core/appender/routing/Routes$Builder.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class Routes$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String pattern;
 private org.apache.logging.log4j.core.script.AbstractScript patternScript;
 private Route[] routes;
 public void Routes$Builder();
 public Routes build();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public String getPattern();
 public org.apache.logging.log4j.core.script.AbstractScript getPatternScript();
 public Route[] getRoutes();
 public Routes$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public Routes$Builder withPattern(String);
 public Routes$Builder withPatternScript(org.apache.logging.log4j.core.script.AbstractScript);
 public Routes$Builder withRoutes(Route[]);
}

org/apache/logging/log4j/core/appender/routing/Route.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class Route {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.Node node;
 private final String appenderRef;
 private final String key;
 private void Route(org.apache.logging.log4j.core.config.Node, String, String);
 public org.apache.logging.log4j.core.config.Node getNode();
 public String getAppenderRef();
 public String getKey();
 public String toString();
 public static Route createRoute(String, String, org.apache.logging.log4j.core.config.Node);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SmtpAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class SmtpAppender$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$1.class

package org.apache.logging.log4j.core.appender.nosql;
synchronized class NoSqlDatabaseManager$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$NoSQLDatabaseManagerFactory.class

package org.apache.logging.log4j.core.appender.nosql;
final synchronized class NoSqlDatabaseManager$NoSQLDatabaseManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void NoSqlDatabaseManager$NoSQLDatabaseManagerFactory();
 public NoSqlDatabaseManager createManager(String, NoSqlDatabaseManager$FactoryData);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$KafkaManagerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$KafkaManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void KafkaManager$KafkaManagerFactory();
 public KafkaManager createManager(String, KafkaManager$FactoryData);
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$1.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$1 {
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper$1.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyHelper$1 {
}

org/apache/logging/log4j/core/impl/ReusableLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ReusableLogEventFactory implements LogEventFactory, LocationAwareLogEventFactory {
 private static final org.apache.logging.log4j.core.async.ThreadNameCachingStrategy THREAD_NAME_CACHING_STRATEGY;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final ThreadLocal mutableLogEventThreadLocal;
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 public void ReusableLogEventFactory();
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 private static MutableLogEvent getOrCreateMutableLogEvent();
 private static MutableLogEvent createInstance(MutableLogEvent);
 public static void release(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/ClassLoaderContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class ClassLoaderContextSelector implements ContextSelector, org.apache.logging.log4j.spi.LoggerContextShutdownAware {
 private static final java.util.concurrent.atomic.AtomicReference DEFAULT_CONTEXT;
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 protected static final java.util.concurrent.ConcurrentMap CONTEXT_MAP;
 public void ClassLoaderContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public void contextShutdown(org.apache.logging.log4j.spi.LoggerContext);
 public boolean hasContext(String, ClassLoader, boolean);
 private org.apache.logging.log4j.core.LoggerContext findContext(ClassLoader);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 private org.apache.logging.log4j.core.LoggerContext locateContext(ClassLoader, java.util.Map$Entry, java.net.URI);
 protected org.apache.logging.log4j.core.LoggerContext createContext(String, java.net.URI);
 protected String toContextMapKey(ClassLoader);
 protected org.apache.logging.log4j.core.LoggerContext getDefault();
 protected String defaultContextName();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunAll.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunAll implements CommandLine$IParseResultHandler {
 public void CommandLine$RunAll();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$PositionalParametersSorter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$PositionalParametersSorter implements java.util.Comparator {
 private void CommandLine$PositionalParametersSorter();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Range.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Range implements Comparable {
 public final int min;
 public final int max;
 public final boolean isVariable;
 private final boolean isUnspecified;
 private final String originalValue;
 public void CommandLine$Range(int, int, boolean, boolean, String);
 public static CommandLine$Range optionArity(reflect.Field);
 public static CommandLine$Range parameterArity(reflect.Field);
 public static CommandLine$Range parameterIndex(reflect.Field);
 static CommandLine$Range adjustForType(CommandLine$Range, reflect.Field);
 public static CommandLine$Range defaultArity(reflect.Field);
 public static CommandLine$Range defaultArity(Class);
 private int size();
 static CommandLine$Range parameterCapacity(reflect.Field);
 public static CommandLine$Range valueOf(String);
 private static int parseInt(String, int);
 public CommandLine$Range min(int);
 public CommandLine$Range max(int);
 public boolean contains(int);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public int compareTo(CommandLine$Range);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$IParseResultHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$IParseResultHandler {
 public abstract java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi) throws CommandLine$ExecutionException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunFirst.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunFirst implements CommandLine$IParseResultHandler {
 public void CommandLine$RunFirst();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/net/Protocol.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Protocol {
 public static final Protocol TCP;
 public static final Protocol SSL;
 public static final Protocol UDP;
 public static Protocol[] values();
 public static Protocol valueOf(String);
 private void Protocol(String, int);
 public boolean isEqual(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/StoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class StoreConfiguration {
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private String location;
 private PasswordProvider passwordProvider;
 public void StoreConfiguration(String, PasswordProvider);
 public void StoreConfiguration(String, char[]);
 public void StoreConfiguration(String, String);
 public void clearSecrets();
 public String getLocation();
 public void setLocation(String);
 public String getPassword();
 public char[] getPasswordAsCharArray();
 public void setPassword(char[]);
 public void setPassword(String);
 protected Object load() throws StoreConfigurationException;
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/TrustStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class TrustStoreConfiguration extends AbstractKeyStoreConfiguration {
 private final String trustManagerFactoryAlgorithm;
 public void TrustStoreConfiguration(String, PasswordProvider, String, String) throws StoreConfigurationException;
 public void TrustStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public void TrustStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, char[], String, String, String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public javax.net.ssl.TrustManagerFactory initTrustManagerFactory() throws java.security.NoSuchAlgorithmException, java.security.KeyStoreException;
 public int hashCode();
 public boolean equals(Object);
 public String getTrustManagerFactoryAlgorithm();
}

org/apache/logging/log4j/core/net/DatagramOutputStream.class

package org.apache.logging.log4j.core.net;
public synchronized class DatagramOutputStream extends java.io.OutputStream {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final int SHIFT_1 = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_3 = 24;
 private java.net.DatagramSocket datagramSocket;
 private final java.net.InetAddress inetAddress;
 private final int port;
 private byte[] data;
 private final byte[] header;
 private final byte[] footer;
 public void DatagramOutputStream(String, int, byte[], byte[]);
 public synchronized void write(byte[], int, int) throws java.io.IOException;
 public synchronized void write(int) throws java.io.IOException;
 public synchronized void write(byte[]) throws java.io.IOException;
 public synchronized void flush() throws java.io.IOException;
 public synchronized void close() throws java.io.IOException;
 private void copy(byte[], int, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Rfc1349TrafficClass.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Rfc1349TrafficClass {
 public static final Rfc1349TrafficClass IPTOS_NORMAL;
 public static final Rfc1349TrafficClass IPTOS_LOWCOST;
 public static final Rfc1349TrafficClass IPTOS_LOWDELAY;
 public static final Rfc1349TrafficClass IPTOS_RELIABILITY;
 public static final Rfc1349TrafficClass IPTOS_THROUGHPUT;
 private final int trafficClass;
 public static Rfc1349TrafficClass[] values();
 public static Rfc1349TrafficClass valueOf(String);
 private void Rfc1349TrafficClass(String, int, int);
 public int value();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CloseShieldOutputStream.class

package org.apache.logging.log4j.core.util;
public synchronized class CloseShieldOutputStream extends java.io.OutputStream {
 private final java.io.OutputStream delegate;
 public void CloseShieldOutputStream(java.io.OutputStream);
 public void close();
 public void flush() throws java.io.IOException;
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/BasicAuthorizationProvider.class

package org.apache.logging.log4j.core.util;
public synchronized class BasicAuthorizationProvider implements AuthorizationProvider {
 private static final String[] PREFIXES;
 private static final String AUTH_USER_NAME = username;
 private static final String AUTH_PASSWORD = password;
 private static final String AUTH_PASSWORD_DECRYPTOR = passwordDecryptor;
 public static final String CONFIG_USER_NAME = log4j2.configurationUserName;
 public static final String CONFIG_PASSWORD = log4j2.configurationPassword;
 public static final String PASSWORD_DECRYPTOR = log4j2.passwordDecryptor;
 private static org.apache.logging.log4j.Logger LOGGER;
 private String authString;
 public void BasicAuthorizationProvider(org.apache.logging.log4j.util.PropertiesUtil);
 public void addAuthorization(java.net.URLConnection);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Assert.class

package org.apache.logging.log4j.core.util;
public final synchronized class Assert {
 private void Assert();
 public static boolean isEmpty(Object);
 public static boolean isNonEmpty(Object);
 public static Object requireNonEmpty(Object);
 public static Object requireNonEmpty(Object, String);
 public static int valueIsAtLeast(int, int);
}

org/apache/logging/log4j/core/util/datetime/FormatCache$MultipartKey.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FormatCache$MultipartKey {
 private final Object[] keys;
 private int hashCode;
 public transient void FormatCache$MultipartKey(Object[]);
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$PatternStrategy.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FastDateParser$PatternStrategy extends FastDateParser$Strategy {
 private java.util.regex.Pattern pattern;
 private void FastDateParser$PatternStrategy();
 void createPattern(StringBuilder);
 void createPattern(String);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
 abstract void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$WeekYear.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$WeekYear implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$WeekYear(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwelveHourField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwelveHourField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$TwelveHourField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$CharacterLiteral.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$CharacterLiteral implements FastDatePrinter$Rule {
 private final char mValue;
 void FastDatePrinter$CharacterLiteral(char);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/CronExpression.class

package org.apache.logging.log4j.core.util;
public final synchronized class CronExpression {
 protected static final int SECOND = 0;
 protected static final int MINUTE = 1;
 protected static final int HOUR = 2;
 protected static final int DAY_OF_MONTH = 3;
 protected static final int MONTH = 4;
 protected static final int DAY_OF_WEEK = 5;
 protected static final int YEAR = 6;
 protected static final int ALL_SPEC_INT = 99;
 protected static final int NO_SPEC_INT = 98;
 protected static final Integer ALL_SPEC;
 protected static final Integer NO_SPEC;
 protected static final java.util.Map monthMap;
 protected static final java.util.Map dayMap;
 private final String cronExpression;
 private java.util.TimeZone timeZone;
 protected transient java.util.TreeSet seconds;
 protected transient java.util.TreeSet minutes;
 protected transient java.util.TreeSet hours;
 protected transient java.util.TreeSet daysOfMonth;
 protected transient java.util.TreeSet months;
 protected transient java.util.TreeSet daysOfWeek;
 protected transient java.util.TreeSet years;
 protected transient boolean lastdayOfWeek;
 protected transient int nthdayOfWeek;
 protected transient boolean lastdayOfMonth;
 protected transient boolean nearestWeekday;
 protected transient int lastdayOffset;
 protected transient boolean expressionParsed;
 public static final int MAX_YEAR;
 public static final java.util.Calendar MIN_CAL;
 public static final java.util.Date MIN_DATE;
 public void CronExpression(String) throws java.text.ParseException;
 public boolean isSatisfiedBy(java.util.Date);
 public java.util.Date getNextValidTimeAfter(java.util.Date);
 public java.util.Date getNextInvalidTimeAfter(java.util.Date);
 public java.util.TimeZone getTimeZone();
 public void setTimeZone(java.util.TimeZone);
 public String toString();
 public static boolean isValidExpression(String);
 public static void validateExpression(String) throws java.text.ParseException;
 protected void buildExpression(String) throws java.text.ParseException;
 protected int storeExpressionVals(int, String, int) throws java.text.ParseException;
 protected int checkNext(int, String, int, int) throws java.text.ParseException;
 public String getCronExpression();
 public String getExpressionSummary();
 protected String getExpressionSetSummary(java.util.Set);
 protected String getExpressionSetSummary(java.util.ArrayList);
 protected int skipWhiteSpace(int, String);
 protected int findNextWhiteSpace(int, String);
 protected void addToSet(int, int, int, int) throws java.text.ParseException;
 java.util.TreeSet getSet(int);
 protected CronExpression$ValueSet getValue(int, String, int);
 protected int getNumericValue(String, int);
 protected int getMonthNumber(String);
 protected int getDayOfWeekNumber(String);
 public java.util.Date getTimeAfter(java.util.Date);
 protected void setCalendarHour(java.util.Calendar, int);
 protected java.util.Date getTimeBefore(java.util.Date);
 public java.util.Date getPrevFireTime(java.util.Date);
 private long findMinIncrement();
 private int minInSet(java.util.TreeSet);
 public java.util.Date getFinalFireTime();
 protected boolean isLeapYear(int);
 protected int getLastDayOfMonth(int, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/IOUtils.class

package org.apache.logging.log4j.core.util;
public synchronized class IOUtils {
 private static final int DEFAULT_BUFFER_SIZE = 4096;
 public static final int EOF = -1;
 public void IOUtils();
 public static int copy(java.io.Reader, java.io.Writer) throws java.io.IOException;
 public static long copyLarge(java.io.Reader, java.io.Writer) throws java.io.IOException;
 public static long copyLarge(java.io.Reader, java.io.Writer, char[]) throws java.io.IOException;
 public static String toString(java.io.Reader) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/NetUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class NetUtils {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String UNKNOWN_LOCALHOST = UNKNOWN_LOCALHOST;
 private void NetUtils();
 public static String getLocalHostname();
 public static byte[] getMacAddress();
 public static String getMacAddressString();
 private static boolean isUpAndNotLoopback(java.net.NetworkInterface) throws java.net.SocketException;
 public static java.net.URI toURI(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/FileWatcher.class

package org.apache.logging.log4j.core.util;
public abstract interface FileWatcher {
 public abstract void fileModified(java.io.File);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginConfigurationVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginConfigurationVisitor extends AbstractPluginVisitor {
 public void PluginConfigurationVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginAttributeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginAttributeVisitor extends AbstractPluginVisitor {
 public void PluginAttributeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private Object findDefaultValue(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/config/plugins/util/PluginRegistry$PluginTest.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginRegistry$PluginTest implements ResolverUtil$Test {
 public void PluginRegistry$PluginTest();
 public boolean matches(Class);
 public String toString();
 public boolean matches(java.net.URI);
 public boolean doesMatchClass();
 public boolean doesMatchResource();
}

org/apache/logging/log4j/core/config/plugins/PluginVisitorStrategy.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginVisitorStrategy extends annotation.Annotation {
 public abstract Class value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$PathConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$PathConverter implements TypeConverter {
 public void TypeConverters$PathConverter();
 public java.nio.file.Path convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$DoubleConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$DoubleConverter implements TypeConverter {
 public void TypeConverters$DoubleConverter();
 public Double convert(String);
}

org/apache/logging/log4j/core/config/ConfigurationScheduler$CronRunnable.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationScheduler$CronRunnable implements Runnable {
 private final org.apache.logging.log4j.core.util.CronExpression cronExpression;
 private final Runnable runnable;
 private CronScheduledFuture scheduledFuture;
 public void ConfigurationScheduler$CronRunnable(ConfigurationScheduler, Runnable, org.apache.logging.log4j.core.util.CronExpression);
 public void setScheduledFuture(CronScheduledFuture);
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/config/ConfigurationSource.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationSource {
 public static final ConfigurationSource NULL_SOURCE;
 public static final ConfigurationSource COMPOSITE_SOURCE;
 private static final String HTTPS = https;
 private final java.io.File file;
 private final java.net.URL url;
 private final String location;
 private final java.io.InputStream stream;
 private volatile byte[] data;
 private volatile org.apache.logging.log4j.core.util.Source source;
 private final long lastModified;
 private volatile long modifiedMillis;
 public void ConfigurationSource(java.io.InputStream, java.io.File);
 public void ConfigurationSource(java.io.InputStream, java.net.URL);
 public void ConfigurationSource(java.io.InputStream, java.net.URL, long);
 public void ConfigurationSource(java.io.InputStream) throws java.io.IOException;
 public void ConfigurationSource(org.apache.logging.log4j.core.util.Source, byte[], long) throws java.io.IOException;
 private void ConfigurationSource(byte[], java.net.URL, long);
 private static byte[] toByteArray(java.io.InputStream) throws java.io.IOException;
 public java.io.File getFile();
 public java.net.URL getURL();
 public void setSource(org.apache.logging.log4j.core.util.Source);
 public void setData(byte[]);
 public void setModifiedMillis(long);
 public java.net.URI getURI();
 public long getLastModified();
 public String getLocation();
 public java.io.InputStream getInputStream();
 public ConfigurationSource resetInputStream() throws java.io.IOException;
 public String toString();
 public static ConfigurationSource fromUri(java.net.URI);
 public static ConfigurationSource fromResource(String, ClassLoader);
 private static ConfigurationSource getConfigurationSource(java.net.URL);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration.class

package org.apache.logging.log4j.core.config.xml;
public synchronized class XmlConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 private static final String XINCLUDE_FIXUP_LANGUAGE = http://apache.org/xml/features/xinclude/fixup-language;
 private static final String XINCLUDE_FIXUP_BASE_URIS = http://apache.org/xml/features/xinclude/fixup-base-uris;
 private static final String[] VERBOSE_CLASSES;
 private static final String LOG4J_XSD = Log4j-config.xsd;
 private final java.util.List status;
 private org.w3c.dom.Element rootElement;
 private boolean strict;
 private String schemaResource;
 public void XmlConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 static javax.xml.parsers.DocumentBuilder newDocumentBuilder(boolean) throws javax.xml.parsers.ParserConfigurationException;
 private static void disableDtdProcessing(javax.xml.parsers.DocumentBuilderFactory);
 private static void setFeature(javax.xml.parsers.DocumentBuilderFactory, String, boolean);
 private static void enableXInclude(javax.xml.parsers.DocumentBuilderFactory);
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private void constructHierarchy(org.apache.logging.log4j.core.config.Node, org.w3c.dom.Element);
 private String getType(org.w3c.dom.Element);
 private java.util.Map processAttributes(org.apache.logging.log4j.core.config.Node, org.w3c.dom.Element);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/DefaultReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private final LoggerConfig loggerConfig;
 public void DefaultReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/AwaitUnconditionallyReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class AwaitUnconditionallyReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private static final long DEFAULT_SLEEP_MILLIS = 5000;
 private static final long SLEEP_MILLIS;
 private final LoggerConfig loggerConfig;
 public void AwaitUnconditionallyReliabilityStrategy(LoggerConfig);
 private static long sleepMillis();
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/yaml/YamlConfiguration.class

package org.apache.logging.log4j.core.config.yaml;
public synchronized class YamlConfiguration extends org.apache.logging.log4j.core.config.json.JsonConfiguration {
 public void YamlConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 protected com.fasterxml.jackson.databind.ObjectMapper getObjectMapper();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
}

org/apache/logging/log4j/core/config/LoggerConfig.class

package org.apache.logging.log4j.core.config;
public synchronized class LoggerConfig extends org.apache.logging.log4j.core.filter.AbstractFilterable implements org.apache.logging.log4j.core.impl.LocationAware {
 public static final String ROOT = root;
 private static org.apache.logging.log4j.core.impl.LogEventFactory LOG_EVENT_FACTORY;
 private java.util.List appenderRefs;
 private final AppenderControlArraySet appenders;
 private final String name;
 private org.apache.logging.log4j.core.impl.LogEventFactory logEventFactory;
 private org.apache.logging.log4j.Level level;
 private boolean additive;
 private boolean includeLocation;
 private LoggerConfig parent;
 private java.util.Map propertiesMap;
 private final java.util.List properties;
 private final boolean propertiesRequireLookup;
 private final Configuration config;
 private final ReliabilityStrategy reliabilityStrategy;
 public void LoggerConfig();
 public void LoggerConfig(String, org.apache.logging.log4j.Level, boolean);
 protected void LoggerConfig(String, java.util.List, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.Level, boolean, Property[], Configuration, boolean);
 private static boolean containsPropertyRequiringLookup(Property[]);
 public org.apache.logging.log4j.core.Filter getFilter();
 public String getName();
 public void setParent(LoggerConfig);
 public LoggerConfig getParent();
 public void addAppender(org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public void removeAppender(String);
 public java.util.Map getAppenders();
 protected void clearAppenders();
 private void cleanupFilter(AppenderControl);
 public java.util.List getAppenderRefs();
 public void setLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.core.impl.LogEventFactory getLogEventFactory();
 public void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
 public boolean isAdditive();
 public void setAdditive(boolean);
 public boolean isIncludeLocation();
 public java.util.Map getProperties();
 public java.util.List getPropertyList();
 public boolean isPropertiesRequireLookup();
 public void log(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement location(String);
 public void log(String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private java.util.List getProperties(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private java.util.List getPropertiesWithLookups(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, java.util.List);
 public void log(org.apache.logging.log4j.core.LogEvent);
 protected void log(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 public ReliabilityStrategy getReliabilityStrategy();
 private void processLogEvent(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 public boolean requiresLocation();
 private void logParent(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 protected void callAppenders(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
 public static LoggerConfig createLogger(boolean, org.apache.logging.log4j.Level, String, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
 protected static boolean includeLocation(String);
 protected static boolean includeLocation(String, Configuration);
 protected final boolean hasAppenders();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/BuiltConfiguration.class

package org.apache.logging.log4j.core.config.builder.impl;
public synchronized class BuiltConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration {
 private static final String[] VERBOSE_CLASSES;
 private final org.apache.logging.log4j.core.config.status.StatusConfiguration statusConfig;
 protected org.apache.logging.log4j.core.config.builder.api.Component rootComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component loggersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component appendersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component filtersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component propertiesComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component customLevelsComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component scriptsComponent;
 private String contentType;
 public void BuiltConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource, org.apache.logging.log4j.core.config.builder.api.Component);
 public void setup();
 public String getContentType();
 public void setContentType(String);
 public void createAdvertiser(String, org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.config.status.StatusConfiguration getStatusConfiguration();
 public void setPluginPackages(String);
 public void setShutdownHook(String);
 public void setShutdownTimeoutMillis(long);
 public void setMonitorInterval(int);
 public org.apache.logging.log4j.core.config.plugins.util.PluginManager getPluginManager();
 protected org.apache.logging.log4j.core.config.Node convertToNode(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.builder.api.Component);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultComponentBuilder implements org.apache.logging.log4j.core.config.builder.api.ComponentBuilder {
 private final org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder builder;
 private final String type;
 private final java.util.Map attributes;
 private final java.util.List components;
 private final String name;
 private final String value;
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String);
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String, String);
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, Enum);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, int);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, Object);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addComponent(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.Component build();
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder getBuilder();
 public String getName();
 protected org.apache.logging.log4j.core.config.builder.api.ComponentBuilder put(String, String);
}

org/apache/logging/log4j/core/LoggerContext$ThreadContextDataTask.class

package org.apache.logging.log4j.core;
synchronized class LoggerContext$ThreadContextDataTask implements Runnable {
 private void LoggerContext$ThreadContextDataTask(LoggerContext);
 public void run();
}

org/apache/logging/log4j/core/jmx/ContextSelectorAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface ContextSelectorAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=ContextSelector;
 public abstract String getImplementationClassName();
}

org/apache/logging/log4j/core/layout/Rfc5424Layout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class Rfc5424Layout extends AbstractStringLayout {
 public static final int DEFAULT_ENTERPRISE_NUMBER = 18060;
 public static final String DEFAULT_ID = Audit;
 public static final java.util.regex.Pattern NEWLINE_PATTERN;
 public static final java.util.regex.Pattern PARAM_VALUE_ESCAPE_PATTERN;
 public static final String DEFAULT_MDCID = mdc;
 private static final String LF =
;
 private static final int TWO_DIGITS = 10;
 private static final int THREE_DIGITS = 100;
 private static final int MILLIS_PER_MINUTE = 60000;
 private static final int MINUTES_PER_HOUR = 60;
 private static final String COMPONENT_KEY = RFC5424-Converter;
 private final org.apache.logging.log4j.core.net.Facility facility;
 private final String defaultId;
 private final int enterpriseNumber;
 private final boolean includeMdc;
 private final String mdcId;
 private final org.apache.logging.log4j.message.StructuredDataId mdcSdId;
 private final String localHostName;
 private final String appName;
 private final String messageId;
 private final String configName;
 private final String mdcPrefix;
 private final String eventPrefix;
 private final java.util.List mdcExcludes;
 private final java.util.List mdcIncludes;
 private final java.util.List mdcRequired;
 private final internal.ListChecker listChecker;
 private final boolean includeNewLine;
 private final String escapeNewLine;
 private final boolean useTlsMessageFormat;
 private long lastTimestamp;
 private String timestamppStr;
 private final java.util.List exceptionFormatters;
 private final java.util.Map fieldFormatters;
 private final String procId;
 private void Rfc5424Layout(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.net.Facility, String, int, boolean, boolean, String, String, String, String, String, String, String, String, String, java.nio.charset.Charset, String, boolean, LoggerFields[]);
 private java.util.Map createFieldFormatters(LoggerFields[], org.apache.logging.log4j.core.config.Configuration);
 private static org.apache.logging.log4j.core.pattern.PatternParser createPatternParser(org.apache.logging.log4j.core.config.Configuration, Class);
 public java.util.Map getContentFormat();
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private void appendPriority(StringBuilder, org.apache.logging.log4j.Level);
 private void appendTimestamp(StringBuilder, long);
 private void appendSpace(StringBuilder);
 private void appendHostName(StringBuilder);
 private void appendAppName(StringBuilder);
 private void appendProcessId(StringBuilder);
 private void appendMessageId(StringBuilder, org.apache.logging.log4j.message.Message);
 private void appendMessage(StringBuilder, org.apache.logging.log4j.core.LogEvent);
 private void appendStructuredElements(StringBuilder, org.apache.logging.log4j.core.LogEvent);
 private void addStructuredData(java.util.Map, org.apache.logging.log4j.message.StructuredDataMessage);
 private String escapeNewlines(String, String);
 protected String getProcId();
 protected java.util.List getMdcExcludes();
 protected java.util.List getMdcIncludes();
 private String computeTimeStampString(long);
 private void pad(int, int, StringBuilder);
 private void formatStructuredElement(String, Rfc5424Layout$StructuredDataElement, StringBuilder, internal.ListChecker);
 private String getId(org.apache.logging.log4j.message.StructuredDataId);
 private void checkRequired(java.util.Map);
 private void appendMap(String, java.util.Map, StringBuilder, internal.ListChecker);
 private String escapeSDParams(String);
 public String toString();
 public static Rfc5424Layout createLayout(org.apache.logging.log4j.core.net.Facility, String, int, boolean, String, String, String, boolean, String, String, String, String, String, String, String, boolean, LoggerFields[], org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.net.Facility getFacility();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Serializer2.class

package org.apache.logging.log4j.core.layout;
public abstract interface AbstractStringLayout$Serializer2 {
 public abstract StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/layout/HtmlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class HtmlLayout extends AbstractStringLayout {
 public static final String DEFAULT_FONT_FAMILY = arial,sans-serif;
 private static final String TRACE_PREFIX =
 ;
 private static final String REGEXP;
 private static final String DEFAULT_TITLE = Log4j Log Messages;
 private static final String DEFAULT_CONTENT_TYPE = text/html;
 private static final String DEFAULT_DATE_PATTERN = JVM_ELAPSE_TIME;
 private final long jvmStartTime;
 private final boolean locationInfo;
 private final String title;
 private final String contentType;
 private final String font;
 private final String fontSize;
 private final String headerSize;
 private final org.apache.logging.log4j.core.pattern.DatePatternConverter datePatternConverter;
 private void HtmlLayout(boolean, String, String, java.nio.charset.Charset, String, String, String, String, String);
 public String getTitle();
 public boolean isLocationInfo();
 public boolean requiresLocation();
 private String addCharsetToContentType(String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String getContentType();
 private void appendThrowableAsHtml(Throwable, StringBuilder);
 private StringBuilder appendLs(StringBuilder, String);
 private StringBuilder append(StringBuilder, String);
 public byte[] getHeader();
 public byte[] getFooter();
 public static HtmlLayout createLayout(boolean, String, String, java.nio.charset.Charset, String, String);
 public static HtmlLayout createDefaultLayout();
 public static HtmlLayout$Builder newBuilder();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class LevelPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class MarkerPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final boolean requiresLocation;
 public void MarkerPatternSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 private void MarkerPatternSelector(PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static MarkerPatternSelector$Builder newBuilder();
 public static MarkerPatternSelector createSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$2.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$2 {
 void GelfLayout$CompressionType$2(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/AbstractLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractLayout implements org.apache.logging.log4j.core.Layout {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected final org.apache.logging.log4j.core.config.Configuration configuration;
 protected long eventCount;
 protected final byte[] footer;
 protected final byte[] header;
 public void AbstractLayout(byte[], byte[]);
 public void AbstractLayout(org.apache.logging.log4j.core.config.Configuration, byte[], byte[]);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public java.util.Map getContentFormat();
 public byte[] getFooter();
 public byte[] getHeader();
 protected void markEvent();
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/DisruptorUtil.class

package org.apache.logging.log4j.core.async;
final synchronized class DisruptorUtil {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int RINGBUFFER_MIN_SIZE = 128;
 private static final int RINGBUFFER_DEFAULT_SIZE = 262144;
 private static final int RINGBUFFER_NO_GC_DEFAULT_SIZE = 4096;
 static final boolean ASYNC_LOGGER_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL;
 static final boolean ASYNC_CONFIG_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL;
 private void DisruptorUtil();
 static com.lmax.disruptor.WaitStrategy createWaitStrategy(String);
 private static String getFullPropertyKey(String, String);
 private static long parseAdditionalLongProperty(String, String, long);
 static int calculateRingBufferSize(String);
 static com.lmax.disruptor.ExceptionHandler getAsyncLoggerExceptionHandler();
 static com.lmax.disruptor.ExceptionHandler getAsyncLoggerConfigExceptionHandler();
 public static long getExecutorThreadId(java.util.concurrent.ExecutorService);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$WaitStrategy.class

package org.apache.logging.log4j.core.async;
public final synchronized enum JCToolsBlockingQueueFactory$WaitStrategy {
 public static final JCToolsBlockingQueueFactory$WaitStrategy SPIN;
 public static final JCToolsBlockingQueueFactory$WaitStrategy YIELD;
 public static final JCToolsBlockingQueueFactory$WaitStrategy PARK;
 public static final JCToolsBlockingQueueFactory$WaitStrategy PROGRESSIVE;
 private final JCToolsBlockingQueueFactory$Idle idle;
 public static JCToolsBlockingQueueFactory$WaitStrategy[] values();
 public static JCToolsBlockingQueueFactory$WaitStrategy valueOf(String);
 private int idle(int);
 private void JCToolsBlockingQueueFactory$WaitStrategy(String, int, JCToolsBlockingQueueFactory$Idle);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/RingBufferLogEventHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEventHandler implements com.lmax.disruptor.SequenceReportingEventHandler, com.lmax.disruptor.LifecycleAware {
 private static final int NOTIFY_PROGRESS_THRESHOLD = 50;
 private com.lmax.disruptor.Sequence sequenceCallback;
 private int counter;
 private long threadId;
 public void RingBufferLogEventHandler();
 public void setSequenceCallback(com.lmax.disruptor.Sequence);
 public void onEvent(RingBufferLogEvent, long, boolean) throws Exception;
 private void notifyCallback(long);
 public long getThreadId();
 public void onStart();
 public void onShutdown();
}

org/apache/logging/log4j/core/lookup/MainMapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MainMapLookup extends MapLookup {
 static final MapLookup MAIN_SINGLETON;
 public void MainMapLookup();
 public void MainMapLookup(java.util.Map);
 public static transient void setMainArguments(String[]);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$TrimMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$TrimMatcher extends StrMatcher {
 void StrMatcher$TrimMatcher();
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/JmxRuntimeInputArgumentsLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JmxRuntimeInputArgumentsLookup extends MapLookup {
 public static final JmxRuntimeInputArgumentsLookup JMX_SINGLETON;
 public void JmxRuntimeInputArgumentsLookup();
 public void JmxRuntimeInputArgumentsLookup(java.util.Map);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/ConfigurationStrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class ConfigurationStrSubstitutor extends StrSubstitutor {
 public void ConfigurationStrSubstitutor();
 public void ConfigurationStrSubstitutor(java.util.Map);
 public void ConfigurationStrSubstitutor(java.util.Properties);
 public void ConfigurationStrSubstitutor(StrLookup);
 public void ConfigurationStrSubstitutor(StrSubstitutor);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 public String toString();
}

org/apache/logging/log4j/core/parser/LogEventParser.class

package org.apache.logging.log4j.core.parser;
public abstract interface LogEventParser {
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(byte[]) throws ParseException;
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(byte[], int, int) throws ParseException;
}

org/apache/logging/log4j/core/script/ScriptManager$1.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$1 {
}

org/apache/logging/log4j/core/time/internal/FixedPreciseClock.class

package org.apache.logging.log4j.core.time.internal;
public synchronized class FixedPreciseClock implements org.apache.logging.log4j.core.time.PreciseClock {
 private final long currentTimeMillis;
 private final int nanosOfMillisecond;
 public void FixedPreciseClock();
 public void FixedPreciseClock(long);
 public void FixedPreciseClock(long, int);
 public void init(org.apache.logging.log4j.core.time.MutableInstant);
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/Appender.class

package org.apache.logging.log4j.core;
public abstract interface Appender extends LifeCycle {
 public static final String ELEMENT_TYPE = appender;
 public abstract void append(LogEvent);
 public abstract String getName();
 public abstract Layout getLayout();
 public abstract boolean ignoreExceptions();
 public abstract ErrorHandler getHandler();
 public abstract void setHandler(ErrorHandler);
}

org/apache/logging/log4j/core/filter/BurstFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class BurstFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.Level level;
 private float rate;
 private long maxBurst;
 public void BurstFilter$Builder();
 public BurstFilter$Builder setLevel(org.apache.logging.log4j.Level);
 public BurstFilter$Builder setRate(float);
 public BurstFilter$Builder setMaxBurst(long);
 public BurstFilter build();
}

org/apache/logging/log4j/core/filter/LevelRangeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class LevelRangeFilter extends AbstractFilter {
 private final org.apache.logging.log4j.Level maxLevel;
 private final org.apache.logging.log4j.Level minLevel;
 public static LevelRangeFilter createFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private void LevelRangeFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.Level getMinLevel();
 public String toString();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class NoMarkerFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void NoMarkerFilter$Builder();
 public NoMarkerFilter build();
}

org/apache/logging/log4j/core/pattern/LoggerFqcnPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LoggerFqcnPatternConverter extends LogEventPatternConverter {
 private static final LoggerFqcnPatternConverter INSTANCE;
 private void LoggerFqcnPatternConverter();
 public static LoggerFqcnPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/CachedDateFormat.class

package org.apache.logging.log4j.core.pattern;
final synchronized class CachedDateFormat extends java.text.DateFormat {
 public static final int NO_MILLISECONDS = -2;
 public static final int UNRECOGNIZED_MILLISECONDS = -1;
 private static final long serialVersionUID = -1253877934598423628;
 private static final String DIGITS = 0123456789;
 private static final int MAGIC1 = 654;
 private static final String MAGICSTRING1 = 654;
 private static final int MAGIC2 = 987;
 private static final String MAGICSTRING2 = 987;
 private static final String ZERO_STRING = 000;
 private static final int BUF_SIZE = 50;
 private static final int DEFAULT_VALIDITY = 1000;
 private static final int THREE_DIGITS = 100;
 private static final int TWO_DIGITS = 10;
 private static final long SLOTS = 1000;
 private final java.text.DateFormat formatter;
 private int millisecondStart;
 private long slotBegin;
 private final StringBuffer cache;
 private final int expiration;
 private long previousTime;
 private final java.util.Date tmpDate;
 public void CachedDateFormat(java.text.DateFormat, int);
 public static int findMillisecondStart(long, String, java.text.DateFormat);
 public StringBuffer format(java.util.Date, StringBuffer, java.text.FieldPosition);
 public StringBuffer format(long, StringBuffer);
 private static void millisecondFormat(int, StringBuffer, int);
 public void setTimeZone(java.util.TimeZone);
 public java.util.Date parse(String, java.text.ParsePosition);
 public java.text.NumberFormat getNumberFormat();
 public static int getMaximumCacheValidity(String);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Green.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Green extends AbstractStyleNameConverter {
 protected static final String NAME = green;
 public void AbstractStyleNameConverter$Green(java.util.List, String);
 public static AbstractStyleNameConverter$Green newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ContextDataAsEntryListDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void ContextDataAsEntryListDeserializer$1(ContextDataAsEntryListDeserializer);
}

org/apache/logging/log4j/core/jackson/ThrowableProxyWithStacktraceAsStringMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyWithStacktraceAsStringMixIn {
 private ThrowableProxyWithStacktraceAsStringMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyWithStacktraceAsStringMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/LogEventJsonMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LogEventJsonMixIn implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = 1;
 void LogEventJsonMixIn();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerFqcn();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract StackTraceElement getSource();
 public abstract long getThreadId();
 public abstract String getThreadName();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public abstract long getTimeMillis();
 public abstract org.apache.logging.log4j.core.time.Instant getInstant();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
}

META-INF/services/org.apache.logging.log4j.message.ThreadDumpMessage$ThreadInfoFactory

org.apache.logging.log4j.core.message.ExtendedThreadInfoFactory

META-INF/services/org.apache.logging.log4j.spi.Provider

org.apache.logging.log4j.core.impl.Log4jProvider

org/apache/logging/log4j/core/appender/ConsoleAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class ConsoleAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = Console;
 private static final String JANSI_CLASS = org.fusesource.jansi.WindowsAnsiOutputStream;
 private static ConsoleAppender$ConsoleManagerFactory factory;
 private static final ConsoleAppender$Target DEFAULT_TARGET;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private final ConsoleAppender$Target target;
 private void ConsoleAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, boolean, ConsoleAppender$Target, org.apache.logging.log4j.core.config.Property[]);
 public static ConsoleAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, String);
 public static ConsoleAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, ConsoleAppender$Target, String, boolean, boolean, boolean);
 public static ConsoleAppender createDefaultAppenderForLayout(org.apache.logging.log4j.core.Layout);
 public static ConsoleAppender$Builder newBuilder();
 private static OutputStreamManager getDefaultManager(ConsoleAppender$Target, boolean, boolean, org.apache.logging.log4j.core.Layout);
 private static OutputStreamManager getManager(ConsoleAppender$Target, boolean, boolean, org.apache.logging.log4j.core.Layout);
 private static java.io.OutputStream getOutputStream(boolean, boolean, ConsoleAppender$Target);
 private static String clean(String);
 public ConsoleAppender$Target getTarget();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SocketAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SocketAppender$Builder extends SocketAppender$AbstractBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void SocketAppender$Builder();
 public SocketAppender build();
}

org/apache/logging/log4j/core/appender/SyslogAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SyslogAppender$Builder extends SocketAppender$AbstractBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.net.Facility facility;
 private String id;
 private int enterpriseNumber;
 private boolean includeMdc;
 private String mdcId;
 private String mdcPrefix;
 private String eventPrefix;
 private boolean newLine;
 private String escapeNL;
 private String appName;
 private String msgId;
 private String excludes;
 private String includes;
 private String required;
 private String format;
 private java.nio.charset.Charset charsetName;
 private String exceptionPattern;
 private org.apache.logging.log4j.core.layout.LoggerFields[] loggerFields;
 public void SyslogAppender$Builder();
 public SyslogAppender build();
 public org.apache.logging.log4j.core.net.Facility getFacility();
 public String getId();
 public int getEnterpriseNumber();
 public boolean isIncludeMdc();
 public String getMdcId();
 public String getMdcPrefix();
 public String getEventPrefix();
 public boolean isNewLine();
 public String getEscapeNL();
 public String getAppName();
 public String getMsgId();
 public String getExcludes();
 public String getIncludes();
 public String getRequired();
 public String getFormat();
 public java.nio.charset.Charset getCharsetName();
 public String getExceptionPattern();
 public org.apache.logging.log4j.core.layout.LoggerFields[] getLoggerFields();
 public SyslogAppender$Builder setFacility(org.apache.logging.log4j.core.net.Facility);
 public SyslogAppender$Builder setId(String);
 public SyslogAppender$Builder setEnterpriseNumber(int);
 public SyslogAppender$Builder setIncludeMdc(boolean);
 public SyslogAppender$Builder setMdcId(String);
 public SyslogAppender$Builder setMdcPrefix(String);
 public SyslogAppender$Builder setEventPrefix(String);
 public SyslogAppender$Builder setNewLine(boolean);
 public SyslogAppender$Builder setEscapeNL(String);
 public SyslogAppender$Builder setAppName(String);
 public SyslogAppender$Builder setMsgId(String);
 public SyslogAppender$Builder setExcludes(String);
 public SyslogAppender$Builder setIncludes(String);
 public SyslogAppender$Builder setRequired(String);
 public SyslogAppender$Builder setFormat(String);
 public SyslogAppender$Builder setCharsetName(java.nio.charset.Charset);
 public SyslogAppender$Builder setExceptionPattern(String);
 public SyslogAppender$Builder setLoggerFields(org.apache.logging.log4j.core.layout.LoggerFields[]);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RollingRandomAccessFileAppender$1 {
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class TimeBasedTriggeringPolicy extends AbstractTriggeringPolicy {
 private long nextRolloverMillis;
 private final int interval;
 private final boolean modulate;
 private final long maxRandomDelayMillis;
 private RollingFileManager manager;
 private void TimeBasedTriggeringPolicy(int, boolean, long);
 public int getInterval();
 public long getNextRolloverMillis();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public static TimeBasedTriggeringPolicy createPolicy(String, String);
 public static TimeBasedTriggeringPolicy$Builder newBuilder();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/DirectFileRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface DirectFileRolloverStrategy {
 public abstract String getCurrentFileName(RollingFileManager);
 public abstract void clearCurrentFileName();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$FactoryData extends org.apache.logging.log4j.core.appender.ConfigurationFactoryData {
 private final String fileName;
 private final String pattern;
 private final boolean append;
 private final boolean immediateFlush;
 private final int bufferSize;
 private final TriggeringPolicy policy;
 private final RolloverStrategy strategy;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void RollingRandomAccessFileManager$FactoryData(String, String, boolean, boolean, int, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public String getPattern();
 public TriggeringPolicy getTriggeringPolicy();
 public RolloverStrategy getRolloverStrategy();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$RollingFileManagerFactory.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$RollingFileManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void RollingFileManager$RollingFileManagerFactory();
 public RollingFileManager createManager(String, RollingFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/action/IfNot.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfNot implements PathCondition {
 private final PathCondition negate;
 private void IfNot(PathCondition);
 public PathCondition getWrappedFilter();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static IfNot createNotCondition(PathCondition);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PosixViewAttributeAction extends AbstractPathAction {
 private final java.util.Set filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 private void PosixViewAttributeAction(String, boolean, int, PathCondition[], org.apache.logging.log4j.core.lookup.StrSubstitutor, java.util.Set, String, String);
 public static PosixViewAttributeAction$Builder newBuilder();
 protected java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public java.util.Set getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/DeleteAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class DeleteAction extends AbstractPathAction {
 private final PathSorter pathSorter;
 private final boolean testMode;
 private final ScriptCondition scriptCondition;
 void DeleteAction(String, boolean, int, boolean, PathSorter, PathCondition[], ScriptCondition, org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public boolean execute() throws java.io.IOException;
 private boolean executeScript() throws java.io.IOException;
 private java.util.List callScript() throws java.io.IOException;
 private void deleteSelectedFiles(java.util.List) throws java.io.IOException;
 protected void delete(java.nio.file.Path) throws java.io.IOException;
 public boolean execute(java.nio.file.FileVisitor) throws java.io.IOException;
 private void trace(String, java.util.List);
 java.util.List getSortedPaths() throws java.io.IOException;
 public boolean isTestMode();
 protected java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public static DeleteAction createDeleteAction(String, boolean, int, boolean, PathSorter, PathCondition[], ScriptCondition, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/action/ZipCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class ZipCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 private final int level;
 public void ZipCompressAction(java.io.File, java.io.File, boolean, int);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean, int) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
 public int getLevel();
}

org/apache/logging/log4j/core/appender/rolling/CompositeTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class CompositeTriggeringPolicy extends AbstractTriggeringPolicy {
 private final TriggeringPolicy[] triggeringPolicies;
 private transient void CompositeTriggeringPolicy(TriggeringPolicy[]);
 public TriggeringPolicy[] getTriggeringPolicies();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public static transient CompositeTriggeringPolicy createPolicy(TriggeringPolicy[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$3.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$3 {
 void FileExtension$3(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$2.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$2 {
 void FileExtension$2(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/HttpAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class HttpAppender extends AbstractAppender {
 private final HttpManager manager;
 public static HttpAppender$Builder newBuilder();
 private void HttpAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, HttpManager, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/AbstractFileAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private final Object advertisement;
 private void AbstractFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public String getFileName();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$FactoryData {
 private final java.io.OutputStream os;
 private final String name;
 private final org.apache.logging.log4j.core.Layout layout;
 public void ConsoleAppender$FactoryData(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$FactoryData {
 private final org.apache.logging.log4j.core.Layout layout;
 private final String name;
 private final java.io.OutputStream os;
 public void OutputStreamAppender$FactoryData(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/AppenderLoggingException.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderLoggingException extends org.apache.logging.log4j.LoggingException {
 private static final long serialVersionUID = 6545990597472958303;
 public void AppenderLoggingException(String);
 public transient void AppenderLoggingException(String, Object[]);
 public void AppenderLoggingException(String, Throwable);
 public void AppenderLoggingException(Throwable);
 public transient void AppenderLoggingException(Throwable, String, Object[]);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RollingRandomAccessFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private final String filePattern;
 private final Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RollingRandomAccessFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, rolling.RollingRandomAccessFileManager, String, String, boolean, boolean, int, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public String getFileName();
 public String getFilePattern();
 public int getBufferSize();
 public static RollingRandomAccessFileAppender createAppender(String, String, String, String, String, String, rolling.TriggeringPolicy, rolling.RolloverStrategy, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RollingRandomAccessFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/AsyncAppenderEventDispatcher.class

package org.apache.logging.log4j.core.appender;
synchronized class AsyncAppenderEventDispatcher extends org.apache.logging.log4j.core.util.Log4jThread {
 private static final org.apache.logging.log4j.core.LogEvent STOP_EVENT;
 private static final java.util.concurrent.atomic.AtomicLong THREAD_COUNTER;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.AppenderControl errorAppender;
 private final java.util.List appenders;
 private final java.util.concurrent.BlockingQueue queue;
 private final java.util.concurrent.atomic.AtomicBoolean stoppedRef;
 void AsyncAppenderEventDispatcher(String, org.apache.logging.log4j.core.config.AppenderControl, java.util.List, java.util.concurrent.BlockingQueue);
 public void run();
 private void dispatchAll();
 private void dispatchRemaining();
 void dispatch(org.apache.logging.log4j.core.LogEvent);
 void stop(long) throws InterruptedException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractOutputStreamAppender extends AbstractAppender {
 private final boolean immediateFlush;
 private final OutputStreamManager manager;
 protected void AbstractOutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, OutputStreamManager);
 protected void AbstractOutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.config.Property[], OutputStreamManager);
 public boolean getImmediateFlush();
 public OutputStreamManager getManager();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 protected boolean stop(long, java.util.concurrent.TimeUnit, boolean);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void tryAppend(org.apache.logging.log4j.core.LogEvent);
 protected void directEncodeEvent(org.apache.logging.log4j.core.LogEvent);
 protected void writeByteArrayToManager(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/SmtpAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class SmtpAppender extends AbstractAppender {
 private static final int DEFAULT_BUFFER_SIZE = 512;
 private final org.apache.logging.log4j.core.net.SmtpManager manager;
 private void SmtpAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.net.SmtpManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 public static SmtpAppender$Builder newBuilder();
 public static SmtpAppender createAppender(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String, String, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String);
 public boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseAppender$Builder.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class AbstractDatabaseAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder {
 public void AbstractDatabaseAppender$Builder();
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractDriverManagerConnectionSource$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class AbstractDriverManagerConnectionSource$Builder {
 protected String connectionString;
 protected String driverClassName;
 protected char[] password;
 protected org.apache.logging.log4j.core.config.Property[] properties;
 protected char[] userName;
 public void AbstractDriverManagerConnectionSource$Builder();
 protected AbstractDriverManagerConnectionSource$Builder asBuilder();
 public String getConnectionString();
 public String getDriverClassName();
 public char[] getPassword();
 public org.apache.logging.log4j.core.config.Property[] getProperties();
 public char[] getUserName();
 public AbstractDriverManagerConnectionSource$Builder setConnectionString(String);
 public AbstractDriverManagerConnectionSource$Builder setDriverClassName(String);
 public AbstractDriverManagerConnectionSource$Builder setPassword(char[]);
 public AbstractDriverManagerConnectionSource$Builder setProperties(org.apache.logging.log4j.core.config.Property[]);
 public AbstractDriverManagerConnectionSource$Builder setUserName(char[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/FactoryMethodConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class FactoryMethodConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final javax.sql.DataSource dataSource;
 private final String description;
 private void FactoryMethodConnectionSource(javax.sql.DataSource, String, String, String);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String toString();
 public static FactoryMethodConnectionSource createConnectionSource(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseManager$AbstractFactoryData.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseManager$AbstractFactoryData {
 private final int bufferSize;
 private final org.apache.logging.log4j.core.Layout layout;
 protected void AbstractDatabaseManager$AbstractFactoryData(int, org.apache.logging.log4j.core.Layout);
 public int getBufferSize();
 public org.apache.logging.log4j.core.Layout getLayout();
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseManager.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseManager extends org.apache.logging.log4j.core.appender.AbstractManager implements java.io.Flushable {
 private final java.util.ArrayList buffer;
 private final int bufferSize;
 private final org.apache.logging.log4j.core.Layout layout;
 private boolean running;
 protected static AbstractDatabaseManager getManager(String, AbstractDatabaseManager$AbstractFactoryData, org.apache.logging.log4j.core.appender.ManagerFactory);
 protected void AbstractDatabaseManager(String, int);
 protected void AbstractDatabaseManager(String, int, org.apache.logging.log4j.core.Layout);
 protected void buffer(org.apache.logging.log4j.core.LogEvent);
 protected abstract boolean commitAndClose();
 protected abstract void connectAndStart();
 public final synchronized void flush();
 protected boolean isBuffered();
 public final boolean isRunning();
 public final boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public final synchronized boolean shutdown();
 protected abstract boolean shutdownInternal() throws Exception;
 public final synchronized void startup();
 protected abstract void startupInternal() throws Exception;
 public final String toString();
 public final synchronized void write(org.apache.logging.log4j.core.LogEvent);
 public final synchronized void write(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent);
 protected abstract void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeThrough(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$ReferencedRouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
final synchronized class RoutingAppender$ReferencedRouteAppenderControl extends RoutingAppender$RouteAppenderControl {
 void RoutingAppender$ReferencedRouteAppenderControl(org.apache.logging.log4j.core.Appender);
 void checkout();
 void release();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlProvider.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlProvider {
 public abstract NoSqlConnection getConnection();
 public abstract String toString();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender$1.class

package org.apache.logging.log4j.core.appender.nosql;
synchronized class NoSqlAppender$1 {
}

org/apache/logging/log4j/core/appender/SmtpAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SmtpAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String to;
 private String cc;
 private String bcc;
 private String from;
 private String replyTo;
 private String subject;
 private String smtpProtocol;
 private String smtpHost;
 private int smtpPort;
 private String smtpUsername;
 private String smtpPassword;
 private boolean smtpDebug;
 private int bufferSize;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 public void SmtpAppender$Builder();
 public SmtpAppender$Builder setTo(String);
 public SmtpAppender$Builder setCc(String);
 public SmtpAppender$Builder setBcc(String);
 public SmtpAppender$Builder setFrom(String);
 public SmtpAppender$Builder setReplyTo(String);
 public SmtpAppender$Builder setSubject(String);
 public SmtpAppender$Builder setSmtpProtocol(String);
 public SmtpAppender$Builder setSmtpHost(String);
 public SmtpAppender$Builder setSmtpPort(int);
 public SmtpAppender$Builder setSmtpUsername(String);
 public SmtpAppender$Builder setSmtpPassword(String);
 public SmtpAppender$Builder setSmtpDebug(boolean);
 public SmtpAppender$Builder setBufferSize(int);
 public SmtpAppender$Builder setSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public SmtpAppender$Builder setLayout(org.apache.logging.log4j.core.Layout);
 public SmtpAppender$Builder setFilter(org.apache.logging.log4j.core.Filter);
 public SmtpAppender build();
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender$1.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public final synchronized class KafkaAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private static final String[] KAFKA_CLIENT_PACKAGES;
 private final Integer retryCount;
 private final KafkaManager manager;
 public static KafkaAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, boolean, String, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, String);
 private static boolean isRecursive(org.apache.logging.log4j.core.LogEvent);
 public static KafkaAppender$Builder newBuilder();
 private void KafkaAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, KafkaManager, org.apache.logging.log4j.core.config.Property[], Integer);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
 private void tryAppend(org.apache.logging.log4j.core.LogEvent) throws java.util.concurrent.ExecutionException, InterruptedException, java.util.concurrent.TimeoutException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaProducerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public abstract interface KafkaProducerFactory {
 public abstract org.apache.kafka.clients.producer.Producer newKafkaProducer(java.util.Properties);
}

org/apache/logging/log4j/core/appender/AbstractFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractFileAppender$Builder extends AbstractOutputStreamAppender$Builder {
 private String fileName;
 private boolean append;
 private boolean locking;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void AbstractFileAppender$Builder();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public AbstractFileAppender$Builder withAdvertise(boolean);
 public AbstractFileAppender$Builder withAdvertiseUri(String);
 public AbstractFileAppender$Builder withAppend(boolean);
 public AbstractFileAppender$Builder withFileName(String);
 public AbstractFileAppender$Builder withCreateOnDemand(boolean);
 public AbstractFileAppender$Builder withLocking(boolean);
 public AbstractFileAppender$Builder withFilePermissions(String);
 public AbstractFileAppender$Builder withFileOwner(String);
 public AbstractFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/impl/Log4jLogEvent.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jLogEvent implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = -8393305700508709443;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static volatile org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private static final org.apache.logging.log4j.core.ContextDataInjector CONTEXT_DATA_INJECTOR;
 private final String loggerFqcn;
 private final org.apache.logging.log4j.Marker marker;
 private final org.apache.logging.log4j.Level level;
 private final String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private final transient Throwable thrown;
 private ThrowableProxy thrownProxy;
 private final org.apache.logging.log4j.util.StringMap contextData;
 private final org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement source;
 private boolean includeLocation;
 private boolean endOfBatch;
 private final transient long nanoTime;
 public static Log4jLogEvent$Builder newBuilder();
 public void Log4jLogEvent();
 public void Log4jLogEvent(long);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, java.util.Map, org.apache.logging.log4j.ThreadContext$ContextStack, String, StackTraceElement, long);
 public static Log4jLogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, java.util.Map, org.apache.logging.log4j.ThreadContext$ContextStack, String, StackTraceElement, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, long, int, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, org.apache.logging.log4j.core.util.Clock, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, long);
 private static org.apache.logging.log4j.util.StringMap createContextData(java.util.Map);
 private static org.apache.logging.log4j.util.StringMap createContextData(java.util.List);
 public static org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public static void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
 public Log4jLogEvent$Builder asBuilder();
 public Log4jLogEvent toImmutable();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerName();
 public org.apache.logging.log4j.message.Message getMessage();
 public void makeMessageImmutable();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public Throwable getThrown();
 public ThrowableProxy getThrownProxy();
 public org.apache.logging.log4j.Marker getMarker();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public StackTraceElement getSource();
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public long getNanoTime();
 protected Object writeReplace();
 public static java.io.Serializable serialize(org.apache.logging.log4j.core.LogEvent, boolean);
 public static java.io.Serializable serialize(Log4jLogEvent, boolean);
 public static boolean canDeserialize(java.io.Serializable);
 public static Log4jLogEvent deserialize(java.io.Serializable);
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public static org.apache.logging.log4j.core.LogEvent createMemento(org.apache.logging.log4j.core.LogEvent);
 public static Log4jLogEvent createMemento(org.apache.logging.log4j.core.LogEvent, boolean);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BooleanConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BooleanConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BooleanConverter();
 public Boolean convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$StringBuilderConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$StringBuilderConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$StringBuilderConverter();
 public StringBuilder convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MaxValuesforFieldExceededException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MaxValuesforFieldExceededException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 6536145439570100641;
 public void CommandLine$MaxValuesforFieldExceededException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$InitializationException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$InitializationException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 8423014001666638895;
 public void CommandLine$InitializationException(String);
 public void CommandLine$InitializationException(String, Exception);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$TraceLevel.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized enum CommandLine$TraceLevel {
 public static final CommandLine$TraceLevel OFF;
 public static final CommandLine$TraceLevel WARN;
 public static final CommandLine$TraceLevel INFO;
 public static final CommandLine$TraceLevel DEBUG;
 public static CommandLine$TraceLevel[] values();
 public static CommandLine$TraceLevel valueOf(String);
 private void CommandLine$TraceLevel(String, int);
 public boolean isEnabled(CommandLine$TraceLevel);
 private transient void print(CommandLine$Tracer, String, Object[]);
 private String prefix(String);
 static CommandLine$TraceLevel lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Palette256Color.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$Ansi$Palette256Color implements CommandLine$Help$Ansi$IStyle {
 private final int fgbg;
 private final int color;
 void CommandLine$Help$Ansi$Palette256Color(boolean, String);
 public String on();
 public String off();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help {
 protected static final String DEFAULT_COMMAND_NAME = <main class>;
 protected static final String DEFAULT_SEPARATOR = =;
 private static final int usageHelpWidth = 80;
 private static final int optionsColumnWidth = 29;
 private final Object command;
 private final java.util.Map commands;
 final CommandLine$Help$ColorScheme colorScheme;
 public final java.util.List optionFields;
 public final java.util.List positionalParametersFields;
 public String separator;
 public String commandName;
 public String[] description;
 public String[] customSynopsis;
 public String[] header;
 public String[] footer;
 public CommandLine$Help$IParamLabelRenderer parameterLabelRenderer;
 public Boolean abbreviateSynopsis;
 public Boolean sortOptions;
 public Boolean showDefaultValues;
 public Character requiredOptionMarker;
 public String headerHeading;
 public String synopsisHeading;
 public String descriptionHeading;
 public String parameterListHeading;
 public String optionListHeading;
 public String commandListHeading;
 public String footerHeading;
 public void CommandLine$Help(Object);
 public void CommandLine$Help(Object, CommandLine$Help$Ansi);
 public void CommandLine$Help(Object, CommandLine$Help$ColorScheme);
 public CommandLine$Help addAllSubcommands(java.util.Map);
 public CommandLine$Help addSubcommand(String, Object);
 public String synopsis();
 public String synopsis(int);
 public String abbreviatedSynopsis();
 public String detailedSynopsis(java.util.Comparator, boolean);
 public String detailedSynopsis(int, java.util.Comparator, boolean);
 private CommandLine$Help$Ansi$Text appendOptionSynopsis(CommandLine$Help$Ansi$Text, reflect.Field, String, String, String);
 public int synopsisHeadingLength();
 public String optionList();
 public String optionList(CommandLine$Help$Layout, java.util.Comparator, CommandLine$Help$IParamLabelRenderer);
 public String parameterList();
 public String parameterList(CommandLine$Help$Layout, CommandLine$Help$IParamLabelRenderer);
 private static transient String heading(CommandLine$Help$Ansi, String, Object[]);
 private static char[] spaces(int);
 private static int countTrailingSpaces(String);
 public static transient StringBuilder join(CommandLine$Help$Ansi, String[], StringBuilder, Object[]);
 private static transient String format(String, Object[]);
 public transient String customSynopsis(Object[]);
 public transient String description(Object[]);
 public transient String header(Object[]);
 public transient String footer(Object[]);
 public transient String headerHeading(Object[]);
 public transient String synopsisHeading(Object[]);
 public transient String descriptionHeading(Object[]);
 public transient String parameterListHeading(Object[]);
 public transient String optionListHeading(Object[]);
 public transient String commandListHeading(Object[]);
 public transient String footerHeading(Object[]);
 public String commandList();
 private static int maxLength(java.util.Collection);
 private static String join(String[], int, int, String);
 private static String stringOf(char, int);
 public CommandLine$Help$Layout createDefaultLayout();
 public CommandLine$Help$IOptionRenderer createDefaultOptionRenderer();
 public static CommandLine$Help$IOptionRenderer createMinimalOptionRenderer();
 public CommandLine$Help$IParameterRenderer createDefaultParameterRenderer();
 public static CommandLine$Help$IParameterRenderer createMinimalParameterRenderer();
 public static CommandLine$Help$IParamLabelRenderer createMinimalParamLabelRenderer();
 public CommandLine$Help$IParamLabelRenderer createDefaultParamLabelRenderer();
 public static java.util.Comparator createShortOptionNameComparator();
 public static java.util.Comparator createShortOptionArityAndNameComparator();
 public static java.util.Comparator shortestFirst();
 public CommandLine$Help$Ansi ansi();
 public static CommandLine$Help$ColorScheme defaultColorScheme(CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Layout.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Layout {
 protected final CommandLine$Help$ColorScheme colorScheme;
 protected final CommandLine$Help$TextTable table;
 protected CommandLine$Help$IOptionRenderer optionRenderer;
 protected CommandLine$Help$IParameterRenderer parameterRenderer;
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme);
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme, CommandLine$Help$TextTable);
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme, CommandLine$Help$TextTable, CommandLine$Help$IOptionRenderer, CommandLine$Help$IParameterRenderer);
 public void layout(reflect.Field, CommandLine$Help$Ansi$Text[][]);
 public void addOptions(java.util.List, CommandLine$Help$IParamLabelRenderer);
 public void addOption(reflect.Field, CommandLine$Help$IParamLabelRenderer);
 public void addPositionalParameters(java.util.List, CommandLine$Help$IParamLabelRenderer);
 public void addPositionalParameter(reflect.Field, CommandLine$Help$IParamLabelRenderer);
 public String toString();
}

org/apache/logging/log4j/core/tools/CustomLoggerGenerator.class

package org.apache.logging.log4j.core.tools;
public synchronized class CustomLoggerGenerator {
 public void CustomLoggerGenerator();
 public static void main(String[]);
}

org/apache/logging/log4j/core/net/ssl/KeyStoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class KeyStoreConfigurationException extends StoreConfigurationException {
 private static final long serialVersionUID = 1;
 public void KeyStoreConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/ssl/TrustStoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class TrustStoreConfigurationException extends StoreConfigurationException {
 private static final long serialVersionUID = 1;
 public void TrustStoreConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/TcpSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager extends AbstractSocketManager {
 public static final int DEFAULT_RECONNECTION_DELAY_MILLIS = 30000;
 private static final int DEFAULT_PORT = 4560;
 private static final TcpSocketManager$TcpSocketManagerFactory FACTORY;
 private final int reconnectionDelayMillis;
 private TcpSocketManager$Reconnector reconnector;
 private java.net.Socket socket;
 private final SocketOptions socketOptions;
 private final boolean retry;
 private final boolean immediateFail;
 private final int connectTimeoutMillis;
 public void TcpSocketManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public void TcpSocketManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public static TcpSocketManager getSocketManager(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public static TcpSocketManager getSocketManager(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 protected void write(byte[], int, int, boolean);
 private void writeAndFlush(byte[], int, int, boolean) throws java.io.IOException;
 protected synchronized boolean closeOutputStream();
 public int getConnectTimeoutMillis();
 public java.util.Map getContentFormat();
 private TcpSocketManager$Reconnector createReconnector();
 protected java.net.Socket createSocket(java.net.InetSocketAddress) throws java.io.IOException;
 protected static java.net.Socket createSocket(java.net.InetSocketAddress, SocketOptions, int) throws java.io.IOException;
 public static void setHostResolver(TcpSocketManager$HostResolver);
 public SocketOptions getSocketOptions();
 public java.net.Socket getSocket();
 public int getReconnectionDelayMillis();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Priority.class

package org.apache.logging.log4j.core.net;
public synchronized class Priority {
 private final Facility facility;
 private final Severity severity;
 public void Priority(Facility, Severity);
 public static int getPriority(Facility, org.apache.logging.log4j.Level);
 private static int toPriority(Facility, Severity);
 public Facility getFacility();
 public Severity getSeverity();
 public int getValue();
 public String toString();
}

org/apache/logging/log4j/core/net/SslSocketManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$1 {
}

org/apache/logging/log4j/core/net/SslSocketManager$SslSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$SslSocketManagerFactory extends TcpSocketManager$TcpSocketManagerFactory {
 private void SslSocketManager$SslSocketManagerFactory();
 SslSocketManager createManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, SslSocketManager$SslFactoryData);
 java.net.Socket createSocket(SslSocketManager$SslFactoryData) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/NameUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class NameUtil {
 private void NameUtil();
 public static String getSubName(String);
 public static String md5(String);
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FixedDateFormat {
 private static final char NONE = 0;
 private final FixedDateFormat$FixedFormat fixedFormat;
 private final java.util.TimeZone timeZone;
 private final int length;
 private final int secondFractionDigits;
 private final FastDateFormat fastDateFormat;
 private final char timeSeparatorChar;
 private final char millisSeparatorChar;
 private final int timeSeparatorLength;
 private final int millisSeparatorLength;
 private final FixedDateFormat$FixedTimeZoneFormat fixedTimeZoneFormat;
 private volatile long midnightToday;
 private volatile long midnightTomorrow;
 private final int[] dstOffsets;
 private char[] cachedDate;
 private int dateLength;
 static int[] TABLE;
 void FixedDateFormat(FixedDateFormat$FixedFormat, java.util.TimeZone);
 void FixedDateFormat(FixedDateFormat$FixedFormat, java.util.TimeZone, int);
 public static transient FixedDateFormat createIfSupported(String[]);
 public static FixedDateFormat create(FixedDateFormat$FixedFormat);
 public static FixedDateFormat create(FixedDateFormat$FixedFormat, java.util.TimeZone);
 public String getFormat();
 public java.util.TimeZone getTimeZone();
 public long millisSinceMidnight(long);
 private void updateMidnightMillis(long);
 private long calcMidnightMillis(long, int);
 private void updateDaylightSavingTime();
 private void updateCachedDate(long);
 public String formatInstant(org.apache.logging.log4j.core.time.Instant);
 public int formatInstant(org.apache.logging.log4j.core.time.Instant, char[], int);
 private int digitsLessThanThree();
 public String format(long);
 public int format(long, char[], int);
 private void writeDate(char[], int);
 private int writeTime(int, char[], int);
 private int writeTimeZone(long, char[], int);
 private int formatNanoOfMillisecond(int, char[], int);
 private int daylightSavingTime(int);
 public boolean isEquivalent(long, int, long, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$Rule.class

package org.apache.logging.log4j.core.util.datetime;
abstract interface FastDatePrinter$Rule {
 public abstract int estimateLength();
 public abstract void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$UnpaddedNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$UnpaddedNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 void FastDatePrinter$UnpaddedNumberField(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$StringLiteral.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$StringLiteral implements FastDatePrinter$Rule {
 private final String mValue;
 void FastDatePrinter$StringLiteral(String);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$2.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$2 extends FastDateParser$NumberStrategy {
 void FastDateParser$2(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$NumberStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$NumberStrategy extends FastDateParser$Strategy {
 private final int field;
 void FastDateParser$NumberStrategy(int);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/DateParser.class

package org.apache.logging.log4j.core.util.datetime;
public abstract interface DateParser {
 public abstract java.util.Date parse(String) throws java.text.ParseException;
 public abstract java.util.Date parse(String, java.text.ParsePosition);
 public abstract boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 public abstract String getPattern();
 public abstract java.util.TimeZone getTimeZone();
 public abstract java.util.Locale getLocale();
 public abstract Object parseObject(String) throws java.text.ParseException;
 public abstract Object parseObject(String, java.text.ParsePosition);
}

org/apache/logging/log4j/core/util/WatchManager$WatchRunnable.class

package org.apache.logging.log4j.core.util;
final synchronized class WatchManager$WatchRunnable implements Runnable {
 private final String SIMPLE_NAME;
 private void WatchManager$WatchRunnable(WatchManager);
 public void run();
}

org/apache/logging/log4j/core/util/AbstractWatcher$ReconfigurationRunnable.class

package org.apache.logging.log4j.core.util;
public synchronized class AbstractWatcher$ReconfigurationRunnable implements Runnable {
 private final org.apache.logging.log4j.core.config.ConfigurationListener configurationListener;
 private final org.apache.logging.log4j.core.config.Reconfigurable reconfigurable;
 public void AbstractWatcher$ReconfigurationRunnable(org.apache.logging.log4j.core.config.ConfigurationListener, org.apache.logging.log4j.core.config.Reconfigurable);
 public void run();
}

org/apache/logging/log4j/core/util/StringEncoder.class

package org.apache.logging.log4j.core.util;
public final synchronized class StringEncoder {
 private void StringEncoder();
 public static byte[] toBytes(String, java.nio.charset.Charset);
 public static byte[] encodeSingleByteChars(CharSequence);
 public static int encodeIsoChars(CharSequence, int, byte[], int, int);
 public static int encodeString(CharSequence, int, int, byte[]);
}

org/apache/logging/log4j/core/util/WrappedFileWatcher.class

package org.apache.logging.log4j.core.util;
public synchronized class WrappedFileWatcher extends AbstractWatcher implements FileWatcher {
 private final FileWatcher watcher;
 private volatile long lastModifiedMillis;
 public void WrappedFileWatcher(FileWatcher, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 public void WrappedFileWatcher(FileWatcher);
 public long getLastModified();
 public void fileModified(java.io.File);
 public boolean isModified();
 public java.util.List getListeners();
 public void modified();
 public void watching(Source);
 public Watcher newWatcher(org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/util/CoarseCachedClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class CoarseCachedClock implements Clock {
 private static volatile CoarseCachedClock instance;
 private static final Object INSTANCE_LOCK;
 private volatile long millis;
 private final Thread updater;
 private void CoarseCachedClock();
 public static CoarseCachedClock instance();
 public long currentTimeMillis();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/AppenderControlArraySet.class

package org.apache.logging.log4j.core.config;
public synchronized class AppenderControlArraySet {
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater appenderArrayUpdater;
 private volatile AppenderControl[] appenderArray;
 public void AppenderControlArraySet();
 public boolean add(AppenderControl);
 public AppenderControl remove(String);
 private AppenderControl[] removeElementAt(int, AppenderControl[]);
 public java.util.Map asMap();
 public AppenderControl[] clear();
 public boolean isEmpty();
 public AppenderControl[] get();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/NullConfiguration.class

package org.apache.logging.log4j.core.config;
public synchronized class NullConfiguration extends AbstractConfiguration {
 public static final String NULL_NAME = Null;
 public void NullConfiguration();
}

org/apache/logging/log4j/core/config/ConfigurationFactory$Factory.class

package org.apache.logging.log4j.core.config;
synchronized class ConfigurationFactory$Factory extends ConfigurationFactory {
 private static final String ALL_TYPES = *;
 private void ConfigurationFactory$Factory();
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI);
 private Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String);
 private Configuration getConfiguration(String, org.apache.logging.log4j.core.LoggerContext, String);
 private Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, boolean, String);
 public String[] getSupportedTypes();
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 private String[] parseConfigLocations(java.net.URI);
 private String[] parseConfigLocations(String);
}

org/apache/logging/log4j/core/config/arbiters/Arbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public abstract interface Arbiter {
 public static final String ELEMENT_TYPE = Arbiter;
 public abstract boolean isCondition();
}

org/apache/logging/log4j/core/config/plugins/Plugin.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface Plugin extends annotation.Annotation {
 public static final String EMPTY = ;
 public abstract String name();
 public abstract String category();
 public abstract String elementType();
 public abstract boolean printObject();
 public abstract boolean deferChildren();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/ValidHost.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface ValidHost extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/Required.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface Required extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/ValidPort.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface ValidPort extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/ConstraintValidators.class

package org.apache.logging.log4j.core.config.plugins.validation;
public final synchronized class ConstraintValidators {
 private void ConstraintValidators();
 public static transient java.util.Collection findValidators(annotation.Annotation[]);
 private static ConstraintValidator getValidator(annotation.Annotation, Class);
 private static reflect.Type getConstraintValidatorAnnotationType(Class);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$FloatConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$FloatConverter implements TypeConverter {
 public void TypeConverters$FloatConverter();
 public Float convert(String);
}

org/apache/logging/log4j/core/config/ConfigurationFactory$1.class

package org.apache.logging.log4j.core.config;
synchronized class ConfigurationFactory$1 {
}

org/apache/logging/log4j/core/config/AbstractConfiguration.class

package org.apache.logging.log4j.core.config;
public abstract synchronized class AbstractConfiguration extends org.apache.logging.log4j.core.filter.AbstractFilterable implements Configuration {
 private static final int BUF_SIZE = 16384;
 protected Node rootNode;
 protected final java.util.List listeners;
 protected final java.util.List pluginPackages;
 protected plugins.util.PluginManager pluginManager;
 protected boolean isShutdownHookEnabled;
 protected long shutdownTimeoutMillis;
 protected org.apache.logging.log4j.core.script.ScriptManager scriptManager;
 private org.apache.logging.log4j.core.net.Advertiser advertiser;
 private Node advertiserNode;
 private Object advertisement;
 private String name;
 private java.util.concurrent.ConcurrentMap appenders;
 private java.util.concurrent.ConcurrentMap loggerConfigs;
 private java.util.List customLevels;
 private final java.util.concurrent.ConcurrentMap propertyMap;
 private final org.apache.logging.log4j.core.lookup.StrLookup tempLookup;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor configurationStrSubstitutor;
 private LoggerConfig root;
 private final java.util.concurrent.ConcurrentMap componentMap;
 private final ConfigurationSource configurationSource;
 private final ConfigurationScheduler configurationScheduler;
 private final org.apache.logging.log4j.core.util.WatchManager watchManager;
 private org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor asyncLoggerConfigDisruptor;
 private org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private final ref.WeakReference loggerContext;
 protected void AbstractConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 public ConfigurationSource getConfigurationSource();
 public java.util.List getPluginPackages();
 public java.util.Map getProperties();
 public org.apache.logging.log4j.core.script.ScriptManager getScriptManager();
 public void setScriptManager(org.apache.logging.log4j.core.script.ScriptManager);
 public plugins.util.PluginManager getPluginManager();
 public void setPluginManager(plugins.util.PluginManager);
 public org.apache.logging.log4j.core.util.WatchManager getWatchManager();
 public ConfigurationScheduler getScheduler();
 public Node getRootNode();
 public org.apache.logging.log4j.core.async.AsyncLoggerConfigDelegate getAsyncLoggerConfigDelegate();
 public void initialize();
 protected void initializeWatchers(Reconfigurable, ConfigurationSource, int);
 private void monitorSource(Reconfigurable, ConfigurationSource);
 public void start();
 private boolean hasAsyncLoggers();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private java.util.List getAsyncAppenders(org.apache.logging.log4j.core.Appender[]);
 public boolean isShutdownHookEnabled();
 public long getShutdownTimeoutMillis();
 public void setup();
 protected org.apache.logging.log4j.Level getDefaultStatus();
 protected void createAdvertiser(String, ConfigurationSource, byte[], String);
 private void setupAdvertisement();
 public Object getComponent(String);
 public void addComponent(String, Object);
 protected void preConfigure(Node);
 protected void processConditionals(Node);
 protected java.util.List processSelect(Node, plugins.util.PluginType);
 protected void doConfigure();
 protected void setToDefault();
 public void setName(String);
 public String getName();
 public void addListener(ConfigurationListener);
 public void removeListener(ConfigurationListener);
 public org.apache.logging.log4j.core.Appender getAppender(String);
 public java.util.Map getAppenders();
 public void addAppender(org.apache.logging.log4j.core.Appender);
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getConfigurationStrSubstitutor();
 public void setAdvertiser(org.apache.logging.log4j.core.net.Advertiser);
 public org.apache.logging.log4j.core.net.Advertiser getAdvertiser();
 public ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
 public synchronized void addLoggerAppender(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Appender);
 public synchronized void addLoggerFilter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Filter);
 public synchronized void setLoggerAdditive(org.apache.logging.log4j.core.Logger, boolean);
 public synchronized void removeAppender(String);
 public java.util.List getCustomLevels();
 public LoggerConfig getLoggerConfig(String);
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
 public LoggerConfig getRootLogger();
 public java.util.Map getLoggers();
 public LoggerConfig getLogger(String);
 public synchronized void addLogger(String, LoggerConfig);
 public synchronized void removeLogger(String);
 public void createConfiguration(Node, org.apache.logging.log4j.core.LogEvent);
 public Object createPluginObject(plugins.util.PluginType, Node);
 private Object createPluginObject(plugins.util.PluginType, Node, org.apache.logging.log4j.core.LogEvent);
 private static java.util.Map createPluginMap(Node);
 private static java.util.Collection createPluginCollection(Node);
 private void setParents();
 protected static byte[] toByteArray(java.io.InputStream) throws java.io.IOException;
 public org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
}

org/apache/logging/log4j/core/config/yaml/YamlConfigurationFactory.class

package org.apache.logging.log4j.core.config.yaml;
public synchronized class YamlConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 private static final String[] SUFFIXES;
 private static final String[] dependencies;
 private final boolean isActive;
 public void YamlConfigurationFactory();
 protected boolean isActive();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$3.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$3 {
 void LoggerConfig$LoggerConfigPredicate$3(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/AppenderControl.class

package org.apache.logging.log4j.core.config;
public synchronized class AppenderControl extends org.apache.logging.log4j.core.filter.AbstractFilterable {
 static final AppenderControl[] EMPTY_ARRAY;
 private final ThreadLocal recursive;
 private final org.apache.logging.log4j.core.Appender appender;
 private final org.apache.logging.log4j.Level level;
 private final int intLevel;
 private final String appenderName;
 public void AppenderControl(org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public String getAppenderName();
 public org.apache.logging.log4j.core.Appender getAppender();
 public void callAppender(org.apache.logging.log4j.core.LogEvent);
 private boolean shouldSkip(org.apache.logging.log4j.core.LogEvent);
 private boolean isFilteredByAppenderControl(org.apache.logging.log4j.core.LogEvent);
 private boolean isFilteredByLevel(org.apache.logging.log4j.core.LogEvent);
 private boolean isRecursiveCall();
 private String appenderErrorHandlerMessage(String);
 private void callAppenderPreventRecursion(org.apache.logging.log4j.core.LogEvent);
 private void callAppender0(org.apache.logging.log4j.core.LogEvent);
 private void ensureAppenderStarted();
 private void handleError(String);
 private String createErrorMsg(String);
 private boolean isFilteredByAppender(org.apache.logging.log4j.core.LogEvent);
 private void tryCallAppender(org.apache.logging.log4j.core.LogEvent);
 private void handleAppenderError(org.apache.logging.log4j.core.LogEvent, RuntimeException);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultCompositeFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultCompositeFilterComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.CompositeFilterComponentBuilder {
 public void DefaultCompositeFilterComponentBuilder(DefaultConfigurationBuilder, String, String);
 public org.apache.logging.log4j.core.config.builder.api.CompositeFilterComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/ConfigurationBuilderFactory.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract synchronized class ConfigurationBuilderFactory {
 public void ConfigurationBuilderFactory();
 public static ConfigurationBuilder newConfigurationBuilder();
 public static ConfigurationBuilder newConfigurationBuilder(Class);
}

org/apache/logging/log4j/core/config/Configuration.class

package org.apache.logging.log4j.core.config;
public abstract interface Configuration extends org.apache.logging.log4j.core.filter.Filterable {
 public static final String CONTEXT_PROPERTIES = ContextProperties;
 public abstract String getName();
 public abstract LoggerConfig getLoggerConfig(String);
 public abstract org.apache.logging.log4j.core.Appender getAppender(String);
 public abstract java.util.Map getAppenders();
 public abstract void addAppender(org.apache.logging.log4j.core.Appender);
 public abstract java.util.Map getLoggers();
 public abstract void addLoggerAppender(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Appender);
 public abstract void addLoggerFilter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Filter);
 public abstract void setLoggerAdditive(org.apache.logging.log4j.core.Logger, boolean);
 public abstract void addLogger(String, LoggerConfig);
 public abstract void removeLogger(String);
 public abstract java.util.List getPluginPackages();
 public abstract java.util.Map getProperties();
 public abstract LoggerConfig getRootLogger();
 public abstract void addListener(ConfigurationListener);
 public abstract void removeListener(ConfigurationListener);
 public abstract org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getConfigurationStrSubstitutor();
 public abstract void createConfiguration(Node, org.apache.logging.log4j.core.LogEvent);
 public abstract Object getComponent(String);
 public abstract void addComponent(String, Object);
 public abstract void setAdvertiser(org.apache.logging.log4j.core.net.Advertiser);
 public abstract org.apache.logging.log4j.core.net.Advertiser getAdvertiser();
 public abstract boolean isShutdownHookEnabled();
 public abstract long getShutdownTimeoutMillis();
 public abstract ConfigurationScheduler getScheduler();
 public abstract ConfigurationSource getConfigurationSource();
 public abstract java.util.List getCustomLevels();
 public abstract org.apache.logging.log4j.core.script.ScriptManager getScriptManager();
 public abstract org.apache.logging.log4j.core.async.AsyncLoggerConfigDelegate getAsyncLoggerConfigDelegate();
 public abstract org.apache.logging.log4j.core.util.WatchManager getWatchManager();
 public abstract ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
 public abstract org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public abstract void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
 public abstract org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/jmx/LoggerConfigAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface LoggerConfigAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=Loggers,name=%s;
 public abstract String getName();
 public abstract String getLevel();
 public abstract void setLevel(String);
 public abstract boolean isAdditive();
 public abstract void setAdditive(boolean);
 public abstract boolean isIncludeLocation();
 public abstract String getFilter();
 public abstract String[] getAppenderRefs();
}

org/apache/logging/log4j/core/jmx/AsyncAppenderAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class AsyncAppenderAdmin implements AsyncAppenderAdminMBean {
 private final String contextName;
 private final org.apache.logging.log4j.core.appender.AsyncAppender asyncAppender;
 private final javax.management.ObjectName objectName;
 public void AsyncAppenderAdmin(String, org.apache.logging.log4j.core.appender.AsyncAppender);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLayout();
 public boolean isIgnoreExceptions();
 public String getErrorHandler();
 public String getFilter();
 public String[] getAppenderRefs();
 public boolean isIncludeLocation();
 public boolean isBlocking();
 public String getErrorRef();
 public int getQueueCapacity();
 public int getQueueRemainingCapacity();
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class ScriptPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/JacksonFactory.class

package org.apache.logging.log4j.core.layout;
abstract synchronized class JacksonFactory {
 void JacksonFactory();
 protected abstract String getPropertyNameForTimeMillis();
 protected abstract String getPropertyNameForInstant();
 protected abstract String getPropertNameForContextMap();
 protected abstract String getPropertNameForSource();
 protected abstract String getPropertNameForNanoTime();
 protected abstract com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected abstract com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected abstract com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
 com.fasterxml.jackson.databind.ObjectWriter newWriter(boolean, boolean, boolean);
 com.fasterxml.jackson.databind.ObjectWriter newWriter(boolean, boolean, boolean, boolean);
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Serializer.class

package org.apache.logging.log4j.core.layout;
public abstract interface AbstractStringLayout$Serializer extends AbstractStringLayout$Serializer2 {
 public abstract String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/layout/HtmlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class HtmlLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractLayout$Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private byte[] footer;
 private byte[] header;
 public void AbstractLayout$Builder();
 public AbstractLayout$Builder asBuilder();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public byte[] getFooter();
 public byte[] getHeader();
 public AbstractLayout$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractLayout$Builder setFooter(byte[]);
 public AbstractLayout$Builder setHeader(byte[]);
}

org/apache/logging/log4j/core/layout/SerializedLayout$PrivateObjectOutputStream.class

package org.apache.logging.log4j.core.layout;
synchronized class SerializedLayout$PrivateObjectOutputStream extends java.io.ObjectOutputStream {
 public void SerializedLayout$PrivateObjectOutputStream(SerializedLayout, java.io.OutputStream) throws java.io.IOException;
 protected void writeStreamHeader();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class LevelPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void LevelPatternSelector$Builder();
 public LevelPatternSelector build();
 public LevelPatternSelector$Builder setProperties(PatternMatch[]);
 public LevelPatternSelector$Builder setDefaultPattern(String);
 public LevelPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public LevelPatternSelector$Builder setDisableAnsi(boolean);
 public LevelPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public LevelPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$ReadOnlyLogEventWrapper.class

package org.apache.logging.log4j.core.layout;
synchronized class AbstractJacksonLayout$ReadOnlyLogEventWrapper implements org.apache.logging.log4j.core.LogEvent {
 private final org.apache.logging.log4j.core.LogEvent event;
 public void AbstractJacksonLayout$ReadOnlyLogEventWrapper(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.LogEvent toImmutable();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public org.apache.logging.log4j.message.Message getMessage();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public StackTraceElement getSource();
 public String getThreadName();
 public long getThreadId();
 public int getThreadPriority();
 public Throwable getThrown();
 public org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public boolean isEndOfBatch();
 public boolean isIncludeLocation();
 public void setEndOfBatch(boolean);
 public void setIncludeLocation(boolean);
 public long getNanoTime();
}

org/apache/logging/log4j/core/layout/Encoder.class

package org.apache.logging.log4j.core.layout;
public abstract interface Encoder {
 public abstract void encode(Object, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/PatternLayout$SerializerBuilder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternLayout$SerializerBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private String pattern;
 private String defaultPattern;
 private PatternSelector patternSelector;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 public void PatternLayout$SerializerBuilder();
 public AbstractStringLayout$Serializer build();
 public PatternLayout$SerializerBuilder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PatternLayout$SerializerBuilder setReplace(org.apache.logging.log4j.core.pattern.RegexReplacement);
 public PatternLayout$SerializerBuilder setPattern(String);
 public PatternLayout$SerializerBuilder setDefaultPattern(String);
 public PatternLayout$SerializerBuilder setPatternSelector(PatternSelector);
 public PatternLayout$SerializerBuilder setAlwaysWriteExceptions(boolean);
 public PatternLayout$SerializerBuilder setDisableAnsi(boolean);
 public PatternLayout$SerializerBuilder setNoConsoleNoAnsi(boolean);
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class ScriptPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final boolean requiresLocation;
 public void ScriptPatternSelector(org.apache.logging.log4j.core.script.AbstractScript, PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static ScriptPatternSelector$Builder newBuilder();
 public static ScriptPatternSelector createSelector(org.apache.logging.log4j.core.script.AbstractScript, PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/SyslogLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class SyslogLayout extends AbstractStringLayout {
 public static final java.util.regex.Pattern NEWLINE_PATTERN;
 private final org.apache.logging.log4j.core.net.Facility facility;
 private final boolean includeNewLine;
 private final String escapeNewLine;
 private final java.text.SimpleDateFormat dateFormat;
 private final String localHostname;
 public static SyslogLayout$Builder newBuilder();
 protected void SyslogLayout(org.apache.logging.log4j.core.net.Facility, boolean, String, java.nio.charset.Charset);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private synchronized void addDate(long, StringBuilder);
 public java.util.Map getContentFormat();
 public static SyslogLayout createLayout(org.apache.logging.log4j.core.net.Facility, boolean, String, java.nio.charset.Charset);
 public org.apache.logging.log4j.core.net.Facility getFacility();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLogger$TranslatorType.class

package org.apache.logging.log4j.core.async;
abstract synchronized class AsyncLogger$TranslatorType {
 void AsyncLogger$TranslatorType(AsyncLogger);
 abstract void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 abstract void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig$1.class

package org.apache.logging.log4j.core.async;
final synchronized class AsyncLoggerConfig$1 extends ThreadLocal {
 void AsyncLoggerConfig$1();
 protected Boolean initialValue();
}

org/apache/logging/log4j/core/async/BlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public abstract interface BlockingQueueFactory {
 public static final String ELEMENT_TYPE = BlockingQueueFactory;
 public abstract java.util.concurrent.BlockingQueue create(int);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDefaultExceptionHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDefaultExceptionHandler extends AbstractAsyncExceptionHandler {
 public void AsyncLoggerConfigDefaultExceptionHandler();
}

org/apache/logging/log4j/core/async/AsyncQueueFullMessageUtil.class

package org.apache.logging.log4j.core.async;
public final synchronized class AsyncQueueFullMessageUtil {
 private void AsyncQueueFullMessageUtil();
 public static void logWarningToStatusLogger();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy.class

package org.apache.logging.log4j.core.async;
public abstract synchronized enum ThreadNameCachingStrategy {
 public static final ThreadNameCachingStrategy CACHED;
 public static final ThreadNameCachingStrategy UNCACHED;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final ThreadLocal THREADLOCAL_NAME;
 static final ThreadNameCachingStrategy DEFAULT_STRATEGY;
 public static ThreadNameCachingStrategy[] values();
 public static ThreadNameCachingStrategy valueOf(String);
 private void ThreadNameCachingStrategy(String, int);
 abstract String getThreadName();
 public static ThreadNameCachingStrategy create();
 static boolean isAllocatingThreadGetName();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/RingBufferLogEventTranslator.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEventTranslator implements com.lmax.disruptor.EventTranslator {
 private static final org.apache.logging.log4j.core.ContextDataInjector INJECTOR;
 private AsyncLogger asyncLogger;
 String loggerName;
 protected org.apache.logging.log4j.Marker marker;
 protected String fqcn;
 protected org.apache.logging.log4j.Level level;
 protected org.apache.logging.log4j.message.Message message;
 protected Throwable thrown;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement location;
 private org.apache.logging.log4j.core.util.Clock clock;
 private org.apache.logging.log4j.core.util.NanoClock nanoClock;
 public void RingBufferLogEventTranslator();
 public void translateTo(RingBufferLogEvent, long);
 void clear();
 public void setBasicValues(AsyncLogger, String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, org.apache.logging.log4j.ThreadContext$ContextStack, StackTraceElement, org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 public void updateThreadValues();
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/JndiLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JndiLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 static final String CONTAINER_JNDI_RESOURCE_PATH_PREFIX = java:comp/env/;
 public void JndiLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 private String convertJndiName(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$NoMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$NoMatcher extends StrMatcher {
 void StrMatcher$NoMatcher();
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/StrLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract interface StrLookup {
 public static final String CATEGORY = Lookup;
 public abstract String lookup(String);
 public abstract String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/StructuredDataLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class StructuredDataLookup implements StrLookup {
 public void StructuredDataLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/message/ExtendedThreadInformation$1.class

package org.apache.logging.log4j.core.message;
synchronized class ExtendedThreadInformation$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/YamlLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class YamlLogEventParser extends AbstractJacksonLogEventParser {
 public void YamlLogEventParser();
}

org/apache/logging/log4j/core/parser/TextLogEventParser.class

package org.apache.logging.log4j.core.parser;
public abstract interface TextLogEventParser extends LogEventParser {
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(String) throws ParseException;
}

org/apache/logging/log4j/core/script/AbstractScript.class

package org.apache.logging.log4j.core.script;
public abstract synchronized class AbstractScript {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected static final String DEFAULT_LANGUAGE = JavaScript;
 private final String language;
 private final String scriptText;
 private final String name;
 public void AbstractScript(String, String, String);
 public String getLanguage();
 public String getScriptText();
 public String getName();
 static void <clinit>();
}

org/apache/logging/log4j/core/script/ScriptManager$AbstractScriptRunner.class

package org.apache.logging.log4j.core.script;
abstract synchronized class ScriptManager$AbstractScriptRunner implements ScriptManager$ScriptRunner {
 private static final String KEY_STATUS_LOGGER = statusLogger;
 private static final String KEY_CONFIGURATION = configuration;
 private void ScriptManager$AbstractScriptRunner(ScriptManager);
 public javax.script.Bindings createBindings();
}

org/apache/logging/log4j/core/time/MutableInstant$1.class

package org.apache.logging.log4j.core.time;
synchronized class MutableInstant$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/Filter$Result.class

package org.apache.logging.log4j.core;
public final synchronized enum Filter$Result {
 public static final Filter$Result ACCEPT;
 public static final Filter$Result NEUTRAL;
 public static final Filter$Result DENY;
 public static Filter$Result[] values();
 public static Filter$Result valueOf(String);
 private void Filter$Result(String, int);
 public static Filter$Result toResult(String);
 public static Filter$Result toResult(String, Filter$Result);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/MarkerFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class MarkerFilter extends AbstractFilter {
 public static final String ATTR_MARKER = marker;
 private final String name;
 private void MarkerFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static MarkerFilter createFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/Filterable.class

package org.apache.logging.log4j.core.filter;
public abstract interface Filterable extends org.apache.logging.log4j.core.LifeCycle {
 public abstract void addFilter(org.apache.logging.log4j.core.Filter);
 public abstract void removeFilter(org.apache.logging.log4j.core.Filter);
 public abstract org.apache.logging.log4j.core.Filter getFilter();
 public abstract boolean hasFilter();
 public abstract boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/filter/StringMatchFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class StringMatchFilter$1 {
}

org/apache/logging/log4j/core/pattern/HighlightConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class HighlightConverter extends LogEventPatternConverter implements AnsiConverter {
 private static final java.util.Map DEFAULT_STYLES;
 private static final java.util.Map LOGBACK_STYLES;
 private static final String STYLE_KEY = STYLE;
 private static final String STYLE_KEY_DEFAULT = DEFAULT;
 private static final String STYLE_KEY_LOGBACK = LOGBACK;
 private static final java.util.Map STYLES;
 private final java.util.Map levelStyles;
 private final java.util.List patternFormatters;
 private final boolean noAnsi;
 private final String defaultStyle;
 private static java.util.Map createLevelStyleMap(String[]);
 public static HighlightConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void HighlightConverter(java.util.List, java.util.Map, boolean);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 String getLevelStyle(org.apache.logging.log4j.Level);
 public boolean handlesThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/RelativeTimePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class RelativeTimePatternConverter extends LogEventPatternConverter {
 private final long startTime;
 public void RelativeTimePatternConverter();
 public static RelativeTimePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/PatternParser$ParserState.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum PatternParser$ParserState {
 public static final PatternParser$ParserState LITERAL_STATE;
 public static final PatternParser$ParserState CONVERTER_STATE;
 public static final PatternParser$ParserState DOT_STATE;
 public static final PatternParser$ParserState MIN_STATE;
 public static final PatternParser$ParserState MAX_STATE;
 public static PatternParser$ParserState[] values();
 public static PatternParser$ParserState valueOf(String);
 private void PatternParser$ParserState(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$Space.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$Space extends SimpleLiteralPatternConverter {
 private static final SimpleLiteralPatternConverter$Space INSTANCE;
 private void SimpleLiteralPatternConverter$Space();
 void format(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized class SimpleLiteralPatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private void SimpleLiteralPatternConverter();
 static LogEventPatternConverter of(String, boolean);
 static LogEventPatternConverter of(String);
 public final void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public final void format(Object, StringBuilder);
 public final transient void format(StringBuilder, Object[]);
 abstract void format(StringBuilder);
 public final boolean isVariable();
 public final boolean handlesThrowable();
}

org/apache/logging/log4j/core/pattern/RegexReplacement.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RegexReplacement {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.regex.Pattern pattern;
 private final String substitution;
 private void RegexReplacement(java.util.regex.Pattern, String);
 public String format(String);
 public String toString();
 public static RegexReplacement createRegexReplacement(java.util.regex.Pattern, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$1 {
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Red.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Red extends AbstractStyleNameConverter {
 protected static final String NAME = red;
 public void AbstractStyleNameConverter$Red(java.util.List, String);
 public static AbstractStyleNameConverter$Red newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$StringValue.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$StringValue extends SimpleLiteralPatternConverter {
 private final String literal;
 void SimpleLiteralPatternConverter$StringValue(String);
 void format(StringBuilder);
}

org/apache/logging/log4j/core/pattern/FormattingInfo.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FormattingInfo {
 private static final char[] SPACES;
 private static final char[] ZEROS;
 private static final FormattingInfo DEFAULT;
 private final int minLength;
 private final int maxLength;
 private final boolean leftAlign;
 private final boolean leftTruncate;
 private final boolean zeroPad;
 public void FormattingInfo(boolean, int, int, boolean);
 public void FormattingInfo(boolean, int, int, boolean, boolean);
 public static FormattingInfo getDefault();
 public boolean isLeftAligned();
 public boolean isLeftTruncate();
 public boolean isZeroPad();
 public int getMinLength();
 public int getMaxLength();
 public void format(int, StringBuilder);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class DatePatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Yellow.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Yellow extends AbstractStyleNameConverter {
 protected static final String NAME = yellow;
 public void AbstractStyleNameConverter$Yellow(java.util.List, String);
 public static AbstractStyleNameConverter$Yellow newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/AnsiConverter.class

package org.apache.logging.log4j.core.pattern;
abstract interface AnsiConverter {
}

org/apache/logging/log4j/core/Layout.class

package org.apache.logging.log4j.core;
public abstract interface Layout extends layout.Encoder {
 public static final String ELEMENT_TYPE = layout;
 public abstract byte[] getFooter();
 public abstract byte[] getHeader();
 public abstract byte[] toByteArray(LogEvent);
 public abstract java.io.Serializable toSerializable(LogEvent);
 public abstract String getContentType();
 public abstract java.util.Map getContentFormat();
}

org/apache/logging/log4j/core/StringLayout.class

package org.apache.logging.log4j.core;
public abstract interface StringLayout extends Layout {
 public abstract java.nio.charset.Charset getCharset();
}

org/apache/logging/log4j/core/jackson/MessageSerializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MessageSerializer extends com.fasterxml.jackson.databind.ser.std.StdScalarSerializer {
 private static final long serialVersionUID = 1;
 void MessageSerializer();
 public void serialize(org.apache.logging.log4j.message.Message, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

Log4j-events.xsd

 Log4J 2.0 XML Schema for XML log event files.

META-INF/maven/org.apache.logging.log4j/log4j-core/pom.properties

#Created by Apache Maven 3.8.4
version=2.17.1
groupId=org.apache.logging.log4j
artifactId=log4j-core

Log4j-events.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!--the entity declarations may be overridden in the internal subset-->
<!--namespace prefixes-->
<!ENTITY % log4j_prefix "log4j">
<!--namespace prefix to namespace uri mappings-->
<!ENTITY % log4j_prefix.. "%log4j_prefix;:">
<!--namespaces attributes for root element-->
<!ENTITY % documentElementAttributes " xmlns:%log4j_prefix; CDATA 'http://logging.apache.org/log4j/2.0/events'">
<!--the declarations below should not be modified-->
<!--element name mappings-->
<!ENTITY % log4j..Events "%log4j_prefix..;Events">
<!ENTITY % log4j..Event "%log4j_prefix..;Event">
<!ENTITY % log4j..Message "%log4j_prefix..;Message">
<!ENTITY % log4j..Marker "%log4j_prefix..;Marker">
<!ATTLIST %log4j..Marker;
 parent CDATA #IMPLIED
>
<!ENTITY % log4j..NDC "%log4j_prefix..;NDC">
<!ENTITY % log4j..Throwable "%log4j_prefix..;Throwable">
<!ENTITY % log4j..LocationInfo "%log4j_prefix..;LocationInfo">
<!ENTITY % log4j..Properties "%log4j_prefix..;Properties">
<!ENTITY % log4j..Data "%log4j_prefix..;Data">
<!--element and attribute declarations-->
<!--Log4J 2.0 XML Schema-->
<!ELEMENT %log4j..Events; ((%log4j..Event;)*)>
<!ATTLIST %log4j..Events;
	%documentElementAttributes;
>
<!ELEMENT %log4j..Event; (%log4j..Message;, (%log4j..NDC;)?, (%log4j..Marker;)?, (%log4j..Throwable;)?, (%log4j..LocationInfo;)?, (%log4j..Properties;)?)>
<!ATTLIST %log4j..Event;
	logger CDATA #REQUIRED
	timestamp NMTOKEN #REQUIRED
	level (OFF | FATAL | ERROR | WARN | INFO | DEBUG | TRACE | ALL) #REQUIRED
 threadId CDATA #REQUIRED
 thread CDATA #REQUIRED
 threadPriority CDATA #REQUIRED
>
<!ELEMENT %log4j..Message; ANY>
<!ELEMENT %log4j..NDC; ANY>
<!ELEMENT %log4j..Throwable; ANY>
<!ELEMENT %log4j..LocationInfo; EMPTY>
<!ATTLIST %log4j..LocationInfo;
	class CDATA #REQUIRED
	method CDATA #REQUIRED
	file CDATA #REQUIRED
	line NMTOKEN #REQUIRED
>
<!ELEMENT %log4j..Properties; ((%log4j..Data;)+)>
<!ELEMENT %log4j..Data; EMPTY>
<!ATTLIST %log4j..Data;
	name CDATA #REQUIRED
	value CDATA #REQUIRED
>

org/apache/logging/log4j/core/appender/WriterManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class WriterManager extends AbstractManager {
 protected final org.apache.logging.log4j.core.StringLayout layout;
 private volatile java.io.Writer writer;
 public static WriterManager getManager(String, Object, ManagerFactory);
 public void WriterManager(java.io.Writer, String, org.apache.logging.log4j.core.StringLayout, boolean);
 protected synchronized void closeWriter();
 public synchronized void flush();
 protected java.io.Writer getWriter();
 public boolean isOpen();
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected void setWriter(java.io.Writer);
 protected synchronized void write(String);
 protected void writeFooter();
}

org/apache/logging/log4j/core/appender/rolling/DirectWriteRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DirectWriteRolloverStrategy extends AbstractRolloverStrategy implements DirectFileRolloverStrategy {
 private static final int DEFAULT_MAX_FILES = 7;
 private final int maxFiles;
 private final int compressionLevel;
 private final java.util.List customActions;
 private final boolean stopCustomActionsOnError;
 private volatile String currentFileName;
 private int nextIndex;
 private final PatternProcessor tempCompressedFilePattern;
 private volatile boolean usePrevTime;
 public static DirectWriteRolloverStrategy$Builder newBuilder();
 public static DirectWriteRolloverStrategy createStrategy(String, String, action.Action[], boolean, org.apache.logging.log4j.core.config.Configuration);
 protected void DirectWriteRolloverStrategy(int, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean);
 protected void DirectWriteRolloverStrategy(int, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean, String);
 public int getCompressionLevel();
 public java.util.List getCustomActions();
 public int getMaxFiles();
 public boolean isStopCustomActionsOnError();
 public PatternProcessor getTempCompressedFilePattern();
 private int purge(RollingFileManager);
 public String getCurrentFileName(RollingFileManager);
 public void clearCurrentFileName();
 public RolloverDescription rollover(RollingFileManager) throws SecurityException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/ScriptCondition.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class ScriptCondition {
 private static org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 public void ScriptCondition(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration);
 public java.util.List selectFilesToDelete(java.nio.file.Path, java.util.List);
 public static ScriptCondition createCondition(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction$Builder.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PosixViewAttributeAction$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 private String basePath;
 private boolean followLinks;
 private int maxDepth;
 private PathCondition[] pathConditions;
 private String filePermissionsString;
 private java.util.Set filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void PosixViewAttributeAction$Builder();
 public PosixViewAttributeAction build();
 public PosixViewAttributeAction$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PosixViewAttributeAction$Builder withSubst(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public PosixViewAttributeAction$Builder withBasePath(String);
 public PosixViewAttributeAction$Builder withFollowLinks(boolean);
 public PosixViewAttributeAction$Builder withMaxDepth(int);
 public PosixViewAttributeAction$Builder withPathConditions(PathCondition[]);
 public PosixViewAttributeAction$Builder withFilePermissionsString(String);
 public PosixViewAttributeAction$Builder withFilePermissions(java.util.Set);
 public PosixViewAttributeAction$Builder withFileOwner(String);
 public PosixViewAttributeAction$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/rolling/action/CompositeAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class CompositeAction extends AbstractAction {
 private final Action[] actions;
 private final boolean stopOnError;
 public void CompositeAction(java.util.List, boolean);
 public void run();
 public boolean execute() throws java.io.IOException;
 public String toString();
 public Action[] getActions();
 public boolean isStopOnError();
}

org/apache/logging/log4j/core/appender/rolling/action/Action.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface Action extends Runnable {
 public abstract boolean execute() throws java.io.IOException;
 public abstract void close();
 public abstract boolean isComplete();
}

org/apache/logging/log4j/core/appender/rolling/DefaultRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DefaultRolloverStrategy extends AbstractRolloverStrategy {
 private static final int MIN_WINDOW_SIZE = 1;
 private static final int DEFAULT_WINDOW_SIZE = 7;
 private final int maxIndex;
 private final int minIndex;
 private final boolean useMax;
 private final int compressionLevel;
 private final java.util.List customActions;
 private final boolean stopCustomActionsOnError;
 private final PatternProcessor tempCompressedFilePattern;
 public static DefaultRolloverStrategy$Builder newBuilder();
 public static DefaultRolloverStrategy createStrategy(String, String, String, String, action.Action[], boolean, org.apache.logging.log4j.core.config.Configuration);
 protected void DefaultRolloverStrategy(int, int, boolean, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean);
 protected void DefaultRolloverStrategy(int, int, boolean, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean, String);
 public int getCompressionLevel();
 public java.util.List getCustomActions();
 public int getMaxIndex();
 public int getMinIndex();
 public boolean isStopCustomActionsOnError();
 public boolean isUseMax();
 public PatternProcessor getTempCompressedFilePattern();
 private int purge(int, int, RollingFileManager);
 private int purgeAscending(int, int, RollingFileManager);
 private int purgeDescending(int, int, RollingFileManager);
 public RolloverDescription rollover(RollingFileManager) throws SecurityException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class CronTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final String defaultSchedule = 0 0 0 * * ?;
 private RollingFileManager manager;
 private final org.apache.logging.log4j.core.util.CronExpression cronExpression;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final boolean checkOnStartup;
 private volatile java.util.Date lastRollDate;
 private org.apache.logging.log4j.core.config.CronScheduledFuture future;
 private void CronTriggeringPolicy(org.apache.logging.log4j.core.util.CronExpression, boolean, org.apache.logging.log4j.core.config.Configuration);
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.util.CronExpression getCronExpression();
 public static CronTriggeringPolicy createPolicy(org.apache.logging.log4j.core.config.Configuration, String, String);
 private static org.apache.logging.log4j.core.util.CronExpression getSchedule(String);
 private void rollover();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class MemoryMappedFileManager extends OutputStreamManager {
 static final int DEFAULT_REGION_LENGTH = 33554432;
 private static final int MAX_REMAP_COUNT = 10;
 private static final MemoryMappedFileManager$MemoryMappedFileManagerFactory FACTORY;
 private static final double NANOS_PER_MILLISEC = 1000000.0;
 private final boolean immediateFlush;
 private final int regionLength;
 private final String advertiseURI;
 private final java.io.RandomAccessFile randomAccessFile;
 private java.nio.MappedByteBuffer mappedBuffer;
 private long mappingOffset;
 protected void MemoryMappedFileManager(java.io.RandomAccessFile, String, java.io.OutputStream, boolean, long, int, String, org.apache.logging.log4j.core.Layout, boolean) throws java.io.IOException;
 public static MemoryMappedFileManager getFileManager(String, boolean, boolean, int, String, org.apache.logging.log4j.core.Layout);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected synchronized void write(byte[], int, int, boolean);
 private synchronized void remap();
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public static java.nio.MappedByteBuffer mmap(java.nio.channels.FileChannel, String, long, int) throws java.io.IOException;
 private static void unsafeUnmap(java.nio.MappedByteBuffer) throws java.security.PrivilegedActionException;
 public String getFileName();
 public int getRegionLength();
 public boolean isImmediateFlush();
 public java.util.Map getContentFormat();
 protected void flushBuffer(java.nio.ByteBuffer);
 public java.nio.ByteBuffer getByteBuffer();
 public java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/ManagerFactory.class

package org.apache.logging.log4j.core.appender;
public abstract interface ManagerFactory {
 public abstract Object createManager(String, Object);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class JdbcAppender extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender {
 private final String description;
 public static JdbcAppender createAppender(String, String, org.apache.logging.log4j.core.Filter, ConnectionSource, String, String, ColumnConfig[]);
 public static JdbcAppender$Builder newBuilder();
 private void JdbcAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], JdbcDatabaseManager);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/DriverManagerConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class DriverManagerConnectionSource extends AbstractDriverManagerConnectionSource {
 public static DriverManagerConnectionSource$Builder newBuilder();
 public void DriverManagerConnectionSource(String, String, String, char[], char[], org.apache.logging.log4j.core.config.Property[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class JdbcAppender$Builder extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private ConnectionSource connectionSource;
 private boolean immediateFail;
 private int bufferSize;
 private String tableName;
 private ColumnConfig[] columnConfigs;
 private org.apache.logging.log4j.core.appender.db.ColumnMapping[] columnMappings;
 private boolean truncateStrings;
 private long reconnectIntervalMillis;
 public void JdbcAppender$Builder();
 public JdbcAppender build();
 public long getReconnectIntervalMillis();
 public boolean isImmediateFail();
 public JdbcAppender$Builder setBufferSize(int);
 public transient JdbcAppender$Builder setColumnConfigs(ColumnConfig[]);
 public transient JdbcAppender$Builder setColumnMappings(org.apache.logging.log4j.core.appender.db.ColumnMapping[]);
 public JdbcAppender$Builder setConnectionSource(ConnectionSource);
 public void setImmediateFail(boolean);
 public void setReconnectIntervalMillis(long);
 public JdbcAppender$Builder setTableName(String);
 public JdbcAppender$Builder setTruncateStrings(boolean);
}

org/apache/logging/log4j/core/appender/AsyncAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class AsyncAppender$1 {
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$Builder.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class RoutingAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.script.AbstractScript defaultRouteScript;
 private Routes routes;
 private org.apache.logging.log4j.core.appender.rewrite.RewritePolicy rewritePolicy;
 private PurgePolicy purgePolicy;
 public void RoutingAppender$Builder();
 public RoutingAppender build();
 public Routes getRoutes();
 public org.apache.logging.log4j.core.script.AbstractScript getDefaultRouteScript();
 public org.apache.logging.log4j.core.appender.rewrite.RewritePolicy getRewritePolicy();
 public PurgePolicy getPurgePolicy();
 public RoutingAppender$Builder withRoutes(Routes);
 public RoutingAppender$Builder withDefaultRouteScript(org.apache.logging.log4j.core.script.AbstractScript);
 public RoutingAppender$Builder withRewritePolicy(org.apache.logging.log4j.core.appender.rewrite.RewritePolicy);
 public void withPurgePolicy(PurgePolicy);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlObject.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlObject {
 public abstract void set(String, Object);
 public abstract void set(String, NoSqlObject);
 public abstract void set(String, Object[]);
 public abstract void set(String, NoSqlObject[]);
 public abstract Object unwrap();
}

org/apache/logging/log4j/core/appender/nosql/AbstractNoSqlConnection.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract synchronized class AbstractNoSqlConnection implements NoSqlConnection {
 private final java.util.concurrent.atomic.AtomicBoolean closed;
 public void AbstractNoSqlConnection();
 public void close();
 protected abstract void closeImpl();
 public boolean isClosed();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class MemoryMappedFileAppender extends AbstractOutputStreamAppender {
 private static final int BIT_POSITION_1GB = 30;
 private static final int MAX_REGION_LENGTH = 1073741824;
 private static final int MIN_REGION_LENGTH = 256;
 private final String fileName;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void MemoryMappedFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, MemoryMappedFileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getFileName();
 public int getRegionLength();
 public static MemoryMappedFileAppender createAppender(String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static MemoryMappedFileAppender$Builder newBuilder();
 private static int determineValidRegionLength(String, int);
}

org/apache/logging/log4j/core/impl/ThrowableProxy.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThrowableProxy implements java.io.Serializable {
 static final ThrowableProxy[] EMPTY_ARRAY;
 private static final char EOL = 10;
 private static final String EOL_STR;
 private static final long serialVersionUID = -2752771578252251910;
 private final ThrowableProxy causeProxy;
 private int commonElementCount;
 private final ExtendedStackTraceElement[] extendedStackTrace;
 private final String localizedMessage;
 private final String message;
 private final String name;
 private final ThrowableProxy[] suppressedProxies;
 private final transient Throwable throwable;
 void ThrowableProxy();
 public void ThrowableProxy(Throwable);
 void ThrowableProxy(Throwable, java.util.Set);
 private void ThrowableProxy(Throwable, java.util.Stack, java.util.Map, Throwable, java.util.Set, java.util.Set);
 public boolean equals(Object);
 public void formatWrapper(StringBuilder, ThrowableProxy, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public ThrowableProxy getCauseProxy();
 public String getCauseStackTraceAsString(String);
 public String getCauseStackTraceAsString(java.util.List, String);
 public String getCauseStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public String getCauseStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public int getCommonElementCount();
 void setCommonElementCount(int);
 public ExtendedStackTraceElement[] getExtendedStackTrace();
 public String getExtendedStackTraceAsString();
 public String getExtendedStackTraceAsString(String);
 public String getExtendedStackTraceAsString(java.util.List, String);
 public String getExtendedStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public String getExtendedStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public void formatExtendedStackTraceTo(StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public String getLocalizedMessage();
 public String getMessage();
 public String getName();
 public StackTraceElement[] getStackTrace();
 public ThrowableProxy[] getSuppressedProxies();
 public String getSuppressedStackTrace(String);
 public Throwable getThrowable();
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/ContextDataFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ContextDataFactory {
 private static final String CLASS_NAME;
 private static final Class CACHED_CLASS;
 private static final reflect.Constructor DEFAULT_CONSTRUCTOR;
 private static final reflect.Constructor INITIAL_CAPACITY_CONSTRUCTOR;
 private static final org.apache.logging.log4j.util.StringMap EMPTY_STRING_MAP;
 public void ContextDataFactory();
 private static Class createCachedClass(String);
 private static reflect.Constructor createDefaultConstructor(Class);
 private static reflect.Constructor createInitialCapacityConstructor(Class);
 public static org.apache.logging.log4j.util.StringMap createContextData();
 public static org.apache.logging.log4j.util.StringMap createContextData(int);
 public static org.apache.logging.log4j.util.StringMap createContextData(java.util.Map);
 public static org.apache.logging.log4j.util.StringMap createContextData(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public static org.apache.logging.log4j.util.StringMap emptyFrozenContextData();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/JndiContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class JndiContextSelector implements NamedContextSelector {
 private static final org.apache.logging.log4j.core.LoggerContext CONTEXT;
 private static final java.util.concurrent.ConcurrentMap CONTEXT_MAP;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 public void JndiContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 private String getContextName();
 public org.apache.logging.log4j.core.LoggerContext locateContext(String, Object, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public org.apache.logging.log4j.core.LoggerContext removeContext(String);
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$ShortestFirst.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$ShortestFirst implements java.util.Comparator {
 void CommandLine$Help$ShortestFirst();
 public int compare(String, String);
 public static String[] sort(String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$IExceptionHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$IExceptionHandler {
 public abstract transient java.util.List handleException(CommandLine$ParameterException, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine {
 public static final String VERSION = 2.0.3;
 private final CommandLine$Tracer tracer;
 private final CommandLine$Interpreter interpreter;
 private String commandName;
 private boolean overwrittenOptionsAllowed;
 private boolean unmatchedArgumentsAllowed;
 private final java.util.List unmatchedArguments;
 private CommandLine parent;
 private boolean usageHelpRequested;
 private boolean versionHelpRequested;
 private final java.util.List versionLines;
 public void CommandLine(Object);
 public CommandLine addSubcommand(String, Object);
 public java.util.Map getSubcommands();
 public CommandLine getParent();
 public Object getCommand();
 public boolean isUsageHelpRequested();
 public boolean isVersionHelpRequested();
 public boolean isOverwrittenOptionsAllowed();
 public CommandLine setOverwrittenOptionsAllowed(boolean);
 public boolean isUnmatchedArgumentsAllowed();
 public CommandLine setUnmatchedArgumentsAllowed(boolean);
 public java.util.List getUnmatchedArguments();
 public static transient Object populateCommand(Object, String[]);
 public transient java.util.List parse(String[]);
 public static boolean printHelpIfRequested(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
 private static Object execute(CommandLine);
 public transient java.util.List parseWithHandler(CommandLine$IParseResultHandler, java.io.PrintStream, String[]);
 public transient java.util.List parseWithHandlers(CommandLine$IParseResultHandler, java.io.PrintStream, CommandLine$Help$Ansi, CommandLine$IExceptionHandler, String[]);
 public static void usage(Object, java.io.PrintStream);
 public static void usage(Object, java.io.PrintStream, CommandLine$Help$Ansi);
 public static void usage(Object, java.io.PrintStream, CommandLine$Help$ColorScheme);
 public void usage(java.io.PrintStream);
 public void usage(java.io.PrintStream, CommandLine$Help$Ansi);
 public void usage(java.io.PrintStream, CommandLine$Help$ColorScheme);
 public void printVersionHelp(java.io.PrintStream);
 public void printVersionHelp(java.io.PrintStream, CommandLine$Help$Ansi);
 public transient void printVersionHelp(java.io.PrintStream, CommandLine$Help$Ansi, Object[]);
 public static transient Object call(java.util.concurrent.Callable, java.io.PrintStream, String[]);
 public static transient Object call(java.util.concurrent.Callable, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
 public static transient void run(Runnable, java.io.PrintStream, String[]);
 public static transient void run(Runnable, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
 public CommandLine registerConverter(Class, CommandLine$ITypeConverter);
 public String getSeparator();
 public CommandLine setSeparator(String);
 public String getCommandName();
 public CommandLine setCommandName(String);
 private static boolean empty(String);
 private static boolean empty(Object[]);
 private static boolean empty(CommandLine$Help$Ansi$Text);
 private static String str(String[], int);
 private static boolean isBoolean(Class);
 private static CommandLine toCommandLine(Object);
 private static boolean isMultiValue(reflect.Field);
 private static boolean isMultiValue(Class);
 private static Class[] getTypeAttribute(reflect.Field);
 static void init(Class, java.util.List, java.util.Map, java.util.Map, java.util.List);
 static void validatePositionalParameters(java.util.List);
 private static java.util.Stack reverse(java.util.Stack);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Option.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Option extends annotation.Annotation {
 public abstract String[] names();
 public abstract boolean required();
 public abstract boolean help();
 public abstract boolean usageHelp();
 public abstract boolean versionHelp();
 public abstract String[] description();
 public abstract String arity();
 public abstract String paramLabel();
 public abstract Class[] type();
 public abstract String split();
 public abstract boolean hidden();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$MinimalParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$MinimalParameterRenderer implements CommandLine$Help$IParameterRenderer {
 void CommandLine$Help$MinimalParameterRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ShortConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ShortConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ShortConverter();
 public Short convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Text.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Ansi$Text implements Cloneable {
 private final int maxLength;
 private int from;
 private int length;
 private StringBuilder plain;
 private java.util.List sections;
 public void CommandLine$Help$Ansi$Text(CommandLine$Help$Ansi, int);
 public void CommandLine$Help$Ansi$Text(CommandLine$Help$Ansi, String);
 private void addStyledSection(int, int, String, String);
 public Object clone();
 public CommandLine$Help$Ansi$Text[] splitLines();
 public CommandLine$Help$Ansi$Text substring(int);
 public CommandLine$Help$Ansi$Text substring(int, int);
 public CommandLine$Help$Ansi$Text append(String);
 public CommandLine$Help$Ansi$Text append(CommandLine$Help$Ansi$Text);
 public void getStyledChars(int, int, CommandLine$Help$Ansi$Text, int);
 public String plainString();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private CommandLine$Help$Ansi$StyledSection findSectionContaining(int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharsetConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharsetConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharsetConverter();
 public java.nio.charset.Charset convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultParameterRenderer implements CommandLine$Help$IParameterRenderer {
 public String requiredMarker;
 void CommandLine$Help$DefaultParameterRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn {
 private void CommandLine$BuiltIn();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$LongConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$LongConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$LongConverter();
 public Long convert(String);
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationFactory.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationFactory {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static SslConfiguration sslConfiguration;
 private static final String trustStorelocation = log4j2.trustStoreLocation;
 private static final String trustStorePassword = log4j2.trustStorePassword;
 private static final String trustStorePasswordFile = log4j2.trustStorePasswordFile;
 private static final String trustStorePasswordEnvVar = log4j2.trustStorePasswordEnvironmentVariable;
 private static final String trustStoreKeyStoreType = log4j2.trustStoreKeyStoreType;
 private static final String trustStoreKeyManagerFactoryAlgorithm = log4j2.trustStoreKeyManagerFactoryAlgorithm;
 private static final String keyStoreLocation = log4j2.keyStoreLocation;
 private static final String keyStorePassword = log4j2.keyStorePassword;
 private static final String keyStorePasswordFile = log4j2.keyStorePasswordFile;
 private static final String keyStorePasswordEnvVar = log4j2.keyStorePasswordEnvironmentVariable;
 private static final String keyStoreType = log4j2.keyStoreType;
 private static final String keyStoreKeyManagerFactoryAlgorithm = log4j2.keyStoreKeyManagerFactoryAlgorithm;
 private static final String verifyHostName = log4j2.sslVerifyHostName;
 public void SslConfigurationFactory();
 public static SslConfiguration getSslConfiguration();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/EnvironmentPasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class EnvironmentPasswordProvider implements PasswordProvider {
 private final String passwordEnvironmentVariable;
 public void EnvironmentPasswordProvider(String);
 public char[] getPassword();
}

org/apache/logging/log4j/core/net/ssl/AbstractKeyStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class AbstractKeyStoreConfiguration extends StoreConfiguration {
 private final java.security.KeyStore keyStore;
 private final String keyStoreType;
 public void AbstractKeyStoreConfiguration(String, PasswordProvider, String) throws StoreConfigurationException;
 public void AbstractKeyStoreConfiguration(String, char[], String) throws StoreConfigurationException;
 public void AbstractKeyStoreConfiguration(String, String, String) throws StoreConfigurationException;
 protected java.security.KeyStore load() throws StoreConfigurationException;
 private java.io.InputStream openInputStream(String);
 public java.security.KeyStore getKeyStore();
 public int hashCode();
 public boolean equals(Object);
 public String getKeyStoreType();
}

org/apache/logging/log4j/core/net/AbstractSocketManager.class

package org.apache.logging.log4j.core.net;
public abstract synchronized class AbstractSocketManager extends org.apache.logging.log4j.core.appender.OutputStreamManager {
 protected final java.net.InetAddress inetAddress;
 protected final String host;
 protected final int port;
 public void AbstractSocketManager(String, java.io.OutputStream, java.net.InetAddress, String, int, org.apache.logging.log4j.core.Layout, boolean, int);
 public java.util.Map getContentFormat();
}

org/apache/logging/log4j/core/net/Facility.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Facility {
 public static final Facility KERN;
 public static final Facility USER;
 public static final Facility MAIL;
 public static final Facility DAEMON;
 public static final Facility AUTH;
 public static final Facility SYSLOG;
 public static final Facility LPR;
 public static final Facility NEWS;
 public static final Facility UUCP;
 public static final Facility CRON;
 public static final Facility AUTHPRIV;
 public static final Facility FTP;
 public static final Facility NTP;
 public static final Facility LOG_AUDIT;
 public static final Facility LOG_ALERT;
 public static final Facility CLOCK;
 public static final Facility LOCAL0;
 public static final Facility LOCAL1;
 public static final Facility LOCAL2;
 public static final Facility LOCAL3;
 public static final Facility LOCAL4;
 public static final Facility LOCAL5;
 public static final Facility LOCAL6;
 public static final Facility LOCAL7;
 private final int code;
 public static Facility[] values();
 public static Facility valueOf(String);
 private void Facility(String, int, int);
 public static Facility toFacility(String);
 public static Facility toFacility(String, Facility);
 public int getCode();
 public boolean isEqual(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatcherFactory.class

package org.apache.logging.log4j.core.util;
public synchronized class WatcherFactory {
 private static org.apache.logging.log4j.Logger LOGGER;
 private static org.apache.logging.log4j.core.config.plugins.util.PluginManager pluginManager;
 private static volatile WatcherFactory factory;
 private final java.util.Map plugins;
 private void WatcherFactory(java.util.List);
 public static WatcherFactory getInstance(java.util.List);
 public Watcher newWatcher(Source, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 public static Watcher instantiate(String, Class, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CyclicBuffer.class

package org.apache.logging.log4j.core.util;
public final synchronized class CyclicBuffer {
 private final Object[] ring;
 private int first;
 private int last;
 private int numElems;
 private final Class clazz;
 public void CyclicBuffer(Class, int) throws IllegalArgumentException;
 private Object[] makeArray(Class, int);
 public synchronized void add(Object);
 public synchronized Object[] removeAll();
 public boolean isEmpty();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$TimeZoneStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$TimeZoneStrategy extends FastDateParser$PatternStrategy {
 private static final String RFC_822_TIME_ZONE = [+-]\d{4};
 private static final String GMT_OPTION = GMT[+-]\d{1,2}:\d{2};
 private final java.util.Locale locale;
 private final java.util.Map tzNames;
 private static final int ID = 0;
 void FastDateParser$TimeZoneStrategy(java.util.Locale);
 void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDatePrinter implements DatePrinter, java.io.Serializable {
 private static final long serialVersionUID = 1;
 public static final int FULL = 0;
 public static final int LONG = 1;
 public static final int MEDIUM = 2;
 public static final int SHORT = 3;
 private final String mPattern;
 private final java.util.TimeZone mTimeZone;
 private final java.util.Locale mLocale;
 private transient FastDatePrinter$Rule[] mRules;
 private transient int mMaxLengthEstimate;
 private static final int MAX_DIGITS = 10;
 private static final java.util.concurrent.ConcurrentMap cTimeZoneDisplayCache;
 protected void FastDatePrinter(String, java.util.TimeZone, java.util.Locale);
 private void init();
 protected java.util.List parsePattern();
 protected String parseToken(String, int[]);
 protected FastDatePrinter$NumberRule selectNumberRule(int, int);
 public StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 String format(Object);
 public String format(long);
 private String applyRulesToString(java.util.Calendar);
 private java.util.Calendar newCalendar();
 public String format(java.util.Date);
 public String format(java.util.Calendar);
 public Appendable format(long, Appendable);
 public Appendable format(java.util.Date, Appendable);
 public Appendable format(java.util.Calendar, Appendable);
 protected StringBuffer applyRules(java.util.Calendar, StringBuffer);
 private Appendable applyRules(java.util.Calendar, Appendable);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public int getMaxLengthEstimate();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private static void appendDigits(Appendable, int) throws java.io.IOException;
 private static void appendFullDigits(Appendable, int, int) throws java.io.IOException;
 static String getTimeZoneDisplay(java.util.TimeZone, boolean, int, java.util.Locale);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$StrategyParser.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$StrategyParser {
 private final java.util.Calendar definingCalendar;
 private int currentIdx;
 void FastDateParser$StrategyParser(FastDateParser, java.util.Calendar);
 FastDateParser$StrategyAndWidth getNextStrategy();
 private FastDateParser$StrategyAndWidth letterPattern(char);
 private FastDateParser$StrategyAndWidth literal();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$5.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$5 extends FastDateParser$NumberStrategy {
 void FastDateParser$5(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$1.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$1 extends FastDateParser$NumberStrategy {
 void FastDateParser$1(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateFormat$1.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateFormat$1 extends FormatCache {
 void FastDateFormat$1();
 protected FastDateFormat createInstance(String, java.util.TimeZone, java.util.Locale);
}

org/apache/logging/log4j/core/util/PasswordDecryptor.class

package org.apache.logging.log4j.core.util;
public abstract interface PasswordDecryptor {
 public abstract String decryptPassword(String);
}

org/apache/logging/log4j/core/util/Closer.class

package org.apache.logging.log4j.core.util;
public final synchronized class Closer {
 private void Closer();
 public static boolean close(AutoCloseable) throws Exception;
 public static boolean closeSilently(AutoCloseable);
}

org/apache/logging/log4j/core/util/WatchManager.class

package org.apache.logging.log4j.core.util;
public synchronized class WatchManager extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static org.apache.logging.log4j.Logger logger;
 private final java.util.concurrent.ConcurrentMap watchers;
 private int intervalSeconds;
 private java.util.concurrent.ScheduledFuture future;
 private final org.apache.logging.log4j.core.config.ConfigurationScheduler scheduler;
 private final java.util.List eventServiceList;
 private final java.util.UUID id;
 public void WatchManager(org.apache.logging.log4j.core.config.ConfigurationScheduler);
 public void checkFiles();
 public java.util.Map getConfigurationWatchers();
 private java.util.List getEventServices();
 public java.util.UUID getId();
 public int getIntervalSeconds();
 public java.util.Map getWatchers();
 public boolean hasEventListeners();
 private String millisToString(long);
 public void reset();
 public void reset(java.io.File);
 public void reset(Source);
 public void setIntervalSeconds(int);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
 public void unwatch(Source);
 public void unwatchFile(java.io.File);
 public void watch(Source, Watcher);
 public void watchFile(java.io.File, FileWatcher);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Watcher.class

package org.apache.logging.log4j.core.util;
public abstract interface Watcher {
 public static final String CATEGORY = Watcher;
 public static final String ELEMENT_TYPE = watcher;
 public abstract java.util.List getListeners();
 public abstract void modified();
 public abstract boolean isModified();
 public abstract long getLastModified();
 public abstract void watching(Source);
 public abstract Source getSource();
 public abstract Watcher newWatcher(org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/util/ExecutorServices.class

package org.apache.logging.log4j.core.util;
public synchronized class ExecutorServices {
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void ExecutorServices();
 public static boolean shutdown(java.util.concurrent.ExecutorService, long, java.util.concurrent.TimeUnit, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/AuthorizationProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface AuthorizationProvider {
 public abstract void addAuthorization(java.net.URLConnection);
}

org/apache/logging/log4j/core/util/ShutdownCallbackRegistry.class

package org.apache.logging.log4j.core.util;
public abstract interface ShutdownCallbackRegistry {
 public static final String SHUTDOWN_CALLBACK_REGISTRY = log4j.shutdownCallbackRegistry;
 public static final String SHUTDOWN_HOOK_ENABLED = log4j.shutdownHookEnabled;
 public static final org.apache.logging.log4j.Marker SHUTDOWN_HOOK_MARKER;
 public abstract Cancellable addShutdownCallback(Runnable);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DummyNanoClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class DummyNanoClock implements NanoClock {
 private final long fixedNanoTime;
 public void DummyNanoClock();
 public void DummyNanoClock(long);
 public long nanoTime();
}

org/apache/logging/log4j/core/config/LoggerConfig$RootLogger.class

package org.apache.logging.log4j.core.config;
public synchronized class LoggerConfig$RootLogger extends LoggerConfig {
 public void LoggerConfig$RootLogger();
 public static LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginElementVisitor extends AbstractPluginVisitor {
 public void PluginElementVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private org.apache.logging.log4j.core.config.Node findNamedNode(String, Iterable);
}

org/apache/logging/log4j/core/config/plugins/util/PluginRegistry.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginRegistry {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile PluginRegistry INSTANCE;
 private static final Object INSTANCE_LOCK;
 private final java.util.concurrent.atomic.AtomicReference pluginsByCategoryRef;
 private final java.util.concurrent.ConcurrentMap pluginsByCategoryByBundleId;
 private final java.util.concurrent.ConcurrentMap pluginsByCategoryByPackage;
 private void PluginRegistry();
 public static PluginRegistry getInstance();
 public void clear();
 public java.util.Map getPluginsByCategoryByBundleId();
 public java.util.Map loadFromMainClassLoader();
 public void clearBundlePlugins(long);
 public java.util.Map loadFromBundle(long, ClassLoader);
 private java.util.Map decodeCacheFiles(ClassLoader);
 public java.util.Map loadFromPackage(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/PluginManager.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginManager {
 private static final java.util.concurrent.CopyOnWriteArrayList PACKAGES;
 private static final String LOG4J_PACKAGES = org.apache.logging.log4j.core;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private java.util.Map plugins;
 private final String category;
 public void PluginManager(String);
 public static void main(String[]);
 public static void addPackage(String);
 public static void addPackages(java.util.Collection);
 public PluginType getPluginType(String);
 public java.util.Map getPlugins();
 public void collectPlugins();
 public void collectPlugins(java.util.List);
 private static void mergeByName(java.util.Map, java.util.List);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/PluginConfiguration.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginConfiguration extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/validation/validators/ValidPortValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class ValidPortValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidPort annotation;
 public void ValidPortValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidPort);
 public boolean isValid(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/HexConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class HexConverter {
 public void HexConverter();
 public static byte[] parseHexBinary(String);
}

org/apache/logging/log4j/core/config/plugins/convert/Base64Converter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class Base64Converter {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static reflect.Method method;
 private static Object decoder;
 public void Base64Converter();
 public static byte[] parseBase64Binary(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/Configurator.class

package org.apache.logging.log4j.core.config;
public final synchronized class Configurator {
 private static final String FQCN;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static org.apache.logging.log4j.core.impl.Log4jContextFactory getFactory();
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, ConfigurationSource);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, ConfigurationSource, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, String);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, String, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI, java.util.Map$Entry);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.util.List, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, String);
 public static org.apache.logging.log4j.core.LoggerContext initialize(Configuration);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, Configuration);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, Configuration, Object);
 public static void reconfigure(Configuration);
 public static void reconfigure();
 public static void reconfigure(java.net.URI);
 public static void setAllLevels(String, org.apache.logging.log4j.Level);
 private static boolean setLevel(LoggerConfig, org.apache.logging.log4j.Level);
 public static void setLevel(java.util.Map);
 public static void setLevel(String, org.apache.logging.log4j.Level);
 private static boolean setLevel(String, org.apache.logging.log4j.Level, Configuration);
 public static void setRootLevel(org.apache.logging.log4j.Level);
 public static void shutdown(org.apache.logging.log4j.core.LoggerContext);
 public static boolean shutdown(org.apache.logging.log4j.core.LoggerContext, long, java.util.concurrent.TimeUnit);
 private void Configurator();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/composite/DefaultMergeStrategy.class

package org.apache.logging.log4j.core.config.composite;
public synchronized class DefaultMergeStrategy implements MergeStrategy {
 private static final String APPENDERS = appenders;
 private static final String PROPERTIES = properties;
 private static final String LOGGERS = loggers;
 private static final String SCRIPTS = scripts;
 private static final String FILTERS = filters;
 private static final String STATUS = status;
 private static final String NAME = name;
 private static final String REF = ref;
 public void DefaultMergeStrategy();
 public void mergeRootProperties(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.AbstractConfiguration);
 public void mergConfigurations(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
 private org.apache.logging.log4j.core.config.Node getLoggerNode(org.apache.logging.log4j.core.config.Node, String);
 private void updateFilterNode(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
 private boolean isFilterNode(org.apache.logging.log4j.core.config.Node);
 private boolean isSameName(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node);
 private boolean isSameReference(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node);
}

org/apache/logging/log4j/core/config/properties/PropertiesConfiguration.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfiguration extends org.apache.logging.log4j.core.config.builder.impl.BuiltConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 public void PropertiesConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource, org.apache.logging.log4j.core.config.builder.api.Component);
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
}

org/apache/logging/log4j/core/config/CustomLevels.class

package org.apache.logging.log4j.core.config;
public final synchronized class CustomLevels {
 private final java.util.List customLevels;
 private void CustomLevels(CustomLevelConfig[]);
 public static CustomLevels createCustomLevels(CustomLevelConfig[]);
 public java.util.List getCustomLevels();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultKeyValuePairComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultKeyValuePairComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.KeyValuePairComponentBuilder {
 public void DefaultKeyValuePairComponentBuilder(DefaultConfigurationBuilder, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultComponentAndConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultComponentAndConfigurationBuilder extends DefaultComponentBuilder {
 void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String, String, String);
 void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String);
}

org/apache/logging/log4j/core/config/builder/api/PropertyComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface PropertyComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/FilterableComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface FilterableComponentBuilder extends ComponentBuilder {
 public abstract ComponentBuilder add(FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/LoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LoggerComponentBuilder extends LoggableComponentBuilder {
}

org/apache/logging/log4j/core/jmx/RingBufferAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface RingBufferAdminMBean {
 public static final String PATTERN_ASYNC_LOGGER = org.apache.logging.log4j2:type=%s,component=AsyncLoggerRingBuffer;
 public static final String PATTERN_ASYNC_LOGGER_CONFIG = org.apache.logging.log4j2:type=%s,component=Loggers,name=%s,subtype=RingBuffer;
 public abstract long getBufferSize();
 public abstract long getRemainingCapacity();
}

org/apache/logging/log4j/core/jmx/StatusLoggerAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class StatusLoggerAdmin extends javax.management.NotificationBroadcasterSupport implements org.apache.logging.log4j.status.StatusListener, StatusLoggerAdminMBean {
 private final java.util.concurrent.atomic.AtomicLong sequenceNo;
 private final javax.management.ObjectName objectName;
 private final String contextName;
 private org.apache.logging.log4j.Level level;
 public void StatusLoggerAdmin(String, java.util.concurrent.Executor);
 private void removeListeners(String);
 private static javax.management.MBeanNotificationInfo createNotificationInfo();
 public String[] getStatusDataHistory();
 public java.util.List getStatusData();
 public String getLevel();
 public org.apache.logging.log4j.Level getStatusLevel();
 public void setLevel(String);
 public String getContextName();
 public void log(org.apache.logging.log4j.status.StatusData);
 public javax.management.ObjectName getObjectName();
 private long nextSeqNo();
 private long nowMillis();
 public void close() throws java.io.IOException;
}

org/apache/logging/log4j/core/jmx/AsyncAppenderAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface AsyncAppenderAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=AsyncAppenders,name=%s;
 public abstract String getName();
 public abstract String getLayout();
 public abstract boolean isIgnoreExceptions();
 public abstract String getErrorHandler();
 public abstract String getFilter();
 public abstract String[] getAppenderRefs();
 public abstract boolean isIncludeLocation();
 public abstract boolean isBlocking();
 public abstract String getErrorRef();
 public abstract int getQueueCapacity();
 public abstract int getQueueRemainingCapacity();
}

org/apache/logging/log4j/core/jmx/StatusLoggerAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface StatusLoggerAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=StatusLogger;
 public static final String NOTIF_TYPE_DATA = com.apache.logging.log4j.core.jmx.statuslogger.data;
 public static final String NOTIF_TYPE_MESSAGE = com.apache.logging.log4j.core.jmx.statuslogger.message;
 public abstract javax.management.ObjectName getObjectName();
 public abstract java.util.List getStatusData();
 public abstract String[] getStatusDataHistory();
 public abstract String getLevel();
 public abstract void setLevel(String);
 public abstract String getContextName();
}

org/apache/logging/log4j/core/jmx/AppenderAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class AppenderAdmin implements AppenderAdminMBean {
 private final String contextName;
 private final org.apache.logging.log4j.core.Appender appender;
 private final javax.management.ObjectName objectName;
 public void AppenderAdmin(String, org.apache.logging.log4j.core.Appender);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLayout();
 public boolean isIgnoreExceptions();
 public String getErrorHandler();
 public String getFilter();
}

org/apache/logging/log4j/core/layout/YamlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class YamlLayout extends AbstractJacksonLayout {
 private static final String DEFAULT_FOOTER = ;
 private static final String DEFAULT_HEADER = ;
 static final String CONTENT_TYPE = application/yaml;
 protected void YamlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 private void YamlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static AbstractJacksonLayout createLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 public static YamlLayout$Builder newBuilder();
 public static AbstractJacksonLayout createDefaultLayout();
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$ResolvableKeyValuePair.class

package org.apache.logging.log4j.core.layout;
public synchronized class AbstractJacksonLayout$ResolvableKeyValuePair {
 static final AbstractJacksonLayout$ResolvableKeyValuePair[] EMPTY_ARRAY;
 final String key;
 final String value;
 final boolean valueNeedsLookup;
 void AbstractJacksonLayout$ResolvableKeyValuePair(org.apache.logging.log4j.core.util.KeyValuePair);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/YamlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class YamlLayout$1 {
}

org/apache/logging/log4j/core/layout/CsvLogEventLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class CsvLogEventLayout extends AbstractCsvLayout {
 public static CsvLogEventLayout createDefaultLayout();
 public static CsvLogEventLayout createLayout(org.apache.commons.csv.CSVFormat);
 public static CsvLogEventLayout createLayout(org.apache.logging.log4j.core.config.Configuration, String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String, java.nio.charset.Charset, String, String);
 protected void CsvLogEventLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractStringLayout$Builder extends AbstractLayout$Builder {
 private java.nio.charset.Charset charset;
 private AbstractStringLayout$Serializer footerSerializer;
 private AbstractStringLayout$Serializer headerSerializer;
 public void AbstractStringLayout$Builder();
 public java.nio.charset.Charset getCharset();
 public AbstractStringLayout$Serializer getFooterSerializer();
 public AbstractStringLayout$Serializer getHeaderSerializer();
 public AbstractStringLayout$Builder setCharset(java.nio.charset.Charset);
 public AbstractStringLayout$Builder setFooterSerializer(AbstractStringLayout$Serializer);
 public AbstractStringLayout$Builder setHeaderSerializer(AbstractStringLayout$Serializer);
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternFormatterPatternSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternFormatterPatternSerializer implements PatternLayout$PatternSerializer {
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] formatters;
 private void PatternLayout$PatternFormatterPatternSerializer(org.apache.logging.log4j.core.pattern.PatternFormatter[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$3.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$3 {
 void GelfLayout$CompressionType$3(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class MarkerPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void MarkerPatternSelector$Builder();
 public MarkerPatternSelector build();
 public MarkerPatternSelector$Builder setProperties(PatternMatch[]);
 public MarkerPatternSelector$Builder setDefaultPattern(String);
 public MarkerPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public MarkerPatternSelector$Builder setDisableAnsi(boolean);
 public MarkerPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public MarkerPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/layout/JsonLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class JsonLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean propertiesAsList;
 private boolean objectMessageAsJsonObject;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 public void JsonLayout$Builder();
 public JsonLayout build();
 public boolean isPropertiesAsList();
 public JsonLayout$Builder setPropertiesAsList(boolean);
 public boolean getObjectMessageAsJsonObject();
 public JsonLayout$Builder setObjectMessageAsJsonObject(boolean);
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public JsonLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
}

org/apache/logging/log4j/core/async/RingBufferLogEvent.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEvent implements org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.message.ReusableMessage, CharSequence, org.apache.logging.log4j.message.ParameterVisitable {
 public static final RingBufferLogEvent$Factory FACTORY;
 private static final long serialVersionUID = 8462119088943934758;
 private static final org.apache.logging.log4j.message.Message EMPTY;
 private boolean populated;
 private int threadPriority;
 private long threadId;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private long nanoTime;
 private short parameterCount;
 private boolean includeLocation;
 private boolean endOfBatch;
 private org.apache.logging.log4j.Level level;
 private String threadName;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private String messageFormat;
 private StringBuilder messageText;
 private Object[] parameters;
 private transient Throwable thrown;
 private org.apache.logging.log4j.core.impl.ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.Marker marker;
 private String fqcn;
 private StackTraceElement location;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private transient AsyncLogger asyncLogger;
 public void RingBufferLogEvent();
 public void setValues(AsyncLogger, String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 private void initTime(org.apache.logging.log4j.core.util.Clock);
 public org.apache.logging.log4j.core.LogEvent toImmutable();
 private void setMessage(org.apache.logging.log4j.message.Message);
 private StringBuilder getMessageTextForWriting();
 public void execute(boolean);
 public boolean isPopulated();
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.message.Message getMessage();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(org.apache.logging.log4j.message.ParameterConsumer, Object);
 public org.apache.logging.log4j.message.Message memento();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 public Throwable getThrown();
 public org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 void setContextData(org.apache.logging.log4j.util.StringMap);
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public StackTraceElement getSource();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public long getNanoTime();
 public void clear();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 public org.apache.logging.log4j.core.LogEvent createMemento();
 public void initializeBuilder(org.apache.logging.log4j.core.impl.Log4jLogEvent$Builder);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public abstract interface AsyncQueueFullPolicy {
 public abstract EventRoute getRoute(long, org.apache.logging.log4j.Level);
}

org/apache/logging/log4j/core/async/DefaultAsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public synchronized class DefaultAsyncQueueFullPolicy implements AsyncQueueFullPolicy {
 public void DefaultAsyncQueueFullPolicy();
 public EventRoute getRoute(long, org.apache.logging.log4j.Level);
}

org/apache/logging/log4j/core/lookup/StrMatcher$CharMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$CharMatcher extends StrMatcher {
 private final char ch;
 void StrMatcher$CharMatcher(char);
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/EnvironmentLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class EnvironmentLookup extends AbstractLookup {
 public void EnvironmentLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/PropertiesLookup.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class PropertiesLookup implements StrLookup {
 private final java.util.Map properties;
 public void PropertiesLookup(java.util.Map);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 public String toString();
}

org/apache/logging/log4j/core/LoggerContext$1.class

package org.apache.logging.log4j.core;
synchronized class LoggerContext$1 implements Runnable {
 void LoggerContext$1(LoggerContext, long);
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/script/ScriptFile.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptFile extends AbstractScript {
 private final java.nio.file.Path filePath;
 private final boolean isWatched;
 public void ScriptFile(String, java.nio.file.Path, String, boolean, String);
 public java.nio.file.Path getPath();
 public boolean isWatched();
 public static ScriptFile createScript(String, String, String, Boolean, java.nio.charset.Charset);
 public String toString();
}

org/apache/logging/log4j/core/ContextDataInjector.class

package org.apache.logging.log4j.core;
public abstract interface ContextDataInjector {
 public abstract org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/time/PreciseClock.class

package org.apache.logging.log4j.core.time;
public abstract interface PreciseClock extends org.apache.logging.log4j.core.util.Clock {
 public abstract void init(MutableInstant);
}

org/apache/logging/log4j/core/filter/LevelMatchFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class LevelMatchFilter$1 {
}

org/apache/logging/log4j/core/filter/StructuredDataFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class StructuredDataFilter extends MapFilter {
 private static final int MAX_BUFFER_SIZE = 2048;
 private static ThreadLocal threadLocalStringBuilder;
 private void StructuredDataFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 protected org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.message.StructuredDataMessage);
 private StringBuilder getValue(org.apache.logging.log4j.message.StructuredDataMessage, String);
 private StringBuilder getStringBuilder();
 private StringBuilder appendOrNull(String, StringBuilder);
 private boolean listContainsValue(java.util.List, StringBuilder);
 public static StructuredDataFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/ThresholdFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class ThresholdFilter extends AbstractFilter {
 private final org.apache.logging.log4j.Level level;
 private void ThresholdFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.Level getLevel();
 public String toString();
 public static ThresholdFilter createFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/StringMatchFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class StringMatchFilter extends AbstractFilter {
 public static final String ATTR_MATCH = match;
 private final String text;
 private void StringMatchFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(String);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static StringMatchFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/StyleConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class StyleConverter extends LogEventPatternConverter implements AnsiConverter {
 private final java.util.List patternFormatters;
 private final boolean noAnsi;
 private final String style;
 private final String defaultStyle;
 private void StyleConverter(java.util.List, String, boolean);
 public static StyleConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean handlesThrowable();
 public String toString();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$Noop.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$Noop extends SimpleLiteralPatternConverter {
 private static final SimpleLiteralPatternConverter$Noop INSTANCE;
 private void SimpleLiteralPatternConverter$Noop();
 void format(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class NamePatternConverter extends LogEventPatternConverter {
 private final NameAbbreviator abbreviator;
 protected void NamePatternConverter(String, String, String[]);
 protected final void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MethodLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MethodLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final MethodLocationPatternConverter INSTANCE;
 private void MethodLocationPatternConverter();
 public static MethodLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LiteralPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LiteralPatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private final String literal;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final boolean substitute;
 public void LiteralPatternConverter(org.apache.logging.log4j.core.config.Configuration, String, boolean);
 static boolean containsSubstitutionSequence(String);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public transient void format(StringBuilder, Object[]);
 public String getLiteral();
 public boolean isVariable();
 public String toString();
}

org/apache/logging/log4j/core/pattern/ConverterKeys.class

package org.apache.logging.log4j.core.pattern;
public abstract interface ConverterKeys extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class EncodingPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/EqualsReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EqualsReplacementConverter extends EqualsBaseReplacementConverter {
 public static EqualsReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void EqualsReplacementConverter(java.util.List, String, String, PatternParser);
 protected boolean equals(String, StringBuilder, int, int);
}

org/apache/logging/log4j/core/pattern/AbstractPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class AbstractPatternConverter implements PatternConverter {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final String name;
 private final String style;
 protected void AbstractPatternConverter(String, String);
 public final String getName();
 public String getStyleClass(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Magenta.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Magenta extends AbstractStyleNameConverter {
 protected static final String NAME = magenta;
 public void AbstractStyleNameConverter$Magenta(java.util.List, String);
 public static AbstractStyleNameConverter$Magenta newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Blue.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Blue extends AbstractStyleNameConverter {
 protected static final String NAME = blue;
 public void AbstractStyleNameConverter$Blue(java.util.List, String);
 public static AbstractStyleNameConverter$Blue newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/jackson/Initializers.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers {
 void Initializers();
}

org/apache/logging/log4j/core/jackson/Log4jXmlModule.class

package org.apache.logging.log4j.core.jackson;
final synchronized class Log4jXmlModule extends com.fasterxml.jackson.dataformat.xml.JacksonXmlModule {
 private static final long serialVersionUID = 1;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 void Log4jXmlModule(boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/ThrowableProxyWithoutStacktraceMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyWithoutStacktraceMixIn {
 private ThrowableProxyWithoutStacktraceMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyWithoutStacktraceMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/Log4jStackTraceElementDeserializer.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class Log4jStackTraceElementDeserializer extends com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer {
 private static final long serialVersionUID = 1;
 public void Log4jStackTraceElementDeserializer();
 public StackTraceElement deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Initializers$SetupContextInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SetupContextInitializer {
 void Initializers$SetupContextInitializer();
 void setupModule(com.fasterxml.jackson.databind.Module$SetupContext, boolean, boolean);
}

META-INF/DEPENDENCIES

// --
// Transitive dependencies of this project determined from the
// maven pom organized by organization.
// --

Apache Log4j Core

From: 'an unknown organization'
 - Disruptor Framework (http://lmax-exchange.github.com/disruptor) com.lmax:disruptor:jar:3.4.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - JavaBeans Activation Framework (JAF) (http://java.sun.com/products/javabeans/jaf/index.jsp) javax.activation:activation:jar:1.1
 License: Common Development and Distribution License (CDDL) v1.0 (https://glassfish.dev.java.net/public/CDDLv1.0.html)
 - Apache Kafka (http://kafka.apache.org) org.apache.kafka:kafka-clients:jar:1.1.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Java Concurrency Tools Core Library (https://github.com/JCTools) org.jctools:jctools-core:jar:1.2.1
 License: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - LZ4 and xxHash (https://github.com/lz4/lz4-java) org.lz4:lz4-java:jar:1.4.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - SnakeYAML (http://www.snakeyaml.org) org.yaml:snakeyaml:bundle:1.27
 License: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - JeroMQ (https://github.com/zeromq/jeromq) org.zeromq:jeromq:jar:0.4.3
 License: Mozilla Public License version 2.0 (https://www.mozilla.org/en-US/MPL/2.0)
 - org.zeromq:jnacl (https://github.com/trevorbernard/jnacl) org.zeromq:jnacl:jar:0.1.0
 License: The BSD 2-Clause License (http://opensource.org/licenses/bsd-license.php)

From: 'Conversant Engineering' (http://engineering.conversantmedia.com)
 - com.conversantmedia:disruptor (https://github.com/conversant/disruptor) com.conversantmedia:disruptor:jar:1.2.15
 License: The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Eclipse Foundation' (https://www.eclipse.org)
 - JavaBeans Activation Framework API jar (https://github.com/eclipse-ee4j/jaf/jakarta.activation-api) jakarta.activation:jakarta.activation-api:jar:1.2.1
 License: EDL 1.0 (http://www.eclipse.org/org/documents/edl-v10.php)
 - jakarta.xml.bind-api (https://github.com/eclipse-ee4j/jaxb-api/jakarta.xml.bind-api) jakarta.xml.bind:jakarta.xml.bind-api:jar:2.3.2
 License: Eclipse Distribution License - v 1.0 (http://www.eclipse.org/org/documents/edl-v10.php)

From: 'FasterXML' (http://fasterxml.com)
 - Woodstox (https://github.com/FasterXML/woodstox) com.fasterxml.woodstox:woodstox-core:bundle:6.2.6
 License: The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'FasterXML' (http://fasterxml.com/)
 - Jackson-annotations (http://github.com/FasterXML/jackson) com.fasterxml.jackson.core:jackson-annotations:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-core (https://github.com/FasterXML/jackson-core) com.fasterxml.jackson.core:jackson-core:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - jackson-databind (http://github.com/FasterXML/jackson) com.fasterxml.jackson.core:jackson-databind:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-dataformat-XML (https://github.com/FasterXML/jackson-dataformat-xml) com.fasterxml.jackson.dataformat:jackson-dataformat-xml:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-dataformat-YAML (https://github.com/FasterXML/jackson-dataformats-text) com.fasterxml.jackson.dataformat:jackson-dataformat-yaml:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson module: JAXB Annotations (https://github.com/FasterXML/jackson-modules-base) com.fasterxml.jackson.module:jackson-module-jaxb-annotations:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'fasterxml.com' (http://fasterxml.com)
 - Stax2 API (http://github.com/FasterXML/stax2-api) org.codehaus.woodstox:stax2-api:bundle:4.2.1
 License: The BSD License (http://www.opensource.org/licenses/bsd-license.php)

From: 'FuseSource, Corp.' (http://fusesource.com/)
 - jansi (http://fusesource.github.io/jansi) org.fusesource.jansi:jansi:jar:2.3.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Oracle' (http://www.oracle.com)
 - JavaMail API (http://javaee.github.io/javamail/javax.mail) com.sun.mail:javax.mail:jar:1.6.2
 License: CDDL/GPLv2+CE (https://javaee.github.io/javamail/LICENSE)

From: 'QOS.ch' (http://www.qos.ch)
 - SLF4J API Module (http://www.slf4j.org) org.slf4j:slf4j-api:jar:1.7.25
 License: MIT License (http://www.opensource.org/licenses/mit-license.php)

From: 'The Apache Software Foundation' (https://www.apache.org/)
 - Apache Commons Compress (https://commons.apache.org/proper/commons-compress/) org.apache.commons:commons-compress:jar:1.21
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)
 - Apache Commons CSV (https://commons.apache.org/proper/commons-csv/) org.apache.commons:commons-csv:jar:1.9.0
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)
 - Apache Log4j API (https://logging.apache.org/log4j/2.x/log4j-api/) org.apache.logging.log4j:log4j-api:jar:2.17.1
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'xerial.org'
 - snappy-java (https://github.com/xerial/snappy-java) org.xerial.snappy:snappy-java:jar:1.1.7.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

META-INF/services/org.apache.logging.log4j.core.util.ContextDataProvider

org.apache.logging.log4j.core.impl.ThreadContextDataProvider

META-INF/services/javax.annotation.processing.Processor

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.
#
org.apache.logging.log4j.core.config.plugins.processor.PluginProcessor

org/apache/logging/log4j/core/appender/RandomAccessFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$FactoryData extends ConfigurationFactoryData {
 private final boolean append;
 private final boolean immediateFlush;
 private final int bufferSize;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 public void RandomAccessFileManager$FactoryData(boolean, boolean, int, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/RolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverStrategy {
 public abstract RolloverDescription rollover(RollingFileManager) throws SecurityException;
}

org/apache/logging/log4j/core/appender/rolling/action/AbstractPathAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract synchronized class AbstractPathAction extends AbstractAction {
 private final String basePathString;
 private final java.util.Set options;
 private final int maxDepth;
 private final java.util.List pathConditions;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 protected void AbstractPathAction(String, boolean, int, PathCondition[], org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public boolean execute() throws java.io.IOException;
 public boolean execute(java.nio.file.FileVisitor) throws java.io.IOException;
 protected abstract java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public java.nio.file.Path getBasePath();
 public String getBasePathString();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public java.util.Set getOptions();
 public boolean isFollowSymbolicLinks();
 public int getMaxDepth();
 public java.util.List getPathConditions();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAccumulatedFileCount.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAccumulatedFileCount implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final int threshold;
 private int count;
 private final PathCondition[] nestedConditions;
 private transient void IfAccumulatedFileCount(int, PathCondition[]);
 public int getThresholdCount();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAccumulatedFileCount createFileCountCondition(int, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$4.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$4 {
 void FileExtension$4(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/CountingNoOpAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class CountingNoOpAppender extends AbstractAppender {
 private final java.util.concurrent.atomic.AtomicLong total;
 public void CountingNoOpAppender(String, org.apache.logging.log4j.core.Layout);
 private void CountingNoOpAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Property[]);
 public long getCount();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public static CountingNoOpAppender createAppender(String);
}

org/apache/logging/log4j/core/appender/WriterAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class WriterAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean follow;
 private java.io.Writer target;
 public void WriterAppender$Builder();
 public WriterAppender build();
 public WriterAppender$Builder setFollow(boolean);
 public WriterAppender$Builder setTarget(java.io.Writer);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$1 {
}

org/apache/logging/log4j/core/appender/SocketAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class SocketAppender$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AppenderSet.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderSet {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final java.util.Map nodeMap;
 public static AppenderSet$Builder newBuilder();
 private void AppenderSet(org.apache.logging.log4j.core.config.Configuration, java.util.Map);
 public org.apache.logging.log4j.core.Appender createAppender(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractAppender$Builder extends org.apache.logging.log4j.core.filter.AbstractFilterable$Builder {
 private boolean ignoreExceptions;
 private org.apache.logging.log4j.core.Layout layout;
 private String name;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void AbstractAppender$Builder();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public org.apache.logging.log4j.core.Layout getLayout();
 public String getName();
 public org.apache.logging.log4j.core.Layout getOrCreateLayout();
 public org.apache.logging.log4j.core.Layout getOrCreateLayout(java.nio.charset.Charset);
 public boolean isIgnoreExceptions();
 public AbstractAppender$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractAppender$Builder setIgnoreExceptions(boolean);
 public AbstractAppender$Builder setLayout(org.apache.logging.log4j.core.Layout);
 public AbstractAppender$Builder setName(String);
 public AbstractAppender$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractAppender$Builder withIgnoreExceptions(boolean);
 public AbstractAppender$Builder withLayout(org.apache.logging.log4j.core.Layout);
 public AbstractAppender$Builder withName(String);
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class ColumnConfig$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String name;
 private String pattern;
 private String literal;
 private boolean isEventTimestamp;
 private boolean isUnicode;
 private boolean isClob;
 public void ColumnConfig$Builder();
 public ColumnConfig build();
 public ColumnConfig$Builder setClob(boolean);
 public ColumnConfig$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ColumnConfig$Builder setEventTimestamp(boolean);
 public ColumnConfig$Builder setLiteral(String);
 public ColumnConfig$Builder setName(String);
 public ColumnConfig$Builder setPattern(String);
 public ColumnConfig$Builder setUnicode(boolean);
}

org/apache/logging/log4j/core/appender/db/jdbc/ConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public abstract interface ConnectionSource extends org.apache.logging.log4j.core.LifeCycle {
 public abstract java.sql.Connection getConnection() throws java.sql.SQLException;
 public abstract String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/FactoryMethodConnectionSource$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class FactoryMethodConnectionSource$1 implements javax.sql.DataSource {
 void FactoryMethodConnectionSource$1(reflect.Method);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public java.sql.Connection getConnection(String, String) throws java.sql.SQLException;
 public int getLoginTimeout() throws java.sql.SQLException;
 public java.io.PrintWriter getLogWriter() throws java.sql.SQLException;
 public java.util.logging.Logger getParentLogger();
 public boolean isWrapperFor(Class) throws java.sql.SQLException;
 public void setLoginTimeout(int) throws java.sql.SQLException;
 public void setLogWriter(java.io.PrintWriter) throws java.sql.SQLException;
 public Object unwrap(Class) throws java.sql.SQLException;
}

org/apache/logging/log4j/core/appender/routing/PurgePolicy.class

package org.apache.logging.log4j.core.appender.routing;
public abstract interface PurgePolicy {
 public abstract void purge();
 public abstract void update(String, org.apache.logging.log4j.core.LogEvent);
 public abstract void initialize(RoutingAppender);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlConnection.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlConnection extends java.io.Closeable {
 public abstract NoSqlObject createObject();
 public abstract NoSqlObject[] createList(int);
 public abstract void insertObject(NoSqlObject);
 public abstract void close();
 public abstract boolean isClosed();
}

org/apache/logging/log4j/core/appender/nosql/DefaultNoSqlObject.class

package org.apache.logging.log4j.core.appender.nosql;
public synchronized class DefaultNoSqlObject implements NoSqlObject {
 private final java.util.Map map;
 public void DefaultNoSqlObject();
 public void set(String, Object);
 public void set(String, NoSqlObject);
 public void set(String, Object[]);
 public void set(String, NoSqlObject[]);
 public java.util.Map unwrap();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$FactoryData.class

package org.apache.logging.log4j.core.appender.nosql;
final synchronized class NoSqlDatabaseManager$FactoryData extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager$AbstractFactoryData {
 private final NoSqlProvider provider;
 protected void NoSqlDatabaseManager$FactoryData(int, NoSqlProvider);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager.class

package org.apache.logging.log4j.core.appender.nosql;
public final synchronized class NoSqlDatabaseManager extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager {
 private static final NoSqlDatabaseManager$NoSQLDatabaseManagerFactory FACTORY;
 private final NoSqlProvider provider;
 private NoSqlConnection connection;
 private void NoSqlDatabaseManager(String, int, NoSqlProvider);
 protected void startupInternal();
 protected boolean shutdownInternal();
 protected void connectAndStart();
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 private void setFields(org.apache.logging.log4j.message.MapMessage, NoSqlObject);
 private void setFields(org.apache.logging.log4j.core.LogEvent, NoSqlObject);
 private NoSqlObject buildMarkerEntity(org.apache.logging.log4j.Marker);
 protected boolean commitAndClose();
 private NoSqlObject[] convertStackTrace(StackTraceElement[]);
 private NoSqlObject convertStackTraceElement(StackTraceElement);
 public static NoSqlDatabaseManager getNoSqlDatabaseManager(String, int, NoSqlProvider);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/FileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class FileAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/JmsAppender.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private volatile JmsManager manager;
 public static JmsAppender$Builder newBuilder();
 protected void JmsAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], JmsManager) throws javax.jms.JMSException;
 protected void JmsAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, JmsManager) throws javax.jms.JMSException;
 public void append(org.apache.logging.log4j.core.LogEvent);
 public JmsManager getManager();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$JeroMqConfiguration.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$JeroMqConfiguration {
 private final long affinity;
 private final long backlog;
 private final boolean delayAttachOnConnect;
 private final byte[] identity;
 private final boolean ipv4Only;
 private final long linger;
 private final long maxMsgSize;
 private final long rcvHwm;
 private final long receiveBufferSize;
 private final int receiveTimeOut;
 private final long reconnectIVL;
 private final long reconnectIVLMax;
 private final long sendBufferSize;
 private final int sendTimeOut;
 private final long sndHwm;
 private final int tcpKeepAlive;
 private final long tcpKeepAliveCount;
 private final long tcpKeepAliveIdle;
 private final long tcpKeepAliveInterval;
 private final boolean xpubVerbose;
 private final java.util.List endpoints;
 private void JeroMqManager$JeroMqConfiguration(long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, java.util.List);
 public String toString();
}

org/apache/logging/log4j/core/impl/DefaultLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class DefaultLogEventFactory implements LogEventFactory, LocationAwareLogEventFactory {
 private static final DefaultLogEventFactory instance;
 public void DefaultLogEventFactory();
 public static DefaultLogEventFactory getInstance();
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/MutableLogEvent.class

package org.apache.logging.log4j.core.impl;
public synchronized class MutableLogEvent implements org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.message.ReusableMessage, org.apache.logging.log4j.message.ParameterVisitable {
 private static final org.apache.logging.log4j.message.Message EMPTY;
 private int threadPriority;
 private long threadId;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private long nanoTime;
 private short parameterCount;
 private boolean includeLocation;
 private boolean endOfBatch;
 private org.apache.logging.log4j.Level level;
 private String threadName;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private String messageFormat;
 private StringBuilder messageText;
 private Object[] parameters;
 private Throwable thrown;
 private ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.Marker marker;
 private String loggerFqcn;
 private StackTraceElement source;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 transient boolean reserved;
 public void MutableLogEvent();
 public void MutableLogEvent(StringBuilder, Object[]);
 public Log4jLogEvent toImmutable();
 public void initFrom(org.apache.logging.log4j.core.LogEvent);
 public void clear();
 public String getLoggerFqcn();
 public void setLoggerFqcn(String);
 public org.apache.logging.log4j.Marker getMarker();
 public void setMarker(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.Level getLevel();
 public void setLevel(org.apache.logging.log4j.Level);
 public String getLoggerName();
 public void setLoggerName(String);
 public org.apache.logging.log4j.message.Message getMessage();
 public void setMessage(org.apache.logging.log4j.message.Message);
 private StringBuilder getMessageTextForWriting();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public void forEachParameter(org.apache.logging.log4j.message.ParameterConsumer, Object);
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public org.apache.logging.log4j.message.Message memento();
 public Throwable getThrown();
 public void setThrown(Throwable);
 void initTime(org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 public long getTimeMillis();
 public void setTimeMillis(long);
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public ThrowableProxy getThrownProxy();
 public void setSource(StackTraceElement);
 public StackTraceElement getSource();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public void setContextData(org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public void setContextStack(org.apache.logging.log4j.ThreadContext$ContextStack);
 public long getThreadId();
 public void setThreadId(long);
 public String getThreadName();
 public void setThreadName(String);
 public int getThreadPriority();
 public void setThreadPriority(int);
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public long getNanoTime();
 public void setNanoTime(long);
 protected Object writeReplace();
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public Log4jLogEvent createMemento();
 public void initializeBuilder(Log4jLogEvent$Builder);
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$1.class

package org.apache.logging.log4j.core.impl;
synchronized class Log4jLogEvent$1 {
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ParameterIndexGapException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ParameterIndexGapException extends CommandLine$InitializationException {
 private static final long serialVersionUID = -1520981133257618319;
 public void CommandLine$ParameterIndexGapException(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$UnmatchedArgumentException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$UnmatchedArgumentException extends CommandLine$ParameterException {
 private static final long serialVersionUID = -8700426380701452440;
 public void CommandLine$UnmatchedArgumentException(CommandLine, String);
 public void CommandLine$UnmatchedArgumentException(CommandLine, java.util.Stack);
 public void CommandLine$UnmatchedArgumentException(CommandLine, java.util.List);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ParameterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ParameterException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 1477112829129763139;
 private final CommandLine commandLine;
 public void CommandLine$ParameterException(CommandLine, String);
 public void CommandLine$ParameterException(CommandLine, String, Exception);
 public CommandLine getCommandLine();
 private static CommandLine$ParameterException create(CommandLine, Exception, String, int, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$PathConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$PathConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$PathConverter();
 public java.nio.file.Path convert(String);
}

org/apache/logging/log4j/core/tools/ExtendedLoggerGenerator.class

package org.apache.logging.log4j.core.tools;
public synchronized class ExtendedLoggerGenerator {
 public void ExtendedLoggerGenerator();
 public static void main(String[]);
}

org/apache/logging/log4j/core/tools/Generate$ExtendedLogger.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate$ExtendedLogger {
 public static void main(String[]);
 private void Generate$ExtendedLogger();
}

org/apache/logging/log4j/core/net/SmtpManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$1 {
}

org/apache/logging/log4j/core/net/SmtpManager.class

package org.apache.logging.log4j.core.net;
public synchronized class SmtpManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 private static final SmtpManager$SMTPManagerFactory FACTORY;
 private final javax.mail.Session session;
 private final org.apache.logging.log4j.core.util.CyclicBuffer buffer;
 private volatile javax.mail.internet.MimeMessage message;
 private final SmtpManager$FactoryData data;
 private static javax.mail.internet.MimeMessage createMimeMessage(SmtpManager$FactoryData, javax.mail.Session, org.apache.logging.log4j.core.LogEvent) throws javax.mail.MessagingException;
 protected void SmtpManager(String, javax.mail.Session, javax.mail.internet.MimeMessage, SmtpManager$FactoryData);
 public void add(org.apache.logging.log4j.core.LogEvent);
 public static SmtpManager getSmtpManager(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String, String, String, int, String, String, boolean, String, int, ssl.SslConfiguration);
 static String createManagerName(String, String, String, String, String, String, String, String, int, String, boolean, String);
 public void sendEvents(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent);
 org.apache.logging.log4j.core.LogEvent[] removeAllBufferedEvents();
 protected byte[] formatContentToBytes(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout) throws java.io.IOException;
 private void writeContent(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout, java.io.ByteArrayOutputStream) throws java.io.IOException;
 protected void writeHeader(org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected void writeBuffer(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected void writeFooter(org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected String getEncoding(byte[], String);
 protected byte[] encodeContentToBytes(byte[], String) throws javax.mail.MessagingException, java.io.IOException;
 protected void encodeContent(byte[], String, java.io.ByteArrayOutputStream) throws javax.mail.MessagingException, java.io.IOException;
 protected javax.mail.internet.InternetHeaders getHeaders(String, String);
 protected javax.mail.internet.MimeMultipart getMimeMultipart(byte[], javax.mail.internet.InternetHeaders) throws javax.mail.MessagingException;
 protected void sendMultipartMessage(javax.mail.internet.MimeMessage, javax.mail.internet.MimeMultipart) throws javax.mail.MessagingException;
 protected void sendMultipartMessage(javax.mail.internet.MimeMessage, javax.mail.internet.MimeMultipart, String) throws javax.mail.MessagingException;
 private synchronized void connect(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SmtpManager$SMTPManagerFactory$1.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$SMTPManagerFactory$1 extends javax.mail.Authenticator {
 private final javax.mail.PasswordAuthentication passwordAuthentication;
 void SmtpManager$SMTPManagerFactory$1(SmtpManager$SMTPManagerFactory, String, String);
 protected javax.mail.PasswordAuthentication getPasswordAuthentication();
}

org/apache/logging/log4j/core/net/SmtpManager$SMTPManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$SMTPManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void SmtpManager$SMTPManagerFactory();
 public SmtpManager createManager(String, SmtpManager$FactoryData);
 private javax.mail.Authenticator buildAuthenticator(String, String);
}

org/apache/logging/log4j/core/net/DatagramSocketManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$FactoryData {
 private final String host;
 private final int port;
 private final org.apache.logging.log4j.core.Layout layout;
 private final int bufferSize;
 public void DatagramSocketManager$FactoryData(String, int, org.apache.logging.log4j.core.Layout, int);
}

org/apache/logging/log4j/core/util/ObjectArrayIterator.class

package org.apache.logging.log4j.core.util;
public synchronized class ObjectArrayIterator implements java.util.Iterator {
 final Object[] array;
 final int startIndex;
 final int endIndex;
 int index;
 public transient void ObjectArrayIterator(Object[]);
 public void ObjectArrayIterator(Object[], int);
 public void ObjectArrayIterator(Object[], int, int);
 public boolean hasNext();
 public Object next();
 public void remove();
 public Object[] getArray();
 public int getStartIndex();
 public int getEndIndex();
 public void reset();
}

org/apache/logging/log4j/core/util/datetime/DatePrinter.class

package org.apache.logging.log4j.core.util.datetime;
public abstract interface DatePrinter {
 public abstract String format(long);
 public abstract String format(java.util.Date);
 public abstract String format(java.util.Calendar);
 public abstract Appendable format(long, Appendable);
 public abstract Appendable format(java.util.Date, Appendable);
 public abstract Appendable format(java.util.Calendar, Appendable);
 public abstract String getPattern();
 public abstract java.util.TimeZone getTimeZone();
 public abstract java.util.Locale getLocale();
 public abstract StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$NumberRule.class

package org.apache.logging.log4j.core.util.datetime;
abstract interface FastDatePrinter$NumberRule extends FastDatePrinter$Rule {
 public abstract void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$CaseInsensitiveTextStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$CaseInsensitiveTextStrategy extends FastDateParser$PatternStrategy {
 private final int field;
 final java.util.Locale locale;
 private final java.util.Map lKeyValues;
 void FastDateParser$CaseInsensitiveTextStrategy(int, java.util.Calendar, java.util.Locale);
 void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneDisplayKey.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneDisplayKey {
 private final java.util.TimeZone mTimeZone;
 private final int mStyle;
 private final java.util.Locale mLocale;
 void FastDatePrinter$TimeZoneDisplayKey(java.util.TimeZone, boolean, int, java.util.Locale);
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$TimeZoneStrategy$TzInfo.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$TimeZoneStrategy$TzInfo {
 java.util.TimeZone zone;
 int dstOffset;
 void FastDateParser$TimeZoneStrategy$TzInfo(java.util.TimeZone, boolean);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitYearField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitYearField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$TwoDigitYearField INSTANCE;
 void FastDatePrinter$TwoDigitYearField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TextField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TextField implements FastDatePrinter$Rule {
 private final int mField;
 private final String[] mValues;
 void FastDatePrinter$TextField(int, String[]);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$ISO8601TimeZoneStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$ISO8601TimeZoneStrategy extends FastDateParser$PatternStrategy {
 private static final FastDateParser$Strategy ISO_8601_1_STRATEGY;
 private static final FastDateParser$Strategy ISO_8601_2_STRATEGY;
 private static final FastDateParser$Strategy ISO_8601_3_STRATEGY;
 void FastDateParser$ISO8601TimeZoneStrategy(String);
 void setCalendar(FastDateParser, java.util.Calendar, String);
 static FastDateParser$Strategy getStrategy(int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/KeyValuePair.class

package org.apache.logging.log4j.core.util;
public final synchronized class KeyValuePair {
 public static final KeyValuePair[] EMPTY_ARRAY;
 private final String key;
 private final String value;
 public void KeyValuePair(String, String);
 public String getKey();
 public String getValue();
 public String toString();
 public static KeyValuePair$Builder newBuilder();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Loader.class

package org.apache.logging.log4j.core.util;
public final synchronized class Loader {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String TSTR = Caught Exception while in Loader.getResource. This may be innocuous.;
 private void Loader();
 public static ClassLoader getClassLoader();
 public static ClassLoader getThreadContextClassLoader();
 public static ClassLoader getClassLoader(Class, Class);
 public static java.net.URL getResource(String, ClassLoader);
 public static java.io.InputStream getResourceAsStream(String, ClassLoader);
 private static boolean isChild(ClassLoader, ClassLoader);
 public static Class initializeClass(String, ClassLoader) throws ClassNotFoundException;
 public static Class loadClass(String, ClassLoader) throws ClassNotFoundException;
 public static Class loadSystemClass(String) throws ClassNotFoundException;
 public static Object newInstanceOf(String) throws ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, reflect.InvocationTargetException;
 public static Object newCheckedInstanceOf(String, Class) throws ClassNotFoundException, NoSuchMethodException, IllegalAccessException, reflect.InvocationTargetException, InstantiationException;
 public static Object newCheckedInstanceOfProperty(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 public static boolean isClassAvailable(String);
 public static boolean isJansiAvailable();
 public static Class loadClass(String) throws ClassNotFoundException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatchManager$1.class

package org.apache.logging.log4j.core.util;
synchronized class WatchManager$1 {
}

org/apache/logging/log4j/core/util/CoarseCachedClock$1.class

package org.apache.logging.log4j.core.util;
synchronized class CoarseCachedClock$1 extends Log4jThread {
 void CoarseCachedClock$1(CoarseCachedClock, String);
 public void run();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginCache.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginCache {
 private final java.util.Map categories;
 public void PluginCache();
 public java.util.Map getAllCategories();
 public java.util.Map getCategory(String);
 public void writeCache(java.io.OutputStream) throws java.io.IOException;
 public void loadCacheFiles(java.util.Enumeration) throws java.io.IOException;
 public int size();
}

org/apache/logging/log4j/core/config/plugins/validation/validators/RequiredValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class RequiredValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.Required annotation;
 public void RequiredValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.Required);
 public boolean isValid(String, Object);
 private boolean err(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$IntegerConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$IntegerConverter implements TypeConverter {
 public void TypeConverters$IntegerConverter();
 public Integer convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BooleanConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BooleanConverter implements TypeConverter {
 public void TypeConverters$BooleanConverter();
 public Boolean convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharacterConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharacterConverter implements TypeConverter {
 public void TypeConverters$CharacterConverter();
 public Character convert(String);
}

org/apache/logging/log4j/core/config/OrderComparator.class

package org.apache.logging.log4j.core.config;
public synchronized class OrderComparator implements java.util.Comparator, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private static final java.util.Comparator INSTANCE;
 public void OrderComparator();
 public static java.util.Comparator getInstance();
 public int compare(Class, Class);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/HttpWatcher.class

package org.apache.logging.log4j.core.config;
public synchronized class HttpWatcher extends org.apache.logging.log4j.core.util.AbstractWatcher {
 private org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private java.net.URL url;
 private volatile long lastModifiedMillis;
 private static final int NOT_MODIFIED = 304;
 private static final int OK = 200;
 private static final int BUF_SIZE = 1024;
 private static final String HTTP = http;
 private static final String HTTPS = https;
 public void HttpWatcher(Configuration, Reconfigurable, java.util.List, long);
 public long getLastModified();
 public boolean isModified();
 public void watching(org.apache.logging.log4j.core.util.Source);
 public org.apache.logging.log4j.core.util.Watcher newWatcher(Reconfigurable, java.util.List, long);
 private boolean refreshConfiguration();
 private byte[] readStream(java.io.InputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/config/composite/MergeStrategy.class

package org.apache.logging.log4j.core.config.composite;
public abstract interface MergeStrategy {
 public abstract void mergeRootProperties(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.AbstractConfiguration);
 public abstract void mergConfigurations(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
}

org/apache/logging/log4j/core/config/composite/CompositeConfiguration.class

package org.apache.logging.log4j.core.config.composite;
public synchronized class CompositeConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 public static final String MERGE_STRATEGY_PROPERTY = log4j.mergeStrategy;
 private static final String[] VERBOSE_CLASSES;
 private final java.util.List configurations;
 private MergeStrategy mergeStrategy;
 public void CompositeConfiguration(java.util.List);
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private void staffChildConfiguration(org.apache.logging.log4j.core.config.AbstractConfiguration);
 private void printNodes(String, org.apache.logging.log4j.core.config.Node, StringBuilder);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/CronScheduledFuture.class

package org.apache.logging.log4j.core.config;
public synchronized class CronScheduledFuture implements java.util.concurrent.ScheduledFuture {
 private volatile CronScheduledFuture$FutureData futureData;
 public void CronScheduledFuture(java.util.concurrent.ScheduledFuture, java.util.Date);
 public java.util.Date getFireTime();
 void reset(java.util.concurrent.ScheduledFuture, java.util.Date);
 public long getDelay(java.util.concurrent.TimeUnit);
 public int compareTo(java.util.concurrent.Delayed);
 public boolean cancel(boolean);
 public boolean isCancelled();
 public boolean isDone();
 public Object get() throws InterruptedException, java.util.concurrent.ExecutionException;
 public Object get(long, java.util.concurrent.TimeUnit) throws InterruptedException, java.util.concurrent.ExecutionException, java.util.concurrent.TimeoutException;
}

org/apache/logging/log4j/core/config/ScriptsPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class ScriptsPlugin {
 private void ScriptsPlugin();
 public static org.apache.logging.log4j.core.script.AbstractScript[] createScripts(org.apache.logging.log4j.core.script.AbstractScript[]);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultScriptFileComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultScriptFileComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder {
 public void DefaultScriptFileComponentBuilder(DefaultConfigurationBuilder, String, String);
 public DefaultScriptFileComponentBuilder addLanguage(String);
 public DefaultScriptFileComponentBuilder addIsWatched(boolean);
 public DefaultScriptFileComponentBuilder addIsWatched(String);
 public DefaultScriptFileComponentBuilder addCharset(String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultFilterComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder {
 public void DefaultFilterComponentBuilder(DefaultConfigurationBuilder, String, String, String);
}

org/apache/logging/log4j/core/config/AppendersPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class AppendersPlugin {
 private void AppendersPlugin();
 public static java.util.concurrent.ConcurrentMap createAppenders(org.apache.logging.log4j.core.Appender[]);
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$2.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$2 {
 void LoggerConfig$LoggerConfigPredicate$2(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate.class

package org.apache.logging.log4j.core.config;
public abstract synchronized enum LoggerConfig$LoggerConfigPredicate {
 public static final LoggerConfig$LoggerConfigPredicate ALL;
 public static final LoggerConfig$LoggerConfigPredicate ASYNCHRONOUS_ONLY;
 public static final LoggerConfig$LoggerConfigPredicate SYNCHRONOUS_ONLY;
 public static LoggerConfig$LoggerConfigPredicate[] values();
 public static LoggerConfig$LoggerConfigPredicate valueOf(String);
 private void LoggerConfig$LoggerConfigPredicate(String, int);
 abstract boolean allow(LoggerConfig);
 static void <clinit>();
}

org/apache/logging/log4j/core/jmx/LoggerContextAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class LoggerContextAdmin extends javax.management.NotificationBroadcasterSupport implements LoggerContextAdminMBean, java.beans.PropertyChangeListener {
 private static final int PAGE = 4096;
 private static final int TEXT_BUFFER = 65536;
 private static final int BUFFER_SIZE = 2048;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final java.util.concurrent.atomic.AtomicLong sequenceNo;
 private final javax.management.ObjectName objectName;
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 public void LoggerContextAdmin(org.apache.logging.log4j.core.LoggerContext, java.util.concurrent.Executor);
 private static javax.management.MBeanNotificationInfo createNotificationInfo();
 public String getStatus();
 public String getName();
 private org.apache.logging.log4j.core.config.Configuration getConfig();
 public String getConfigLocationUri();
 public void setConfigLocationUri(String) throws java.net.URISyntaxException, java.io.IOException;
 public void propertyChange(java.beans.PropertyChangeEvent);
 public String getConfigText() throws java.io.IOException;
 public String getConfigText(String) throws java.io.IOException;
 private String readContents(java.io.InputStream, java.nio.charset.Charset) throws java.io.IOException;
 public void setConfigText(String, String);
 public String getConfigName();
 public String getConfigClassName();
 public String getConfigFilter();
 public java.util.Map getConfigProperties();
 public javax.management.ObjectName getObjectName();
 private long nextSeqNo();
 private long now();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSerializerWithReplacement.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternSerializerWithReplacement implements AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
 private final PatternLayout$PatternSerializer delegate;
 private final org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private void PatternLayout$PatternSerializerWithReplacement(PatternLayout$PatternSerializer, org.apache.logging.log4j.core.pattern.RegexReplacement);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/JacksonFactory$Log4jXmlPrettyPrinter.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$Log4jXmlPrettyPrinter extends com.fasterxml.jackson.dataformat.xml.util.DefaultXmlPrettyPrinter {
 private static final long serialVersionUID = 1;
 void JacksonFactory$Log4jXmlPrettyPrinter(int);
 public void writePrologLinefeed(org.codehaus.stax2.XMLStreamWriter2) throws javax.xml.stream.XMLStreamException;
 public com.fasterxml.jackson.dataformat.xml.util.DefaultXmlPrettyPrinter createInstance();
}

org/apache/logging/log4j/core/layout/JsonLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class JsonLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout.class

package org.apache.logging.log4j.core.layout;
abstract synchronized class AbstractJacksonLayout extends AbstractStringLayout {
 protected static final String DEFAULT_EOL =

;
 protected static final String COMPACT_EOL = ;
 protected final String eol;
 protected final com.fasterxml.jackson.databind.ObjectWriter objectWriter;
 protected final boolean compact;
 protected final boolean complete;
 protected final boolean includeNullDelimiter;
 protected final AbstractJacksonLayout$ResolvableKeyValuePair[] additionalFields;
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer);
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer, boolean);
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, String, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 protected static boolean valueNeedsLookup(String);
 private static AbstractJacksonLayout$ResolvableKeyValuePair[] prepareAdditionalFields(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private static org.apache.logging.log4j.core.LogEvent convertMutableToLog4jEvent(org.apache.logging.log4j.core.LogEvent);
 protected Object wrapLogEvent(org.apache.logging.log4j.core.LogEvent);
 private java.util.Map resolveAdditionalFields(org.apache.logging.log4j.core.LogEvent);
 public void toSerializable(org.apache.logging.log4j.core.LogEvent, java.io.Writer) throws com.fasterxml.jackson.core.JsonGenerationException, com.fasterxml.jackson.databind.JsonMappingException, java.io.IOException;
}

org/apache/logging/log4j/core/layout/YamlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class YamlLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void YamlLayout$Builder();
 public YamlLayout build();
}

org/apache/logging/log4j/core/layout/GelfLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class GelfLayout$Builder extends AbstractStringLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String host;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 private GelfLayout$CompressionType compressionType;
 private int compressionThreshold;
 private boolean includeStacktrace;
 private boolean includeThreadContext;
 private boolean includeNullDelimiter;
 private boolean includeNewLineDelimiter;
 private String threadContextIncludes;
 private String threadContextExcludes;
 private String mapMessageIncludes;
 private String mapMessageExcludes;
 private boolean includeMapMessage;
 private boolean omitEmptyFields;
 private String messagePattern;
 private String threadContextPrefix;
 private String mapPrefix;
 private PatternSelector patternSelector;
 public void GelfLayout$Builder();
 public GelfLayout build();
 private internal.ListChecker createChecker(String, String);
 public String getHost();
 public GelfLayout$CompressionType getCompressionType();
 public int getCompressionThreshold();
 public boolean isIncludeStacktrace();
 public boolean isIncludeThreadContext();
 public boolean isIncludeNullDelimiter();
 public boolean isIncludeNewLineDelimiter();
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public GelfLayout$Builder setHost(String);
 public GelfLayout$Builder setCompressionType(GelfLayout$CompressionType);
 public GelfLayout$Builder setCompressionThreshold(int);
 public GelfLayout$Builder setIncludeStacktrace(boolean);
 public GelfLayout$Builder setIncludeThreadContext(boolean);
 public GelfLayout$Builder setIncludeNullDelimiter(boolean);
 public GelfLayout$Builder setIncludeNewLineDelimiter(boolean);
 public GelfLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
 public GelfLayout$Builder setMessagePattern(String);
 public GelfLayout$Builder setPatternSelector(PatternSelector);
 public GelfLayout$Builder setMdcIncludes(String);
 public GelfLayout$Builder setMdcExcludes(String);
 public GelfLayout$Builder setIncludeMapMessage(boolean);
 public GelfLayout$Builder setMapMessageIncludes(String);
 public GelfLayout$Builder setMapMessageExcludes(String);
 public GelfLayout$Builder setThreadContextPrefix(String);
 public GelfLayout$Builder setMapPrefix(String);
}

org/apache/logging/log4j/core/layout/MessageLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class MessageLayout extends AbstractLayout {
 public void MessageLayout();
 public void MessageLayout(org.apache.logging.log4j.core.config.Configuration, byte[], byte[]);
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.message.Message toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String getContentType();
 public static org.apache.logging.log4j.core.Layout createLayout();
}

org/apache/logging/log4j/core/layout/SyslogLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class SyslogLayout$Builder extends AbstractStringLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.net.Facility facility;
 private boolean includeNewLine;
 private String escapeNL;
 public void SyslogLayout$Builder();
 public SyslogLayout build();
 public org.apache.logging.log4j.core.net.Facility getFacility();
 public boolean isIncludeNewLine();
 public String getEscapeNL();
 public SyslogLayout$Builder setFacility(org.apache.logging.log4j.core.net.Facility);
 public SyslogLayout$Builder setIncludeNewLine(boolean);
 public SyslogLayout$Builder setEscapeNL(String);
}

org/apache/logging/log4j/core/layout/JacksonFactory$JSON.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$JSON extends JacksonFactory {
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 private final boolean objectMessageAsJsonObject;
 public void JacksonFactory$JSON(boolean, boolean, boolean, boolean);
 protected String getPropertNameForContextMap();
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/GelfLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class GelfLayout extends AbstractStringLayout {
 private static final char C = 44;
 private static final int COMPRESSION_THRESHOLD = 1024;
 private static final char Q = 34;
 private static final String QC = ",;
 private static final String QU = "_;
 private final org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 private final int compressionThreshold;
 private final GelfLayout$CompressionType compressionType;
 private final String host;
 private final boolean includeStacktrace;
 private final boolean includeThreadContext;
 private final boolean includeMapMessage;
 private final boolean includeNullDelimiter;
 private final boolean includeNewLineDelimiter;
 private final boolean omitEmptyFields;
 private final PatternLayout layout;
 private final GelfLayout$FieldWriter mdcWriter;
 private final GelfLayout$FieldWriter mapWriter;
 private static final ThreadLocal messageStringBuilder;
 private static final ThreadLocal timestampStringBuilder;
 public void GelfLayout(String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean);
 private void GelfLayout(org.apache.logging.log4j.core.config.Configuration, String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean, boolean, boolean, boolean, boolean, boolean, internal.ListChecker, internal.ListChecker, PatternLayout, String, String);
 public String toString();
 public static GelfLayout createLayout(String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean);
 public static GelfLayout$Builder newBuilder();
 public java.util.Map getContentFormat();
 public String getContentType();
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 public boolean requiresLocation();
 private byte[] compress(byte[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private StringBuilder toText(org.apache.logging.log4j.core.LogEvent, StringBuilder, boolean);
 private static boolean valueNeedsLookup(String);
 private static StringBuilder getMessageStringBuilder();
 private static CharSequence toNullSafeString(CharSequence);
 static CharSequence formatTimestamp(long);
 private static StringBuilder getTimestampStringBuilder();
 private int formatLevel(org.apache.logging.log4j.Level);
 static CharSequence formatThrowable(Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String pattern;
 private PatternSelector patternSelector;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.pattern.RegexReplacement regexReplacement;
 private java.nio.charset.Charset charset;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private String header;
 private String footer;
 private void PatternLayout$Builder();
 private boolean useAnsiEscapeCodes();
 public PatternLayout$Builder withPattern(String);
 public PatternLayout$Builder withPatternSelector(PatternSelector);
 public PatternLayout$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PatternLayout$Builder withRegexReplacement(org.apache.logging.log4j.core.pattern.RegexReplacement);
 public PatternLayout$Builder withCharset(java.nio.charset.Charset);
 public PatternLayout$Builder withAlwaysWriteExceptions(boolean);
 public PatternLayout$Builder withDisableAnsi(boolean);
 public PatternLayout$Builder withNoConsoleNoAnsi(boolean);
 public PatternLayout$Builder withHeader(String);
 public PatternLayout$Builder withFooter(String);
 public PatternLayout build();
}

org/apache/logging/log4j/core/async/RingBufferLogEvent$Factory.class

package org.apache.logging.log4j.core.async;
synchronized class RingBufferLogEvent$Factory implements com.lmax.disruptor.EventFactory {
 private void RingBufferLogEvent$Factory();
 public RingBufferLogEvent newInstance();
}

org/apache/logging/log4j/core/async/DiscardingAsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public synchronized class DiscardingAsyncQueueFullPolicy extends DefaultAsyncQueueFullPolicy {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.Level thresholdLevel;
 private final java.util.concurrent.atomic.AtomicLong discardCount;
 public void DiscardingAsyncQueueFullPolicy(org.apache.logging.log4j.Level);
 public EventRoute getRoute(long, org.apache.logging.log4j.Level);
 public static long getDiscardCount(AsyncQueueFullPolicy);
 public org.apache.logging.log4j.Level getThresholdLevel();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDisruptor extends org.apache.logging.log4j.core.AbstractLifeCycle implements AsyncLoggerConfigDelegate {
 private static final int MAX_DRAIN_ATTEMPTS_BEFORE_SHUTDOWN = 200;
 private static final int SLEEP_MILLIS_BETWEEN_DRAIN_ATTEMPTS = 50;
 private static final com.lmax.disruptor.EventFactory FACTORY;
 private static final com.lmax.disruptor.EventFactory MUTABLE_FACTORY;
 private static final com.lmax.disruptor.EventTranslatorTwoArg TRANSLATOR;
 private static final com.lmax.disruptor.EventTranslatorTwoArg MUTABLE_TRANSLATOR;
 private int ringBufferSize;
 private AsyncQueueFullPolicy asyncQueueFullPolicy;
 private Boolean mutable;
 private volatile com.lmax.disruptor.dsl.Disruptor disruptor;
 private long backgroundThreadId;
 private com.lmax.disruptor.EventFactory factory;
 private com.lmax.disruptor.EventTranslatorTwoArg translator;
 private volatile boolean alreadyLoggedWarning;
 private final Object queueFullEnqueueLock;
 public void AsyncLoggerConfigDisruptor();
 public void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
 public synchronized void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private static boolean hasBacklog(com.lmax.disruptor.dsl.Disruptor);
 public EventRoute getEventRoute(org.apache.logging.log4j.Level);
 private int remainingDisruptorCapacity();
 private boolean hasLog4jBeenShutDown(com.lmax.disruptor.dsl.Disruptor);
 public void enqueueEvent(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private org.apache.logging.log4j.core.LogEvent prepareEvent(org.apache.logging.log4j.core.LogEvent);
 private void showWarningAboutCustomLogEventWithReusableMessage(org.apache.logging.log4j.core.LogEvent);
 private void enqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private boolean synchronizeEnqueueWhenQueueFull();
 public boolean tryEnqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private org.apache.logging.log4j.core.LogEvent ensureImmutable(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/DisruptorBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class DisruptorBlockingQueueFactory implements BlockingQueueFactory {
 private final com.conversantmedia.util.concurrent.SpinPolicy spinPolicy;
 private void DisruptorBlockingQueueFactory(com.conversantmedia.util.concurrent.SpinPolicy);
 public java.util.concurrent.BlockingQueue create(int);
 public static DisruptorBlockingQueueFactory createFactory(com.conversantmedia.util.concurrent.SpinPolicy);
}

org/apache/logging/log4j/core/async/AbstractAsyncExceptionHandler.class

package org.apache.logging.log4j.core.async;
abstract synchronized class AbstractAsyncExceptionHandler implements com.lmax.disruptor.ExceptionHandler {
 void AbstractAsyncExceptionHandler();
 public void handleEventException(Throwable, long, Object);
 public void handleOnStartException(Throwable);
 public void handleOnShutdownException(Throwable);
}

org/apache/logging/log4j/core/async/EventRoute.class

package org.apache.logging.log4j.core.async;
public abstract synchronized enum EventRoute {
 public static final EventRoute ENQUEUE;
 public static final EventRoute SYNCHRONOUS;
 public static final EventRoute DISCARD;
 public static EventRoute[] values();
 public static EventRoute valueOf(String);
 private void EventRoute(String, int);
 public abstract void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public abstract void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/EventLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class EventLookup extends AbstractLookup {
 public void EventLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/AbstractConfigurationAwareLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class AbstractConfigurationAwareLookup extends AbstractLookup implements org.apache.logging.log4j.core.config.ConfigurationAware {
 protected org.apache.logging.log4j.core.config.Configuration configuration;
 public void AbstractConfigurationAwareLookup();
 public void setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/lookup/SystemPropertiesLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class SystemPropertiesLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void SystemPropertiesLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$CharSetMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$CharSetMatcher extends StrMatcher {
 private final char[] chars;
 void StrMatcher$CharSetMatcher(char[]);
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/LowerLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class LowerLookup implements StrLookup {
 public void LowerLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/MapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MapLookup implements StrLookup {
 private final java.util.Map map;
 public void MapLookup();
 public void MapLookup(java.util.Map);
 static java.util.Map initMap(String[], java.util.Map);
 static java.util.HashMap newMap(int);
 public static transient void setMainArguments(String[]);
 static java.util.Map toMap(java.util.List);
 static java.util.Map toMap(String[]);
 protected java.util.Map getMap();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
}

org/apache/logging/log4j/core/ErrorHandler.class

package org.apache.logging.log4j.core;
public abstract interface ErrorHandler {
 public abstract void error(String);
 public abstract void error(String, Throwable);
 public abstract void error(String, LogEvent, Throwable);
}

org/apache/logging/log4j/core/script/ScriptRef.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptRef extends AbstractScript {
 private final ScriptManager scriptManager;
 public void ScriptRef(String, ScriptManager);
 public String getLanguage();
 public String getScriptText();
 public static ScriptRef createReference(String, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/Filter.class

package org.apache.logging.log4j.core;
public abstract interface Filter extends LifeCycle {
 public static final Filter[] EMPTY_ARRAY;
 public static final String ELEMENT_TYPE = filter;
 public abstract Filter$Result getOnMismatch();
 public abstract Filter$Result getOnMatch();
 public abstract transient Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract Filter$Result filter(LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/BurstFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class BurstFilter$1 {
}

org/apache/logging/log4j/core/filter/BurstFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class BurstFilter extends AbstractFilter {
 private static final long NANOS_IN_SECONDS = 1000000000;
 private static final int DEFAULT_RATE = 10;
 private static final int DEFAULT_RATE_MULTIPLE = 100;
 private static final int HASH_SHIFT = 32;
 private final org.apache.logging.log4j.Level level;
 private final long burstInterval;
 private final java.util.concurrent.DelayQueue history;
 private final java.util.Queue available;
 static BurstFilter$LogDelay createLogDelay(long);
 private void BurstFilter(org.apache.logging.log4j.Level, float, long, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public int getAvailable();
 public void clear();
 public String toString();
 public static BurstFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/RootThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RootThrowablePatternConverter extends ThrowablePatternConverter {
 private void RootThrowablePatternConverter(org.apache.logging.log4j.core.config.Configuration, String[]);
 public static RootThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/PatternParser$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class PatternParser$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/RepeatPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RepeatPatternConverter extends LogEventPatternConverter {
 private final String result;
 public static RepeatPatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void RepeatPatternConverter(String);
 public void format(Object, StringBuilder);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void format(StringBuilder);
}

org/apache/logging/log4j/core/pattern/MaxLengthConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MaxLengthConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final int maxLength;
 public static MaxLengthConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void MaxLengthConverter(java.util.List, int);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NanoTimePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NanoTimePatternConverter extends LogEventPatternConverter {
 private void NanoTimePatternConverter(String[]);
 public static NanoTimePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy$1.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy$1 {
 void NameAbbreviator$MaxElementAbbreviator$Strategy$1(String, int, int);
 void abbreviate(int, String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$FormattedMessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$FormattedMessagePatternConverter extends MessagePatternConverter {
 private final String[] formats;
 void MessagePatternConverter$FormattedMessagePatternConverter(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$Formatter.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized class DatePatternConverter$Formatter {
 long previousTime;
 int nanos;
 private void DatePatternConverter$Formatter();
 abstract String format(org.apache.logging.log4j.core.time.Instant);
 abstract void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/jackson/MarkerMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class MarkerMixIn implements org.apache.logging.log4j.Marker {
 private static final long serialVersionUID = 1;
 void MarkerMixIn(String);
 public abstract String getName();
 public abstract org.apache.logging.log4j.Marker[] getParents();
}

org/apache/logging/log4j/core/jackson/Log4jJsonModule.class

package org.apache.logging.log4j.core.jackson;
synchronized class Log4jJsonModule extends com.fasterxml.jackson.databind.module.SimpleModule {
 private static final long serialVersionUID = 1;
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 private final boolean objectMessageAsJsonObject;
 void Log4jJsonModule(boolean, boolean, boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/MutableThreadContextStackDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class MutableThreadContextStackDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void MutableThreadContextStackDeserializer$1(MutableThreadContextStackDeserializer);
}

org/apache/logging/log4j/core/jackson/ExtendedStackTraceElementMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ExtendedStackTraceElementMixIn implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 public void ExtendedStackTraceElementMixIn(String, String, String, int, boolean, String, String);
 public abstract String getClassName();
 public abstract boolean getExact();
 public abstract org.apache.logging.log4j.core.impl.ExtendedClassInfo getExtraClassInfo();
 public abstract String getFileName();
 public abstract int getLineNumber();
 public abstract String getLocation();
 public abstract String getMethodName();
 abstract StackTraceElement getStackTraceElement();
 public abstract String getVersion();
 public abstract boolean isNativeMethod();
}

org/apache/logging/log4j/core/jackson/Initializers$SimpleModuleInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SimpleModuleInitializer {
 void Initializers$SimpleModuleInitializer();
 void initialize(com.fasterxml.jackson.databind.module.SimpleModule, boolean);
}

org/apache/logging/log4j/core/jackson/LogEventWithContextListMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LogEventWithContextListMixIn implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = 1;
 void LogEventWithContextListMixIn();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerFqcn();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract StackTraceElement getSource();
 public abstract long getThreadId();
 public abstract String getThreadName();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public abstract long getTimeMillis();
 public abstract org.apache.logging.log4j.core.time.Instant getInstant();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
}

org/apache/logging/log4j/core/appender/FileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class FileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private boolean locking;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void FileAppender$Builder();
 public FileAppender build();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public FileAppender$Builder withAdvertise(boolean);
 public FileAppender$Builder withAdvertiseUri(String);
 public FileAppender$Builder withAppend(boolean);
 public FileAppender$Builder withFileName(String);
 public FileAppender$Builder withCreateOnDemand(boolean);
 public FileAppender$Builder withLocking(boolean);
 public FileAppender$Builder withFilePermissions(String);
 public FileAppender$Builder withFileOwner(String);
 public FileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class MapRewritePolicy implements RewritePolicy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map map;
 private final MapRewritePolicy$Mode mode;
 private void MapRewritePolicy(java.util.Map, MapRewritePolicy$Mode);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static MapRewritePolicy createPolicy(String, org.apache.logging.log4j.core.util.KeyValuePair[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$MemoryMappedFileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$MemoryMappedFileManagerFactory implements ManagerFactory {
 private void MemoryMappedFileManager$MemoryMappedFileManagerFactory();
 public MemoryMappedFileManager createManager(String, MemoryMappedFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class TimeBasedTriggeringPolicy$1 {
}

org/apache/logging/log4j/core/appender/rolling/SizeBasedTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class SizeBasedTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final long MAX_FILE_SIZE = 10485760;
 private final long maxFileSize;
 private RollingFileManager manager;
 protected void SizeBasedTriggeringPolicy();
 protected void SizeBasedTriggeringPolicy(long);
 public long getMaxFileSize();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static SizeBasedTriggeringPolicy createPolicy(String);
}

org/apache/logging/log4j/core/appender/rolling/action/PathSorter.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface PathSorter extends java.util.Comparator {
}

org/apache/logging/log4j/core/appender/rolling/action/IfLastModified.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfLastModified implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private final Duration age;
 private final PathCondition[] nestedConditions;
 private void IfLastModified(Duration, PathCondition[]);
 public Duration getAge();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfLastModified createAgeCondition(Duration, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAccumulatedFileSize.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAccumulatedFileSize implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final long thresholdBytes;
 private long accumulatedSize;
 private final PathCondition[] nestedConditions;
 private transient void IfAccumulatedFileSize(long, PathCondition[]);
 public long getThresholdBytes();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAccumulatedFileSize createFileSizeCondition(String, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathCondition.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface PathCondition {
 public static final PathCondition[] EMPTY_ARRAY;
 public static transient PathCondition[] copy(PathCondition[]);
 public abstract void beforeFileTreeWalk();
 public abstract boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction$1.class

package org.apache.logging.log4j.core.appender.rolling.action;
synchronized class PosixViewAttributeAction$1 extends java.nio.file.SimpleFileVisitor {
 void PosixViewAttributeAction$1(PosixViewAttributeAction, java.util.List, java.nio.file.Path);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/rolling/action/DeletingVisitor.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class DeletingVisitor extends java.nio.file.SimpleFileVisitor {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.nio.file.Path basePath;
 private final boolean testMode;
 private final java.util.List pathConditions;
 public void DeletingVisitor(java.nio.file.Path, java.util.List, boolean);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
 public java.nio.file.FileVisitResult visitFileFailed(java.nio.file.Path, java.io.IOException) throws java.io.IOException;
 protected void delete(java.nio.file.Path) throws java.io.IOException;
 public boolean isTestMode();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$1 {
}

org/apache/logging/log4j/core/appender/rolling/TriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface TriggeringPolicy {
 public abstract void initialize(RollingFileManager);
 public abstract boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RollingRandomAccessFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private String filePattern;
 private boolean append;
 private rolling.TriggeringPolicy policy;
 private rolling.RolloverStrategy strategy;
 private boolean advertise;
 private String advertiseURI;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void RollingRandomAccessFileAppender$Builder();
 public RollingRandomAccessFileAppender build();
 public RollingRandomAccessFileAppender$Builder withFileName(String);
 public RollingRandomAccessFileAppender$Builder withFilePattern(String);
 public RollingRandomAccessFileAppender$Builder withAppend(boolean);
 public RollingRandomAccessFileAppender$Builder withPolicy(rolling.TriggeringPolicy);
 public RollingRandomAccessFileAppender$Builder withStrategy(rolling.RolloverStrategy);
 public RollingRandomAccessFileAppender$Builder withAdvertise(boolean);
 public RollingRandomAccessFileAppender$Builder withAdvertiseURI(String);
 public RollingRandomAccessFileAppender$Builder withFilePermissions(String);
 public RollingRandomAccessFileAppender$Builder withFileOwner(String);
 public RollingRandomAccessFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/SyslogAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class SyslogAppender extends SocketAppender {
 protected static final String RFC5424 = RFC5424;
 protected void SyslogAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.net.AbstractSocketManager, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 protected void SyslogAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.net.AbstractSocketManager, org.apache.logging.log4j.core.net.Advertiser);
 public static SyslogAppender createAppender(String, int, String, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, int, boolean, String, boolean, boolean, org.apache.logging.log4j.core.net.Facility, String, int, boolean, String, String, String, boolean, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, String, org.apache.logging.log4j.core.layout.LoggerFields[], boolean);
 public static SyslogAppender$Builder newSyslogAppenderBuilder();
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RandomAccessFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private boolean advertise;
 private String advertiseURI;
 public void RandomAccessFileAppender$Builder();
 public RandomAccessFileAppender build();
 public RandomAccessFileAppender$Builder setFileName(String);
 public RandomAccessFileAppender$Builder setAppend(boolean);
 public RandomAccessFileAppender$Builder setAdvertise(boolean);
 public RandomAccessFileAppender$Builder setAdvertiseURI(String);
}

org/apache/logging/log4j/core/appender/ConfigurationFactoryData.class

package org.apache.logging.log4j.core.appender;
public synchronized class ConfigurationFactoryData {
 public final org.apache.logging.log4j.core.config.Configuration configuration;
 public void ConfigurationFactoryData(org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class ConsoleAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private ConsoleAppender$Target target;
 private boolean follow;
 private boolean direct;
 public void ConsoleAppender$Builder();
 public ConsoleAppender$Builder setTarget(ConsoleAppender$Target);
 public ConsoleAppender$Builder setFollow(boolean);
 public ConsoleAppender$Builder setDirect(boolean);
 public ConsoleAppender build();
}

org/apache/logging/log4j/core/appender/DefaultErrorHandler.class

package org.apache.logging.log4j.core.appender;
public synchronized class DefaultErrorHandler implements org.apache.logging.log4j.core.ErrorHandler {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int MAX_EXCEPTION_COUNT = 3;
 private static final long EXCEPTION_INTERVAL_NANOS;
 private int exceptionCount;
 private long lastExceptionInstantNanos;
 private final org.apache.logging.log4j.core.Appender appender;
 public void DefaultErrorHandler(org.apache.logging.log4j.core.Appender);
 public void error(String);
 public void error(String, Throwable);
 public void error(String, org.apache.logging.log4j.core.LogEvent, Throwable);
 private boolean acquirePermit();
 public org.apache.logging.log4j.core.Appender getAppender();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class JdbcDatabaseManager extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager {
 private static final JdbcDatabaseManager$JdbcDatabaseManagerFactory INSTANCE;
 private final java.util.List columnConfigs;
 private final String sqlStatement;
 private final JdbcDatabaseManager$FactoryData factoryData;
 private volatile java.sql.Connection connection;
 private volatile java.sql.PreparedStatement statement;
 private volatile JdbcDatabaseManager$Reconnector reconnector;
 private volatile boolean isBatchSupported;
 private volatile java.util.Map columnMetaData;
 private static void appendColumnName(int, String, StringBuilder);
 private static void appendColumnNames(String, JdbcDatabaseManager$FactoryData, StringBuilder);
 private static JdbcDatabaseManager$JdbcDatabaseManagerFactory getFactory();
 public static JdbcDatabaseManager getJDBCDatabaseManager(String, int, ConnectionSource, String, ColumnConfig[]);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[]);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long, boolean);
 private void JdbcDatabaseManager(String, String, java.util.List, JdbcDatabaseManager$FactoryData);
 private void checkConnection();
 protected void closeResources(boolean);
 protected boolean commitAndClose();
 private boolean commitAndCloseAll();
 private void connectAndPrepare() throws java.sql.SQLException;
 protected void connectAndStart();
 private JdbcDatabaseManager$Reconnector createReconnector();
 private String createSqlSelect();
 private String fieldsToString();
 public ConnectionSource getConnectionSource();
 public String getSqlStatement();
 public String getTableName();
 private void initColumnMetaData() throws java.sql.SQLException;
 private boolean isClosed(java.sql.Statement) throws java.sql.SQLException;
 private boolean isClosed(java.sql.Connection) throws java.sql.SQLException;
 private void reconnectOn(Exception);
 private void setFields(org.apache.logging.log4j.message.MapMessage) throws java.sql.SQLException;
 private void setStatementObject(int, String, Object) throws java.sql.SQLException;
 protected boolean shutdownInternal();
 protected void startupInternal() throws Exception;
 private Object truncate(String, Object);
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeThrough(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/routing/IdlePurgePolicy.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class IdlePurgePolicy extends org.apache.logging.log4j.core.AbstractLifeCycle implements PurgePolicy, Runnable {
 private final long timeToLive;
 private final long checkInterval;
 private final java.util.concurrent.ConcurrentMap appendersUsage;
 private RoutingAppender routingAppender;
 private final org.apache.logging.log4j.core.config.ConfigurationScheduler scheduler;
 private volatile java.util.concurrent.ScheduledFuture future;
 public void IdlePurgePolicy(long, long, org.apache.logging.log4j.core.config.ConfigurationScheduler);
 public void initialize(RoutingAppender);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void purge();
 public void update(String, org.apache.logging.log4j.core.LogEvent);
 public void run();
 private void scheduleNext();
 public static PurgePolicy createPurgePolicy(String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/appender/AsyncAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class AsyncAppender$Builder extends org.apache.logging.log4j.core.filter.AbstractFilterable$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private String errorRef;
 private boolean blocking;
 private long shutdownTimeout;
 private int bufferSize;
 private String name;
 private boolean includeLocation;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private boolean ignoreExceptions;
 private org.apache.logging.log4j.core.async.BlockingQueueFactory blockingQueueFactory;
 public void AsyncAppender$Builder();
 public AsyncAppender$Builder setAppenderRefs(org.apache.logging.log4j.core.config.AppenderRef[]);
 public AsyncAppender$Builder setErrorRef(String);
 public AsyncAppender$Builder setBlocking(boolean);
 public AsyncAppender$Builder setShutdownTimeout(long);
 public AsyncAppender$Builder setBufferSize(int);
 public AsyncAppender$Builder setName(String);
 public AsyncAppender$Builder setIncludeLocation(boolean);
 public AsyncAppender$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AsyncAppender$Builder setIgnoreExceptions(boolean);
 public AsyncAppender$Builder setBlockingQueueFactory(org.apache.logging.log4j.core.async.BlockingQueueFactory);
 public AsyncAppender build();
}

org/apache/logging/log4j/core/appender/mom/JmsManager$JmsManagerFactory.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$JmsManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JmsManager$JmsManagerFactory();
 public JmsManager createManager(String, JmsManager$JmsManagerConfiguration);
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class KafkaManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 public static final String DEFAULT_TIMEOUT_MILLIS = 30000;
 static KafkaProducerFactory producerFactory;
 private final java.util.Properties config;
 private org.apache.kafka.clients.producer.Producer producer;
 private final int timeoutMillis;
 private final String topic;
 private final String key;
 private final boolean syncSend;
 private static final KafkaManager$KafkaManagerFactory factory;
 public void KafkaManager(org.apache.logging.log4j.core.LoggerContext, String, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 private void closeProducer(long, java.util.concurrent.TimeUnit);
 public void send(byte[]) throws java.util.concurrent.ExecutionException, InterruptedException, java.util.concurrent.TimeoutException;
 public void startup();
 public String getTopic();
 public static KafkaManager getManager(org.apache.logging.log4j.core.LoggerContext, String, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$1.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$1 {
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
public synchronized class JeroMqManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 public static final String SYS_PROPERTY_ENABLE_SHUTDOWN_HOOK = log4j.jeromq.enableShutdownHook;
 public static final String SYS_PROPERTY_IO_THREADS = log4j.jeromq.ioThreads;
 private static final JeroMqManager$JeroMqManagerFactory FACTORY;
 private static final org.zeromq.ZMQ$Context CONTEXT;
 private static final org.apache.logging.log4j.core.util.Cancellable SHUTDOWN_HOOK;
 private final org.zeromq.ZMQ$Socket publisher;
 private void JeroMqManager(String, JeroMqManager$JeroMqConfiguration);
 public boolean send(byte[]);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public static JeroMqManager getJeroMqManager(String, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, java.util.List);
 public static org.zeromq.ZMQ$Context getContext();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LocationAware.class

package org.apache.logging.log4j.core.impl;
public abstract interface LocationAware {
 public abstract boolean requiresLocation();
}

org/apache/logging/log4j/core/impl/MementoMessage.class

package org.apache.logging.log4j.core.impl;
public final synchronized class MementoMessage implements org.apache.logging.log4j.message.Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private final String formattedMessage;
 private final String format;
 private final Object[] parameters;
 public void MementoMessage(String, String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public String toString();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$Builder.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jLogEvent$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String loggerFqcn;
 private org.apache.logging.log4j.Marker marker;
 private org.apache.logging.log4j.Level level;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private Throwable thrown;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement source;
 private boolean includeLocation;
 private boolean endOfBatch;
 private long nanoTime;
 public void Log4jLogEvent$Builder();
 public void Log4jLogEvent$Builder(org.apache.logging.log4j.core.LogEvent);
 public Log4jLogEvent$Builder setLevel(org.apache.logging.log4j.Level);
 public Log4jLogEvent$Builder setLoggerFqcn(String);
 public Log4jLogEvent$Builder setLoggerName(String);
 public Log4jLogEvent$Builder setMarker(org.apache.logging.log4j.Marker);
 public Log4jLogEvent$Builder setMessage(org.apache.logging.log4j.message.Message);
 public Log4jLogEvent$Builder setThrown(Throwable);
 public Log4jLogEvent$Builder setTimeMillis(long);
 public Log4jLogEvent$Builder setInstant(org.apache.logging.log4j.core.time.Instant);
 public Log4jLogEvent$Builder setThrownProxy(ThrowableProxy);
 public Log4jLogEvent$Builder setContextMap(java.util.Map);
 public Log4jLogEvent$Builder setContextData(org.apache.logging.log4j.util.StringMap);
 public Log4jLogEvent$Builder setContextStack(org.apache.logging.log4j.ThreadContext$ContextStack);
 public Log4jLogEvent$Builder setThreadId(long);
 public Log4jLogEvent$Builder setThreadName(String);
 public Log4jLogEvent$Builder setThreadPriority(int);
 public Log4jLogEvent$Builder setSource(StackTraceElement);
 public Log4jLogEvent$Builder setIncludeLocation(boolean);
 public Log4jLogEvent$Builder setEndOfBatch(boolean);
 public Log4jLogEvent$Builder setNanoTime(long);
 public Log4jLogEvent build();
 private void initTimeFields();
}

org/apache/logging/log4j/core/impl/ContextDataInjectorFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ContextDataInjectorFactory {
 public void ContextDataInjectorFactory();
 public static org.apache.logging.log4j.core.ContextDataInjector createInjector();
 private static org.apache.logging.log4j.core.ContextDataInjector createDefaultInjector();
}

org/apache/logging/log4j/core/selector/ContextSelector.class

package org.apache.logging.log4j.core.selector;
public abstract interface ContextSelector {
 public static final long DEFAULT_STOP_TIMEOUT = 50;
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public abstract org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean);
 public abstract org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI);
 public abstract java.util.List getLoggerContexts();
 public abstract void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
}

org/apache/logging/log4j/core/tools/Generate$Type$1.class

package org.apache.logging.log4j.core.tools;
final synchronized enum Generate$Type$1 {
 void Generate$Type$1(String, int);
 String imports();
 String declaration();
 String constructor();
 Class generator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$TypeConversionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$TypeConversionException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 4251973913816346114;
 public void CommandLine$TypeConversionException(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$SortByOptionArityAndNameAlphabetically.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$SortByOptionArityAndNameAlphabetically extends CommandLine$Help$SortByShortestOptionNameAlphabetically {
 void CommandLine$Help$SortByOptionArityAndNameAlphabetically();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ByteConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ByteConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ByteConverter();
 public Byte convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ISO8601DateConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ISO8601DateConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ISO8601DateConverter();
 public java.util.Date convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$DoubleConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$DoubleConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$DoubleConverter();
 public Double convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Tracer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Tracer {
 CommandLine$TraceLevel level;
 java.io.PrintStream stream;
 private void CommandLine$Tracer();
 transient void warn(String, Object[]);
 transient void info(String, Object[]);
 transient void debug(String, Object[]);
 boolean isWarn();
 boolean isInfo();
 boolean isDebug();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MissingTypeConverterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MissingTypeConverterException extends CommandLine$ParameterException {
 private static final long serialVersionUID = -6050931703233083760;
 public void CommandLine$MissingTypeConverterException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$SortByShortestOptionNameAlphabetically.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$SortByShortestOptionNameAlphabetically implements java.util.Comparator {
 void CommandLine$Help$SortByShortestOptionNameAlphabetically();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/net/ssl/LaxHostnameVerifier.class

package org.apache.logging.log4j.core.net.ssl;
public final synchronized class LaxHostnameVerifier implements javax.net.ssl.HostnameVerifier {
 public static final javax.net.ssl.HostnameVerifier INSTANCE;
 private void LaxHostnameVerifier();
 public boolean verify(String, javax.net.ssl.SSLSession);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/KeyStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class KeyStoreConfiguration extends AbstractKeyStoreConfiguration {
 private final String keyManagerFactoryAlgorithm;
 public void KeyStoreConfiguration(String, PasswordProvider, String, String) throws StoreConfigurationException;
 public void KeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public void KeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, char[], String, String, String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public javax.net.ssl.KeyManagerFactory initKeyManagerFactory() throws java.security.NoSuchAlgorithmException, java.security.UnrecoverableKeyException, java.security.KeyStoreException;
 public int hashCode();
 public boolean equals(Object);
 public String getKeyManagerFactoryAlgorithm();
}

org/apache/logging/log4j/core/net/ssl/StoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class StoreConfigurationException extends Exception {
 private static final long serialVersionUID = 1;
 public void StoreConfigurationException(Exception);
 public void StoreConfigurationException(String);
 public void StoreConfigurationException(String, Exception);
}

org/apache/logging/log4j/core/net/JndiManager.class

package org.apache.logging.log4j.core.net;
public synchronized class JndiManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 private static final JndiManager$JndiManagerFactory FACTORY;
 private static final String PREFIX = log4j2.enableJndi;
 private static final String JAVA_SCHEME = java;
 private static final boolean JNDI_CONTEXT_SELECTOR_ENABLED;
 private static final boolean JNDI_JDBC_ENABLED;
 private static final boolean JNDI_JMS_ENABLED;
 private static final boolean JNDI_LOOKUP_ENABLED;
 private final javax.naming.InitialContext context;
 private static boolean isJndiEnabled(String);
 public static boolean isJndiEnabled();
 public static boolean isJndiContextSelectorEnabled();
 public static boolean isJndiJdbcEnabled();
 public static boolean isJndiJmsEnabled();
 public static boolean isJndiLookupEnabled();
 private void JndiManager(String, javax.naming.InitialContext);
 public static JndiManager getDefaultManager();
 public static JndiManager getDefaultManager(String);
 public static JndiManager getJndiManager(String, String, String, String, String, java.util.Properties);
 public static JndiManager getJndiManager(java.util.Properties);
 private static String createManagerName();
 public static java.util.Properties createProperties(String, String, String, String, String, java.util.Properties);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public Object lookup(String) throws javax.naming.NamingException;
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/MulticastDnsAdvertiser.class

package org.apache.logging.log4j.core.net;
public synchronized class MulticastDnsAdvertiser implements Advertiser {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final int MAX_LENGTH = 255;
 private static final int DEFAULT_PORT = 4555;
 private static Object jmDNS;
 private static Class jmDNSClass;
 private static Class serviceInfoClass;
 public void MulticastDnsAdvertiser();
 public Object advertise(java.util.Map);
 public void unadvertise(Object);
 private static Object createJmDnsVersion1();
 private static Object createJmDnsVersion3();
 private static Object buildServiceInfoVersion1(String, int, String, java.util.Map);
 private static Object buildServiceInfoVersion3(String, int, String, java.util.Map);
 private static Object initializeJmDns();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SocketAddress.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketAddress {
 private final java.net.InetSocketAddress socketAddress;
 public static SocketAddress getLoopback();
 private void SocketAddress(java.net.InetAddress, int);
 public java.net.InetSocketAddress getSocketAddress();
 public int getPort();
 public java.net.InetAddress getAddress();
 public String getHostName();
 public static SocketAddress$Builder newBuilder();
 public String toString();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$DayInWeekField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$DayInWeekField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$DayInWeekField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 void FastDatePrinter$TwoDigitNumberField(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$UnpaddedMonthField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$UnpaddedMonthField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$UnpaddedMonthField INSTANCE;
 void FastDatePrinter$UnpaddedMonthField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$Strategy.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FastDateParser$Strategy {
 private void FastDateParser$Strategy();
 boolean isNumber();
 abstract boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
}

org/apache/logging/log4j/core/util/ArrayUtils.class

package org.apache.logging.log4j.core.util;
public synchronized class ArrayUtils {
 public void ArrayUtils();
 public static boolean isEmpty(byte[]);
 public static int getLength(Object);
 private static Object remove(Object, int);
 public static Object[] remove(Object[], int);
}

org/apache/logging/log4j/core/util/NullOutputStream.class

package org.apache.logging.log4j.core.util;
public synchronized class NullOutputStream extends java.io.OutputStream {
 private static final NullOutputStream INSTANCE;
 public static final NullOutputStream NULL_OUTPUT_STREAM;
 public static NullOutputStream getInstance();
 private void NullOutputStream();
 public void write(byte[], int, int);
 public void write(int);
 public void write(byte[]) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DefaultShutdownCallbackRegistry.class

package org.apache.logging.log4j.core.util;
public synchronized class DefaultShutdownCallbackRegistry implements ShutdownCallbackRegistry, org.apache.logging.log4j.core.LifeCycle2, Runnable {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.concurrent.atomic.AtomicReference state;
 private final java.util.concurrent.ThreadFactory threadFactory;
 private final java.util.Collection hooks;
 private ref.Reference shutdownHookRef;
 public void DefaultShutdownCallbackRegistry();
 protected void DefaultShutdownCallbackRegistry(java.util.concurrent.ThreadFactory);
 public void run();
 public Cancellable addShutdownCallback(Runnable);
 public void initialize();
 public void start();
 private void addShutdownHook(Thread);
 public void stop();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private void removeShutdownHook();
 public org.apache.logging.log4j.core.LifeCycle$State getState();
 public boolean isStarted();
 public boolean isStopped();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/UuidUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class UuidUtil {
 private static final long[] EMPTY_LONG_ARRAY;
 public static final String UUID_SEQUENCE = org.apache.logging.log4j.uuidSequence;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String ASSIGNED_SEQUENCES = org.apache.logging.log4j.assignedSequences;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private static final long TYPE1 = 4096;
 private static final byte VARIANT = -128;
 private static final int SEQUENCE_MASK = 16383;
 private static final long NUM_100NS_INTERVALS_SINCE_UUID_EPOCH = 122192928000000000;
 private static final long INITIAL_UUID_SEQNO;
 private static final long LOW_MASK = 4294967295;
 private static final long MID_MASK = 281470681743360;
 private static final long HIGH_MASK = 1152640029630136320;
 private static final int NODE_SIZE = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_4 = 32;
 private static final int SHIFT_6 = 48;
 private static final int HUNDRED_NANOS_PER_MILLI = 10000;
 private static final long LEAST;
 private void UuidUtil();
 static long initialize(byte[]);
 public static java.util.UUID getTimeBasedUuid();
 static void <clinit>();
}

org/apache/logging/log4j/core/AbstractLogEvent.class

package org.apache.logging.log4j.core;
public abstract synchronized class AbstractLogEvent implements LogEvent {
 private static final long serialVersionUID = 1;
 private volatile time.MutableInstant instant;
 public void AbstractLogEvent();
 public LogEvent toImmutable();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerFqcn();
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public org.apache.logging.log4j.message.Message getMessage();
 public StackTraceElement getSource();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public Throwable getThrown();
 public impl.ThrowableProxy getThrownProxy();
 public long getTimeMillis();
 public time.Instant getInstant();
 protected final time.MutableInstant getMutableInstant();
 public boolean isEndOfBatch();
 public boolean isIncludeLocation();
 public void setEndOfBatch(boolean);
 public void setIncludeLocation(boolean);
 public long getNanoTime();
}

org/apache/logging/log4j/core/config/arbiters/SelectArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SelectArbiter {
 public void SelectArbiter();
 public Arbiter evaluateConditions(java.util.List);
 public static SelectArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/DefaultArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class DefaultArbiter implements Arbiter {
 public void DefaultArbiter();
 public boolean isCondition();
 public static DefaultArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/plugins/PluginFactory.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginFactory extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/PluginBuilderFactory.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginBuilderFactory extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/util/PluginType.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginType {
 private final org.apache.logging.log4j.core.config.plugins.processor.PluginEntry pluginEntry;
 private final Class pluginClass;
 private final String elementName;
 public void PluginType(org.apache.logging.log4j.core.config.plugins.processor.PluginEntry, Class, String);
 public Class getPluginClass();
 public String getElementName();
 public String getKey();
 public boolean isObjectPrintable();
 public boolean isDeferChildren();
 public String getCategory();
 public String toString();
}

org/apache/logging/log4j/core/config/plugins/util/PluginBuilder.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginBuilder implements org.apache.logging.log4j.core.util.Builder {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final PluginType pluginType;
 private final Class clazz;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.config.Node node;
 private org.apache.logging.log4j.core.LogEvent event;
 public void PluginBuilder(PluginType);
 public PluginBuilder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PluginBuilder withConfigurationNode(org.apache.logging.log4j.core.config.Node);
 public PluginBuilder forLogEvent(org.apache.logging.log4j.core.LogEvent);
 public Object build();
 private void verify();
 private static org.apache.logging.log4j.core.util.Builder createBuilder(Class) throws reflect.InvocationTargetException, IllegalAccessException;
 private void injectFields(org.apache.logging.log4j.core.util.Builder) throws IllegalAccessException;
 private static String simpleName(Object);
 private static reflect.Method findFactoryMethod(Class);
 private Object[] generateParameters(reflect.Method);
 private static transient String[] extractPluginAliases(annotation.Annotation[]);
 private void checkForRemainingAttributes();
 private void verifyNodeChildrenUsed();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$1.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$1 {
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UriConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UriConverter implements TypeConverter {
 public void TypeConverters$UriConverter();
 public java.net.URI convert(String) throws java.net.URISyntaxException;
}

org/apache/logging/log4j/core/config/DefaultConfiguration.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultConfiguration extends AbstractConfiguration {
 public static final String DEFAULT_NAME = Default;
 public static final String DEFAULT_LEVEL = org.apache.logging.log4j.level;
 public static final String DEFAULT_PATTERN = %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n;
 public void DefaultConfiguration();
 protected void doConfigure();
}

org/apache/logging/log4j/core/config/ConfigurationFactory.class

package org.apache.logging.log4j.core.config;
public abstract synchronized class ConfigurationFactory extends builder.api.ConfigurationBuilderFactory {
 public static final String CONFIGURATION_FACTORY_PROPERTY = log4j.configurationFactory;
 public static final String CONFIGURATION_FILE_PROPERTY = log4j.configurationFile;
 public static final String LOG4J1_CONFIGURATION_FILE_PROPERTY = log4j.configuration;
 public static final String LOG4J1_EXPERIMENTAL = log4j1.compatibility;
 public static final String AUTHORIZATION_PROVIDER = log4j2.authorizationProvider;
 public static final String CATEGORY = ConfigurationFactory;
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected static final String TEST_PREFIX = log4j2-test;
 protected static final String DEFAULT_PREFIX = log4j2;
 protected static final String LOG4J1_VERSION = 1;
 protected static final String LOG4J2_VERSION = 2;
 private static final String CLASS_LOADER_SCHEME = classloader;
 private static final String CLASS_PATH_SCHEME = classpath;
 private static final String OVERRIDE_PARAM = override;
 private static volatile java.util.List factories;
 private static ConfigurationFactory configFactory;
 protected final org.apache.logging.log4j.core.lookup.StrSubstitutor substitutor;
 private static final java.util.concurrent.locks.Lock LOCK;
 private static final String HTTPS = https;
 private static final String HTTP = http;
 private static volatile org.apache.logging.log4j.core.util.AuthorizationProvider authorizationProvider;
 public void ConfigurationFactory();
 public static ConfigurationFactory getInstance();
 public static org.apache.logging.log4j.core.util.AuthorizationProvider authorizationProvider(org.apache.logging.log4j.util.PropertiesUtil);
 public static org.apache.logging.log4j.core.util.AuthorizationProvider getAuthorizationProvider();
 private static void addFactory(java.util.Collection, String);
 private static void addFactory(java.util.Collection, Class);
 public static void setConfigurationFactory(ConfigurationFactory);
 public static void resetConfigurationFactory();
 public static void removeConfigurationFactory(ConfigurationFactory);
 protected abstract String[] getSupportedTypes();
 protected String getTestPrefix();
 protected String getDefaultPrefix();
 protected String getVersion();
 protected boolean isActive();
 public abstract Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI);
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI, ClassLoader);
 static boolean isClassLoaderUri(java.net.URI);
 static String extractClassLoaderUriPath(java.net.URI);
 protected ConfigurationSource getInputFromString(String, ClassLoader);
 static java.util.List getFactories();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/ConfigurationScheduler.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationScheduler extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String SIMPLE_NAME;
 private static final int MAX_SCHEDULED_ITEMS = 5;
 private volatile java.util.concurrent.ScheduledExecutorService executorService;
 private int scheduledItems;
 private final String name;
 public void ConfigurationScheduler();
 public void ConfigurationScheduler(String);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public boolean isExecutorServiceSet();
 public void incrementScheduledItems();
 public void decrementScheduledItems();
 public java.util.concurrent.ScheduledFuture schedule(java.util.concurrent.Callable, long, java.util.concurrent.TimeUnit);
 public java.util.concurrent.ScheduledFuture schedule(Runnable, long, java.util.concurrent.TimeUnit);
 public CronScheduledFuture scheduleWithCron(org.apache.logging.log4j.core.util.CronExpression, Runnable);
 public CronScheduledFuture scheduleWithCron(org.apache.logging.log4j.core.util.CronExpression, java.util.Date, Runnable);
 public java.util.concurrent.ScheduledFuture scheduleAtFixedRate(Runnable, long, long, java.util.concurrent.TimeUnit);
 public java.util.concurrent.ScheduledFuture scheduleWithFixedDelay(Runnable, long, long, java.util.concurrent.TimeUnit);
 public long nextFireInterval(java.util.Date);
 private java.util.concurrent.ScheduledExecutorService getExecutorService();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultAppenderComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultAppenderComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder {
 public void DefaultAppenderComponentBuilder(DefaultConfigurationBuilder, String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/ConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ConfigurationBuilder extends org.apache.logging.log4j.core.util.Builder {
 public abstract ConfigurationBuilder add(ScriptComponentBuilder);
 public abstract ConfigurationBuilder add(ScriptFileComponentBuilder);
 public abstract ConfigurationBuilder add(AppenderComponentBuilder);
 public abstract ConfigurationBuilder add(CustomLevelComponentBuilder);
 public abstract ConfigurationBuilder add(FilterComponentBuilder);
 public abstract ConfigurationBuilder add(LoggerComponentBuilder);
 public abstract ConfigurationBuilder add(RootLoggerComponentBuilder);
 public abstract ConfigurationBuilder addProperty(String, String);
 public abstract ScriptComponentBuilder newScript(String, String, String);
 public abstract ScriptFileComponentBuilder newScriptFile(String);
 public abstract ScriptFileComponentBuilder newScriptFile(String, String);
 public abstract AppenderComponentBuilder newAppender(String, String);
 public abstract AppenderRefComponentBuilder newAppenderRef(String);
 public abstract LoggerComponentBuilder newAsyncLogger(String);
 public abstract LoggerComponentBuilder newAsyncLogger(String, boolean);
 public abstract LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level);
 public abstract LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level, boolean);
 public abstract LoggerComponentBuilder newAsyncLogger(String, String);
 public abstract LoggerComponentBuilder newAsyncLogger(String, String, boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger();
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level, boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(String);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(String, boolean);
 public abstract ComponentBuilder newComponent(String);
 public abstract ComponentBuilder newComponent(String, String);
 public abstract ComponentBuilder newComponent(String, String, String);
 public abstract PropertyComponentBuilder newProperty(String, String);
 public abstract KeyValuePairComponentBuilder newKeyValuePair(String, String);
 public abstract CustomLevelComponentBuilder newCustomLevel(String, int);
 public abstract FilterComponentBuilder newFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public abstract FilterComponentBuilder newFilter(String, String, String);
 public abstract LayoutComponentBuilder newLayout(String);
 public abstract LoggerComponentBuilder newLogger(String);
 public abstract LoggerComponentBuilder newLogger(String, boolean);
 public abstract LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level);
 public abstract LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level, boolean);
 public abstract LoggerComponentBuilder newLogger(String, String);
 public abstract LoggerComponentBuilder newLogger(String, String, boolean);
 public abstract RootLoggerComponentBuilder newRootLogger();
 public abstract RootLoggerComponentBuilder newRootLogger(boolean);
 public abstract RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level);
 public abstract RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level, boolean);
 public abstract RootLoggerComponentBuilder newRootLogger(String);
 public abstract RootLoggerComponentBuilder newRootLogger(String, boolean);
 public abstract ConfigurationBuilder setAdvertiser(String);
 public abstract ConfigurationBuilder setConfigurationName(String);
 public abstract ConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public abstract ConfigurationBuilder setMonitorInterval(String);
 public abstract ConfigurationBuilder setPackages(String);
 public abstract ConfigurationBuilder setShutdownHook(String);
 public abstract ConfigurationBuilder setShutdownTimeout(long, java.util.concurrent.TimeUnit);
 public abstract ConfigurationBuilder setStatusLevel(org.apache.logging.log4j.Level);
 public abstract ConfigurationBuilder setVerbosity(String);
 public abstract ConfigurationBuilder setDestination(String);
 public abstract void setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public abstract ConfigurationBuilder addRootProperty(String, String);
 public abstract org.apache.logging.log4j.core.config.Configuration build(boolean);
 public abstract void writeXmlConfiguration(java.io.OutputStream) throws java.io.IOException;
 public abstract String toXmlConfiguration();
}

org/apache/logging/log4j/core/jmx/ContextSelectorAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class ContextSelectorAdmin implements ContextSelectorAdminMBean {
 private final javax.management.ObjectName objectName;
 private final org.apache.logging.log4j.core.selector.ContextSelector selector;
 public void ContextSelectorAdmin(String, org.apache.logging.log4j.core.selector.ContextSelector);
 public javax.management.ObjectName getObjectName();
 public String getImplementationClassName();
}

org/apache/logging/log4j/core/jmx/Server.class

package org.apache.logging.log4j.core.jmx;
public final synchronized class Server {
 private static final String CONTEXT_NAME_ALL = *;
 public static final String DOMAIN = org.apache.logging.log4j2;
 private static final String PROPERTY_DISABLE_JMX = log4j2.disable.jmx;
 private static final String PROPERTY_ASYNC_NOTIF = log4j2.jmx.notify.async;
 private static final String THREAD_NAME_PREFIX = jmx.notif;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 static final java.util.concurrent.Executor executor;
 private void Server();
 private static java.util.concurrent.ExecutorService createExecutor();
 public static String escape(String);
 private static boolean isJmxDisabled();
 public static void reregisterMBeansAfterReconfigure();
 public static void reregisterMBeansAfterReconfigure(javax.management.MBeanServer);
 public static void unregisterMBeans();
 public static void unregisterMBeans(javax.management.MBeanServer);
 private static org.apache.logging.log4j.core.selector.ContextSelector getContextSelector();
 public static void unregisterLoggerContext(String);
 public static void unregisterLoggerContext(String, javax.management.MBeanServer);
 private static void registerStatusLogger(String, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void registerContextSelector(String, org.apache.logging.log4j.core.selector.ContextSelector, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void unregisterStatusLogger(String, javax.management.MBeanServer);
 private static void unregisterContextSelector(String, javax.management.MBeanServer);
 private static void unregisterLoggerConfigs(String, javax.management.MBeanServer);
 private static void unregisterContexts(javax.management.MBeanServer);
 private static void unregisterAppenders(String, javax.management.MBeanServer);
 private static void unregisterAsyncAppenders(String, javax.management.MBeanServer);
 private static void unregisterAsyncLoggerRingBufferAdmins(String, javax.management.MBeanServer);
 private static void unregisterAsyncLoggerConfigRingBufferAdmins(String, javax.management.MBeanServer);
 private static void unregisterAllMatching(String, javax.management.MBeanServer);
 private static void registerLoggerConfigs(org.apache.logging.log4j.core.LoggerContext, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void registerAppenders(org.apache.logging.log4j.core.LoggerContext, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void register(javax.management.MBeanServer, Object, javax.management.ObjectName) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternMatch$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternMatch$Builder implements org.apache.logging.log4j.core.util.Builder, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private String key;
 private String pattern;
 public void PatternMatch$Builder();
 public PatternMatch$Builder setKey(String);
 public PatternMatch$Builder setPattern(String);
 public PatternMatch build();
 protected Object readResolve() throws java.io.ObjectStreamException;
}

org/apache/logging/log4j/core/layout/JacksonFactory$YAML.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$YAML extends JacksonFactory {
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 public void JacksonFactory$YAML(boolean, boolean);
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForContextMap();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/CsvParameterLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class CsvParameterLayout extends AbstractCsvLayout {
 public static AbstractCsvLayout createDefaultLayout();
 public static AbstractCsvLayout createLayout(org.apache.commons.csv.CSVFormat);
 public static AbstractCsvLayout createLayout(org.apache.logging.log4j.core.config.Configuration, String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String, java.nio.charset.Charset, String, String);
 public void CsvParameterLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/internal/ListChecker$NoopChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class ListChecker$NoopChecker implements ListChecker {
 public void ListChecker$NoopChecker();
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/AbstractStringLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractStringLayout extends AbstractLayout implements org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.impl.LocationAware {
 protected static final int DEFAULT_STRING_BUILDER_SIZE = 1024;
 protected static final int MAX_STRING_BUILDER_SIZE;
 private static final ThreadLocal threadLocal;
 private Encoder textEncoder;
 private final java.nio.charset.Charset charset;
 private final AbstractStringLayout$Serializer footerSerializer;
 private final AbstractStringLayout$Serializer headerSerializer;
 public boolean requiresLocation();
 protected static StringBuilder getStringBuilder();
 private static int size(String, int);
 protected static void trimToMaxSize(StringBuilder);
 protected void AbstractStringLayout(java.nio.charset.Charset);
 protected void AbstractStringLayout(java.nio.charset.Charset, byte[], byte[]);
 protected void AbstractStringLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer);
 protected byte[] getBytes(String);
 public java.nio.charset.Charset getCharset();
 public String getContentType();
 public byte[] getFooter();
 public AbstractStringLayout$Serializer getFooterSerializer();
 public byte[] getHeader();
 public AbstractStringLayout$Serializer getHeaderSerializer();
 private org.apache.logging.log4j.core.impl.DefaultLogEventFactory getLogEventFactory();
 protected Encoder getStringBuilderEncoder();
 protected byte[] serializeToBytes(AbstractStringLayout$Serializer, byte[]);
 protected String serializeToString(AbstractStringLayout$Serializer);
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy$1.class

package org.apache.logging.log4j.core.async;
final synchronized enum ThreadNameCachingStrategy$1 {
 void ThreadNameCachingStrategy$1(String, int);
 public String getThreadName();
}

org/apache/logging/log4j/core/async/AsyncLoggerContextSelector.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerContextSelector extends org.apache.logging.log4j.core.selector.ClassLoaderContextSelector {
 public void AsyncLoggerContextSelector();
 public static boolean isSelected();
 protected org.apache.logging.log4j.core.LoggerContext createContext(String, java.net.URI);
 protected String toContextMapKey(ClassLoader);
 protected String defaultContextName();
}

org/apache/logging/log4j/core/async/AsyncLogger.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLogger extends org.apache.logging.log4j.core.Logger implements com.lmax.disruptor.EventTranslatorVararg {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final org.apache.logging.log4j.core.ContextDataInjector CONTEXT_DATA_INJECTOR;
 private static final ThreadNameCachingStrategy THREAD_NAME_CACHING_STRATEGY;
 private final ThreadLocal threadLocalTranslator;
 private final AsyncLoggerDisruptor loggerDisruptor;
 private volatile boolean includeLocation;
 private volatile org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private final AsyncLogger$TranslatorType threadLocalTranslatorType;
 private final AsyncLogger$TranslatorType varargTranslatorType;
 public void AsyncLogger(org.apache.logging.log4j.core.LoggerContext, String, org.apache.logging.log4j.message.MessageFactory, AsyncLoggerDisruptor);
 protected void updateConfiguration(org.apache.logging.log4j.core.config.Configuration);
 org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 private RingBufferLogEventTranslator getCachedTranslator();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 private AsyncLogger$TranslatorType getTranslatorType();
 private boolean isReused(org.apache.logging.log4j.message.Message);
 private void logWithThreadLocalTranslator(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logWithThreadLocalTranslator(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void publish(RingBufferLogEventTranslator);
 private void handleRingBufferFull(RingBufferLogEventTranslator);
 private void initTranslator(RingBufferLogEventTranslator, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void initTranslator(RingBufferLogEventTranslator, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void initTranslatorThreadValues(RingBufferLogEventTranslator);
 private StackTraceElement calcLocationIfRequested(String);
 private void logWithVarargTranslator(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logWithVarargTranslator(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public transient void translateTo(RingBufferLogEvent, long, Object[]);
 void logMessageInCurrentThread(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void handleRingBufferFull(StackTraceElement, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void actualAsyncLog(RingBufferLogEvent);
 private void onPropertiesPresent(RingBufferLogEvent, java.util.List);
 private static org.apache.logging.log4j.util.StringMap getContextData(RingBufferLogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerDisruptor.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerDisruptor extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static final int SLEEP_MILLIS_BETWEEN_DRAIN_ATTEMPTS = 50;
 private static final int MAX_DRAIN_ATTEMPTS_BEFORE_SHUTDOWN = 200;
 private final Object queueFullEnqueueLock;
 private volatile com.lmax.disruptor.dsl.Disruptor disruptor;
 private String contextName;
 private boolean useThreadLocalTranslator;
 private long backgroundThreadId;
 private AsyncQueueFullPolicy asyncQueueFullPolicy;
 private int ringBufferSize;
 void AsyncLoggerDisruptor(String);
 public String getContextName();
 public void setContextName(String);
 com.lmax.disruptor.dsl.Disruptor getDisruptor();
 public synchronized void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private static boolean hasBacklog(com.lmax.disruptor.dsl.Disruptor);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String);
 EventRoute getEventRoute(org.apache.logging.log4j.Level);
 private int remainingDisruptorCapacity();
 private boolean hasLog4jBeenShutDown(com.lmax.disruptor.dsl.Disruptor);
 boolean tryPublish(RingBufferLogEventTranslator);
 void enqueueLogMessageWhenQueueFull(RingBufferLogEventTranslator);
 void enqueueLogMessageWhenQueueFull(com.lmax.disruptor.EventTranslatorVararg, AsyncLogger, StackTraceElement, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private boolean synchronizeEnqueueWhenQueueFull();
 private void logWarningOnNpeFromDisruptorPublish(RingBufferLogEventTranslator);
 private void logWarningOnNpeFromDisruptorPublish(org.apache.logging.log4j.Level, String, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isUseThreadLocals();
 public void setUseThreadLocals(boolean);
}

org/apache/logging/log4j/core/LifeCycle$State.class

package org.apache.logging.log4j.core;
public final synchronized enum LifeCycle$State {
 public static final LifeCycle$State INITIALIZING;
 public static final LifeCycle$State INITIALIZED;
 public static final LifeCycle$State STARTING;
 public static final LifeCycle$State STARTED;
 public static final LifeCycle$State STOPPING;
 public static final LifeCycle$State STOPPED;
 public static LifeCycle$State[] values();
 public static LifeCycle$State valueOf(String);
 private void LifeCycle$State(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/DateLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class DateLookup implements StrLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void DateLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 private String formatDate(long, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/message/ExtendedThreadInformation.class

package org.apache.logging.log4j.core.message;
synchronized class ExtendedThreadInformation implements org.apache.logging.log4j.message.ThreadInformation {
 private final management.ThreadInfo threadInfo;
 void ExtendedThreadInformation(management.ThreadInfo);
 public void printThreadInfo(StringBuilder);
 public void printStack(StringBuilder, StackTraceElement[]);
 private void formatLock(StringBuilder, management.LockInfo);
 private void formatState(StringBuilder, management.ThreadInfo);
}

org/apache/logging/log4j/core/LifeCycle.class

package org.apache.logging.log4j.core;
public abstract interface LifeCycle {
 public abstract LifeCycle$State getState();
 public abstract void initialize();
 public abstract void start();
 public abstract void stop();
 public abstract boolean isStarted();
 public abstract boolean isStopped();
}

org/apache/logging/log4j/core/Logger$LoggerProxy.class

package org.apache.logging.log4j.core;
public synchronized class Logger$LoggerProxy implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final String name;
 private final org.apache.logging.log4j.message.MessageFactory messageFactory;
 public void Logger$LoggerProxy(String, org.apache.logging.log4j.message.MessageFactory);
 protected Object readResolve() throws java.io.ObjectStreamException;
}

org/apache/logging/log4j/core/LoggerContext.class

package org.apache.logging.log4j.core;
public synchronized class LoggerContext extends AbstractLifeCycle implements org.apache.logging.log4j.spi.LoggerContext, AutoCloseable, org.apache.logging.log4j.spi.Terminable, config.ConfigurationListener, org.apache.logging.log4j.spi.LoggerContextShutdownEnabled {
 public static final String PROPERTY_CONFIG = config;
 private static final config.Configuration NULL_CONFIGURATION;
 private final org.apache.logging.log4j.spi.LoggerRegistry loggerRegistry;
 private final java.util.concurrent.CopyOnWriteArrayList propertyChangeListeners;
 private volatile java.util.List listeners;
 private volatile config.Configuration configuration;
 private static final String EXTERNAL_CONTEXT_KEY = __EXTERNAL_CONTEXT_KEY__;
 private java.util.concurrent.ConcurrentMap externalMap;
 private String contextName;
 private volatile java.net.URI configLocation;
 private util.Cancellable shutdownCallback;
 private final java.util.concurrent.locks.Lock configLock;
 public void LoggerContext(String);
 public void LoggerContext(String, Object);
 public void LoggerContext(String, Object, java.net.URI);
 public void LoggerContext(String, Object, String);
 public void addShutdownListener(org.apache.logging.log4j.spi.LoggerContextShutdownAware);
 public java.util.List getListeners();
 public static LoggerContext getContext();
 public static LoggerContext getContext(boolean);
 public static LoggerContext getContext(ClassLoader, boolean, java.net.URI);
 public void start();
 public void start(config.Configuration);
 private void setUpShutdownHook();
 public void close();
 public void terminate();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getName();
 public Logger getRootLogger();
 public void setName(String);
 public Object getObject(String);
 public Object putObject(String, Object);
 public Object putObjectIfAbsent(String, Object);
 public Object removeObject(String);
 public boolean removeObject(String, Object);
 public void setExternalContext(Object);
 public Object getExternalContext();
 public Logger getLogger(String);
 public java.util.Collection getLoggers();
 public Logger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public config.Configuration getConfiguration();
 public void addFilter(Filter);
 public void removeFilter(Filter);
 public config.Configuration setConfiguration(config.Configuration);
 private void firePropertyChangeEvent(java.beans.PropertyChangeEvent);
 public void addPropertyChangeListener(java.beans.PropertyChangeListener);
 public void removePropertyChangeListener(java.beans.PropertyChangeListener);
 public java.net.URI getConfigLocation();
 public void setConfigLocation(java.net.URI);
 private void reconfigure(java.net.URI);
 public void reconfigure();
 public void reconfigure(config.Configuration);
 public void updateLoggers();
 public void updateLoggers(config.Configuration);
 public synchronized void onChange(config.Reconfigurable);
 private void initApiModule();
 protected Logger newInstance(LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/TimeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class TimeFilter extends AbstractFilter {
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final java.time.format.DateTimeFormatter FORMATTER;
 private static final long HOUR_MS = 3600000;
 private static final long DAY_MS = 86400000;
 private volatile long start;
 private final java.time.LocalTime startTime;
 private volatile long end;
 private final java.time.LocalTime endTime;
 private final long duration;
 private final java.time.ZoneId timeZone;
 void TimeFilter(java.time.LocalTime, java.time.LocalTime, java.time.ZoneId, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result, java.time.LocalDate);
 private void TimeFilter(java.time.LocalTime, java.time.LocalTime, java.time.ZoneId, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private synchronized void adjustTimes(long);
 org.apache.logging.log4j.core.Filter$Result filter(long);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static TimeFilter createFilter(String, String, String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private static java.time.LocalTime parseTimestamp(String, java.time.LocalTime);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/TextRenderer.class

package org.apache.logging.log4j.core.pattern;
public abstract interface TextRenderer {
 public abstract void render(String, StringBuilder, String);
 public abstract void render(StringBuilder, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ThreadNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadNamePatternConverter extends LogEventPatternConverter {
 private static final ThreadNamePatternConverter INSTANCE;
 private void ThreadNamePatternConverter();
 public static ThreadNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$PatternFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$PatternFormatter extends DatePatternConverter$Formatter {
 private final org.apache.logging.log4j.core.util.datetime.FastDateFormat fastDateFormat;
 private final StringBuilder cachedBuffer;
 void DatePatternConverter$PatternFormatter(org.apache.logging.log4j.core.util.datetime.FastDateFormat);
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Cyan.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Cyan extends AbstractStyleNameConverter {
 protected static final String NAME = cyan;
 public void AbstractStyleNameConverter$Cyan(java.util.List, String);
 public static AbstractStyleNameConverter$Cyan newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/ThreadIdPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadIdPatternConverter extends LogEventPatternConverter {
 private static final ThreadIdPatternConverter INSTANCE;
 private void ThreadIdPatternConverter();
 public static ThreadIdPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AnsiEscape.class

package org.apache.logging.log4j.core.pattern;
public final synchronized enum AnsiEscape {
 public static final AnsiEscape CSI;
 public static final AnsiEscape SUFFIX;
 public static final AnsiEscape SEPARATOR;
 public static final AnsiEscape NORMAL;
 public static final AnsiEscape BRIGHT;
 public static final AnsiEscape DIM;
 public static final AnsiEscape UNDERLINE;
 public static final AnsiEscape BLINK;
 public static final AnsiEscape REVERSE;
 public static final AnsiEscape HIDDEN;
 public static final AnsiEscape BLACK;
 public static final AnsiEscape FG_BLACK;
 public static final AnsiEscape RED;
 public static final AnsiEscape FG_RED;
 public static final AnsiEscape GREEN;
 public static final AnsiEscape FG_GREEN;
 public static final AnsiEscape YELLOW;
 public static final AnsiEscape FG_YELLOW;
 public static final AnsiEscape BLUE;
 public static final AnsiEscape FG_BLUE;
 public static final AnsiEscape MAGENTA;
 public static final AnsiEscape FG_MAGENTA;
 public static final AnsiEscape CYAN;
 public static final AnsiEscape FG_CYAN;
 public static final AnsiEscape WHITE;
 public static final AnsiEscape FG_WHITE;
 public static final AnsiEscape DEFAULT;
 public static final AnsiEscape FG_DEFAULT;
 public static final AnsiEscape BG_BLACK;
 public static final AnsiEscape BG_RED;
 public static final AnsiEscape BG_GREEN;
 public static final AnsiEscape BG_YELLOW;
 public static final AnsiEscape BG_BLUE;
 public static final AnsiEscape BG_MAGENTA;
 public static final AnsiEscape BG_CYAN;
 public static final AnsiEscape BG_WHITE;
 private static final String DEFAULT_STYLE;
 private final String code;
 public static AnsiEscape[] values();
 public static AnsiEscape valueOf(String);
 private void AnsiEscape(String, int, String);
 public static String getDefaultStyle();
 public String getCode();
 public static java.util.Map createMap(String, String[]);
 public static java.util.Map createMap(String[], String[]);
 public static transient String createSequence(String[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/HtmlTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class HtmlTextRenderer implements TextRenderer {
 public void HtmlTextRenderer(String[]);
 public void render(String, StringBuilder, String);
 public void render(StringBuilder, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class MessagePatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/ClassNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ClassNamePatternConverter extends NamePatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final String NA = ?;
 private void ClassNamePatternConverter(String[]);
 public static ClassNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$4.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$4 {
 void EncodingPatternConverter$EscapeFormat$4(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class LevelPatternConverter extends LogEventPatternConverter {
 private static final String OPTION_LENGTH = length;
 private static final String OPTION_LOWER = lowerCase;
 private static final LevelPatternConverter INSTANCE;
 private void LevelPatternConverter();
 public static LevelPatternConverter newInstance(String[]);
 private static String left(org.apache.logging.log4j.Level, int);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public String getStyleClass(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntryDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ListOfMapEntryDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ListOfMapEntryDeserializer();
 public java.util.Map deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/ObjectMessageSerializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class ObjectMessageSerializer extends com.fasterxml.jackson.databind.ser.std.StdScalarSerializer {
 private static final long serialVersionUID = 1;
 void ObjectMessageSerializer();
 public void serialize(org.apache.logging.log4j.message.ObjectMessage, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

Log4j-config.xsd

org/apache/logging/log4j/core/appender/AppenderSet$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderSet$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Node node;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void AppenderSet$Builder();
 public AppenderSet build();
 public org.apache.logging.log4j.core.config.Node getNode();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public AppenderSet$Builder withNode(org.apache.logging.log4j.core.config.Node);
 public AppenderSet$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/appender/rewrite/LoggerNameLevelRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public synchronized class LoggerNameLevelRewritePolicy implements RewritePolicy {
 private final String loggerName;
 private final java.util.Map map;
 public static LoggerNameLevelRewritePolicy createPolicy(String, org.apache.logging.log4j.core.util.KeyValuePair[]);
 private static org.apache.logging.log4j.Level getLevel(String);
 private void LoggerNameLevelRewritePolicy(String, java.util.Map);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/HttpAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class HttpAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private java.net.URL url;
 private String method;
 private int connectTimeoutMillis;
 private int readTimeoutMillis;
 private org.apache.logging.log4j.core.config.Property[] headers;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private boolean verifyHostname;
 public void HttpAppender$Builder();
 public HttpAppender build();
 public java.net.URL getUrl();
 public String getMethod();
 public int getConnectTimeoutMillis();
 public int getReadTimeoutMillis();
 public org.apache.logging.log4j.core.config.Property[] getHeaders();
 public org.apache.logging.log4j.core.net.ssl.SslConfiguration getSslConfiguration();
 public boolean isVerifyHostname();
 public HttpAppender$Builder setUrl(java.net.URL);
 public HttpAppender$Builder setMethod(String);
 public HttpAppender$Builder setConnectTimeoutMillis(int);
 public HttpAppender$Builder setReadTimeoutMillis(int);
 public HttpAppender$Builder setHeaders(org.apache.logging.log4j.core.config.Property[]);
 public HttpAppender$Builder setSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public HttpAppender$Builder setVerifyHostname(boolean);
}

org/apache/logging/log4j/core/appender/rolling/action/GzCompressAction$ConfigurableLevelGZIPOutputStream.class

package org.apache.logging.log4j.core.appender.rolling.action;
final synchronized class GzCompressAction$ConfigurableLevelGZIPOutputStream extends java.util.zip.GZIPOutputStream {
 void GzCompressAction$ConfigurableLevelGZIPOutputStream(java.io.OutputStream, int, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/rolling/action/FileRenameAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class FileRenameAction extends AbstractAction {
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean renameEmptyFiles;
 public void FileRenameAction(java.io.File, java.io.File, boolean);
 public boolean execute();
 public java.io.File getDestination();
 public java.io.File getSource();
 public boolean isRenameEmptyFiles();
 public static boolean execute(java.io.File, java.io.File, boolean);
 private static boolean moveFile(java.nio.file.Path, java.nio.file.Path) throws java.io.IOException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAny.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAny implements PathCondition {
 private final PathCondition[] components;
 private transient void IfAny(PathCondition[]);
 public PathCondition[] getDeleteFilters();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAny createOrCondition(PathCondition[]);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$EmptyQueue.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$EmptyQueue extends java.util.concurrent.ArrayBlockingQueue {
 private static final long serialVersionUID = 1;
 void RollingFileManager$EmptyQueue();
 public int remainingCapacity();
 public boolean add(Runnable);
 public void put(Runnable) throws InterruptedException;
 public boolean offer(Runnable, long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public boolean addAll(java.util.Collection);
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy$CronTrigger.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class CronTriggeringPolicy$CronTrigger implements Runnable {
 private void CronTriggeringPolicy$CronTrigger(CronTriggeringPolicy);
 public void run();
}

org/apache/logging/log4j/core/appender/rolling/AbstractRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized class AbstractRolloverStrategy implements RolloverStrategy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 public static final java.util.regex.Pattern PATTERN_COUNTER;
 protected final org.apache.logging.log4j.core.lookup.StrSubstitutor strSubstitutor;
 protected void AbstractRolloverStrategy(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 protected action.Action merge(action.Action, java.util.List, boolean);
 protected int suffixLength(String);
 protected java.util.SortedMap getEligibleFiles(RollingFileManager);
 protected java.util.SortedMap getEligibleFiles(RollingFileManager, boolean);
 protected java.util.SortedMap getEligibleFiles(String, String);
 protected java.util.SortedMap getEligibleFiles(String, String, boolean);
 protected java.util.SortedMap getEligibleFiles(String, String, String, boolean);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AsyncAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class AsyncAppender extends AbstractAppender {
 private static final int DEFAULT_QUEUE_SIZE = 1024;
 private final java.util.concurrent.BlockingQueue queue;
 private final int queueSize;
 private final boolean blocking;
 private final long shutdownTimeout;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private final String errorRef;
 private final boolean includeLocation;
 private org.apache.logging.log4j.core.config.AppenderControl errorAppender;
 private AsyncAppenderEventDispatcher dispatcher;
 private org.apache.logging.log4j.core.async.AsyncQueueFullPolicy asyncQueueFullPolicy;
 private void AsyncAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.AppenderRef[], String, int, boolean, boolean, long, org.apache.logging.log4j.core.config.Configuration, boolean, org.apache.logging.log4j.core.async.BlockingQueueFactory, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private boolean transfer(org.apache.logging.log4j.core.LogEvent);
 public void logMessageInCurrentThread(org.apache.logging.log4j.core.LogEvent);
 public void logMessageInBackgroundThread(org.apache.logging.log4j.core.LogEvent);
 private boolean handleInterruptedException(org.apache.logging.log4j.core.LogEvent);
 private void logToErrorAppenderIfNecessary(boolean, org.apache.logging.log4j.core.LogEvent);
 public static AsyncAppender createAppender(org.apache.logging.log4j.core.config.AppenderRef[], String, boolean, long, int, String, boolean, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Configuration, boolean);
 public static AsyncAppender$Builder newBuilder();
 public String[] getAppenderRefStrings();
 public boolean isIncludeLocation();
 public boolean isBlocking();
 public String getErrorRef();
 public int getQueueCapacity();
 public int getQueueRemainingCapacity();
 public int getQueueSize();
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$OutputStreamManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$OutputStreamManagerFactory implements ManagerFactory {
 private void OutputStreamAppender$OutputStreamManagerFactory();
 public OutputStreamManager createManager(String, OutputStreamAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/AbstractWriterAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractWriterAppender extends AbstractAppender {
 protected final boolean immediateFlush;
 private final WriterManager manager;
 private final java.util.concurrent.locks.ReadWriteLock readWriteLock;
 private final java.util.concurrent.locks.Lock readLock;
 protected void AbstractWriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.config.Property[], WriterManager);
 protected void AbstractWriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, boolean, boolean, WriterManager);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public WriterManager getManager();
 public org.apache.logging.log4j.core.StringLayout getStringLayout();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/db/ColumnMapping$1.class

package org.apache.logging.log4j.core.appender.db;
synchronized class ColumnMapping$1 {
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class ColumnConfig$1 {
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractDriverManagerConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class AbstractDriverManagerConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String actualConnectionString;
 private final String connectionString;
 private final String driverClassName;
 private final char[] password;
 private final org.apache.logging.log4j.core.config.Property[] properties;
 private final char[] userName;
 public static org.apache.logging.log4j.Logger getLogger();
 public void AbstractDriverManagerConnectionSource(String, String, String, char[], char[], org.apache.logging.log4j.core.config.Property[]);
 public String getActualConnectionString();
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String getConnectionString();
 public String getDriverClassName();
 public char[] getPassword();
 public org.apache.logging.log4j.core.config.Property[] getProperties();
 public char[] getUserName();
 protected void loadDriver() throws java.sql.SQLException;
 protected void loadDriver(String) throws java.sql.SQLException;
 protected java.util.Properties toProperties(org.apache.logging.log4j.core.config.Property[]);
 public String toString();
 protected String toString(char[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/DriverManagerConnectionSource$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class DriverManagerConnectionSource$Builder extends AbstractDriverManagerConnectionSource$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void DriverManagerConnectionSource$Builder();
 public DriverManagerConnectionSource build();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$Reconnector.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private volatile boolean shutdown;
 private void JdbcDatabaseManager$Reconnector(JdbcDatabaseManager);
 public void latch();
 void reconnect() throws java.sql.SQLException;
 public void run();
 public void shutdown();
 public String toString();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class RoutingAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 public static final String STATIC_VARIABLES_KEY = staticVariables;
 private static final String DEFAULT_KEY = ROUTING_APPENDER_DEFAULT;
 private final Routes routes;
 private Route defaultRoute;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final java.util.concurrent.ConcurrentMap createdAppenders;
 private final java.util.Map createdAppendersUnmodifiableView;
 private final java.util.concurrent.ConcurrentMap referencedAppenders;
 private final org.apache.logging.log4j.core.appender.rewrite.RewritePolicy rewritePolicy;
 private final PurgePolicy purgePolicy;
 private final org.apache.logging.log4j.core.script.AbstractScript defaultRouteScript;
 private final java.util.concurrent.ConcurrentMap scriptStaticVariables;
 public static RoutingAppender$Builder newBuilder();
 private void RoutingAppender(String, org.apache.logging.log4j.core.Filter, boolean, Routes, org.apache.logging.log4j.core.appender.rewrite.RewritePolicy, org.apache.logging.log4j.core.config.Configuration, PurgePolicy, org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void updatePurgePolicy(String, org.apache.logging.log4j.core.LogEvent);
 private synchronized RoutingAppender$RouteAppenderControl getControl(String, org.apache.logging.log4j.core.LogEvent);
 private RoutingAppender$RouteAppenderControl getAppender(String);
 private org.apache.logging.log4j.core.Appender createAppender(Route, org.apache.logging.log4j.core.LogEvent);
 public java.util.Map getAppenders();
 public void deleteAppender(String);
 public static RoutingAppender createAppender(String, String, Routes, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.appender.rewrite.RewritePolicy, PurgePolicy, org.apache.logging.log4j.core.Filter);
 public Route getDefaultRoute();
 public org.apache.logging.log4j.core.script.AbstractScript getDefaultRouteScript();
 public PurgePolicy getPurgePolicy();
 public org.apache.logging.log4j.core.appender.rewrite.RewritePolicy getRewritePolicy();
 public Routes getRoutes();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public java.util.concurrent.ConcurrentMap getScriptStaticVariables();
}

org/apache/logging/log4j/core/appender/routing/Routes.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class Routes {
 private static final String LOG_EVENT_KEY = logEvent;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final String pattern;
 private final org.apache.logging.log4j.core.script.AbstractScript patternScript;
 private final Route[] routes;
 public static transient Routes createRoutes(String, Route[]);
 public static Routes$Builder newBuilder();
 private transient void Routes(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.script.AbstractScript, String, Route[]);
 public String getPattern(org.apache.logging.log4j.core.LogEvent, java.util.concurrent.ConcurrentMap);
 public org.apache.logging.log4j.core.script.AbstractScript getPatternScript();
 public Route getRoute(String);
 public Route[] getRoutes();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender.class

package org.apache.logging.log4j.core.appender.nosql;
public final synchronized class NoSqlAppender extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender {
 private final String description;
 public static NoSqlAppender createAppender(String, String, org.apache.logging.log4j.core.Filter, String, NoSqlProvider);
 public static NoSqlAppender$Builder newBuilder();
 private void NoSqlAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], NoSqlDatabaseManager);
 public String toString();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$SystemOutStream.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$SystemOutStream extends java.io.OutputStream {
 public void ConsoleAppender$SystemOutStream();
 public void close();
 public void flush();
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/mom/JmsManager.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 static final JmsManager$JmsManagerFactory FACTORY;
 private final JmsManager$JmsManagerConfiguration configuration;
 private volatile JmsManager$Reconnector reconnector;
 private volatile org.apache.logging.log4j.core.net.JndiManager jndiManager;
 private volatile javax.jms.Connection connection;
 private volatile javax.jms.Session session;
 private volatile javax.jms.Destination destination;
 private volatile javax.jms.MessageProducer messageProducer;
 public static JmsManager getJmsManager(String, java.util.Properties, String, String, String, char[], boolean, long);
 private void JmsManager(String, JmsManager$JmsManagerConfiguration);
 private boolean closeConnection();
 private boolean closeJndiManager();
 private boolean closeMessageProducer();
 private boolean closeSession();
 private javax.jms.Connection createConnection(org.apache.logging.log4j.core.net.JndiManager) throws javax.naming.NamingException, javax.jms.JMSException;
 private javax.jms.Destination createDestination(org.apache.logging.log4j.core.net.JndiManager) throws javax.naming.NamingException;
 public javax.jms.Message createMessage(java.io.Serializable) throws javax.jms.JMSException;
 private void createMessageAndSend(org.apache.logging.log4j.core.LogEvent, java.io.Serializable) throws javax.jms.JMSException;
 public javax.jms.MessageConsumer createMessageConsumer() throws javax.jms.JMSException;
 public javax.jms.MessageProducer createMessageProducer(javax.jms.Session, javax.jms.Destination) throws javax.jms.JMSException;
 private JmsManager$Reconnector createReconnector();
 private javax.jms.Session createSession(javax.jms.Connection) throws javax.jms.JMSException;
 public JmsManager$JmsManagerConfiguration getJmsManagerConfiguration();
 org.apache.logging.log4j.core.net.JndiManager getJndiManager();
 Object lookup(String) throws javax.naming.NamingException;
 private javax.jms.MapMessage map(org.apache.logging.log4j.message.MapMessage, javax.jms.MapMessage);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 void send(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/kafka/DefaultKafkaProducerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class DefaultKafkaProducerFactory implements KafkaProducerFactory {
 public void DefaultKafkaProducerFactory();
 public org.apache.kafka.clients.producer.Producer newKafkaProducer(java.util.Properties);
}

org/apache/logging/log4j/core/appender/mom/JmsManager$JmsManagerConfiguration.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsManager$JmsManagerConfiguration {
 private final java.util.Properties jndiProperties;
 private final String connectionFactoryName;
 private final String destinationName;
 private final String userName;
 private final char[] password;
 private final boolean immediateFail;
 private final boolean retry;
 private final long reconnectIntervalMillis;
 void JmsManager$JmsManagerConfiguration(java.util.Properties, String, String, String, char[], boolean, long);
 public String getConnectionFactoryName();
 public String getDestinationName();
 public org.apache.logging.log4j.core.net.JndiManager getJndiManager();
 public java.util.Properties getJndiProperties();
 public char[] getPassword();
 public long getReconnectIntervalMillis();
 public String getUserName();
 public boolean isImmediateFail();
 public boolean isRetry();
 public String toString();
}

org/apache/logging/log4j/core/impl/ExtendedClassInfo.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ExtendedClassInfo implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final boolean exact;
 private final String location;
 private final String version;
 public void ExtendedClassInfo(boolean, String, String);
 public boolean equals(Object);
 public boolean getExact();
 public String getLocation();
 public String getVersion();
 public int hashCode();
 public void renderOn(StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 public String toString();
}

org/apache/logging/log4j/core/impl/Log4jContextFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jContextFactory implements org.apache.logging.log4j.spi.LoggerContextFactory, org.apache.logging.log4j.core.util.ShutdownCallbackRegistry {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final boolean SHUTDOWN_HOOK_ENABLED;
 private final org.apache.logging.log4j.core.selector.ContextSelector selector;
 private final org.apache.logging.log4j.core.util.ShutdownCallbackRegistry shutdownCallbackRegistry;
 public void Log4jContextFactory();
 public void Log4jContextFactory(org.apache.logging.log4j.core.selector.ContextSelector);
 public void Log4jContextFactory(org.apache.logging.log4j.core.util.ShutdownCallbackRegistry);
 public void Log4jContextFactory(org.apache.logging.log4j.core.selector.ContextSelector, org.apache.logging.log4j.core.util.ShutdownCallbackRegistry);
 private static org.apache.logging.log4j.core.selector.ContextSelector createContextSelector();
 private static org.apache.logging.log4j.core.util.ShutdownCallbackRegistry createShutdownCallbackRegistry();
 private void initializeShutdownCallbackRegistry();
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI, String);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, java.util.List, String);
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.selector.ContextSelector getSelector();
 public org.apache.logging.log4j.core.util.ShutdownCallbackRegistry getShutdownCallbackRegistry();
 public void removeContext(org.apache.logging.log4j.spi.LoggerContext);
 public boolean isClassLoaderDependent();
 public org.apache.logging.log4j.core.util.Cancellable addShutdownCallback(Runnable);
 public boolean isShutdownHookEnabled();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/BasicContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class BasicContextSelector implements ContextSelector {
 private static final org.apache.logging.log4j.core.LoggerContext CONTEXT;
 public void BasicContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext locateContext(String, String);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/CoreContextSelectors.class

package org.apache.logging.log4j.core.selector;
public synchronized class CoreContextSelectors {
 public static final Class[] CLASSES;
 public void CoreContextSelectors();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/BasicCommandLineArguments.class

package org.apache.logging.log4j.core.tools;
public synchronized class BasicCommandLineArguments {
 private boolean help;
 public void BasicCommandLineArguments();
 public boolean isHelp();
 public void setHelp(boolean);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultOptionRenderer implements CommandLine$Help$IOptionRenderer {
 public String requiredMarker;
 public Object command;
 private String sep;
 private boolean showDefault;
 void CommandLine$Help$DefaultOptionRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
 private Object createDefaultValue(reflect.Field);
 private CommandLine$Help$Ansi$Text createLongOptionText(reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme, String);
 private CommandLine$Help$Ansi$Text[][] renderDescriptionLines(CommandLine$Option, CommandLine$Help$ColorScheme, String, String, CommandLine$Help$Ansi$Text, Object);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$URLConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$URLConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$URLConverter();
 public java.net.URL convert(String) throws java.net.MalformedURLException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$URIConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$URIConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$URIConverter();
 public java.net.URI convert(String) throws java.net.URISyntaxException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$TextTable$Cell.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$TextTable$Cell {
 public final int column;
 public final int row;
 public void CommandLine$Help$TextTable$Cell(int, int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$FloatConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$FloatConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$FloatConverter();
 public Float convert(String);
}

org/apache/logging/log4j/core/net/ssl/MemoryPasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class MemoryPasswordProvider implements PasswordProvider {
 private final char[] password;
 public void MemoryPasswordProvider(char[]);
 public char[] getPassword();
 public void clearSecrets();
}

org/apache/logging/log4j/core/net/SocketPerformancePreferences.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketPerformancePreferences implements org.apache.logging.log4j.core.util.Builder, Cloneable {
 private int bandwidth;
 private int connectionTime;
 private int latency;
 public void SocketPerformancePreferences();
 public static SocketPerformancePreferences newBuilder();
 public void apply(java.net.Socket);
 public SocketPerformancePreferences build();
 public int getBandwidth();
 public int getConnectionTime();
 public int getLatency();
 public void setBandwidth(int);
 public void setConnectionTime(int);
 public void setLatency(int);
 public String toString();
}

org/apache/logging/log4j/core/net/SocketAddress$Builder.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketAddress$Builder implements org.apache.logging.log4j.core.util.Builder {
 private java.net.InetAddress host;
 private int port;
 public void SocketAddress$Builder();
 public SocketAddress$Builder setHost(java.net.InetAddress);
 public SocketAddress$Builder setPort(int);
 public SocketAddress build();
}

org/apache/logging/log4j/core/net/TcpSocketManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class TcpSocketManager$FactoryData {
 protected final String host;
 protected final int port;
 protected final int connectTimeoutMillis;
 protected final int reconnectDelayMillis;
 protected final boolean immediateFail;
 protected final org.apache.logging.log4j.core.Layout layout;
 protected final int bufferSize;
 protected final SocketOptions socketOptions;
 public void TcpSocketManager$FactoryData(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public String toString();
}

org/apache/logging/log4j/core/net/DatagramSocketManager$DatagramSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$DatagramSocketManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void DatagramSocketManager$DatagramSocketManagerFactory();
 public DatagramSocketManager createManager(String, DatagramSocketManager$FactoryData);
}

org/apache/logging/log4j/core/util/Constants.class

package org.apache.logging.log4j.core.util;
public final synchronized class Constants {
 public static final String LOG4J_LOG_EVENT_FACTORY = Log4jLogEventFactory;
 public static final String LOG4J_CONTEXT_SELECTOR = Log4jContextSelector;
 public static final String LOG4J_DEFAULT_STATUS_LEVEL = Log4jDefaultStatusLevel;
 public static final String JNDI_CONTEXT_NAME = java:comp/env/log4j/context-name;
 public static final int MILLIS_IN_SECONDS = 1000;
 public static final boolean FORMAT_MESSAGES_IN_BACKGROUND;
 public static final boolean FORMAT_MESSAGES_PATTERN_DISABLE_LOOKUPS;
 public static final boolean IS_WEB_APP;
 public static final boolean ENABLE_THREADLOCALS;
 public static final boolean ENABLE_DIRECT_ENCODERS;
 public static final int INITIAL_REUSABLE_MESSAGE_SIZE;
 public static final int MAX_REUSABLE_MESSAGE_SIZE;
 public static final int ENCODER_CHAR_BUFFER_SIZE;
 public static final int ENCODER_BYTE_BUFFER_SIZE;
 private static int size(String, int);
 private void Constants();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat$FixedFormat.class

package org.apache.logging.log4j.core.util.datetime;
public final synchronized enum FixedDateFormat$FixedFormat {
 public static final FixedDateFormat$FixedFormat ABSOLUTE;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_MICROS;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_NANOS;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_PERIOD;
 public static final FixedDateFormat$FixedFormat COMPACT;
 public static final FixedDateFormat$FixedFormat DATE;
 public static final FixedDateFormat$FixedFormat DATE_PERIOD;
 public static final FixedDateFormat$FixedFormat DEFAULT;
 public static final FixedDateFormat$FixedFormat DEFAULT_MICROS;
 public static final FixedDateFormat$FixedFormat DEFAULT_NANOS;
 public static final FixedDateFormat$FixedFormat DEFAULT_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601_BASIC;
 public static final FixedDateFormat$FixedFormat ISO8601_BASIC_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HH;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HHMM;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HHCMM;
 public static final FixedDateFormat$FixedFormat ISO8601_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601_PERIOD_MICROS;
 public static final FixedDateFormat$FixedFormat US_MONTH_DAY_YEAR2_TIME;
 public static final FixedDateFormat$FixedFormat US_MONTH_DAY_YEAR4_TIME;
 private static final String DEFAULT_SECOND_FRACTION_PATTERN = SSS;
 private static final int MILLI_FRACTION_DIGITS;
 private static final char SECOND_FRACTION_PATTERN = 110;
 private final String pattern;
 private final String datePattern;
 private final int escapeCount;
 private final char timeSeparatorChar;
 private final int timeSeparatorLength;
 private final char millisSeparatorChar;
 private final int millisSeparatorLength;
 private final int secondFractionDigits;
 private final FixedDateFormat$FixedTimeZoneFormat fixedTimeZoneFormat;
 private static final int[] EMPTY_RANGE;
 public static FixedDateFormat$FixedFormat[] values();
 public static FixedDateFormat$FixedFormat valueOf(String);
 private void FixedDateFormat$FixedFormat(String, int, String, String, int, char, int, char, int, int, FixedDateFormat$FixedTimeZoneFormat);
 public String getPattern();
 public String getDatePattern();
 public static FixedDateFormat$FixedFormat lookup(String);
 static FixedDateFormat$FixedFormat lookupIgnoringNanos(String);
 private static int[] nanoRange(String);
 public int getLength();
 public int getDatePatternLength();
 public FastDateFormat getFastDateFormat();
 public FastDateFormat getFastDateFormat(java.util.TimeZone);
 public int getSecondFractionDigits();
 public FixedDateFormat$FixedTimeZoneFormat getFixedTimeZoneFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$StrategyAndWidth.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$StrategyAndWidth {
 final FastDateParser$Strategy strategy;
 final int width;
 void FastDateParser$StrategyAndWidth(FastDateParser$Strategy, int);
 int getMaxWidth(java.util.ListIterator);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitMonthField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitMonthField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$TwoDigitMonthField INSTANCE;
 void FastDatePrinter$TwoDigitMonthField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneNumberRule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneNumberRule implements FastDatePrinter$Rule {
 static final FastDatePrinter$TimeZoneNumberRule INSTANCE_COLON;
 static final FastDatePrinter$TimeZoneNumberRule INSTANCE_NO_COLON;
 final boolean mColon;
 void FastDatePrinter$TimeZoneNumberRule(boolean);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Booleans.class

package org.apache.logging.log4j.core.util;
public final synchronized class Booleans {
 private void Booleans();
 public static boolean parseBoolean(String, boolean);
}

org/apache/logging/log4j/core/util/Builder.class

package org.apache.logging.log4j.core.util;
public abstract interface Builder {
 public abstract Object build();
}

org/apache/logging/log4j/core/util/WatchManager$LocalUUID.class

package org.apache.logging.log4j.core.util;
synchronized class WatchManager$LocalUUID {
 private static final long LOW_MASK = 4294967295;
 private static final long MID_MASK = 281470681743360;
 private static final long HIGH_MASK = 1152640029630136320;
 private static final int NODE_SIZE = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_4 = 32;
 private static final int SHIFT_6 = 48;
 private static final int HUNDRED_NANOS_PER_MILLI = 10000;
 private static final long NUM_100NS_INTERVALS_SINCE_UUID_EPOCH = 122192928000000000;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private static final long TYPE1 = 4096;
 private static final byte VARIANT = -128;
 private static final int SEQUENCE_MASK = 16383;
 private void WatchManager$LocalUUID();
 public static java.util.UUID get();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ContextDataProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface ContextDataProvider {
 public abstract java.util.Map supplyContextData();
 public org.apache.logging.log4j.util.StringMap supplyStringMap();
}

org/apache/logging/log4j/core/util/SecretKeyProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface SecretKeyProvider {
 public abstract javax.crypto.SecretKey getSecretKey();
}

org/apache/logging/log4j/core/util/Log4jThread.class

package org.apache.logging.log4j.core.util;
public synchronized class Log4jThread extends Thread {
 static final String PREFIX = Log4j2-;
 private static final java.util.concurrent.atomic.AtomicLong threadInitNumber;
 private static long nextThreadNum();
 private static String toThreadName(Object);
 public void Log4jThread();
 public void Log4jThread(Runnable);
 public void Log4jThread(Runnable, String);
 public void Log4jThread(String);
 public void Log4jThread(ThreadGroup, Runnable);
 public void Log4jThread(ThreadGroup, Runnable, String);
 public void Log4jThread(ThreadGroup, Runnable, String, long);
 public void Log4jThread(ThreadGroup, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/AbstractLifeCycle.class

package org.apache.logging.log4j.core;
public synchronized class AbstractLifeCycle implements LifeCycle2 {
 public static final int DEFAULT_STOP_TIMEOUT = 0;
 public static final java.util.concurrent.TimeUnit DEFAULT_STOP_TIMEUNIT;
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private volatile LifeCycle$State state;
 public void AbstractLifeCycle();
 protected static org.apache.logging.log4j.Logger getStatusLogger();
 protected boolean equalsImpl(Object);
 public LifeCycle$State getState();
 protected int hashCodeImpl();
 public boolean isInitialized();
 public boolean isStarted();
 public boolean isStarting();
 public boolean isStopped();
 public boolean isStopping();
 protected void setStarted();
 protected void setStarting();
 protected void setState(LifeCycle$State);
 protected void setStopped();
 protected void setStopping();
 public void initialize();
 public void start();
 public void stop();
 protected boolean stop(java.util.concurrent.Future);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/ConfigurationFileWatcher.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationFileWatcher extends org.apache.logging.log4j.core.util.AbstractWatcher implements org.apache.logging.log4j.core.util.FileWatcher {
 private java.io.File file;
 private long lastModifiedMillis;
 public void ConfigurationFileWatcher(Configuration, Reconfigurable, java.util.List, long);
 public long getLastModified();
 public void fileModified(java.io.File);
 public void watching(org.apache.logging.log4j.core.util.Source);
 public boolean isModified();
 public org.apache.logging.log4j.core.util.Watcher newWatcher(Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/config/AppenderRef.class

package org.apache.logging.log4j.core.config;
public final synchronized class AppenderRef {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String ref;
 private final org.apache.logging.log4j.Level level;
 private final org.apache.logging.log4j.core.Filter filter;
 private void AppenderRef(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public String getRef();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.core.Filter getFilter();
 public String toString();
 public static AppenderRef createAppenderRef(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ScriptArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.AbstractConfiguration configuration;
 private org.apache.logging.log4j.core.config.Node node;
 public void ScriptArbiter$Builder();
 public ScriptArbiter$Builder setConfiguration(org.apache.logging.log4j.core.config.AbstractConfiguration);
 public ScriptArbiter$Builder setNode(org.apache.logging.log4j.core.config.Node);
 public ScriptArbiter$Builder asBuilder();
 public ScriptArbiter build();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/ResolverUtil$Test.class

package org.apache.logging.log4j.core.config.plugins.util;
public abstract interface ResolverUtil$Test {
 public abstract boolean matches(Class);
 public abstract boolean matches(java.net.URI);
 public abstract boolean doesMatchClass();
 public abstract boolean doesMatchResource();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharsetConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharsetConverter implements TypeConverter {
 public void TypeConverters$CharsetConverter();
 public java.nio.charset.Charset convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BigDecimalConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BigDecimalConverter implements TypeConverter {
 public void TypeConverters$BigDecimalConverter();
 public java.math.BigDecimal convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ShortConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ShortConverter implements TypeConverter {
 public void TypeConverters$ShortConverter();
 public Short convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/DateTypeConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public final synchronized class DateTypeConverter {
 private static final java.util.Map CONSTRUCTORS;
 public static java.util.Date fromMillis(long, Class);
 private void DateTypeConverter();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UrlConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UrlConverter implements TypeConverter {
 public void TypeConverters$UrlConverter();
 public java.net.URL convert(String) throws java.net.MalformedURLException;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CronExpressionConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CronExpressionConverter implements TypeConverter {
 public void TypeConverters$CronExpressionConverter();
 public org.apache.logging.log4j.core.util.CronExpression convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$PatternConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$PatternConverter implements TypeConverter {
 public void TypeConverters$PatternConverter();
 public java.util.regex.Pattern convert(String);
}

org/apache/logging/log4j/core/config/Order.class

package org.apache.logging.log4j.core.config;
public abstract interface Order extends annotation.Annotation {
 public abstract int value();
}

org/apache/logging/log4j/core/config/status/StatusConfiguration.class

package org.apache.logging.log4j.core.config.status;
public synchronized class StatusConfiguration {
 private static final java.io.PrintStream DEFAULT_STREAM;
 private static final org.apache.logging.log4j.Level DEFAULT_STATUS;
 private static final StatusConfiguration$Verbosity DEFAULT_VERBOSITY;
 private final java.util.Collection errorMessages;
 private final org.apache.logging.log4j.status.StatusLogger logger;
 private volatile boolean initialized;
 private java.io.PrintStream destination;
 private org.apache.logging.log4j.Level status;
 private StatusConfiguration$Verbosity verbosity;
 private String[] verboseClasses;
 public void StatusConfiguration();
 public void error(String);
 public StatusConfiguration withDestination(String);
 private java.io.PrintStream parseStreamName(String) throws java.net.URISyntaxException, java.io.FileNotFoundException;
 public StatusConfiguration withStatus(String);
 public StatusConfiguration withStatus(org.apache.logging.log4j.Level);
 public StatusConfiguration withVerbosity(String);
 public transient StatusConfiguration withVerboseClasses(String[]);
 public void initialize();
 private boolean configureExistingStatusConsoleListener();
 private void registerNewStatusConsoleListener();
 private void migrateSavedLogMessages();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfigurationFactory.class

package org.apache.logging.log4j.core.config.xml;
public synchronized class XmlConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 public static final String[] SUFFIXES;
 public void XmlConfigurationFactory();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/json/JsonConfiguration$Status.class

package org.apache.logging.log4j.core.config.json;
synchronized class JsonConfiguration$Status {
 private final com.fasterxml.jackson.databind.JsonNode node;
 private final String name;
 private final JsonConfiguration$ErrorType errorType;
 public void JsonConfiguration$Status(String, com.fasterxml.jackson.databind.JsonNode, JsonConfiguration$ErrorType);
 public String toString();
}

org/apache/logging/log4j/core/config/properties/PropertiesConfigurationFactory.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 public void PropertiesConfigurationFactory();
 protected String[] getSupportedTypes();
 public PropertiesConfiguration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
}

org/apache/logging/log4j/core/config/ConfigurationListener.class

package org.apache.logging.log4j.core.config;
public abstract interface ConfigurationListener {
 public abstract void onChange(Reconfigurable);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultRootLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultRootLoggerComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder {
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, boolean);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultLayoutComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultLayoutComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder {
 public void DefaultLayoutComponentBuilder(DefaultConfigurationBuilder, String);
}

org/apache/logging/log4j/core/config/builder/api/CustomLevelComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface CustomLevelComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/KeyValuePairComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface KeyValuePairComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/Component.class

package org.apache.logging.log4j.core.config.builder.api;
public synchronized class Component {
 private final java.util.Map attributes;
 private final java.util.List components;
 private final String pluginType;
 private final String value;
 public void Component(String);
 public void Component(String, String);
 public void Component(String, String, String);
 public void Component();
 public String addAttribute(String, String);
 public void addComponent(Component);
 public java.util.Map getAttributes();
 public java.util.List getComponents();
 public String getPluginType();
 public String getValue();
}

org/apache/logging/log4j/core/config/Node.class

package org.apache.logging.log4j.core.config;
public synchronized class Node {
 public static final String CATEGORY = Core;
 private Node parent;
 private final String name;
 private String value;
 private final plugins.util.PluginType type;
 private final java.util.Map attributes;
 private final java.util.List children;
 private Object object;
 public void Node(Node, String, plugins.util.PluginType);
 public void Node();
 public void Node(Node);
 public void setParent(Node);
 public java.util.Map getAttributes();
 public java.util.List getChildren();
 public boolean hasChildren();
 public String getValue();
 public void setValue(String);
 public Node getParent();
 public String getName();
 public boolean isRoot();
 public void setObject(Object);
 public Object getObject();
 public Object getObject(Class);
 public boolean isInstanceOf(Class);
 public plugins.util.PluginType getType();
 public String toString();
}

org/apache/logging/log4j/core/jmx/LoggerContextAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface LoggerContextAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s;
 public static final String NOTIF_TYPE_RECONFIGURED = com.apache.logging.log4j.core.jmx.config.reconfigured;
 public abstract javax.management.ObjectName getObjectName();
 public abstract String getStatus();
 public abstract String getName();
 public abstract String getConfigLocationUri();
 public abstract void setConfigLocationUri(String) throws java.net.URISyntaxException, java.io.IOException;
 public abstract String getConfigText() throws java.io.IOException;
 public abstract String getConfigText(String) throws java.io.IOException;
 public abstract void setConfigText(String, String);
 public abstract String getConfigName();
 public abstract String getConfigClassName();
 public abstract String getConfigFilter();
 public abstract java.util.Map getConfigProperties();
}

org/apache/logging/log4j/core/jmx/LoggerConfigAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class LoggerConfigAdmin implements LoggerConfigAdminMBean {
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 private final org.apache.logging.log4j.core.config.LoggerConfig loggerConfig;
 private final javax.management.ObjectName objectName;
 public void LoggerConfigAdmin(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.LoggerConfig);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLevel();
 public void setLevel(String);
 public boolean isAdditive();
 public void setAdditive(boolean);
 public boolean isIncludeLocation();
 public String getFilter();
 public String[] getAppenderRefs();
}

org/apache/logging/log4j/core/layout/PatternMatch.class

package org.apache.logging.log4j.core.layout;
public final synchronized class PatternMatch {
 private final String key;
 private final String pattern;
 public void PatternMatch(String, String);
 public String getKey();
 public String getPattern();
 public String toString();
 public static PatternMatch$Builder newBuilder();
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/layout/HtmlLayout$FontSize.class

package org.apache.logging.log4j.core.layout;
public final synchronized enum HtmlLayout$FontSize {
 public static final HtmlLayout$FontSize SMALLER;
 public static final HtmlLayout$FontSize XXSMALL;
 public static final HtmlLayout$FontSize XSMALL;
 public static final HtmlLayout$FontSize SMALL;
 public static final HtmlLayout$FontSize MEDIUM;
 public static final HtmlLayout$FontSize LARGE;
 public static final HtmlLayout$FontSize XLARGE;
 public static final HtmlLayout$FontSize XXLARGE;
 public static final HtmlLayout$FontSize LARGER;
 private final String size;
 public static HtmlLayout$FontSize[] values();
 public static HtmlLayout$FontSize valueOf(String);
 private void HtmlLayout$FontSize(String, int, String);
 public String getFontSize();
 public static HtmlLayout$FontSize getFontSize(String);
 public HtmlLayout$FontSize larger();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/XmlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class XmlLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void XmlLayout$Builder();
 public XmlLayout build();
}

org/apache/logging/log4j/core/layout/internal/IncludeChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class IncludeChecker implements ListChecker {
 private final java.util.List list;
 public void IncludeChecker(java.util.List);
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/XmlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class XmlLayout extends AbstractJacksonLayout {
 private static final String ROOT_TAG = Events;
 protected void XmlLayout(boolean, boolean, boolean, boolean, java.nio.charset.Charset, boolean);
 private void XmlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static XmlLayout createLayout(boolean, boolean, boolean, boolean, java.nio.charset.Charset, boolean);
 public static XmlLayout$Builder newBuilder();
 public static XmlLayout createDefaultLayout();
}

org/apache/logging/log4j/core/layout/XmlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class XmlLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractJacksonLayout$Builder extends AbstractStringLayout$Builder {
 private boolean eventEol;
 private String endOfLine;
 private boolean compact;
 private boolean complete;
 private boolean locationInfo;
 private boolean properties;
 private boolean includeStacktrace;
 private boolean stacktraceAsString;
 private boolean includeNullDelimiter;
 private boolean includeTimeMillis;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 public void AbstractJacksonLayout$Builder();
 protected String toStringOrNull(byte[]);
 public boolean getEventEol();
 public String getEndOfLine();
 public boolean isCompact();
 public boolean isComplete();
 public boolean isLocationInfo();
 public boolean isProperties();
 public boolean isIncludeStacktrace();
 public boolean isStacktraceAsString();
 public boolean isIncludeNullDelimiter();
 public boolean isIncludeTimeMillis();
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public AbstractJacksonLayout$Builder setEventEol(boolean);
 public AbstractJacksonLayout$Builder setEndOfLine(String);
 public AbstractJacksonLayout$Builder setCompact(boolean);
 public AbstractJacksonLayout$Builder setComplete(boolean);
 public AbstractJacksonLayout$Builder setLocationInfo(boolean);
 public AbstractJacksonLayout$Builder setProperties(boolean);
 public AbstractJacksonLayout$Builder setIncludeStacktrace(boolean);
 public AbstractJacksonLayout$Builder setStacktraceAsString(boolean);
 public AbstractJacksonLayout$Builder setIncludeNullDelimiter(boolean);
 public AbstractJacksonLayout$Builder setIncludeTimeMillis(boolean);
 public AbstractJacksonLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
}

org/apache/logging/log4j/core/layout/HtmlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class HtmlLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean locationInfo;
 private String title;
 private String contentType;
 private java.nio.charset.Charset charset;
 private HtmlLayout$FontSize fontSize;
 private String fontName;
 private String datePattern;
 private String timezone;
 private void HtmlLayout$Builder();
 public HtmlLayout$Builder withLocationInfo(boolean);
 public HtmlLayout$Builder withTitle(String);
 public HtmlLayout$Builder withContentType(String);
 public HtmlLayout$Builder withCharset(java.nio.charset.Charset);
 public HtmlLayout$Builder withFontSize(HtmlLayout$FontSize);
 public HtmlLayout$Builder withFontName(String);
 public HtmlLayout$Builder setDatePattern(String);
 public HtmlLayout$Builder setTimezone(String);
 public HtmlLayout build();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSelectorSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternSelectorSerializer implements AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
 private final PatternSelector patternSelector;
 private final org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private void PatternLayout$PatternSelectorSerializer(PatternSelector, org.apache.logging.log4j.core.pattern.RegexReplacement);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/osgi/BundleContextSelector.class

package org.apache.logging.log4j.core.osgi;
public synchronized class BundleContextSelector extends org.apache.logging.log4j.core.selector.ClassLoaderContextSelector {
 public void BundleContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 private org.apache.logging.log4j.core.LoggerContext getLoggerContext(org.osgi.framework.Bundle);
 private void removeLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 private static boolean hasContext(org.osgi.framework.Bundle);
 private static org.apache.logging.log4j.core.LoggerContext locateContext(org.osgi.framework.Bundle, java.net.URI);
}

org/apache/logging/log4j/core/async/AsyncLoggerDefaultExceptionHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerDefaultExceptionHandler extends AbstractAsyncExceptionHandler {
 public void AsyncLoggerDefaultExceptionHandler();
}

org/apache/logging/log4j/core/async/AsyncLoggerDisruptor$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerDisruptor$1 extends org.apache.logging.log4j.core.util.Log4jThreadFactory {
 void AsyncLoggerDisruptor$1(AsyncLoggerDisruptor, String, boolean, int);
 public Thread newThread(Runnable);
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$Idle.class

package org.apache.logging.log4j.core.async;
abstract interface JCToolsBlockingQueueFactory$Idle {
 public abstract int idle(int);
}

org/apache/logging/log4j/core/async/AsyncLoggerContext.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerContext extends org.apache.logging.log4j.core.LoggerContext {
 private final AsyncLoggerDisruptor loggerDisruptor;
 public void AsyncLoggerContext(String);
 public void AsyncLoggerContext(String, Object);
 public void AsyncLoggerContext(String, Object, java.net.URI);
 public void AsyncLoggerContext(String, Object, String);
 protected org.apache.logging.log4j.core.Logger newInstance(org.apache.logging.log4j.core.LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 public void setName(String);
 public void start();
 public void start(org.apache.logging.log4j.core.config.Configuration);
 private void maybeStartHelper(org.apache.logging.log4j.core.config.Configuration);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin();
 public void setUseThreadLocals(boolean);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDelegate.class

package org.apache.logging.log4j.core.async;
public abstract interface AsyncLoggerConfigDelegate {
 public abstract org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String, String);
 public abstract EventRoute getEventRoute(org.apache.logging.log4j.Level);
 public abstract void enqueueEvent(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 public abstract boolean tryEnqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 public abstract void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
}

org/apache/logging/log4j/core/lookup/UpperLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class UpperLookup implements StrLookup {
 public void UpperLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/parser/JsonLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class JsonLogEventParser extends AbstractJacksonLogEventParser {
 public void JsonLogEventParser();
}

org/apache/logging/log4j/core/script/ScriptManager$ThreadLocalScriptRunner.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$ThreadLocalScriptRunner extends ScriptManager$AbstractScriptRunner {
 private final AbstractScript script;
 private final ThreadLocal runners;
 public void ScriptManager$ThreadLocalScriptRunner(ScriptManager, AbstractScript);
 public Object execute(javax.script.Bindings);
 public AbstractScript getScript();
 public javax.script.ScriptEngine getScriptEngine();
}

org/apache/logging/log4j/core/script/Script.class

package org.apache.logging.log4j.core.script;
public synchronized class Script extends AbstractScript {
 private static final String ATTR_LANGUAGE = language;
 private static final String ATTR_SCRIPT_TEXT = scriptText;
 static final String PLUGIN_NAME = Script;
 public void Script(String, String, String);
 public static Script createScript(String, String, String);
 public String toString();
}

org/apache/logging/log4j/core/script/ScriptManager$ScriptRunner.class

package org.apache.logging.log4j.core.script;
abstract interface ScriptManager$ScriptRunner {
 public abstract javax.script.Bindings createBindings();
 public abstract Object execute(javax.script.Bindings);
 public abstract AbstractScript getScript();
 public abstract javax.script.ScriptEngine getScriptEngine();
}

org/apache/logging/log4j/core/DefaultLoggerContextAccessor.class

package org.apache.logging.log4j.core;
public synchronized class DefaultLoggerContextAccessor implements LoggerContextAccessor {
 public static DefaultLoggerContextAccessor INSTANCE;
 public void DefaultLoggerContextAccessor();
 public LoggerContext getLoggerContext();
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/DenyAllFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class DenyAllFilter extends AbstractFilter {
 private void DenyAllFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static DenyAllFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/filter/ThreadContextMapFilter.class

package org.apache.logging.log4j.core.filter;
public synchronized class ThreadContextMapFilter extends MapFilter {
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 private final String key;
 private final String value;
 private final boolean useMap;
 public void ThreadContextMapFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private org.apache.logging.log4j.core.Filter$Result filter();
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public static ThreadContextMapFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/AbstractFilterable$Builder.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilterable$Builder {
 private org.apache.logging.log4j.core.Filter filter;
 private org.apache.logging.log4j.core.config.Property[] propertyArray;
 public void AbstractFilterable$Builder();
 public AbstractFilterable$Builder asBuilder();
 public org.apache.logging.log4j.core.Filter getFilter();
 public org.apache.logging.log4j.core.config.Property[] getPropertyArray();
 public AbstractFilterable$Builder setFilter(org.apache.logging.log4j.core.Filter);
 public AbstractFilterable$Builder setPropertyArray(org.apache.logging.log4j.core.config.Property[]);
 public AbstractFilterable$Builder withFilter(org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/filter/BurstFilter$LogDelay.class

package org.apache.logging.log4j.core.filter;
synchronized class BurstFilter$LogDelay implements java.util.concurrent.Delayed {
 private long expireTime;
 void BurstFilter$LogDelay(long);
 public void setDelay(long);
 public long getDelay(java.util.concurrent.TimeUnit);
 public int compareTo(java.util.concurrent.Delayed);
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class NameAbbreviator {
 private static final NameAbbreviator DEFAULT;
 public void NameAbbreviator();
 public static NameAbbreviator getAbbreviator(String);
 public static NameAbbreviator getDefaultAbbreviator();
 public abstract void abbreviate(String, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ThreadPriorityPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadPriorityPatternConverter extends LogEventPatternConverter {
 private static final ThreadPriorityPatternConverter INSTANCE;
 private void ThreadPriorityPatternConverter();
 public static ThreadPriorityPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MdcPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MdcPatternConverter extends LogEventPatternConverter {
 private final String key;
 private final String[] keys;
 private final boolean full;
 private static final org.apache.logging.log4j.util.TriConsumer WRITE_KEY_VALUES_INTO;
 private void MdcPatternConverter(String[]);
 public static MdcPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private static void appendFully(org.apache.logging.log4j.util.ReadOnlyStringMap, StringBuilder);
 private static void appendSelectedKeys(String[], org.apache.logging.log4j.util.ReadOnlyStringMap, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$UnixMillisFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$UnixMillisFormatter extends DatePatternConverter$Formatter {
 private void DatePatternConverter$UnixMillisFormatter();
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class AbstractStyleNameConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final String style;
 protected void AbstractStyleNameConverter(String, java.util.List, String);
 protected static AbstractStyleNameConverter newInstance(Class, String, org.apache.logging.log4j.core.config.Configuration, String[]);
 private static java.util.List toPatternFormatterList(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class DatePatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private static final String UNIX_FORMAT = UNIX;
 private static final String UNIX_MILLIS_FORMAT = UNIX_MILLIS;
 private final String[] options;
 private final ThreadLocal threadLocalMutableInstant;
 private final ThreadLocal threadLocalFormatter;
 private final java.util.concurrent.atomic.AtomicReference cachedTime;
 private final DatePatternConverter$Formatter formatter;
 private void DatePatternConverter(String[]);
 private DatePatternConverter$CachedTime fromEpochMillis(long);
 private DatePatternConverter$Formatter createFormatter(String[]);
 public static DatePatternConverter newInstance(String[]);
 private static DatePatternConverter$Formatter createFixedFormatter(org.apache.logging.log4j.core.util.datetime.FixedDateFormat);
 private static DatePatternConverter$Formatter createNonFixedFormatter(String[]);
 public void format(java.util.Date, StringBuilder);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(long, StringBuilder);
 private org.apache.logging.log4j.core.time.MutableInstant getMutableInstant();
 public void format(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 private void formatWithoutAllocation(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 private DatePatternConverter$Formatter getThreadLocalFormatter();
 private void formatWithoutThreadLocals(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public void format(Object, StringBuilder);
 public transient void format(StringBuilder, Object[]);
 public String getPattern();
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$LevelMapLevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class LevelPatternConverter$LevelMapLevelPatternConverter extends LevelPatternConverter {
 private final java.util.Map levelMap;
 private void LevelPatternConverter$LevelMapLevelPatternConverter(java.util.Map);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$SimpleLevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class LevelPatternConverter$SimpleLevelPatternConverter extends LevelPatternConverter {
 private void LevelPatternConverter$SimpleLevelPatternConverter();
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized enum EncodingPatternConverter$EscapeFormat {
 public static final EncodingPatternConverter$EscapeFormat HTML;
 public static final EncodingPatternConverter$EscapeFormat JSON;
 public static final EncodingPatternConverter$EscapeFormat CRLF;
 public static final EncodingPatternConverter$EscapeFormat XML;
 public static EncodingPatternConverter$EscapeFormat[] values();
 public static EncodingPatternConverter$EscapeFormat valueOf(String);
 private void EncodingPatternConverter$EscapeFormat(String, int);
 abstract void escape(StringBuilder, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class ThrowablePatternConverter extends LogEventPatternConverter {
 protected final java.util.List formatters;
 private String rawOption;
 private final boolean subShortOption;
 private final boolean nonStandardLineSeparator;
 protected final org.apache.logging.log4j.core.impl.ThrowableFormatOptions options;
 protected void ThrowablePatternConverter(String, String, String[]);
 protected void ThrowablePatternConverter(String, String, String[], org.apache.logging.log4j.core.config.Configuration);
 public static ThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void formatSubShortOption(Throwable, String, StringBuilder);
 private void formatOption(Throwable, String, StringBuilder);
 public boolean handlesThrowable();
 protected String getSuffix(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.impl.ThrowableFormatOptions getOptions();
}

org/apache/logging/log4j/core/pattern/FileDatePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FileDatePatternConverter {
 private void FileDatePatternConverter();
 public static PatternConverter newInstance(String[]);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Black.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Black extends AbstractStyleNameConverter {
 protected static final String NAME = black;
 public void AbstractStyleNameConverter$Black(java.util.List, String);
 public static AbstractStyleNameConverter$Black newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/LogEventPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class LogEventPatternConverter extends AbstractPatternConverter {
 protected void LogEventPatternConverter(String, String);
 public abstract void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public boolean handlesThrowable();
 public boolean isVariable();
}

org/apache/logging/log4j/core/jackson/Initializers$SetupContextJsonInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SetupContextJsonInitializer {
 void Initializers$SetupContextJsonInitializer();
 void setupModule(com.fasterxml.jackson.databind.Module$SetupContext, boolean, boolean);
}

org/apache/logging/log4j/core/jackson/ContextDataDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ContextDataDeserializer();
 public org.apache.logging.log4j.util.StringMap deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jYamlModule.class

package org.apache.logging.log4j.core.jackson;
final synchronized class Log4jYamlModule extends com.fasterxml.jackson.databind.module.SimpleModule {
 private static final long serialVersionUID = 1;
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 void Log4jYamlModule(boolean, boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/LevelMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LevelMixIn {
 void LevelMixIn();
 public static org.apache.logging.log4j.Level getLevel(String);
 public abstract String name();
}

org/apache/logging/log4j/core/appender/NullAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class NullAppender extends AbstractAppender {
 public static final String PLUGIN_NAME = Null;
 public static NullAppender createAppender(String);
 private void NullAppender(String);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/rewrite/PropertiesRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class PropertiesRewritePolicy implements RewritePolicy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map properties;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private void PropertiesRewritePolicy(org.apache.logging.log4j.core.config.Configuration, java.util.List);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static PropertiesRewritePolicy createPolicy(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized enum ConsoleAppender$Target {
 public static final ConsoleAppender$Target SYSTEM_OUT;
 public static final ConsoleAppender$Target SYSTEM_ERR;
 public static ConsoleAppender$Target[] values();
 public static ConsoleAppender$Target valueOf(String);
 private void ConsoleAppender$Target(String, int);
 public abstract java.nio.charset.Charset getDefaultCharset();
 protected java.nio.charset.Charset getCharset(String, java.nio.charset.Charset);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/AbstractTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized class AbstractTriggeringPolicy extends org.apache.logging.log4j.core.AbstractLifeCycle implements TriggeringPolicy {
 public void AbstractTriggeringPolicy();
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class CronTriggeringPolicy$1 {
}

org/apache/logging/log4j/core/appender/rolling/action/AbstractAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract synchronized class AbstractAction implements Action {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private boolean complete;
 private boolean interrupted;
 protected void AbstractAction();
 public abstract boolean execute() throws java.io.IOException;
 public synchronized void run();
 public synchronized void close();
 public boolean isComplete();
 public boolean isInterrupted();
 protected void reportException(Exception);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized enum FileExtension {
 public static final FileExtension ZIP;
 public static final FileExtension GZ;
 public static final FileExtension BZIP2;
 public static final FileExtension DEFLATE;
 public static final FileExtension PACK200;
 public static final FileExtension XZ;
 private final String extension;
 public static FileExtension[] values();
 public static FileExtension valueOf(String);
 public static FileExtension lookup(String);
 public static FileExtension lookupForFile(String);
 private void FileExtension(String, int, String);
 abstract action.Action createCompressAction(String, String, boolean, int);
 String getExtension();
 boolean isExtensionFor(String);
 int length();
 java.io.File source(String);
 java.io.File target(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$FactoryData extends org.apache.logging.log4j.core.appender.ConfigurationFactoryData {
 private final String fileName;
 private final String pattern;
 private final boolean append;
 private final boolean bufferedIO;
 private final int bufferSize;
 private final boolean immediateFlush;
 private final boolean createOnDemand;
 private final TriggeringPolicy policy;
 private final RolloverStrategy strategy;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void RollingFileManager$FactoryData(String, String, boolean, boolean, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean, boolean, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public TriggeringPolicy getTriggeringPolicy();
 public RolloverStrategy getRolloverStrategy();
 public String getPattern();
 public String toString();
}

org/apache/logging/log4j/core/appender/WriterAppender$WriterManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$WriterManagerFactory implements ManagerFactory {
 private void WriterAppender$WriterManagerFactory();
 public WriterManager createManager(String, WriterAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/SocketAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class SocketAppender extends AbstractOutputStreamAppender {
 private final Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 public static SocketAppender$Builder newBuilder();
 protected void SocketAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.net.AbstractSocketManager, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 protected void SocketAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.net.AbstractSocketManager, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public static SocketAppender createAppender(String, int, org.apache.logging.log4j.core.net.Protocol, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, int, boolean, String, boolean, boolean, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, org.apache.logging.log4j.core.config.Configuration);
 public static SocketAppender createAppender(String, String, String, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, org.apache.logging.log4j.core.config.Configuration);
 protected static org.apache.logging.log4j.core.net.AbstractSocketManager createSocketManager(String, org.apache.logging.log4j.core.net.Protocol, String, int, int, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, boolean, org.apache.logging.log4j.core.Layout, int);
 protected static org.apache.logging.log4j.core.net.AbstractSocketManager createSocketManager(String, org.apache.logging.log4j.core.net.Protocol, String, int, int, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, boolean, org.apache.logging.log4j.core.Layout, int, org.apache.logging.log4j.core.net.SocketOptions);
 protected void directEncodeEvent(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/AbstractAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractAppender extends org.apache.logging.log4j.core.filter.AbstractFilterable implements org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.core.impl.LocationAware {
 private final String name;
 private final boolean ignoreExceptions;
 private final org.apache.logging.log4j.core.Layout layout;
 private org.apache.logging.log4j.core.ErrorHandler handler;
 public static int parseInt(String, int);
 public boolean requiresLocation();
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout);
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean);
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[]);
 public void error(String);
 public void error(String, org.apache.logging.log4j.core.LogEvent, Throwable);
 public void error(String, Throwable);
 public org.apache.logging.log4j.core.ErrorHandler getHandler();
 public org.apache.logging.log4j.core.Layout getLayout();
 public String getName();
 public boolean ignoreExceptions();
 public void setHandler(org.apache.logging.log4j.core.ErrorHandler);
 protected java.io.Serializable toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String toString();
}

org/apache/logging/log4j/core/appender/FileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$FactoryData extends ConfigurationFactoryData {
 private final boolean append;
 private final boolean locking;
 private final boolean bufferedIo;
 private final int bufferSize;
 private final boolean createOnDemand;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void FileManager$FactoryData(boolean, boolean, boolean, int, boolean, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$FactoryData {
 private final boolean append;
 private final boolean immediateFlush;
 private final int regionLength;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 public void MemoryMappedFileManager$FactoryData(boolean, boolean, int, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$FactoryData.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$FactoryData extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager$AbstractFactoryData {
 private final ConnectionSource connectionSource;
 private final String tableName;
 private final ColumnConfig[] columnConfigs;
 private final org.apache.logging.log4j.core.appender.db.ColumnMapping[] columnMappings;
 private final boolean immediateFail;
 private final boolean retry;
 private final long reconnectIntervalMillis;
 private final boolean truncateStrings;
 protected void JdbcDatabaseManager$FactoryData(int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long, boolean);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class JdbcAppender$1 {
}

org/apache/logging/log4j/core/appender/AppenderSet$1.class

package org.apache.logging.log4j.core.appender;
synchronized class AppenderSet$1 {
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileAppender$1 {
}

org/apache/logging/log4j/core/appender/ScriptAppenderSelector$Builder.class

package org.apache.logging.log4j.core.appender;
public final synchronized class ScriptAppenderSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private AppenderSet appenderSet;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String name;
 private org.apache.logging.log4j.core.script.AbstractScript script;
 public void ScriptAppenderSelector$Builder();
 public org.apache.logging.log4j.core.Appender build();
 public AppenderSet getAppenderSet();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public String getName();
 public org.apache.logging.log4j.core.script.AbstractScript getScript();
 public ScriptAppenderSelector$Builder withAppenderNodeSet(AppenderSet);
 public ScriptAppenderSelector$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ScriptAppenderSelector$Builder withName(String);
 public ScriptAppenderSelector$Builder withScript(org.apache.logging.log4j.core.script.AbstractScript);
}

org/apache/logging/log4j/core/appender/mom/JmsAppender$Builder.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final int DEFAULT_RECONNECT_INTERVAL_MILLIS = 5000;
 private String factoryName;
 private String providerUrl;
 private String urlPkgPrefixes;
 private String securityPrincipalName;
 private String securityCredentials;
 private String factoryBindingName;
 private String destinationBindingName;
 private String userName;
 private char[] password;
 private long reconnectIntervalMillis;
 private boolean immediateFail;
 private JmsManager jmsManager;
 private void JmsAppender$Builder();
 public JmsAppender build();
 public JmsAppender$Builder setDestinationBindingName(String);
 public JmsAppender$Builder setFactoryBindingName(String);
 public JmsAppender$Builder setFactoryName(String);
 public JmsAppender$Builder setImmediateFail(boolean);
 public JmsAppender$Builder setJmsManager(JmsManager);
 public JmsAppender$Builder setPassword(char[]);
 public JmsAppender$Builder setPassword(String);
 public JmsAppender$Builder setProviderUrl(String);
 public JmsAppender$Builder setReconnectIntervalMillis(long);
 public JmsAppender$Builder setSecurityCredentials(String);
 public JmsAppender$Builder setSecurityPrincipalName(String);
 public JmsAppender$Builder setUrlPkgPrefixes(String);
 public JmsAppender$Builder setUsername(String);
 public JmsAppender$Builder setUserName(String);
 public String toString();
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$JeroMqManagerFactory.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$JeroMqManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JeroMqManager$JeroMqManagerFactory();
 public JeroMqManager createManager(String, JeroMqManager$JeroMqConfiguration);
}

org/apache/logging/log4j/core/impl/ThrowableProxyRenderer.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyRenderer {
 private static final String TAB = 	;
 private static final String CAUSED_BY_LABEL = Caused by: ;
 private static final String SUPPRESSED_LABEL = Suppressed: ;
 private static final String WRAPPED_BY_LABEL = Wrapped by: ;
 private void ThrowableProxyRenderer();
 static void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatCause(StringBuilder, String, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatThrowableProxy(StringBuilder, String, String, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatSuppressed(StringBuilder, String, ThrowableProxy[], java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatElements(StringBuilder, String, int, StackTraceElement[], ExtendedStackTraceElement[], java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void renderSuffix(String, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 private static void appendSuppressedCount(StringBuilder, String, int, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatEntry(ExtendedStackTraceElement, StringBuilder, String, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static boolean ignoreElement(StackTraceElement, java.util.List);
 static void formatExtendedStackTraceTo(ThrowableProxy, StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 static void formatCauseStackTrace(ThrowableProxy, StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void renderOn(ThrowableProxy, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyHelper {
 private void ThrowableProxyHelper();
 static ExtendedStackTraceElement[] toExtendedStackTrace(ThrowableProxy, java.util.Stack, java.util.Map, StackTraceElement[], StackTraceElement[]);
 static ThrowableProxy[] toSuppressedProxies(Throwable, java.util.Set);
 private static ThrowableProxyHelper$CacheEntry toCacheEntry(Class, boolean);
 private static Class loadClass(ClassLoader, String);
 private static Class loadClass(String);
}

org/apache/logging/log4j/core/impl/ExtendedStackTraceElement.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ExtendedStackTraceElement implements java.io.Serializable {
 static final ExtendedStackTraceElement[] EMPTY_ARRAY;
 private static final long serialVersionUID = -2171069569241280505;
 private final ExtendedClassInfo extraClassInfo;
 private final StackTraceElement stackTraceElement;
 public void ExtendedStackTraceElement(StackTraceElement, ExtendedClassInfo);
 public void ExtendedStackTraceElement(String, String, String, int, boolean, String, String);
 public boolean equals(Object);
 public String getClassName();
 public boolean getExact();
 public ExtendedClassInfo getExtraClassInfo();
 public String getFileName();
 public int getLineNumber();
 public String getLocation();
 public String getMethodName();
 public StackTraceElement getStackTraceElement();
 public String getVersion();
 public int hashCode();
 public boolean isNativeMethod();
 void renderOn(StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 private void render(StackTraceElement, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/NamedContextSelector.class

package org.apache.logging.log4j.core.selector;
public abstract interface NamedContextSelector extends ContextSelector {
 public abstract org.apache.logging.log4j.core.LoggerContext locateContext(String, Object, java.net.URI);
 public abstract org.apache.logging.log4j.core.LoggerContext removeContext(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$InetAddressConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$InetAddressConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$InetAddressConverter();
 public java.net.InetAddress convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$1.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized class CommandLine$Help$1 implements CommandLine$Help$IParamLabelRenderer {
 void CommandLine$Help$1();
 public CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 public String separator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharacterConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharacterConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharacterConverter();
 public Character convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Assert.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized class CommandLine$Assert {
 static Object notNull(Object, String);
 private void CommandLine$Assert();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$FileConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$FileConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$FileConverter();
 public java.io.File convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ISO8601TimeConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ISO8601TimeConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ISO8601TimeConverter();
 public java.sql.Time convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Interpreter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Interpreter {
 private final java.util.Map commands;
 private final java.util.Map converterRegistry;
 private final java.util.Map optionName2Field;
 private final java.util.Map singleCharOption2Field;
 private final java.util.List requiredFields;
 private final java.util.List positionalParametersFields;
 private final Object command;
 private boolean isHelpRequested;
 private String separator;
 private int position;
 void CommandLine$Interpreter(CommandLine, Object);
 transient java.util.List parse(String[]);
 private void parse(java.util.List, java.util.Stack, String[]);
 private void processArguments(java.util.List, java.util.Stack, java.util.Collection, java.util.Set, String[]) throws Exception;
 private boolean resemblesOption(String);
 private void handleUnmatchedArguments(String);
 private void handleUnmatchedArguments(java.util.Stack);
 private void processRemainderAsPositionalParameters(java.util.Collection, java.util.Set, java.util.Stack) throws Exception;
 private void processPositionalParameter(java.util.Collection, java.util.Set, java.util.Stack) throws Exception;
 private void processStandaloneOption(java.util.Collection, java.util.Set, String, java.util.Stack, boolean) throws Exception;
 private void processClusteredShortOptions(java.util.Collection, java.util.Set, String, java.util.Stack) throws Exception;
 private int applyOption(reflect.Field, Class, CommandLine$Range, boolean, java.util.Stack, java.util.Set, String) throws Exception;
 private int applyValueToSingleValuedField(reflect.Field, CommandLine$Range, java.util.Stack, Class, java.util.Set, String) throws Exception;
 private int applyValuesToMapField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private void consumeMapArguments(reflect.Field, CommandLine$Range, java.util.Stack, Class[], CommandLine$ITypeConverter, CommandLine$ITypeConverter, java.util.Map, String) throws Exception;
 private void consumeOneMapArgument(reflect.Field, CommandLine$Range, java.util.Stack, Class[], CommandLine$ITypeConverter, CommandLine$ITypeConverter, java.util.Map, int, String) throws Exception;
 private void checkMaxArityExceeded(CommandLine$Range, int, reflect.Field, String[]);
 private int applyValuesToArrayField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private int applyValuesToCollectionField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private java.util.List consumeArguments(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, int, String) throws Exception;
 private int consumeOneArgument(reflect.Field, CommandLine$Range, java.util.Stack, Class, java.util.List, int, int, String) throws Exception;
 private String splitRegex(reflect.Field);
 private String[] split(String, reflect.Field);
 private boolean isOption(String);
 private Object tryConvert(reflect.Field, int, CommandLine$ITypeConverter, String, Class) throws Exception;
 private String optionDescription(String, reflect.Field, int);
 private boolean isAnyHelpRequested();
 private void updateHelpRequested(reflect.Field);
 private boolean is(reflect.Field, String, boolean);
 private java.util.Collection createCollection(Class) throws Exception;
 private java.util.Map createMap(Class) throws Exception;
 private CommandLine$ITypeConverter getTypeConverter(Class, reflect.Field);
 private void assertNoMissingParameters(reflect.Field, int, java.util.Stack);
 private String trim(String);
 private String unquote(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IParamLabelRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IParamLabelRenderer {
 public abstract CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 public abstract String separator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IParameterRenderer {
 public abstract CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/net/TcpSocketManager$HostResolver.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager$HostResolver {
 public void TcpSocketManager$HostResolver();
 public java.util.List resolveHost(String, int) throws java.net.UnknownHostException;
}

org/apache/logging/log4j/core/net/ssl/SslConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfiguration {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final KeyStoreConfiguration keyStoreConfig;
 private final TrustStoreConfiguration trustStoreConfig;
 private final javax.net.ssl.SSLContext sslContext;
 private final String protocol;
 private final boolean verifyHostName;
 private void SslConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration, boolean);
 public void clearSecrets();
 public javax.net.ssl.SSLSocketFactory getSslSocketFactory();
 public javax.net.ssl.SSLServerSocketFactory getSslServerSocketFactory();
 private javax.net.ssl.SSLContext createSslContext();
 private javax.net.ssl.SSLContext createSslContextWithTrustStoreFailure();
 private javax.net.ssl.SSLContext createSslContextWithKeyStoreFailure();
 private javax.net.ssl.SSLContext createSslContextBasedOnConfiguration() throws KeyStoreConfigurationException, TrustStoreConfigurationException;
 private javax.net.ssl.SSLContext createSslContextWithDefaultKeyManagerFactory() throws TrustStoreConfigurationException;
 private javax.net.ssl.SSLContext createSslContextWithDefaultTrustManagerFactory() throws KeyStoreConfigurationException;
 private javax.net.ssl.SSLContext createDefaultSslContext();
 private javax.net.ssl.SSLContext createSslContext(boolean, boolean) throws KeyStoreConfigurationException, TrustStoreConfigurationException;
 private javax.net.ssl.TrustManagerFactory loadTrustManagerFactory() throws TrustStoreConfigurationException;
 private javax.net.ssl.KeyManagerFactory loadKeyManagerFactory() throws KeyStoreConfigurationException;
 public static SslConfiguration createSSLConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration);
 public static SslConfiguration createSSLConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration, boolean);
 public int hashCode();
 public boolean equals(Object);
 public KeyStoreConfiguration getKeyStoreConfig();
 public TrustStoreConfiguration getTrustStoreConfig();
 public javax.net.ssl.SSLContext getSslContext();
 public String getProtocol();
 public boolean isVerifyHostName();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Advertiser.class

package org.apache.logging.log4j.core.net;
public abstract interface Advertiser {
 public abstract Object advertise(java.util.Map);
 public abstract void unadvertise(Object);
}

org/apache/logging/log4j/core/net/SocketAddress$1.class

package org.apache.logging.log4j.core.net;
synchronized class SocketAddress$1 {
}

org/apache/logging/log4j/core/net/TcpSocketManager$TcpSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager$TcpSocketManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 static TcpSocketManager$HostResolver resolver;
 protected void TcpSocketManager$TcpSocketManagerFactory();
 public TcpSocketManager createManager(String, TcpSocketManager$FactoryData);
 TcpSocketManager createManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, TcpSocketManager$FactoryData);
 java.net.Socket createSocket(TcpSocketManager$FactoryData) throws java.io.IOException;
 protected String errorMessage(TcpSocketManager$FactoryData, java.util.List);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/Format.class

package org.apache.logging.log4j.core.util.datetime;
public abstract synchronized class Format {
 public void Format();
 public final String format(Object);
 public abstract StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 public abstract Object parseObject(String, java.text.ParsePosition);
 public Object parseObject(String) throws java.text.ParseException;
}

org/apache/logging/log4j/core/util/datetime/FormatCache.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FormatCache {
 static final int NONE = -1;
 private final java.util.concurrent.ConcurrentMap cInstanceCache;
 private static final java.util.concurrent.ConcurrentMap cDateTimeInstanceCache;
 void FormatCache();
 public Format getInstance();
 public Format getInstance(String, java.util.TimeZone, java.util.Locale);
 protected abstract Format createInstance(String, java.util.TimeZone, java.util.Locale);
 private Format getDateTimeInstance(Integer, Integer, java.util.TimeZone, java.util.Locale);
 Format getDateTimeInstance(int, int, java.util.TimeZone, java.util.Locale);
 Format getDateInstance(int, java.util.TimeZone, java.util.Locale);
 Format getTimeInstance(int, java.util.TimeZone, java.util.Locale);
 static String getPatternForStyle(Integer, Integer, java.util.Locale);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat$FixedTimeZoneFormat.class

package org.apache.logging.log4j.core.util.datetime;
public final synchronized enum FixedDateFormat$FixedTimeZoneFormat {
 public static final FixedDateFormat$FixedTimeZoneFormat HH;
 public static final FixedDateFormat$FixedTimeZoneFormat HHMM;
 public static final FixedDateFormat$FixedTimeZoneFormat HHCMM;
 private final char timeSeparatorChar;
 private final int timeSeparatorCharLen;
 private final boolean useMinutes;
 private final int length;
 public static FixedDateFormat$FixedTimeZoneFormat[] values();
 public static FixedDateFormat$FixedTimeZoneFormat valueOf(String);
 private void FixedDateFormat$FixedTimeZoneFormat(String, int);
 private void FixedDateFormat$FixedTimeZoneFormat(String, int, char, boolean, int);
 public int getLength();
 private int write(int, char[], int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$Iso8601_Rule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$Iso8601_Rule implements FastDatePrinter$Rule {
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS;
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS_MINUTES;
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS_COLON_MINUTES;
 final int length;
 static FastDatePrinter$Iso8601_Rule getRule(int);
 void FastDatePrinter$Iso8601_Rule(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$CopyQuotedStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$CopyQuotedStrategy extends FastDateParser$Strategy {
 private final String formatField;
 void FastDateParser$CopyQuotedStrategy(String);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
}

org/apache/logging/log4j/core/util/CloseShieldWriter.class

package org.apache.logging.log4j.core.util;
public synchronized class CloseShieldWriter extends java.io.Writer {
 private final java.io.Writer delegate;
 public void CloseShieldWriter(java.io.Writer);
 public void close() throws java.io.IOException;
 public void flush() throws java.io.IOException;
 public void write(char[], int, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/Cancellable.class

package org.apache.logging.log4j.core.util;
public abstract interface Cancellable extends Runnable {
 public abstract void cancel();
}

org/apache/logging/log4j/core/util/StringBuilderWriter.class

package org.apache.logging.log4j.core.util;
public synchronized class StringBuilderWriter extends java.io.Writer implements java.io.Serializable {
 private static final long serialVersionUID = -146927496096066153;
 private final StringBuilder builder;
 public void StringBuilderWriter();
 public void StringBuilderWriter(int);
 public void StringBuilderWriter(StringBuilder);
 public java.io.Writer append(char);
 public java.io.Writer append(CharSequence);
 public java.io.Writer append(CharSequence, int, int);
 public void close();
 public void flush();
 public void write(String);
 public void write(char[], int, int);
 public StringBuilder getBuilder();
 public String toString();
}

org/apache/logging/log4j/core/Logger$PrivateConfig.class

package org.apache.logging.log4j.core;
public synchronized class Logger$PrivateConfig {
 public final config.LoggerConfig loggerConfig;
 public final config.Configuration config;
 private final org.apache.logging.log4j.Level loggerConfigLevel;
 private final int intLevel;
 private final Logger logger;
 private final boolean requiresLocation;
 public void Logger$PrivateConfig(Logger, config.Configuration, Logger);
 public void Logger$PrivateConfig(Logger, Logger$PrivateConfig, org.apache.logging.log4j.Level);
 public void Logger$PrivateConfig(Logger, Logger$PrivateConfig, config.LoggerConfig);
 public void logEvent(LogEvent);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 transient boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public String toString();
}

org/apache/logging/log4j/core/config/Property.class

package org.apache.logging.log4j.core.config;
public final synchronized class Property {
 public static final Property[] EMPTY_ARRAY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String name;
 private final String value;
 private final boolean valueNeedsLookup;
 private void Property(String, String);
 public String getName();
 public String getValue();
 public boolean isValueNeedsLookup();
 public static Property createProperty(String, String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ClassArbiter implements Arbiter {
 private final String className;
 private void ClassArbiter(String);
 public boolean isCondition();
 public static SystemPropertyArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/DefaultArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class DefaultArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void DefaultArbiter$Builder();
 public DefaultArbiter$Builder asBuilder();
 public DefaultArbiter build();
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class SystemPropertyArbiter$1 {
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginNodeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginNodeVisitor extends AbstractPluginVisitor {
 public void PluginNodeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public abstract interface PluginVisitor {
 public abstract PluginVisitor setAnnotation(annotation.Annotation);
 public abstract transient PluginVisitor setAliases(String[]);
 public abstract PluginVisitor setConversionType(Class);
 public abstract PluginVisitor setStrSubstitutor(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public abstract PluginVisitor setMember(reflect.Member);
 public abstract Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginEntry.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginEntry implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private String key;
 private String className;
 private String name;
 private boolean printable;
 private boolean defer;
 private transient String category;
 public void PluginEntry();
 public String getKey();
 public void setKey(String);
 public String getClassName();
 public void setClassName(String);
 public String getName();
 public void setName(String);
 public boolean isPrintable();
 public void setPrintable(boolean);
 public boolean isDefer();
 public void setDefer(boolean);
 public String getCategory();
 public void setCategory(String);
 public String toString();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$PluginAliasesElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$PluginAliasesElementVisitor extends javax.lang.model.util.SimpleElementVisitor7 {
 private final javax.lang.model.util.Elements elements;
 private void PluginProcessor$PluginAliasesElementVisitor(javax.lang.model.util.Elements);
 public java.util.Collection visitType(javax.lang.model.element.TypeElement, org.apache.logging.log4j.core.config.plugins.Plugin);
}

org/apache/logging/log4j/core/config/plugins/PluginAttribute.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginAttribute extends annotation.Annotation {
 public abstract boolean defaultBoolean();
 public abstract byte defaultByte();
 public abstract char defaultChar();
 public abstract Class defaultClass();
 public abstract double defaultDouble();
 public abstract float defaultFloat();
 public abstract int defaultInt();
 public abstract long defaultLong();
 public abstract short defaultShort();
 public abstract String defaultString();
 public abstract String value();
 public abstract boolean sensitive();
}

org/apache/logging/log4j/core/config/plugins/PluginNode.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginNode extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters.class

package org.apache.logging.log4j.core.config.plugins.convert;
public final synchronized class TypeConverters {
 public static final String CATEGORY = TypeConverter;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void TypeConverters();
 public static Object convert(String, Class, Object);
 private static Object parseDefaultValue(TypeConverter, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ByteArrayConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ByteArrayConverter implements TypeConverter {
 private static final String PREFIX_0x = 0x;
 private static final String PREFIX_BASE64 = Base64:;
 public void TypeConverters$ByteArrayConverter();
 public byte[] convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharArrayConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharArrayConverter implements TypeConverter {
 public void TypeConverters$CharArrayConverter();
 public char[] convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ClassConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ClassConverter implements TypeConverter {
 public void TypeConverters$ClassConverter();
 public Class convert(String) throws ClassNotFoundException;
}

org/apache/logging/log4j/core/config/plugins/convert/EnumConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class EnumConverter implements TypeConverter {
 private final Class clazz;
 public void EnumConverter(Class);
 public Enum convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ByteConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ByteConverter implements TypeConverter {
 public void TypeConverters$ByteConverter();
 public Byte convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverterRegistry.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverterRegistry {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile TypeConverterRegistry INSTANCE;
 private static final Object INSTANCE_LOCK;
 private final java.util.concurrent.ConcurrentMap registry;
 public static TypeConverterRegistry getInstance();
 public TypeConverter findCompatibleConverter(reflect.Type);
 private void TypeConverterRegistry();
 private void loadKnownTypeConverters(java.util.Collection);
 private TypeConverter registerConverter(reflect.Type, TypeConverter);
 private static reflect.Type getTypeConverterSupportedType(Class);
 private void registerPrimitiveTypes();
 private void registerTypeAlias(reflect.Type, reflect.Type);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/PropertiesPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class PropertiesPlugin {
 private void PropertiesPlugin();
 public static org.apache.logging.log4j.core.lookup.StrLookup configureSubstitutor(Property[], Configuration);
}

org/apache/logging/log4j/core/config/Scheduled.class

package org.apache.logging.log4j.core.config;
public abstract interface Scheduled extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/json/JsonConfiguration$ErrorType.class

package org.apache.logging.log4j.core.config.json;
final synchronized enum JsonConfiguration$ErrorType {
 public static final JsonConfiguration$ErrorType CLASS_NOT_FOUND;
 public static JsonConfiguration$ErrorType[] values();
 public static JsonConfiguration$ErrorType valueOf(String);
 private void JsonConfiguration$ErrorType(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/properties/PropertiesConfigurationBuilder.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfigurationBuilder extends org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilderFactory implements org.apache.logging.log4j.core.util.Builder {
 private static final String ADVERTISER_KEY = advertiser;
 private static final String STATUS_KEY = status;
 private static final String SHUTDOWN_HOOK = shutdownHook;
 private static final String SHUTDOWN_TIMEOUT = shutdownTimeout;
 private static final String VERBOSE = verbose;
 private static final String DEST = dest;
 private static final String PACKAGES = packages;
 private static final String CONFIG_NAME = name;
 private static final String MONITOR_INTERVAL = monitorInterval;
 private static final String CONFIG_TYPE = type;
 private final org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder builder;
 private org.apache.logging.log4j.core.LoggerContext loggerContext;
 private java.util.Properties rootProperties;
 public void PropertiesConfigurationBuilder();
 public PropertiesConfigurationBuilder setRootProperties(java.util.Properties);
 public PropertiesConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public PropertiesConfiguration build();
 private org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder createScript(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder createScriptFile(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder createAppender(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder createFilter(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder createAppenderRef(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder createLogger(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder createRootLogger(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder createLayout(String, java.util.Properties);
 private static org.apache.logging.log4j.core.config.builder.api.ComponentBuilder createComponent(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder, String, java.util.Properties);
 private static org.apache.logging.log4j.core.config.builder.api.ComponentBuilder processRemainingProperties(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.FilterableComponentBuilder addFiltersToComponent(org.apache.logging.log4j.core.config.builder.api.FilterableComponentBuilder, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LoggableComponentBuilder addLoggersToComponent(org.apache.logging.log4j.core.config.builder.api.LoggableComponentBuilder, java.util.Properties);
 public PropertiesConfigurationBuilder setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/config/builder/api/AppenderRefComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface AppenderRefComponentBuilder extends FilterableComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/ScriptFileComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ScriptFileComponentBuilder extends ComponentBuilder {
 public abstract ScriptFileComponentBuilder addLanguage(String);
 public abstract ScriptFileComponentBuilder addIsWatched(boolean);
 public abstract ScriptFileComponentBuilder addIsWatched(String);
 public abstract ScriptFileComponentBuilder addCharset(String);
}

org/apache/logging/log4j/core/jmx/AppenderAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface AppenderAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=Appenders,name=%s;
 public abstract String getName();
 public abstract String getLayout();
 public abstract boolean isIgnoreExceptions();
 public abstract String getErrorHandler();
 public abstract String getFilter();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized enum GelfLayout$CompressionType {
 public static final GelfLayout$CompressionType GZIP;
 public static final GelfLayout$CompressionType ZLIB;
 public static final GelfLayout$CompressionType OFF;
 public static GelfLayout$CompressionType[] values();
 public static GelfLayout$CompressionType valueOf(String);
 private void GelfLayout$CompressionType(String, int);
 public abstract java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class LevelPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final boolean requiresLocation;
 public void LevelPatternSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 private void LevelPatternSelector(PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static LevelPatternSelector$Builder newBuilder();
 public static LevelPatternSelector createSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/ByteBufferDestination.class

package org.apache.logging.log4j.core.layout;
public abstract interface ByteBufferDestination {
 public abstract java.nio.ByteBuffer getByteBuffer();
 public abstract java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 public abstract void writeBytes(java.nio.ByteBuffer);
 public abstract void writeBytes(byte[], int, int);
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$1.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$1 {
 void GelfLayout$CompressionType$1(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/AbstractCsvLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractCsvLayout extends AbstractStringLayout {
 protected static final String DEFAULT_CHARSET = UTF-8;
 protected static final String DEFAULT_FORMAT = Default;
 private static final String CONTENT_TYPE = text/csv;
 private final org.apache.commons.csv.CSVFormat format;
 protected static org.apache.commons.csv.CSVFormat createFormat(String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String);
 private static boolean isNotNul(Character);
 protected void AbstractCsvLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String getContentType();
 public org.apache.commons.csv.CSVFormat getFormat();
}

org/apache/logging/log4j/core/layout/PatternLayout$NoFormatPatternSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$NoFormatPatternSerializer implements PatternLayout$PatternSerializer {
 private final org.apache.logging.log4j.core.pattern.LogEventPatternConverter[] converters;
 private void PatternLayout$NoFormatPatternSerializer(org.apache.logging.log4j.core.pattern.PatternFormatter[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/PatternLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class PatternLayout$1 {
}

org/apache/logging/log4j/core/layout/GelfLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class GelfLayout$1 {
}

org/apache/logging/log4j/core/layout/LoggerFields.class

package org.apache.logging.log4j.core.layout;
public final synchronized class LoggerFields {
 private final java.util.Map map;
 private final String sdId;
 private final String enterpriseId;
 private final boolean discardIfAllFieldsAreEmpty;
 private void LoggerFields(java.util.Map, String, String, boolean);
 public java.util.Map getMap();
 public String toString();
 public static LoggerFields createLoggerFields(org.apache.logging.log4j.core.util.KeyValuePair[], String, String, boolean);
 public org.apache.logging.log4j.message.StructuredDataId getSdId();
 public boolean getDiscardIfAllFieldsAreEmpty();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerConfigDisruptor$1 extends org.apache.logging.log4j.core.util.Log4jThreadFactory {
 void AsyncLoggerConfigDisruptor$1(AsyncLoggerConfigDisruptor, String, boolean, int);
 public Thread newThread(Runnable);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig$RootLogger.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfig$RootLogger extends org.apache.logging.log4j.core.config.LoggerConfig {
 public void AsyncLoggerConfig$RootLogger();
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/lookup/JavaLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JavaLookup extends AbstractLookup {
 private final SystemPropertiesLookup spLookup;
 public void JavaLookup();
 public String getHardware();
 public String getLocale();
 public String getOperatingSystem();
 public String getRuntime();
 private String getSystemProperty(String);
 private String getSystemProperty(String, String);
 public String getVirtualMachine();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/StrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public synchronized class StrSubstitutor implements org.apache.logging.log4j.core.config.ConfigurationAware {
 public static final char DEFAULT_ESCAPE = 36;
 public static final StrMatcher DEFAULT_PREFIX;
 public static final StrMatcher DEFAULT_SUFFIX;
 public static final String DEFAULT_VALUE_DELIMITER_STRING = :-;
 public static final StrMatcher DEFAULT_VALUE_DELIMITER;
 public static final String ESCAPE_DELIMITER_STRING = :\-;
 public static final StrMatcher DEFAULT_VALUE_ESCAPE_DELIMITER;
 private static final int BUF_SIZE = 256;
 private char escapeChar;
 private StrMatcher prefixMatcher;
 private StrMatcher suffixMatcher;
 private String valueDelimiterString;
 private StrMatcher valueDelimiterMatcher;
 private StrMatcher valueEscapeDelimiterMatcher;
 private StrLookup variableResolver;
 private boolean enableSubstitutionInVariables;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private boolean recursiveEvaluationAllowed;
 public void StrSubstitutor();
 public void StrSubstitutor(java.util.Map);
 public void StrSubstitutor(java.util.Map, String, String);
 public void StrSubstitutor(java.util.Map, String, String, char);
 public void StrSubstitutor(java.util.Map, String, String, char, String);
 public void StrSubstitutor(java.util.Properties);
 public void StrSubstitutor(StrLookup);
 public void StrSubstitutor(StrLookup, String, String, char);
 public void StrSubstitutor(StrLookup, String, String, char, String);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char, StrMatcher);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char, StrMatcher, StrMatcher);
 void StrSubstitutor(StrSubstitutor);
 public static String replace(Object, java.util.Map);
 public static String replace(Object, java.util.Map, String, String);
 public static String replace(Object, java.util.Properties);
 private static java.util.Map toTypeSafeMap(java.util.Properties);
 private static String handleFailedReplacement(String, Throwable);
 public String replace(String);
 public String replace(org.apache.logging.log4j.core.LogEvent, String);
 public String replace(String, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, String, int, int);
 public String replace(char[]);
 public String replace(org.apache.logging.log4j.core.LogEvent, char[]);
 public String replace(char[], int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, char[], int, int);
 public String replace(StringBuffer);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuffer);
 public String replace(StringBuffer, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuffer, int, int);
 public String replace(StringBuilder);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public String replace(StringBuilder, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 public String replace(Object);
 public String replace(org.apache.logging.log4j.core.LogEvent, Object);
 public boolean replaceIn(StringBuffer);
 public boolean replaceIn(StringBuffer, int, int);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuffer, int, int);
 public boolean replaceIn(StringBuilder);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean replaceIn(StringBuilder, int, int);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 protected boolean substitute(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 private int substitute(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int, java.util.List);
 private boolean isCyclicSubstitution(String, java.util.List);
 protected String resolveVariable(org.apache.logging.log4j.core.LogEvent, String, StringBuilder, int, int);
 public char getEscapeChar();
 public void setEscapeChar(char);
 public StrMatcher getVariablePrefixMatcher();
 public StrSubstitutor setVariablePrefixMatcher(StrMatcher);
 public StrSubstitutor setVariablePrefix(char);
 public StrSubstitutor setVariablePrefix(String);
 public StrMatcher getVariableSuffixMatcher();
 public StrSubstitutor setVariableSuffixMatcher(StrMatcher);
 public StrSubstitutor setVariableSuffix(char);
 public StrSubstitutor setVariableSuffix(String);
 public StrMatcher getValueDelimiterMatcher();
 public StrSubstitutor setValueDelimiterMatcher(StrMatcher);
 public StrSubstitutor setValueDelimiter(char);
 public StrSubstitutor setValueDelimiter(String);
 public StrLookup getVariableResolver();
 public void setVariableResolver(StrLookup);
 public boolean isEnableSubstitutionInVariables();
 public void setEnableSubstitutionInVariables(boolean);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 private char[] getChars(StringBuilder);
 public void appendWithSeparators(StringBuilder, Iterable, String);
 public String toString();
 public void setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/ParseException.class

package org.apache.logging.log4j.core.parser;
public synchronized class ParseException extends Exception {
 private static final long serialVersionUID = -2739649998196663857;
 public void ParseException(String);
 public void ParseException(String, Throwable);
 public void ParseException(Throwable);
}

org/apache/logging/log4j/core/parser/AbstractJacksonLogEventParser.class

package org.apache.logging.log4j.core.parser;
synchronized class AbstractJacksonLogEventParser implements TextLogEventParser {
 private final com.fasterxml.jackson.databind.ObjectReader objectReader;
 void AbstractJacksonLogEventParser(com.fasterxml.jackson.databind.ObjectMapper);
 public org.apache.logging.log4j.core.LogEvent parseFrom(String) throws ParseException;
 public org.apache.logging.log4j.core.LogEvent parseFrom(byte[]) throws ParseException;
 public org.apache.logging.log4j.core.LogEvent parseFrom(byte[], int, int) throws ParseException;
}

org/apache/logging/log4j/core/script/ScriptManager$ThreadLocalScriptRunner$1.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$ThreadLocalScriptRunner$1 extends ThreadLocal {
 void ScriptManager$ThreadLocalScriptRunner$1(ScriptManager$ThreadLocalScriptRunner);
 protected ScriptManager$MainScriptRunner initialValue();
}

org/apache/logging/log4j/core/script/ScriptManager.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptManager implements org.apache.logging.log4j.core.util.FileWatcher, java.io.Serializable {
 private static final long serialVersionUID = -2534169384971965196;
 private static final String KEY_THREADING = THREADING;
 private static final org.apache.logging.log4j.Logger logger;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final javax.script.ScriptEngineManager manager;
 private final java.util.concurrent.ConcurrentMap scriptRunners;
 private final String languages;
 private final org.apache.logging.log4j.core.util.WatchManager watchManager;
 public void ScriptManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.util.WatchManager);
 public void addScript(AbstractScript);
 public javax.script.Bindings createBindings(AbstractScript);
 public AbstractScript getScript(String);
 public void fileModified(java.io.File);
 public Object execute(String, javax.script.Bindings);
 private ScriptManager$ScriptRunner getScriptRunner(AbstractScript);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class NoMarkerFilter$1 {
}

org/apache/logging/log4j/core/filter/CompositeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class CompositeFilter extends org.apache.logging.log4j.core.AbstractLifeCycle implements Iterable, org.apache.logging.log4j.core.Filter {
 private final org.apache.logging.log4j.core.Filter[] filters;
 private void CompositeFilter();
 private void CompositeFilter(org.apache.logging.log4j.core.Filter[]);
 public CompositeFilter addFilter(org.apache.logging.log4j.core.Filter);
 public CompositeFilter removeFilter(org.apache.logging.log4j.core.Filter);
 public java.util.Iterator iterator();
 public java.util.List getFilters();
 public org.apache.logging.log4j.core.Filter[] getFiltersArray();
 public boolean isEmpty();
 public int size();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 public org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static CompositeFilter createFilters(org.apache.logging.log4j.core.Filter[]);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$FixedFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$FixedFormatter extends DatePatternConverter$Formatter {
 private final org.apache.logging.log4j.core.util.datetime.FixedDateFormat fixedDateFormat;
 private final char[] cachedBuffer;
 private int length;
 void DatePatternConverter$FixedFormatter(org.apache.logging.log4j.core.util.datetime.FixedDateFormat);
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/pattern/PatternFormatter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class PatternFormatter {
 public static final PatternFormatter[] EMPTY_ARRAY;
 private final LogEventPatternConverter converter;
 private final FormattingInfo field;
 private final boolean skipFormattingInfo;
 public void PatternFormatter(LogEventPatternConverter, FormattingInfo);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void formatWithInfo(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public LogEventPatternConverter getConverter();
 public FormattingInfo getFormattingInfo();
 public boolean handlesThrowable();
 public boolean requiresLocation();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$NOPAbbreviator.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$NOPAbbreviator extends NameAbbreviator {
 public void NameAbbreviator$NOPAbbreviator();
 public void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy {
 public static final NameAbbreviator$MaxElementAbbreviator$Strategy DROP;
 public static final NameAbbreviator$MaxElementAbbreviator$Strategy RETAIN;
 final int minCount;
 public static NameAbbreviator$MaxElementAbbreviator$Strategy[] values();
 public static NameAbbreviator$MaxElementAbbreviator$Strategy valueOf(String);
 private void NameAbbreviator$MaxElementAbbreviator$Strategy(String, int, int);
 abstract void abbreviate(int, String, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$PatternAbbreviatorFragment.class

package org.apache.logging.log4j.core.pattern;
final synchronized class NameAbbreviator$PatternAbbreviatorFragment {
 private final int charCount;
 private final char ellipsis;
 void NameAbbreviator$PatternAbbreviatorFragment(int, char);
 int abbreviate(String, int, StringBuilder);
}

org/apache/logging/log4j/core/pattern/RegexReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RegexReplacementConverter extends LogEventPatternConverter {
 private final java.util.regex.Pattern pattern;
 private final String substitution;
 private final java.util.List formatters;
 private void RegexReplacementConverter(java.util.List, java.util.regex.Pattern, String);
 public static RegexReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/SequenceNumberPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class SequenceNumberPatternConverter extends LogEventPatternConverter {
 private static final java.util.concurrent.atomic.AtomicLong SEQUENCE;
 private static final SequenceNumberPatternConverter INSTANCE;
 private void SequenceNumberPatternConverter();
 public static SequenceNumberPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/FileLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FileLocationPatternConverter extends LogEventPatternConverter {
 private static final FileLocationPatternConverter INSTANCE;
 private void FileLocationPatternConverter();
 public static FileLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class SimpleLiteralPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$3.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$3 {
 void EncodingPatternConverter$EscapeFormat$3(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$RenderingPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$RenderingPatternConverter extends MessagePatternConverter {
 private final MessagePatternConverter delegate;
 private final TextRenderer textRenderer;
 void MessagePatternConverter$RenderingPatternConverter(MessagePatternConverter, TextRenderer);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/JAnsiTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class JAnsiTextRenderer implements TextRenderer {
 public static final java.util.Map DefaultExceptionStyleMap;
 static final java.util.Map DefaultMessageStyleMap;
 private static final java.util.Map PrefedinedStyleMaps;
 private final String beginToken;
 private final int beginTokenLen;
 private final String endToken;
 private final int endTokenLen;
 private final java.util.Map styleMap;
 private static transient void put(java.util.Map, String, org.fusesource.jansi.AnsiRenderer$Code[]);
 public void JAnsiTextRenderer(String[], java.util.Map);
 public java.util.Map getStyleMap();
 private void render(org.fusesource.jansi.Ansi, org.fusesource.jansi.AnsiRenderer$Code);
 private transient void render(org.fusesource.jansi.Ansi, org.fusesource.jansi.AnsiRenderer$Code[]);
 private transient String render(String, String[]);
 public void render(String, StringBuilder, String) throws IllegalArgumentException;
 public void render(StringBuilder, StringBuilder) throws IllegalArgumentException;
 private org.fusesource.jansi.AnsiRenderer$Code toCode(String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/IntegerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class IntegerPatternConverter extends AbstractPatternConverter implements ArrayPatternConverter {
 private static final IntegerPatternConverter INSTANCE;
 private void IntegerPatternConverter();
 public static IntegerPatternConverter newInstance(String[]);
 public transient void format(StringBuilder, Object[]);
 public void format(Object, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LineLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LineLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final LineLocationPatternConverter INSTANCE;
 private void LineLocationPatternConverter();
 public static LineLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/LogEventListener.class

package org.apache.logging.log4j.core;
public synchronized class LogEventListener implements java.util.EventListener {
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final LoggerContext context;
 protected void LogEventListener();
 public void log(LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ThrowableProxyMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyMixIn {
 private ThrowableProxyMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntrySerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ListOfMapEntrySerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 protected void ListOfMapEntrySerializer();
 public void serialize(java.util.Map, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

org/apache/logging/log4j/core/jackson/StackTraceElementMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class StackTraceElementMixIn {
 void StackTraceElementMixIn(String, String, String, int);
 abstract String getClassName();
 abstract String getFileName();
 abstract int getLineNumber();
 abstract String getMethodName();
}

org/apache/logging/log4j/core/jackson/InstantMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class InstantMixIn {
 void InstantMixIn(long, int);
 abstract long getEpochSecond();
 abstract int getNanoOfSecond();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntryDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ListOfMapEntryDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void ListOfMapEntryDeserializer$1(ListOfMapEntryDeserializer);
}

org/apache/logging/log4j/core/jackson/XmlConstants.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class XmlConstants {
 public static final String ELT_CAUSE = Cause;
 public static final String ELT_CONTEXT_MAP = ContextMap;
 public static final String ELT_CONTEXT_STACK = ContextStack;
 public static final String ELT_CONTEXT_STACK_ITEM = ContextStackItem;
 public static final String ELT_EVENT = Event;
 public static final String ELT_EXTENDED_STACK_TRACE = ExtendedStackTrace;
 public static final String ELT_EXTENDED_STACK_TRACE_ITEM = ExtendedStackTraceItem;
 public static final String ELT_TIME_MILLIS = TimeMillis;
 public static final String ELT_INSTANT = Instant;
 public static final String ELT_MARKER = Marker;
 public static final String ELT_MESSAGE = Message;
 public static final String ELT_PARENTS = Parents;
 public static final String ELT_SOURCE = Source;
 public static final String ELT_SUPPRESSED = Suppressed;
 public static final String ELT_SUPPRESSED_ITEM = SuppressedItem;
 public static final String ELT_THROWN = Thrown;
 public static final String XML_NAMESPACE = http://logging.apache.org/log4j/2.0/events;
 public void XmlConstants();
}

org/apache/logging/log4j/core/jackson/SimpleMessageDeserializer.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class SimpleMessageDeserializer extends com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer {
 private static final long serialVersionUID = 1;
 void SimpleMessageDeserializer();
 public org.apache.logging.log4j.message.SimpleMessage deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jXmlObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jXmlObjectMapper extends com.fasterxml.jackson.dataformat.xml.XmlMapper {
 private static final long serialVersionUID = 1;
 public void Log4jXmlObjectMapper();
 public void Log4jXmlObjectMapper(boolean, boolean);
}

META-INF/org/apache/logging/log4j/core/config/plugins/Log4j2Plugins.dat

META-INF/maven/org.apache.logging.log4j/log4j-core/pom.xml

 4.0.0

 org.apache.logging.log4j
 log4j
 2.17.1
 ../

 log4j-core
 jar
 Apache Log4j Core
 The Apache Log4j Implementation

 ${basedir}/..
 Core Documentation
 /core
 true

 org.apache.logging.log4j
 log4j-api

 org.osgi
 org.osgi.core
 provided

 com.lmax
 disruptor
 true

 com.conversantmedia
 disruptor
 true

 org.jctools
 jctools-core
 true

 com.fasterxml.jackson.core
 jackson-core
 true

 com.fasterxml.jackson.core
 jackson-databind
 true

 com.fasterxml.jackson.dataformat
 jackson-dataformat-yaml
 true

 com.fasterxml.jackson.dataformat
 jackson-dataformat-xml
 true

 com.fasterxml.woodstox
 woodstox-core
 ${woodstox.version}
 true

 org.fusesource.jansi
 jansi
 true

 com.sun.mail
 javax.mail
 true

 org.jboss.spec.javax.jms
 jboss-jms-api_1.1_spec
 provided
 true

 org.apache.kafka
 kafka-clients
 true

 org.zeromq
 jeromq
 true

 org.apache.commons
 commons-compress
 true

 org.apache.commons
 commons-csv
 true

 org.slf4j
 slf4j-api
 true

 org.apache.logging.log4j
 log4j-api
 test-jar
 test

 org.tukaani
 xz
 test

 org.jmdns
 jmdns
 3.5.7
 test

 log4j
 log4j
 1.2.17
 test

 org.slf4j
 slf4j-ext
 test

 org.junit.vintage
 junit-vintage-engine

 org.junit.jupiter
 junit-jupiter-engine

 org.junit.jupiter
 junit-jupiter-params

 org.hamcrest
 hamcrest
 test

 org.mockito
 mockito-core

 org.mockito
 mockito-junit-jupiter

 org.hsqldb
 hsqldb
 test

 com.h2database
 h2
 test

 org.springframework
 spring-test
 test

 org.apache.activemq
 activemq-broker
 test

 org.apache.geronimo.specs
 geronimo-jms_1.1_spec

 commons-logging
 commons-logging
 test

 ch.qos.logback
 logback-core
 test

 ch.qos.logback
 logback-classic
 test

 org.eclipse.tycho
 org.eclipse.osgi
 test

 org.apache.felix
 org.apache.felix.framework
 test

 org.codehaus.plexus
 plexus-utils
 test

 org.apache.maven
 maven-core
 test

 net.javacrumbs.json-unit
 json-unit
 test

 org.xmlunit
 xmlunit-core
 test

 org.xmlunit
 xmlunit-matchers
 test

 commons-io
 commons-io
 test

 commons-codec
 commons-codec
 test

 org.apache.commons
 commons-lang3
 test

 org.apache-extras.beanshell
 bsh
 test

 org.codehaus.groovy
 groovy-jsr223
 test

 org.codehaus.groovy
 groovy-dateutil
 test

 com.github.tomakehurst
 wiremock
 test

 com.google.code.java-allocation-instrumenter
 java-allocation-instrumenter
 test

 org.hdrhistogram
 HdrHistogram
 test

 org.awaitility
 awaitility
 test

 org.zapodot
 embedded-ldap-junit
 test

 org.apache.maven.plugins
 maven-dependency-plugin
 3.0.2

 unpack-classes
 prepare-package

 unpack

 org.apache.logging.log4j
 log4j-core-java9
 ${project.version}
 zip
 false

 **/*.class
 **/*.java
 ${project.build.directory}
 false
 true

 org.codehaus.mojo
 build-helper-maven-plugin
 1.7

 add-source
 generate-sources

 add-source

 ${project.build.directory}/log4j-core-java9

 maven-compiler-plugin

 default-compile

 module-info.java

 none

 process-plugins

 compile

 process-classes

 module-info.java

 only

 maven-surefire-plugin

 org.apache.logging.log4j.categories.PerformanceTests

 *

 org.apache.maven.plugins
 maven-failsafe-plugin

 true

 org.apache.maven.plugins
 maven-jar-plugin

 default-jar

 jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}
 org.apache.logging.log4j.core
 true

 default

 test-jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}

 org.apache.felix
 maven-bundle-plugin

 org.apache.logging.log4j.core

 org.apache.logging.log4j.core.*

 sun.reflect;resolution:=optional,
 *

 org.apache.logging.log4j.core.osgi.Activator

 org.apache.maven.plugins
 maven-changes-plugin
 ${changes.plugin.version}

 changes-report

 %URL%/show_bug.cgi?id=%ISSUE%
 true

 org.apache.maven.plugins
 maven-checkstyle-plugin
 ${checkstyle.plugin.version}

 ${log4jParentDir}/checkstyle.xml
 ${log4jParentDir}/checkstyle-suppressions.xml
 false
 basedir=${basedir}
 licensedir=${log4jParentDir}/checkstyle-header.txt

 org.apache.maven.plugins
 maven-javadoc-plugin
 ${javadoc.plugin.version}

 false
 <p align="center">Copyright © {inceptionYear}-{currentYear} {organizationName}. All Rights Reserved.

 Apache Logging, Apache Log4j, Log4j, Apache, the Apache feather logo, the Apache Logging project logo,
 and the Apache Log4j logo are trademarks of The Apache Software Foundation.</p>

 false
 true

 http://docs.oracle.com/javaee/6/api/
 http://www.osgi.org/javadoc/r4v43/core/
 https://commons.apache.org/proper/commons-lang/javadocs/api-release/

 Core API
 org.apache.logging.log4j.core

 Configuration
 org.apache.logging.log4j.core.config*:org.apache.logging.log4j.core.selector

 Core Plugins
 org.apache.logging.log4j.core.appender*:org.apache.logging.log4j.core.filter:org.apache.logging.log4j.core.layout:org.apache.logging.log4j.core.lookup:org.apache.logging.log4j.core.pattern:org.apache.logging.log4j.core.script

 Tools
 org.apache.logging.log4j.core.net*:org.apache.logging.log4j.core.tools

 Internals
 org.apache.logging.log4j.core.async:org.apache.logging.log4j.core.impl:org.apache.logging.log4j.core.util*:org.apache.logging.log4j.core.osgi:org.apache.logging.log4j.core.jackson:org.apache.logging.log4j.core.jmx

 non-aggregate

 javadoc

 com.github.spotbugs
 spotbugs-maven-plugin

 org.apache.maven.plugins
 maven-jxr-plugin
 ${jxr.plugin.version}

 non-aggregate

 jxr

 aggregate

 aggregate

 org.apache.maven.plugins
 maven-pmd-plugin
 ${pmd.plugin.version}

 ${maven.compiler.target}

org/apache/logging/log4j/core/appender/FileManager$FileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$FileManagerFactory implements ManagerFactory {
 private void FileManager$FileManagerFactory();
 public FileManager createManager(String, FileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/ScriptAppenderSelector.class

package org.apache.logging.log4j.core.appender;
public synchronized class ScriptAppenderSelector extends AbstractAppender {
 public static ScriptAppenderSelector$Builder newBuilder();
 private void ScriptAppenderSelector(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Property[]);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$ConsoleManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$ConsoleManagerFactory implements ManagerFactory {
 private void ConsoleAppender$ConsoleManagerFactory();
 public OutputStreamManager createManager(String, ConsoleAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/OnStartupTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class OnStartupTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final long JVM_START_TIME;
 private final long minSize;
 private void OnStartupTriggeringPolicy(long);
 private static long initStartTime();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static OnStartupTriggeringPolicy createPolicy(long);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathSortByModificationTime.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PathSortByModificationTime implements PathSorter, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final boolean recentFirst;
 private final int multiplier;
 public void PathSortByModificationTime(boolean);
 public static PathSorter createSorter(boolean);
 public boolean isRecentFirst();
 public int compare(PathWithAttributes, PathWithAttributes);
}

org/apache/logging/log4j/core/appender/rolling/action/IfFileName.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfFileName implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.nio.file.PathMatcher pathMatcher;
 private final String syntaxAndPattern;
 private final PathCondition[] nestedConditions;
 private transient void IfFileName(String, String, PathCondition[]);
 static String createSyntaxAndPatternString(String, String);
 public String getSyntaxAndPattern();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfFileName createNameCondition(String, String, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/Duration.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class Duration implements java.io.Serializable, Comparable {
 private static final long serialVersionUID = -3756810052716342061;
 public static final Duration ZERO;
 private static final int HOURS_PER_DAY = 24;
 private static final int MINUTES_PER_HOUR = 60;
 private static final int SECONDS_PER_MINUTE = 60;
 private static final int SECONDS_PER_HOUR = 3600;
 private static final int SECONDS_PER_DAY = 86400;
 private static final java.util.regex.Pattern PATTERN;
 private final long seconds;
 private void Duration(long);
 public static Duration parse(CharSequence);
 private static long parseNumber(CharSequence, String, int, String);
 private static Duration create(long, long, long, long);
 private static Duration create(long);
 public long toMillis();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public int compareTo(Duration);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$5.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$5 {
 void FileExtension$5(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$1.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$1 {
 void FileExtension$1(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/DefaultRolloverStrategy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DefaultRolloverStrategy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String max;
 private String min;
 private String fileIndex;
 private String compressionLevelStr;
 private action.Action[] customActions;
 private boolean stopCustomActionsOnError;
 private String tempCompressedFilePattern;
 private org.apache.logging.log4j.core.config.Configuration config;
 public void DefaultRolloverStrategy$Builder();
 public DefaultRolloverStrategy build();
 public String getMax();
 public DefaultRolloverStrategy$Builder withMax(String);
 public String getMin();
 public DefaultRolloverStrategy$Builder withMin(String);
 public String getFileIndex();
 public DefaultRolloverStrategy$Builder withFileIndex(String);
 public String getCompressionLevelStr();
 public DefaultRolloverStrategy$Builder withCompressionLevelStr(String);
 public action.Action[] getCustomActions();
 public DefaultRolloverStrategy$Builder withCustomActions(action.Action[]);
 public boolean isStopCustomActionsOnError();
 public DefaultRolloverStrategy$Builder withStopCustomActionsOnError(boolean);
 public String getTempCompressedFilePattern();
 public DefaultRolloverStrategy$Builder withTempCompressedFilePattern(String);
 public org.apache.logging.log4j.core.config.Configuration getConfig();
 public DefaultRolloverStrategy$Builder withConfig(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/FailoverAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FailoverAppender extends AbstractAppender {
 private static final int DEFAULT_INTERVAL_SECONDS = 60;
 private final String primaryRef;
 private final String[] failovers;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private org.apache.logging.log4j.core.config.AppenderControl primary;
 private final java.util.List failoverAppenders;
 private final long intervalNanos;
 private volatile long nextCheckNanos;
 private void FailoverAppender(String, org.apache.logging.log4j.core.Filter, String, String[], int, org.apache.logging.log4j.core.config.Configuration, boolean, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void callAppender(org.apache.logging.log4j.core.LogEvent);
 private void failover(org.apache.logging.log4j.core.LogEvent, Exception);
 public String toString();
 public static FailoverAppender createAppender(String, String, String[], String, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter, String);
}

org/apache/logging/log4j/core/appender/FileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class FileManager extends OutputStreamManager {
 private static final FileManager$FileManagerFactory FACTORY;
 private final boolean isAppend;
 private final boolean createOnDemand;
 private final boolean isLocking;
 private final String advertiseURI;
 private final int bufferSize;
 private final java.util.Set filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 private final boolean attributeViewEnabled;
 protected void FileManager(String, java.io.OutputStream, boolean, boolean, String, org.apache.logging.log4j.core.Layout, int, boolean);
 protected void FileManager(String, java.io.OutputStream, boolean, boolean, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void FileManager(org.apache.logging.log4j.core.LoggerContext, String, java.io.OutputStream, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void FileManager(org.apache.logging.log4j.core.LoggerContext, String, java.io.OutputStream, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean, java.nio.ByteBuffer);
 public static FileManager getFileManager(String, boolean, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, int, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 protected java.io.OutputStream createOutputStream() throws java.io.IOException;
 protected void createParentDir(java.io.File);
 protected void defineAttributeView(java.nio.file.Path);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 public String getFileName();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public int getBufferSize();
 public java.util.Set getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public boolean isAttributeViewEnabled();
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractManager.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractManager implements AutoCloseable {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final java.util.Map MAP;
 private static final java.util.concurrent.locks.Lock LOCK;
 protected int count;
 private final String name;
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 protected void AbstractManager(org.apache.logging.log4j.core.LoggerContext, String);
 public void close();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public static AbstractManager getManager(String, ManagerFactory, Object);
 public void updateData(Object);
 public static boolean hasManager(String);
 protected static AbstractManager narrow(Class, AbstractManager);
 protected static org.apache.logging.log4j.status.StatusLogger logger();
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected int getCount();
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
 public void release();
 public String getName();
 public java.util.Map getContentFormat();
 protected void log(org.apache.logging.log4j.Level, String, Throwable);
 protected void logDebug(String, Throwable);
 protected void logError(String, Throwable);
 protected void logWarn(String, Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/HttpURLConnectionManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class HttpURLConnectionManager extends HttpManager {
 private static final java.nio.charset.Charset CHARSET;
 private final java.net.URL url;
 private final boolean isHttps;
 private final String method;
 private final int connectTimeoutMillis;
 private final int readTimeoutMillis;
 private final org.apache.logging.log4j.core.config.Property[] headers;
 private final org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private final boolean verifyHostname;
 public void HttpURLConnectionManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.LoggerContext, String, java.net.URL, String, int, int, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.net.ssl.SslConfiguration, boolean);
 public void send(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager$RandomAccessFileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$RandomAccessFileManagerFactory implements ManagerFactory {
 private void RandomAccessFileManager$RandomAccessFileManagerFactory();
 public RandomAccessFileManager createManager(String, RandomAccessFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$1 {
}

org/apache/logging/log4j/core/appender/RollingFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RollingFileAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = RollingFile;
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private final String fileName;
 private final String filePattern;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RollingFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, rolling.RollingFileManager, String, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public String getFileName();
 public String getFilePattern();
 public rolling.TriggeringPolicy getTriggeringPolicy();
 public static RollingFileAppender createAppender(String, String, String, String, String, String, String, rolling.TriggeringPolicy, rolling.RolloverStrategy, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RollingFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/FileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$1 {
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseAppender.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 public static final int DEFAULT_RECONNECT_INTERVAL_MILLIS = 5000;
 private final java.util.concurrent.locks.ReadWriteLock lock;
 private final java.util.concurrent.locks.Lock readLock;
 private final java.util.concurrent.locks.Lock writeLock;
 private AbstractDatabaseManager manager;
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, boolean, AbstractDatabaseManager);
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], AbstractDatabaseManager);
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, AbstractDatabaseManager);
 public final void append(org.apache.logging.log4j.core.LogEvent);
 public final org.apache.logging.log4j.core.Layout getLayout();
 public final AbstractDatabaseManager getManager();
 protected final void replaceManager(AbstractDatabaseManager);
 public final void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$JdbcDatabaseManagerFactory.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$JdbcDatabaseManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private static final char PARAMETER_MARKER = 63;
 private void JdbcDatabaseManager$JdbcDatabaseManagerFactory();
 public JdbcDatabaseManager createManager(String, JdbcDatabaseManager$FactoryData);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target$2.class

package org.apache.logging.log4j.core.appender;
final synchronized enum ConsoleAppender$Target$2 {
 void ConsoleAppender$Target$2(String, int);
 public java.nio.charset.Charset getDefaultCharset();
}

org/apache/logging/log4j/core/appender/FileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FileAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = File;
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private final String fileName;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private final Object advertisement;
 public static FileAppender createAppender(String, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static FileAppender$Builder newBuilder();
 private void FileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, FileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public String getFileName();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/RollingFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RollingFileAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/JmsManager$Reconnector.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private volatile boolean shutdown;
 private final Object owner;
 private void JmsManager$Reconnector(JmsManager, Object);
 public void latch();
 void reconnect() throws javax.naming.NamingException, javax.jms.JMSException;
 public void run();
 public void shutdown();
}

org/apache/logging/log4j/core/appender/mom/JmsAppender$1.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$FactoryData.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$FactoryData {
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 private final String topic;
 private final boolean syncSend;
 private final org.apache.logging.log4j.core.config.Property[] properties;
 private final String key;
 public void KafkaManager$FactoryData(org.apache.logging.log4j.core.LoggerContext, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
}

org/apache/logging/log4j/core/impl/ThreadContextDataProvider.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataProvider implements org.apache.logging.log4j.core.util.ContextDataProvider {
 public void ThreadContextDataProvider();
 public java.util.Map supplyContextData();
 public org.apache.logging.log4j.util.StringMap supplyStringMap();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$LogEventProxy.class

package org.apache.logging.log4j.core.impl;
synchronized class Log4jLogEvent$LogEventProxy implements java.io.Serializable {
 private static final long serialVersionUID = -8634075037355293699;
 private final String loggerFQCN;
 private final org.apache.logging.log4j.Marker marker;
 private final org.apache.logging.log4j.Level level;
 private final String loggerName;
 private final transient org.apache.logging.log4j.message.Message message;
 private java.rmi.MarshalledObject marshalledMessage;
 private String messageString;
 private final long timeMillis;
 private final int nanoOfMillisecond;
 private final transient Throwable thrown;
 private final ThrowableProxy thrownProxy;
 private final org.apache.logging.log4j.util.StringMap contextData;
 private final org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private final long threadId;
 private final String threadName;
 private final int threadPriority;
 private final StackTraceElement source;
 private final boolean isLocationRequired;
 private final boolean isEndOfBatch;
 private final transient long nanoTime;
 public void Log4jLogEvent$LogEventProxy(Log4jLogEvent, boolean);
 public void Log4jLogEvent$LogEventProxy(org.apache.logging.log4j.core.LogEvent, boolean);
 private static org.apache.logging.log4j.message.Message memento(org.apache.logging.log4j.message.ReusableMessage);
 private static org.apache.logging.log4j.util.StringMap memento(org.apache.logging.log4j.util.ReadOnlyStringMap);
 private static java.rmi.MarshalledObject marshall(org.apache.logging.log4j.message.Message);
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 protected Object readResolve();
 private org.apache.logging.log4j.message.Message message();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForCopyOnWriteThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForCopyOnWriteThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForCopyOnWriteThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/Log4jProvider.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jProvider extends org.apache.logging.log4j.spi.Provider {
 public void Log4jProvider();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForDefaultThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForDefaultThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForDefaultThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 private static JdkMapAdapterStringMap frozenStringMap(java.util.Map);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper$CacheEntry.class

package org.apache.logging.log4j.core.impl;
final synchronized class ThrowableProxyHelper$CacheEntry {
 private final ExtendedClassInfo element;
 private final ClassLoader loader;
 private void ThrowableProxyHelper$CacheEntry(ExtendedClassInfo, ClassLoader);
}

org/apache/logging/log4j/core/tools/Generate$LevelInfo.class

package org.apache.logging.log4j.core.tools;
synchronized class Generate$LevelInfo {
 final String name;
 final int intLevel;
 void Generate$LevelInfo(String);
 public static java.util.List parse(java.util.List, Class);
}

org/apache/logging/log4j/core/tools/Generate$Type.class

package org.apache.logging.log4j.core.tools;
abstract synchronized enum Generate$Type {
 public static final Generate$Type CUSTOM;
 public static final Generate$Type EXTEND;
 public static Generate$Type[] values();
 public static Generate$Type valueOf(String);
 private void Generate$Type(String, int);
 abstract String imports();
 abstract String declaration();
 abstract String constructor();
 abstract Class generator();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate$CustomLogger.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate$CustomLogger {
 public static void main(String[]);
 private void Generate$CustomLogger();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MissingParameterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MissingParameterException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 5075678535706338753;
 public void CommandLine$MissingParameterException(CommandLine, String);
 private static CommandLine$MissingParameterException create(CommandLine, java.util.Collection, String);
 private static String describe(reflect.Field, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BigIntegerConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BigIntegerConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BigIntegerConverter();
 public java.math.BigInteger convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Command.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Command extends annotation.Annotation {
 public abstract String name();
 public abstract Class[] subcommands();
 public abstract String separator();
 public abstract String[] version();
 public abstract String headerHeading();
 public abstract String[] header();
 public abstract String synopsisHeading();
 public abstract boolean abbreviateSynopsis();
 public abstract String[] customSynopsis();
 public abstract String descriptionHeading();
 public abstract String[] description();
 public abstract String parameterListHeading();
 public abstract String optionListHeading();
 public abstract boolean sortOptions();
 public abstract char requiredOptionMarker();
 public abstract boolean showDefaultValues();
 public abstract String commandListHeading();
 public abstract String footerHeading();
 public abstract String[] footer();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultParamLabelRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultParamLabelRenderer implements CommandLine$Help$IParamLabelRenderer {
 public final String separator;
 public void CommandLine$Help$DefaultParamLabelRenderer(String);
 public String separator();
 public CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 private static String renderParameterName(reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$ColorScheme.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$ColorScheme {
 public final java.util.List commandStyles;
 public final java.util.List optionStyles;
 public final java.util.List parameterStyles;
 public final java.util.List optionParamStyles;
 private final CommandLine$Help$Ansi ansi;
 public void CommandLine$Help$ColorScheme();
 public void CommandLine$Help$ColorScheme(CommandLine$Help$Ansi);
 public transient CommandLine$Help$ColorScheme commands(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme options(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme parameters(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme optionParams(CommandLine$Help$Ansi$IStyle[]);
 public CommandLine$Help$Ansi$Text commandText(String);
 public CommandLine$Help$Ansi$Text optionText(String);
 public CommandLine$Help$Ansi$Text parameterText(String);
 public CommandLine$Help$Ansi$Text optionParamText(String);
 public CommandLine$Help$ColorScheme applySystemProperties();
 private void replace(java.util.List, String);
 private transient CommandLine$Help$ColorScheme addAll(java.util.List, CommandLine$Help$Ansi$IStyle[]);
 public CommandLine$Help$Ansi ansi();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ITypeConverter.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$ITypeConverter {
 public abstract Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$MinimalOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$MinimalOptionRenderer implements CommandLine$Help$IOptionRenderer {
 void CommandLine$Help$MinimalOptionRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$PicocliException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$PicocliException extends RuntimeException {
 private static final long serialVersionUID = -2574128880125050818;
 public void CommandLine$PicocliException(String);
 public void CommandLine$PicocliException(String, Exception);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$1.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Column$Overflow.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Column$Overflow {
 public static final CommandLine$Help$Column$Overflow TRUNCATE;
 public static final CommandLine$Help$Column$Overflow SPAN;
 public static final CommandLine$Help$Column$Overflow WRAP;
 public static CommandLine$Help$Column$Overflow[] values();
 public static CommandLine$Help$Column$Overflow valueOf(String);
 private void CommandLine$Help$Column$Overflow(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$UUIDConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$UUIDConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$UUIDConverter();
 public java.util.UUID convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Ansi {
 public static final CommandLine$Help$Ansi AUTO;
 public static final CommandLine$Help$Ansi ON;
 public static final CommandLine$Help$Ansi OFF;
 static CommandLine$Help$Ansi$Text EMPTY_TEXT;
 static final boolean isWindows;
 static final boolean isXterm;
 static final boolean ISATTY;
 public static CommandLine$Help$Ansi[] values();
 public static CommandLine$Help$Ansi valueOf(String);
 private void CommandLine$Help$Ansi(String, int);
 static final boolean calcTTY();
 private static boolean ansiPossible();
 public boolean enabled();
 public CommandLine$Help$Ansi$Text apply(String, java.util.List);
 private static Object[] reverse(Object[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate {
 static final String PACKAGE_DECLARATION = package %s;%n%n;
 static final String FQCN_FIELD = private static final String FQCN = %s.class.getName();%n;
 static final String LEVEL_FIELD = private static final Level %s = Level.forName("%s", %d);%n;
 static final String FACTORY_METHODS = %n /**%n * Returns a custom Logger with the name of the calling class.%n * %n * @return The custom Logger for the calling class.%n */%n public static CLASSNAME create() {%n final Logger wrapped = LogManager.getLogger();%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified name of the Class as%n * the Logger name.%n * %n * @param loggerName The Class whose name should be used as the Logger name.%n * If null it will default to the calling class.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Class<?> loggerName) {%n final Logger wrapped = LogManager.getLogger(loggerName);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified name of the Class as%n * the Logger name.%n * %n * @param loggerName The Class whose name should be used as the Logger name.%n * If null it will default to the calling class.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Class<?> loggerName, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(loggerName, messageFactory);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified class name of the value%n * as the Logger name.%n * %n * @param value The value whose class name should be used as the Logger%n * name. If null the name of the calling class will be used as%n * the logger name.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Object value) {%n final Logger wrapped = LogManager.getLogger(value);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified class name of the value%n * as the Logger name.%n * %n * @param value The value whose class name should be used as the Logger%n * name. If null the name of the calling class will be used as%n * the logger name.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Object value, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(value, messageFactory);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger with the specified name.%n * %n * @param name The logger name. If null the name of the calling class will%n * be used.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final String name) {%n final Logger wrapped = LogManager.getLogger(name);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger with the specified name.%n * %n * @param name The logger name. If null the name of the calling class will%n * be used.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final String name, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(name, messageFactory);%n return new CLASSNAME(wrapped);%n }%n;
 static final String METHODS = %n /**%n * Logs a message with the specific Marker at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param msg the message string to be logged%n */%n public void methodName(final Marker marker, final Message msg) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msg, (Throwable) null);%n }%n%n /**%n * Logs a message with the specific Marker at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param msg the message string to be logged%n * @param t A Throwable or null.%n */%n public void methodName(final Marker marker, final Message msg, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msg, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message object to log.%n */%n public void methodName(final Marker marker, final Object message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message CharSequence with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message CharSequence to log.%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final CharSequence message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Marker marker, final Object message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the CharSequence to log.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final CharSequence message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message object to log.%n */%n public void methodName(final Marker marker, final String message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param params parameters to the message.%n * @see #getMessageFactory()%n */%n public void methodName(final Marker marker, final String message, final Object... params) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, params);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7, p8);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @param p9 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8, final Object p9) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Marker marker, final String message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs the specified Message at the {@code CUSTOM_LEVEL} level.%n * %n * @param msg the message string to be logged%n */%n public void methodName(final Message msg) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msg, (Throwable) null);%n }%n%n /**%n * Logs the specified Message at the {@code CUSTOM_LEVEL} level.%n * %n * @param msg the message string to be logged%n * @param t A Throwable or null.%n */%n public void methodName(final Message msg, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msg, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message object to log.%n */%n public void methodName(final Object message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Object message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message CharSequence with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message CharSequence to log.%n * @since Log4j-2.6%n */%n public void methodName(final CharSequence message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a CharSequence at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the CharSequence to log.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.6%n */%n public void methodName(final CharSequence message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message object to log.%n */%n public void methodName(final String message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param params parameters to the message.%n * @see #getMessageFactory()%n */%n public void methodName(final String message, final Object... params) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, params);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7, p8);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @param p9 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8, final Object p9) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final String message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the {@code CUSTOM_LEVEL}level.%n *%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @since Log4j-2.4%n */%n public void methodName(final Supplier<?> msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) including the stack trace of the {@link Throwable} <code>t</code> passed as parameter.%n *%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.4%n */%n public void methodName(final Supplier<?> msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level with the specified Marker.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final Supplier<?> msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters which are only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level.%n *%n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param paramSuppliers An array of functions, which when called, produce the desired log message parameters.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final String message, final Supplier<?>... paramSuppliers) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, paramSuppliers);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) with the specified Marker and including the stack trace of the {@link Throwable}%n * <code>t</code> passed as parameter.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @param t A Throwable or null.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final Supplier<?> msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, t);%n }%n%n /**%n * Logs a message with parameters which are only to be constructed if the logging level is%n * the {@code CUSTOM_LEVEL} level.%n *%n * @param message the message to log; the format depends on the message factory.%n * @param paramSuppliers An array of functions, which when called, produce the desired log message parameters.%n * @since Log4j-2.4%n */%n public void methodName(final String message, final Supplier<?>... paramSuppliers) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, paramSuppliers);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level with the specified Marker. The {@code MessageSupplier} may or may%n * not use the {@link MessageFactory} to construct the {@code Message}.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final MessageSupplier msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) with the specified Marker and including the stack trace of the {@link Throwable}%n * <code>t</code> passed as parameter. The {@code MessageSupplier} may or may not use the%n * {@link MessageFactory} to construct the {@code Message}.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @param t A Throwable or null.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final MessageSupplier msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level. The {@code MessageSupplier} may or may not use the%n * {@link MessageFactory} to construct the {@code Message}.%n *%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @since Log4j-2.4%n */%n public void methodName(final MessageSupplier msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) including the stack trace of the {@link Throwable} <code>t</code> passed as parameter.%n * The {@code MessageSupplier} may or may not use the {@link MessageFactory} to construct the%n * {@code Message}.%n *%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.4%n */%n public void methodName(final MessageSupplier msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, t);%n }%n;
 private void Generate();
 private static void generate(String[], Generate$Type);
 static void generate(String[], Generate$Type, java.io.PrintStream);
 static boolean validate(String[]);
 private static void usage(java.io.PrintStream, Class);
 static String generateSource(String, java.util.List, Generate$Type);
 static String javadocDescription(java.util.List);
 static String camelCase(String);
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationDefaults.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationDefaults {
 public static final String KEYSTORE_TYPE = JKS;
 public static final String PROTOCOL = SSL;
 public void SslConfigurationDefaults();
}

org/apache/logging/log4j/core/net/SslSocketManager$SslFactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$SslFactoryData extends TcpSocketManager$FactoryData {
 protected ssl.SslConfiguration sslConfiguration;
 public void SslSocketManager$SslFactoryData(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public String toString();
}

org/apache/logging/log4j/core/net/Severity.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Severity {
 public static final Severity EMERG;
 public static final Severity ALERT;
 public static final Severity CRITICAL;
 public static final Severity ERROR;
 public static final Severity WARNING;
 public static final Severity NOTICE;
 public static final Severity INFO;
 public static final Severity DEBUG;
 private final int code;
 public static Severity[] values();
 public static Severity valueOf(String);
 private void Severity(String, int, int);
 public int getCode();
 public boolean isEqual(String);
 public static Severity getSeverity(org.apache.logging.log4j.Level);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/DatagramSocketManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$1 {
}

org/apache/logging/log4j/core/net/Severity$1.class

package org.apache.logging.log4j.core.net;
synchronized class Severity$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SmtpManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$FactoryData {
 private final String to;
 private final String cc;
 private final String bcc;
 private final String from;
 private final String replyto;
 private final org.apache.logging.log4j.core.layout.AbstractStringLayout$Serializer subject;
 private final String protocol;
 private final String host;
 private final int port;
 private final String username;
 private final String password;
 private final boolean isDebug;
 private final int numElements;
 private final ssl.SslConfiguration sslConfiguration;
 public void SmtpManager$FactoryData(String, String, String, String, String, org.apache.logging.log4j.core.layout.AbstractStringLayout$Serializer, String, String, int, String, String, boolean, int, ssl.SslConfiguration);
}

org/apache/logging/log4j/core/net/DatagramSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class DatagramSocketManager extends AbstractSocketManager {
 private static final DatagramSocketManager$DatagramSocketManagerFactory FACTORY;
 protected void DatagramSocketManager(String, java.io.OutputStream, java.net.InetAddress, String, int, org.apache.logging.log4j.core.Layout, int);
 public static DatagramSocketManager getSocketManager(String, int, org.apache.logging.log4j.core.Layout, int);
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SocketOptions.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketOptions implements org.apache.logging.log4j.core.util.Builder, Cloneable {
 private Boolean keepAlive;
 private Boolean oobInline;
 private SocketPerformancePreferences performancePreferences;
 private Integer receiveBufferSize;
 private Boolean reuseAddress;
 private Rfc1349TrafficClass rfc1349TrafficClass;
 private Integer sendBufferSize;
 private Integer soLinger;
 private Integer soTimeout;
 private Boolean tcpNoDelay;
 private Integer trafficClass;
 public void SocketOptions();
 public static SocketOptions newBuilder();
 public void apply(java.net.Socket) throws java.net.SocketException;
 public SocketOptions build();
 public Integer getActualTrafficClass();
 public SocketPerformancePreferences getPerformancePreferences();
 public Integer getReceiveBufferSize();
 public Rfc1349TrafficClass getRfc1349TrafficClass();
 public Integer getSendBufferSize();
 public Integer getSoLinger();
 public Integer getSoTimeout();
 public Integer getTrafficClass();
 public Boolean isKeepAlive();
 public Boolean isOobInline();
 public Boolean isReuseAddress();
 public Boolean isTcpNoDelay();
 public SocketOptions setKeepAlive(boolean);
 public SocketOptions setOobInline(boolean);
 public SocketOptions setPerformancePreferences(SocketPerformancePreferences);
 public SocketOptions setReceiveBufferSize(int);
 public SocketOptions setReuseAddress(boolean);
 public SocketOptions setRfc1349TrafficClass(Rfc1349TrafficClass);
 public SocketOptions setSendBufferSize(int);
 public SocketOptions setSoLinger(int);
 public SocketOptions setSoTimeout(int);
 public SocketOptions setTcpNoDelay(boolean);
 public SocketOptions setTrafficClass(int);
 public String toString();
}

org/apache/logging/log4j/core/util/Log4jThreadFactory.class

package org.apache.logging.log4j.core.util;
public synchronized class Log4jThreadFactory implements java.util.concurrent.ThreadFactory {
 private static final String PREFIX = TF-;
 private static final java.util.concurrent.atomic.AtomicInteger FACTORY_NUMBER;
 private static final java.util.concurrent.atomic.AtomicInteger THREAD_NUMBER;
 private final boolean daemon;
 private final ThreadGroup group;
 private final int priority;
 private final String threadNamePrefix;
 public static Log4jThreadFactory createDaemonThreadFactory(String);
 public static Log4jThreadFactory createThreadFactory(String);
 public void Log4jThreadFactory(String, boolean, int);
 public Thread newThread(Runnable);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemMillisClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemMillisClock implements Clock {
 public void SystemMillisClock();
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/util/datetime/FastDateFormat.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDateFormat extends Format implements DateParser, DatePrinter {
 private static final long serialVersionUID = 2;
 public static final int FULL = 0;
 public static final int LONG = 1;
 public static final int MEDIUM = 2;
 public static final int SHORT = 3;
 private static final FormatCache cache;
 private final FastDatePrinter printer;
 private final FastDateParser parser;
 public static FastDateFormat getInstance();
 public static FastDateFormat getInstance(String);
 public static FastDateFormat getInstance(String, java.util.TimeZone);
 public static FastDateFormat getInstance(String, java.util.Locale);
 public static FastDateFormat getInstance(String, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getDateInstance(int);
 public static FastDateFormat getDateInstance(int, java.util.Locale);
 public static FastDateFormat getDateInstance(int, java.util.TimeZone);
 public static FastDateFormat getDateInstance(int, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getTimeInstance(int);
 public static FastDateFormat getTimeInstance(int, java.util.Locale);
 public static FastDateFormat getTimeInstance(int, java.util.TimeZone);
 public static FastDateFormat getTimeInstance(int, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getDateTimeInstance(int, int);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.Locale);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.TimeZone);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.TimeZone, java.util.Locale);
 protected void FastDateFormat(String, java.util.TimeZone, java.util.Locale);
 protected void FastDateFormat(String, java.util.TimeZone, java.util.Locale, java.util.Date);
 public StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 public String format(long);
 public String format(java.util.Date);
 public String format(java.util.Calendar);
 public Appendable format(long, Appendable);
 public Appendable format(java.util.Date, Appendable);
 public Appendable format(java.util.Calendar, Appendable);
 public java.util.Date parse(String) throws java.text.ParseException;
 public java.util.Date parse(String, java.text.ParsePosition);
 public boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 public Object parseObject(String, java.text.ParsePosition);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public int getMaxLengthEstimate();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwentyFourHourField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwentyFourHourField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$TwentyFourHourField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/OptionConverter.class

package org.apache.logging.log4j.core.util;
public final synchronized class OptionConverter {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int ONE_K = 1024;
 private void OptionConverter();
 public static String[] concatenateArrays(String[], String[]);
 public static String convertSpecialChars(String);
 public static Object instantiateByKey(java.util.Properties, String, Class, Object);
 public static boolean toBoolean(String, boolean);
 public static int toInt(String, int);
 public static org.apache.logging.log4j.Level toLevel(String, org.apache.logging.log4j.Level);
 public static long toFileSize(String, long);
 public static String findAndSubst(String, java.util.Properties);
 public static Object instantiateByClassName(String, Class, Object);
 public static String substVars(String, java.util.Properties) throws IllegalArgumentException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Transform.class

package org.apache.logging.log4j.core.util;
public final synchronized class Transform {
 private static final String CDATA_START = <![CDATA[;
 private static final String CDATA_END =]]>;
 private static final String CDATA_PSEUDO_END =]]>;
 private static final String CDATA_EMBEDED_END =]]>]]><![CDATA[;
 private static final int CDATA_END_LEN;
 private void Transform();
 public static String escapeHtmlTags(String);
 public static void appendEscapingCData(StringBuilder, String);
 public static String escapeJsonControlCharacters(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemNanoClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemNanoClock implements NanoClock {
 public void SystemNanoClock();
 public long nanoTime();
}

org/apache/logging/log4j/core/util/FileUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class FileUtils {
 private static final String PROTOCOL_FILE = file;
 private static final String JBOSS_FILE = vfsfile;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void FileUtils();
 public static java.io.File fileFromUri(java.net.URI);
 public static boolean isFile(java.net.URL);
 public static String getFileExtension(java.io.File);
 public static void mkdir(java.io.File, boolean) throws java.io.IOException;
 public static void makeParentDirs(java.io.File) throws java.io.IOException;
 public static void defineFilePosixAttributeView(java.nio.file.Path, java.util.Set, String, String) throws java.io.IOException;
 public static boolean isFilePosixAttributeViewSupported();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Throwables.class

package org.apache.logging.log4j.core.util;
public final synchronized class Throwables {
 private void Throwables();
 public static Throwable getRootCause(Throwable);
 public static java.util.List toStringList(Throwable);
 public static void rethrow(Throwable);
 private static void rethrow0(Throwable) throws Throwable;
}

org/apache/logging/log4j/core/util/AbstractWatcher.class

package org.apache.logging.log4j.core.util;
public abstract synchronized class AbstractWatcher implements Watcher {
 private final org.apache.logging.log4j.core.config.Reconfigurable reconfigurable;
 private final java.util.List configurationListeners;
 private final Log4jThreadFactory threadFactory;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private Source source;
 public void AbstractWatcher(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List);
 public java.util.List getListeners();
 public void modified();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public abstract long getLastModified();
 public abstract boolean isModified();
 public void watching(Source);
 public Source getSource();
}

org/apache/logging/log4j/core/config/LockingReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class LockingReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private final LoggerConfig loggerConfig;
 private final java.util.concurrent.locks.ReadWriteLock reconfigureLock;
 private volatile boolean isStopping;
 public void LockingReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 private boolean beforeLogEvent();
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ClassArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final String ATTR_CLASS_NAME = className;
 private String className;
 public void ClassArbiter$Builder();
 public ClassArbiter$Builder setClassName(String);
 public ClassArbiter$Builder asBuilder();
 public ClassArbiter build();
}

org/apache/logging/log4j/core/config/plugins/PluginBuilderAttribute.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginBuilderAttribute extends annotation.Annotation {
 public abstract String value();
 public abstract boolean sensitive();
}

org/apache/logging/log4j/core/config/plugins/util/PluginUtil.class

package org.apache.logging.log4j.core.config.plugins.util;
public final synchronized class PluginUtil {
 private void PluginUtil();
 public static java.util.Map collectPluginsByCategory(String);
 public static java.util.Map collectPluginsByCategoryAndPackage(String, java.util.List);
 public static Object instantiatePlugin(Class);
 public static reflect.Method findPluginFactoryMethod(Class);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$PluginElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$PluginElementVisitor extends javax.lang.model.util.SimpleElementVisitor7 {
 private final javax.lang.model.util.Elements elements;
 private void PluginProcessor$PluginElementVisitor(javax.lang.model.util.Elements);
 public PluginEntry visitType(javax.lang.model.element.TypeElement, org.apache.logging.log4j.core.config.plugins.Plugin);
}

org/apache/logging/log4j/core/config/plugins/PluginElement.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginElement extends annotation.Annotation {
 public abstract String value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BigIntegerConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BigIntegerConverter implements TypeConverter {
 public void TypeConverters$BigIntegerConverter();
 public java.math.BigInteger convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public abstract interface TypeConverter {
 public abstract Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$SecurityProviderConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$SecurityProviderConverter implements TypeConverter {
 public void TypeConverters$SecurityProviderConverter();
 public java.security.Provider convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$StringConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$StringConverter implements TypeConverter {
 public void TypeConverters$StringConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/config/Reconfigurable.class

package org.apache.logging.log4j.core.config;
public abstract interface Reconfigurable {
 public abstract Configuration reconfigure();
}

org/apache/logging/log4j/core/config/ConfigurationException.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationException extends RuntimeException {
 private static final long serialVersionUID = -2413951820300775294;
 public void ConfigurationException(String);
 public void ConfigurationException(String, Throwable);
 public void ConfigurationException(Throwable);
}

org/apache/logging/log4j/core/config/status/StatusConfiguration$Verbosity.class

package org.apache.logging.log4j.core.config.status;
public final synchronized enum StatusConfiguration$Verbosity {
 public static final StatusConfiguration$Verbosity QUIET;
 public static final StatusConfiguration$Verbosity VERBOSE;
 public static StatusConfiguration$Verbosity[] values();
 public static StatusConfiguration$Verbosity valueOf(String);
 private void StatusConfiguration$Verbosity(String, int);
 public static StatusConfiguration$Verbosity toVerbosity(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration$ErrorType.class

package org.apache.logging.log4j.core.config.xml;
final synchronized enum XmlConfiguration$ErrorType {
 public static final XmlConfiguration$ErrorType CLASS_NOT_FOUND;
 public static XmlConfiguration$ErrorType[] values();
 public static XmlConfiguration$ErrorType valueOf(String);
 private void XmlConfiguration$ErrorType(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration$Status.class

package org.apache.logging.log4j.core.config.xml;
synchronized class XmlConfiguration$Status {
 private final org.w3c.dom.Element element;
 private final String name;
 private final XmlConfiguration$ErrorType errorType;
 public void XmlConfiguration$Status(String, org.w3c.dom.Element, XmlConfiguration$ErrorType);
 public String toString();
}

org/apache/logging/log4j/core/config/json/JsonConfigurationFactory.class

package org.apache.logging.log4j.core.config.json;
public synchronized class JsonConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 private static final String[] SUFFIXES;
 private static final String[] dependencies;
 private final boolean isActive;
 public void JsonConfigurationFactory();
 protected boolean isActive();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$1.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$1 {
 void LoggerConfig$LoggerConfigPredicate$1(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/ConfigurationAware.class

package org.apache.logging.log4j.core.config;
public abstract interface ConfigurationAware {
 public abstract void setConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/ReliabilityStrategyFactory.class

package org.apache.logging.log4j.core.config;
public final synchronized class ReliabilityStrategyFactory {
 private void ReliabilityStrategyFactory();
 public static ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultLoggerComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder {
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, boolean);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, String);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultPropertyComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultPropertyComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.PropertyComponentBuilder {
 public void DefaultPropertyComponentBuilder(DefaultConfigurationBuilder, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
public synchronized class DefaultConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder {
 private static final String INDENT = ;
 private final org.apache.logging.log4j.core.config.builder.api.Component root;
 private org.apache.logging.log4j.core.config.builder.api.Component loggers;
 private org.apache.logging.log4j.core.config.builder.api.Component appenders;
 private org.apache.logging.log4j.core.config.builder.api.Component filters;
 private org.apache.logging.log4j.core.config.builder.api.Component properties;
 private org.apache.logging.log4j.core.config.builder.api.Component customLevels;
 private org.apache.logging.log4j.core.config.builder.api.Component scripts;
 private final Class clazz;
 private org.apache.logging.log4j.core.config.ConfigurationSource source;
 private int monitorInterval;
 private org.apache.logging.log4j.Level level;
 private String verbosity;
 private String destination;
 private String packages;
 private String shutdownFlag;
 private long shutdownTimeoutMillis;
 private String advertiser;
 private org.apache.logging.log4j.core.LoggerContext loggerContext;
 private String name;
 public static void formatXml(javax.xml.transform.Source, javax.xml.transform.Result) throws javax.xml.transform.TransformerConfigurationException, javax.xml.transform.TransformerFactoryConfigurationError, javax.xml.transform.TransformerException;
 public void DefaultConfigurationBuilder();
 public void DefaultConfigurationBuilder(Class);
 protected org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.Component, org.apache.logging.log4j.core.config.builder.api.ComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder addProperty(String, String);
 public BuiltConfiguration build();
 public BuiltConfiguration build(boolean);
 private String formatXml(String) throws javax.xml.transform.TransformerConfigurationException, javax.xml.transform.TransformerException, javax.xml.transform.TransformerFactoryConfigurationError;
 public void writeXmlConfiguration(java.io.OutputStream) throws java.io.IOException;
 public String toXmlConfiguration();
 private void writeXmlConfiguration(javax.xml.stream.XMLStreamWriter) throws javax.xml.stream.XMLStreamException;
 private void writeXmlSection(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 private void writeXmlComponent(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 private void writeXmlAttributes(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 public org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder newScript(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder newScriptFile(String);
 public org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder newScriptFile(String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder newAppender(String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder newAppenderRef(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger();
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.PropertyComponentBuilder newProperty(String, String);
 public org.apache.logging.log4j.core.config.builder.api.KeyValuePairComponentBuilder newKeyValuePair(String, String);
 public org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder newCustomLevel(String, int);
 public org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder newFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder newFilter(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder newLayout(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger();
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setAdvertiser(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setConfigurationName(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setMonitorInterval(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setPackages(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setShutdownHook(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setShutdownTimeout(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setStatusLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setVerbosity(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setDestination(String);
 public void setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder addRootProperty(String, String);
}

org/apache/logging/log4j/core/layout/JacksonFactory$XML.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$XML extends JacksonFactory {
 static final int DEFAULT_INDENT = 1;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 public void JacksonFactory$XML(boolean, boolean);
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForContextMap();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/TextEncoderHelper.class

package org.apache.logging.log4j.core.layout;
public synchronized class TextEncoderHelper {
 private void TextEncoderHelper();
 static void encodeTextFallBack(java.nio.charset.Charset, StringBuilder, ByteBufferDestination);
 static void encodeText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, StringBuilder, ByteBufferDestination) throws java.nio.charset.CharacterCodingException;
 private static void writeEncodedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, ByteBufferDestination, java.nio.charset.CoderResult);
 private static void writeChunkedEncodedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void encodeChunkedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, StringBuilder, ByteBufferDestination);
 public static void encodeText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, ByteBufferDestination);
 private static java.nio.ByteBuffer writeAndEncodeAsMuchAsPossible(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, boolean, ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void throwException(java.nio.charset.CoderResult);
 private static java.nio.ByteBuffer encodeAsMuchAsPossible(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, boolean, ByteBufferDestination, java.nio.ByteBuffer);
 private static java.nio.ByteBuffer drainIfByteBufferFull(ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void flushRemainingBytes(java.nio.charset.CharsetEncoder, ByteBufferDestination, java.nio.ByteBuffer);
 static int copy(StringBuilder, int, java.nio.CharBuffer);
}

org/apache/logging/log4j/core/layout/internal/ListChecker.class

package org.apache.logging.log4j.core.layout.internal;
public abstract interface ListChecker {
 public static final ListChecker$NoopChecker NOOP_CHECKER;
 public abstract boolean check(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/internal/ExcludeChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class ExcludeChecker implements ListChecker {
 private final java.util.List list;
 public void ExcludeChecker(java.util.List);
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/LockingStringBuilderEncoder.class

package org.apache.logging.log4j.core.layout;
public synchronized class LockingStringBuilderEncoder implements Encoder {
 private final java.nio.charset.Charset charset;
 private final java.nio.charset.CharsetEncoder charsetEncoder;
 private final java.nio.CharBuffer cachedCharBuffer;
 public void LockingStringBuilderEncoder(java.nio.charset.Charset);
 public void LockingStringBuilderEncoder(java.nio.charset.Charset, int);
 private java.nio.CharBuffer getCharBuffer();
 public void encode(StringBuilder, ByteBufferDestination);
 private void logEncodeTextException(Exception, StringBuilder, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$LogEventWithAdditionalFields.class

package org.apache.logging.log4j.core.layout;
public synchronized class AbstractJacksonLayout$LogEventWithAdditionalFields {
 private final Object logEvent;
 private final java.util.Map additionalFields;
 public void AbstractJacksonLayout$LogEventWithAdditionalFields(Object, java.util.Map);
 public Object getLogEvent();
 public java.util.Map getAdditionalFields();
}

org/apache/logging/log4j/core/layout/JsonLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class JsonLayout extends AbstractJacksonLayout {
 private static final String DEFAULT_FOOTER =];
 private static final String DEFAULT_HEADER = [;
 static final String CONTENT_TYPE = application/json;
 protected void JsonLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean);
 private void JsonLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[], boolean);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static JsonLayout createLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 public static JsonLayout$Builder newBuilder();
 public static JsonLayout createDefaultLayout();
 public void toSerializable(org.apache.logging.log4j.core.LogEvent, java.io.Writer) throws java.io.IOException;
}

org/apache/logging/log4j/core/Version.class

package org.apache.logging.log4j.core;
public synchronized class Version {
 public void Version();
 public static void main(String[]);
 public static String getProductString();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfig extends org.apache.logging.log4j.core.config.LoggerConfig {
 private static final ThreadLocal ASYNC_LOGGER_ENTERED;
 private final AsyncLoggerConfigDelegate delegate;
 protected void AsyncLoggerConfig(String, java.util.List, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.Level, boolean, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, boolean);
 protected void log(org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.config.LoggerConfig$LoggerConfigPredicate);
 protected void callAppenders(org.apache.logging.log4j.core.LogEvent);
 private void logToAsyncDelegate(org.apache.logging.log4j.core.LogEvent);
 private void handleQueueFull(org.apache.logging.log4j.core.LogEvent);
 private void populateLazilyInitializedFields(org.apache.logging.log4j.core.LogEvent);
 void logInBackgroundThread(org.apache.logging.log4j.core.LogEvent);
 void logToAsyncLoggerConfigsOnCurrentThread(org.apache.logging.log4j.core.LogEvent);
 private String displayName();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, String, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(boolean, org.apache.logging.log4j.Level, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 protected static boolean includeLocation(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$Log4jEventWrapper.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDisruptor$Log4jEventWrapper {
 private AsyncLoggerConfig loggerConfig;
 private org.apache.logging.log4j.core.LogEvent event;
 public void AsyncLoggerConfigDisruptor$Log4jEventWrapper();
 public void AsyncLoggerConfigDisruptor$Log4jEventWrapper(org.apache.logging.log4j.core.impl.MutableLogEvent);
 public void clear();
 public String toString();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy$2.class

package org.apache.logging.log4j.core.async;
final synchronized enum ThreadNameCachingStrategy$2 {
 void ThreadNameCachingStrategy$2(String, int);
 public String getThreadName();
}

org/apache/logging/log4j/core/async/LinkedTransferQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class LinkedTransferQueueFactory implements BlockingQueueFactory {
 public void LinkedTransferQueueFactory();
 public java.util.concurrent.BlockingQueue create(int);
 public static LinkedTransferQueueFactory createFactory();
}

org/apache/logging/log4j/core/async/AsyncLogger$2.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$2 extends AsyncLogger$TranslatorType {
 void AsyncLogger$2(AsyncLogger);
 void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/ArrayBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class ArrayBlockingQueueFactory implements BlockingQueueFactory {
 public void ArrayBlockingQueueFactory();
 public java.util.concurrent.BlockingQueue create(int);
 public static ArrayBlockingQueueFactory createFactory();
}

org/apache/logging/log4j/core/lookup/AbstractLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class AbstractLookup implements StrLookup {
 public void AbstractLookup();
 public String lookup(String);
}

org/apache/logging/log4j/core/lookup/Log4jLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class Log4jLookup extends AbstractConfigurationAwareLookup {
 public static final String KEY_CONFIG_LOCATION = configLocation;
 public static final String KEY_CONFIG_PARENT_LOCATION = configParentLocation;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void Log4jLookup();
 private static String asPath(java.net.URI);
 private static java.net.URI getParent(java.net.URI) throws java.net.URISyntaxException;
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/XmlLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class XmlLogEventParser extends AbstractJacksonLogEventParser {
 public void XmlLogEventParser();
}

org/apache/logging/log4j/core/time/MutableInstant.class

package org.apache.logging.log4j.core.time;
public synchronized class MutableInstant implements Instant, java.io.Serializable, java.time.temporal.TemporalAccessor {
 private static final int MILLIS_PER_SECOND = 1000;
 private static final int NANOS_PER_MILLI = 1000000;
 private static final int NANOS_PER_SECOND = 1000000000;
 private long epochSecond;
 private int nanoOfSecond;
 public void MutableInstant();
 public long getEpochSecond();
 public int getNanoOfSecond();
 public long getEpochMillisecond();
 public int getNanoOfMillisecond();
 public void initFrom(Instant);
 public void initFromEpochMilli(long, int);
 private void validateNanoOfMillisecond(int);
 public void initFrom(org.apache.logging.log4j.core.util.Clock);
 public void initFromEpochSecond(long, int);
 private void validateNanoOfSecond(int);
 public static void instantToMillisAndNanos(long, int, long[]);
 public boolean isSupported(java.time.temporal.TemporalField);
 public long getLong(java.time.temporal.TemporalField);
 public java.time.temporal.ValueRange range(java.time.temporal.TemporalField);
 public int get(java.time.temporal.TemporalField);
 public Object query(java.time.temporal.TemporalQuery);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public void formatTo(StringBuilder);
}

org/apache/logging/log4j/core/Core.class

package org.apache.logging.log4j.core;
public synchronized class Core {
 public static final String CATEGORY_NAME = Core;
 public void Core();
}

org/apache/logging/log4j/core/LogEvent.class

package org.apache.logging.log4j.core;
public abstract interface LogEvent extends java.io.Serializable {
 public abstract LogEvent toImmutable();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract String getLoggerFqcn();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract long getTimeMillis();
 public abstract time.Instant getInstant();
 public abstract StackTraceElement getSource();
 public abstract String getThreadName();
 public abstract long getThreadId();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract impl.ThrowableProxy getThrownProxy();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
 public abstract long getNanoTime();
}

org/apache/logging/log4j/core/filter/MapFilter.class

package org.apache.logging.log4j.core.filter;
public synchronized class MapFilter extends AbstractFilter {
 private final org.apache.logging.log4j.util.IndexedStringMap map;
 private final boolean isAnd;
 protected void MapFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 protected boolean filter(org.apache.logging.log4j.message.MapMessage);
 protected boolean filter(java.util.Map);
 protected boolean filter(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 protected boolean isAnd();
 protected java.util.Map getMap();
 protected org.apache.logging.log4j.util.IndexedReadOnlyStringMap getStringMap();
 public static MapFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/DenyAllFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class DenyAllFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void DenyAllFilter$Builder();
 public DenyAllFilter build();
}

org/apache/logging/log4j/core/filter/AbstractFilter.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilter extends org.apache.logging.log4j.core.AbstractLifeCycle implements org.apache.logging.log4j.core.Filter {
 protected final org.apache.logging.log4j.core.Filter$Result onMatch;
 protected final org.apache.logging.log4j.core.Filter$Result onMismatch;
 protected void AbstractFilter();
 protected void AbstractFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 protected boolean equalsImpl(Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public final org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public final org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 protected int hashCodeImpl();
 public String toString();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class NoMarkerFilter extends AbstractFilter {
 private void NoMarkerFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public static NoMarkerFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/filter/DynamicThresholdFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class DynamicThresholdFilter extends AbstractFilter {
 private org.apache.logging.log4j.Level defaultThreshold;
 private final String key;
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 private java.util.Map levelMap;
 public static DynamicThresholdFilter createFilter(String, org.apache.logging.log4j.core.util.KeyValuePair[], org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private void DynamicThresholdFilter(String, java.util.Map, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public boolean equals(Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.ReadOnlyStringMap);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String getKey();
 public java.util.Map getLevelMap();
 public int hashCode();
 public String toString();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$UnixFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$UnixFormatter extends DatePatternConverter$Formatter {
 private void DatePatternConverter$UnixFormatter();
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ArrayPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract interface ArrayPatternConverter extends PatternConverter {
 public abstract transient void format(StringBuilder, Object[]);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EncodingPatternConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final EncodingPatternConverter$EscapeFormat escapeFormat;
 private void EncodingPatternConverter(java.util.List, EncodingPatternConverter$EscapeFormat);
 public boolean handlesThrowable();
 public static EncodingPatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EqualsBaseReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class EqualsBaseReplacementConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final java.util.List substitutionFormatters;
 private final String substitution;
 private final String testString;
 protected void EqualsBaseReplacementConverter(String, String, java.util.List, String, String, PatternParser);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 protected abstract boolean equals(String, StringBuilder, int, int);
 void parseSubstitution(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/LoggerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LoggerPatternConverter extends NamePatternConverter {
 private static final LoggerPatternConverter INSTANCE;
 private void LoggerPatternConverter(String[]);
 public static LoggerPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class LevelPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class MessagePatternConverter extends LogEventPatternConverter {
 private static final String LOOKUPS = lookups;
 private static final String NOLOOKUPS = nolookups;
 private void MessagePatternConverter();
 private static TextRenderer loadMessageRenderer(String[]);
 public static MessagePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private static String[] withoutLookupOptions(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy$2.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy$2 {
 void NameAbbreviator$MaxElementAbbreviator$Strategy$2(String, int, int);
 void abbreviate(int, String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$MaxElementAbbreviator extends NameAbbreviator {
 private final int count;
 private final NameAbbreviator$MaxElementAbbreviator$Strategy strategy;
 public void NameAbbreviator$MaxElementAbbreviator(int, NameAbbreviator$MaxElementAbbreviator$Strategy);
 public void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/VariablesNotEmptyReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class VariablesNotEmptyReplacementConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private void VariablesNotEmptyReplacementConverter(java.util.List);
 public static VariablesNotEmptyReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/jackson/ContextDataSerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataSerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 private static final org.apache.logging.log4j.util.TriConsumer WRITE_STRING_FIELD_INTO;
 protected void ContextDataSerializer();
 public void serialize(org.apache.logging.log4j.util.ReadOnlyStringMap, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListSerializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ContextDataAsEntryListSerializer$1 implements org.apache.logging.log4j.util.BiConsumer {
 int i;
 void ContextDataAsEntryListSerializer$1(ContextDataAsEntryListSerializer, MapEntry[]);
 public void accept(String, Object);
}

META-INF/versions/9/org/apache/logging/log4j/core/util/SystemClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemClock implements Clock, org.apache.logging.log4j.core.time.PreciseClock {
 public void SystemClock();
 public long currentTimeMillis();
 public void init(org.apache.logging.log4j.core.time.MutableInstant);
}

META-INF/NOTICE

Apache Log4j Core
Copyright 1999-2012 Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).

ResolverUtil.java
Copyright 2005-2006 Tim Fennell

org/apache/logging/log4j/core/appender/rewrite/RewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public abstract interface RewritePolicy {
 public abstract org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/OutputStreamManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class OutputStreamManager extends AbstractManager implements org.apache.logging.log4j.core.layout.ByteBufferDestination {
 protected final org.apache.logging.log4j.core.Layout layout;
 protected java.nio.ByteBuffer byteBuffer;
 private volatile java.io.OutputStream outputStream;
 private boolean skipFooter;
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean);
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean, int);
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void OutputStreamManager(org.apache.logging.log4j.core.LoggerContext, java.io.OutputStream, String, boolean, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 public static OutputStreamManager getManager(String, Object, ManagerFactory);
 protected java.io.OutputStream createOutputStream() throws java.io.IOException;
 public void skipFooter(boolean);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected void writeHeader(java.io.OutputStream);
 protected void writeFooter();
 public boolean isOpen();
 public boolean hasOutputStream();
 protected java.io.OutputStream getOutputStream() throws java.io.IOException;
 protected void setOutputStream(java.io.OutputStream);
 protected void write(byte[]);
 protected void write(byte[], boolean);
 public void writeBytes(byte[], int, int);
 protected void write(byte[], int, int);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 protected synchronized void flushDestination();
 protected synchronized void flushBuffer(java.nio.ByteBuffer);
 public synchronized void flush();
 protected synchronized boolean closeOutputStream();
 public java.nio.ByteBuffer getByteBuffer();
 public java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 public void writeBytes(java.nio.ByteBuffer);
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$1 {
}

org/apache/logging/log4j/core/appender/rolling/RolloverDescription.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverDescription {
 public abstract String getActiveFileName();
 public abstract boolean getAppend();
 public abstract action.Action getSynchronous();
 public abstract action.Action getAsynchronous();
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class TimeBasedTriggeringPolicy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private int interval;
 private boolean modulate;
 private int maxRandomDelay;
 public void TimeBasedTriggeringPolicy$Builder();
 public TimeBasedTriggeringPolicy build();
 public int getInterval();
 public boolean isModulate();
 public int getMaxRandomDelay();
 public TimeBasedTriggeringPolicy$Builder withInterval(int);
 public TimeBasedTriggeringPolicy$Builder withModulate(boolean);
 public TimeBasedTriggeringPolicy$Builder withMaxRandomDelay(int);
}

org/apache/logging/log4j/core/appender/rolling/FileSize.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class FileSize {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long KB = 1024;
 private static final long MB = 1048576;
 private static final long GB = 1073741824;
 private static final java.util.regex.Pattern VALUE_PATTERN;
 private void FileSize();
 public static long parse(String, long);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/DirectWriteRolloverStrategy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DirectWriteRolloverStrategy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String maxFiles;
 private String compressionLevelStr;
 private action.Action[] customActions;
 private boolean stopCustomActionsOnError;
 private String tempCompressedFilePattern;
 private org.apache.logging.log4j.core.config.Configuration config;
 public void DirectWriteRolloverStrategy$Builder();
 public DirectWriteRolloverStrategy build();
 public String getMaxFiles();
 public DirectWriteRolloverStrategy$Builder withMaxFiles(String);
 public String getCompressionLevelStr();
 public DirectWriteRolloverStrategy$Builder withCompressionLevelStr(String);
 public action.Action[] getCustomActions();
 public DirectWriteRolloverStrategy$Builder withCustomActions(action.Action[]);
 public boolean isStopCustomActionsOnError();
 public DirectWriteRolloverStrategy$Builder withStopCustomActionsOnError(boolean);
 public String getTempCompressedFilePattern();
 public DirectWriteRolloverStrategy$Builder withTempCompressedFilePattern(String);
 public org.apache.logging.log4j.core.config.Configuration getConfig();
 public DirectWriteRolloverStrategy$Builder withConfig(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/PatternProcessor.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class PatternProcessor {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final String KEY = FileConverter;
 private static final char YEAR_CHAR = 121;
 private static final char MONTH_CHAR = 77;
 private static final char[] WEEK_CHARS;
 private static final char[] DAY_CHARS;
 private static final char[] HOUR_CHARS;
 private static final char MINUTE_CHAR = 109;
 private static final char SECOND_CHAR = 115;
 private static final char MILLIS_CHAR = 83;
 private final org.apache.logging.log4j.core.pattern.ArrayPatternConverter[] patternConverters;
 private final org.apache.logging.log4j.core.pattern.FormattingInfo[] patternFields;
 private final FileExtension fileExtension;
 private long prevFileTime;
 private long nextFileTime;
 private long currentFileTime;
 private boolean isTimeBased;
 private RolloverFrequency frequency;
 private final String pattern;
 public String getPattern();
 public String toString();
 public void PatternProcessor(String);
 public void PatternProcessor(String, PatternProcessor);
 public void setTimeBased(boolean);
 public long getCurrentFileTime();
 public void setCurrentFileTime(long);
 public long getPrevFileTime();
 public void setPrevFileTime(long);
 public FileExtension getFileExtension();
 public long getNextTime(long, int, boolean);
 public void updateTime();
 private long debugGetNextTime(long);
 private String format(long);
 private void increment(java.util.Calendar, int, int, boolean);
 public final void formatFileName(StringBuilder, boolean, Object);
 public final void formatFileName(org.apache.logging.log4j.core.lookup.StrSubstitutor, StringBuilder, Object);
 public final void formatFileName(org.apache.logging.log4j.core.lookup.StrSubstitutor, StringBuilder, boolean, Object);
 protected final transient void formatFileName(StringBuilder, Object[]);
 private RolloverFrequency calculateFrequency(String);
 private org.apache.logging.log4j.core.pattern.PatternParser createPatternParser();
 private transient boolean patternContains(String, char[]);
 private boolean patternContains(String, char);
 public RolloverFrequency getFrequency();
 public long getNextFileTime();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractOutputStreamAppender$Builder extends AbstractAppender$Builder {
 private boolean bufferedIo;
 private int bufferSize;
 private boolean immediateFlush;
 public void AbstractOutputStreamAppender$Builder();
 public int getBufferSize();
 public boolean isBufferedIo();
 public boolean isImmediateFlush();
 public AbstractOutputStreamAppender$Builder withImmediateFlush(boolean);
 public AbstractOutputStreamAppender$Builder withBufferedIo(boolean);
 public AbstractOutputStreamAppender$Builder withBufferSize(int);
}

org/apache/logging/log4j/core/appender/WriterAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$FactoryData {
 private final org.apache.logging.log4j.core.StringLayout layout;
 private final String name;
 private final java.io.Writer writer;
 public void WriterAppender$FactoryData(java.io.Writer, String, org.apache.logging.log4j.core.StringLayout);
}

org/apache/logging/log4j/core/appender/HttpAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class HttpAppender$1 {
}

org/apache/logging/log4j/core/appender/RollingFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RollingFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private String filePattern;
 private boolean append;
 private boolean locking;
 private rolling.TriggeringPolicy policy;
 private rolling.RolloverStrategy strategy;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void RollingFileAppender$Builder();
 public RollingFileAppender build();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public RollingFileAppender$Builder withAdvertise(boolean);
 public RollingFileAppender$Builder withAdvertiseUri(String);
 public RollingFileAppender$Builder withAppend(boolean);
 public RollingFileAppender$Builder withFileName(String);
 public RollingFileAppender$Builder withCreateOnDemand(boolean);
 public RollingFileAppender$Builder withLocking(boolean);
 public String getFilePattern();
 public rolling.TriggeringPolicy getPolicy();
 public rolling.RolloverStrategy getStrategy();
 public RollingFileAppender$Builder withFilePattern(String);
 public RollingFileAppender$Builder withPolicy(rolling.TriggeringPolicy);
 public RollingFileAppender$Builder withStrategy(rolling.RolloverStrategy);
 public RollingFileAppender$Builder withFilePermissions(String);
 public RollingFileAppender$Builder withFileOwner(String);
 public RollingFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/WriterAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class WriterAppender extends AbstractWriterAppender {
 private static WriterAppender$WriterManagerFactory factory;
 public static WriterAppender createAppender(org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, java.io.Writer, String, boolean, boolean);
 private static WriterManager getManager(java.io.Writer, boolean, org.apache.logging.log4j.core.StringLayout);
 public static WriterAppender$Builder newBuilder();
 private void WriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, WriterManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SocketAppender$AbstractBuilder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class SocketAppender$AbstractBuilder extends AbstractOutputStreamAppender$Builder {
 private boolean advertise;
 private int connectTimeoutMillis;
 private String host;
 private boolean immediateFail;
 private int port;
 private org.apache.logging.log4j.core.net.Protocol protocol;
 private int reconnectDelayMillis;
 private org.apache.logging.log4j.core.net.SocketOptions socketOptions;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 public void SocketAppender$AbstractBuilder();
 public boolean getAdvertise();
 public int getConnectTimeoutMillis();
 public String getHost();
 public int getPort();
 public org.apache.logging.log4j.core.net.Protocol getProtocol();
 public org.apache.logging.log4j.core.net.ssl.SslConfiguration getSslConfiguration();
 public boolean getImmediateFail();
 public SocketAppender$AbstractBuilder withAdvertise(boolean);
 public SocketAppender$AbstractBuilder withConnectTimeoutMillis(int);
 public SocketAppender$AbstractBuilder withHost(String);
 public SocketAppender$AbstractBuilder withImmediateFail(boolean);
 public SocketAppender$AbstractBuilder withPort(int);
 public SocketAppender$AbstractBuilder withProtocol(org.apache.logging.log4j.core.net.Protocol);
 public SocketAppender$AbstractBuilder withReconnectDelayMillis(int);
 public SocketAppender$AbstractBuilder withSocketOptions(org.apache.logging.log4j.core.net.SocketOptions);
 public SocketAppender$AbstractBuilder withSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public int getReconnectDelayMillis();
 public org.apache.logging.log4j.core.net.SocketOptions getSocketOptions();
}

org/apache/logging/log4j/core/appender/db/ColumnMapping$Builder.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class ColumnMapping$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.StringLayout layout;
 private String literal;
 private String name;
 private String parameter;
 private String pattern;
 private String source;
 private Class type;
 public void ColumnMapping$Builder();
 public ColumnMapping build();
 public ColumnMapping$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ColumnMapping$Builder setLayout(org.apache.logging.log4j.core.StringLayout);
 public ColumnMapping$Builder setLiteral(String);
 public ColumnMapping$Builder setName(String);
 public ColumnMapping$Builder setParameter(String);
 public ColumnMapping$Builder setPattern(String);
 public ColumnMapping$Builder setSource(String);
 public ColumnMapping$Builder setType(Class);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class ColumnConfig {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String columnName;
 private final String columnNameKey;
 private final org.apache.logging.log4j.core.layout.PatternLayout layout;
 private final String literalValue;
 private final boolean eventTimestamp;
 private final boolean unicode;
 private final boolean clob;
 public static ColumnConfig createColumnConfig(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String);
 public static ColumnConfig$Builder newBuilder();
 private void ColumnConfig(String, org.apache.logging.log4j.core.layout.PatternLayout, String, boolean, boolean, boolean);
 public String getColumnName();
 public String getColumnNameKey();
 public org.apache.logging.log4j.core.layout.PatternLayout getLayout();
 public String getLiteralValue();
 public boolean isClob();
 public boolean isEventTimestamp();
 public boolean isUnicode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/DataSourceConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class DataSourceConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final javax.sql.DataSource dataSource;
 private final String description;
 private void DataSourceConnectionSource(String, javax.sql.DataSource);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String toString();
 public static DataSourceConnectionSource createConnectionSource(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/ColumnMapping.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class ColumnMapping {
 public static final ColumnMapping[] EMPTY_ARRAY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.StringLayout layout;
 private final String literalValue;
 private final String name;
 private final String nameKey;
 private final String parameter;
 private final String source;
 private final Class type;
 public static ColumnMapping$Builder newBuilder();
 public static String toKey(String);
 private void ColumnMapping(String, String, org.apache.logging.log4j.core.StringLayout, String, String, Class);
 public org.apache.logging.log4j.core.StringLayout getLayout();
 public String getLiteralValue();
 public String getName();
 public String getNameKey();
 public String getParameter();
 public String getSource();
 public Class getType();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/HttpManager.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class HttpManager extends AbstractManager {
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 protected void HttpManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.LoggerContext, String);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public void startup();
 public abstract void send(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent) throws Exception;
}

org/apache/logging/log4j/core/appender/FailoversPlugin.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FailoversPlugin {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void FailoversPlugin();
 public static transient String[] createFailovers(org.apache.logging.log4j.core.config.AppenderRef[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$CreatedRouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
final synchronized class RoutingAppender$CreatedRouteAppenderControl extends RoutingAppender$RouteAppenderControl {
 private volatile boolean pendingDeletion;
 private final java.util.concurrent.atomic.AtomicInteger depth;
 void RoutingAppender$CreatedRouteAppenderControl(org.apache.logging.log4j.core.Appender);
 void checkout();
 void release();
 void tryStopAppender();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$1.class

package org.apache.logging.log4j.core.appender.routing;
synchronized class RoutingAppender$1 {
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$RouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
abstract synchronized class RoutingAppender$RouteAppenderControl extends org.apache.logging.log4j.core.config.AppenderControl {
 void RoutingAppender$RouteAppenderControl(org.apache.logging.log4j.core.Appender);
 abstract void checkout();
 abstract void release();
}

org/apache/logging/log4j/core/appender/routing/Routes$1.class

package org.apache.logging.log4j.core.appender.routing;
synchronized class Routes$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender$Builder.class

package org.apache.logging.log4j.core.appender.nosql;
public synchronized class NoSqlAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private int bufferSize;
 private NoSqlProvider provider;
 public void NoSqlAppender$Builder();
 public NoSqlAppender build();
 public NoSqlAppender$Builder setBufferSize(int);
 public NoSqlAppender$Builder setProvider(NoSqlProvider);
}

org/apache/logging/log4j/core/appender/mom/JmsManager$1.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender$Builder.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class KafkaAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String retryCount;
 private String topic;
 private String key;
 private boolean syncSend;
 public void KafkaAppender$Builder();
 public KafkaAppender build();
 public Integer getRetryCount();
 public String getTopic();
 public boolean isSyncSend();
 public KafkaAppender$Builder setKey(String);
 public KafkaAppender$Builder setSyncSend(boolean);
 public KafkaAppender$Builder setTopic(String);
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqAppender.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
public final synchronized class JeroMqAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private static final int DEFAULT_BACKLOG = 100;
 private static final int DEFAULT_IVL = 100;
 private static final int DEFAULT_RCV_HWM = 1000;
 private static final int DEFAULT_SND_HWM = 1000;
 private final JeroMqManager manager;
 private final java.util.List endpoints;
 private int sendRcFalse;
 private int sendRcTrue;
 private void JeroMqAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, java.util.List, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, org.apache.logging.log4j.core.config.Property[]);
 public static JeroMqAppender createAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Property[], boolean, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean);
 public synchronized void append(org.apache.logging.log4j.core.LogEvent);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 int getSendRcFalse();
 int getSendRcTrue();
 void resetSendRcs();
 public String toString();
}

org/apache/logging/log4j/core/impl/ContextAnchor.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ContextAnchor {
 public static final ThreadLocal THREAD_CONTEXT;
 private void ContextAnchor();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LogEventFactory.class

package org.apache.logging.log4j.core.impl;
public abstract interface LogEventFactory extends LocationAwareLogEventFactory {
 public abstract org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
}

org/apache/logging/log4j/core/impl/ThrowableFormatOptions.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ThrowableFormatOptions {
 private static final int DEFAULT_LINES = 2147483647;
 protected static final ThrowableFormatOptions DEFAULT;
 private static final String FULL = full;
 private static final String NONE = none;
 private static final String SHORT = short;
 private final org.apache.logging.log4j.core.pattern.TextRenderer textRenderer;
 private final int lines;
 private final String separator;
 private final String suffix;
 private final java.util.List ignorePackages;
 public static final String CLASS_NAME = short.className;
 public static final String METHOD_NAME = short.methodName;
 public static final String LINE_NUMBER = short.lineNumber;
 public static final String FILE_NAME = short.fileName;
 public static final String MESSAGE = short.message;
 public static final String LOCALIZED_MESSAGE = short.localizedMessage;
 protected void ThrowableFormatOptions(int, String, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 protected void ThrowableFormatOptions(java.util.List);
 protected void ThrowableFormatOptions();
 public int getLines();
 public String getSeparator();
 public org.apache.logging.log4j.core.pattern.TextRenderer getTextRenderer();
 public java.util.List getIgnorePackages();
 public boolean allLines();
 public boolean anyLines();
 public int minLines(int);
 public boolean hasPackages();
 public String toString();
 public static ThrowableFormatOptions newInstance(String[]);
 public String getSuffix();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate$Type$2.class

package org.apache.logging.log4j.core.tools;
final synchronized enum Generate$Type$2 {
 void Generate$Type$2(String, int);
 String imports();
 String declaration();
 String constructor();
 Class generator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Interpreter$1.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Interpreter$1 implements CommandLine$ITypeConverter {
 void CommandLine$Interpreter$1(CommandLine$Interpreter, Class);
 public Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$TextTable.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$TextTable {
 public final CommandLine$Help$Column[] columns;
 protected final java.util.List columnValues;
 public int indentWrappedLines;
 private final CommandLine$Help$Ansi ansi;
 public void CommandLine$Help$TextTable(CommandLine$Help$Ansi);
 public transient void CommandLine$Help$TextTable(CommandLine$Help$Ansi, int[]);
 public transient void CommandLine$Help$TextTable(CommandLine$Help$Ansi, CommandLine$Help$Column[]);
 public CommandLine$Help$Ansi$Text textAt(int, int);
 public CommandLine$Help$Ansi$Text cellAt(int, int);
 public int rowCount();
 public void addEmptyRow();
 public transient void addRowValues(String[]);
 public transient void addRowValues(CommandLine$Help$Ansi$Text[]);
 public CommandLine$Help$TextTable$Cell putValue(int, int, CommandLine$Help$Ansi$Text);
 private static int length(CommandLine$Help$Ansi$Text);
 private int copy(java.text.BreakIterator, CommandLine$Help$Ansi$Text, CommandLine$Help$Ansi$Text, int);
 private static int copy(CommandLine$Help$Ansi$Text, CommandLine$Help$Ansi$Text, int);
 public StringBuilder toString(StringBuilder);
 public String toString();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BigDecimalConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BigDecimalConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BigDecimalConverter();
 public java.math.BigDecimal convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IOptionRenderer {
 public abstract CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$OverwrittenOptionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$OverwrittenOptionException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 1338029208271055776;
 public void CommandLine$OverwrittenOptionException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Parameters.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Parameters extends annotation.Annotation {
 public abstract String index();
 public abstract String[] description();
 public abstract String arity();
 public abstract String paramLabel();
 public abstract Class[] type();
 public abstract String split();
 public abstract boolean hidden();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$IntegerConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$IntegerConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$IntegerConverter();
 public Integer convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharSequenceConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharSequenceConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharSequenceConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunLast.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunLast implements CommandLine$IParseResultHandler {
 public void CommandLine$RunLast();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/net/TcpSocketManager$Reconnector.class

package org.apache.logging.log4j.core.net;
synchronized class TcpSocketManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private boolean shutdown;
 private final Object owner;
 public void TcpSocketManager$Reconnector(TcpSocketManager, org.apache.logging.log4j.core.appender.OutputStreamManager);
 public void latch();
 public void shutdown();
 public void run();
 void reconnect() throws java.io.IOException;
 private void connect(java.net.InetSocketAddress) throws java.io.IOException;
 public String toString();
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationException extends Exception {
 private static final long serialVersionUID = 1;
 public void SslConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/ssl/FilePasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class FilePasswordProvider implements PasswordProvider {
 private final java.nio.file.Path passwordPath;
 public void FilePasswordProvider(String) throws java.nio.file.NoSuchFileException;
 public char[] getPassword();
}

org/apache/logging/log4j/core/net/ssl/PasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
public abstract interface PasswordProvider {
 public abstract char[] getPassword();
}

org/apache/logging/log4j/core/net/JndiManager$JndiManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class JndiManager$JndiManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JndiManager$JndiManagerFactory();
 public JndiManager createManager(String, java.util.Properties);
}

org/apache/logging/log4j/core/net/UrlConnectionFactory.class

package org.apache.logging.log4j.core.net;
public synchronized class UrlConnectionFactory {
 private static int DEFAULT_TIMEOUT;
 private static int connectTimeoutMillis;
 private static int readTimeoutMillis;
 private static final String JSON = application/json;
 private static final String XML = application/xml;
 private static final String PROPERTIES = text/x-java-properties;
 private static final String TEXT = text/plain;
 private static final String HTTP = http;
 private static final String HTTPS = https;
 public void UrlConnectionFactory();
 public static java.net.HttpURLConnection createConnection(java.net.URL, long, ssl.SslConfiguration) throws java.io.IOException;
 public static java.net.URLConnection createConnection(java.net.URL) throws java.io.IOException;
 private static boolean isXml(String);
 private static boolean isJson(String);
 private static boolean isProperties(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/MimeMessageBuilder.class

package org.apache.logging.log4j.core.net;
public synchronized class MimeMessageBuilder implements org.apache.logging.log4j.core.util.Builder {
 private final javax.mail.internet.MimeMessage message;
 public void MimeMessageBuilder(javax.mail.Session);
 public MimeMessageBuilder setFrom(String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setReplyTo(String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setRecipients(javax.mail.Message$RecipientType, String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setSubject(String) throws javax.mail.MessagingException;
 public javax.mail.internet.MimeMessage getMimeMessage();
 public javax.mail.internet.MimeMessage build();
 private static javax.mail.internet.InternetAddress parseAddress(String) throws javax.mail.internet.AddressException;
 private static javax.mail.internet.InternetAddress[] parseAddresses(String) throws javax.mail.internet.AddressException;
}

org/apache/logging/log4j/core/net/JndiManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class JndiManager$1 {
}

org/apache/logging/log4j/core/util/Clock.class

package org.apache.logging.log4j.core.util;
public abstract interface Clock {
 public abstract long currentTimeMillis();
}

org/apache/logging/log4j/core/util/Integers.class

package org.apache.logging.log4j.core.util;
public final synchronized class Integers {
 private static final int BITS_PER_INT = 32;
 private void Integers();
 public static int parseInt(String, int);
 public static int parseInt(String);
 public static int ceilingNextPowerOfTwo(int);
}

org/apache/logging/log4j/core/util/WatchEventService.class

package org.apache.logging.log4j.core.util;
public abstract interface WatchEventService {
 public abstract void subscribe(WatchManager);
 public abstract void unsubscribe(WatchManager);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneNameRule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneNameRule implements FastDatePrinter$Rule {
 private final java.util.Locale mLocale;
 private final int mStyle;
 private final String mStandard;
 private final String mDaylight;
 void FastDatePrinter$TimeZoneNameRule(java.util.TimeZone, java.util.Locale, int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDateParser implements DateParser, java.io.Serializable {
 private static final long serialVersionUID = 3;
 static final java.util.Locale JAPANESE_IMPERIAL;
 private final String pattern;
 private final java.util.TimeZone timeZone;
 private final java.util.Locale locale;
 private final int century;
 private final int startYear;
 private transient java.util.List patterns;
 private static final java.util.Comparator LONGER_FIRST_LOWERCASE;
 private static final java.util.concurrent.ConcurrentMap[] caches;
 private static final FastDateParser$Strategy ABBREVIATED_YEAR_STRATEGY;
 private static final FastDateParser$Strategy NUMBER_MONTH_STRATEGY;
 private static final FastDateParser$Strategy LITERAL_YEAR_STRATEGY;
 private static final FastDateParser$Strategy WEEK_OF_YEAR_STRATEGY;
 private static final FastDateParser$Strategy WEEK_OF_MONTH_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_YEAR_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_MONTH_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_WEEK_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_WEEK_IN_MONTH_STRATEGY;
 private static final FastDateParser$Strategy HOUR_OF_DAY_STRATEGY;
 private static final FastDateParser$Strategy HOUR24_OF_DAY_STRATEGY;
 private static final FastDateParser$Strategy HOUR12_STRATEGY;
 private static final FastDateParser$Strategy HOUR_STRATEGY;
 private static final FastDateParser$Strategy MINUTE_STRATEGY;
 private static final FastDateParser$Strategy SECOND_STRATEGY;
 private static final FastDateParser$Strategy MILLISECOND_STRATEGY;
 protected void FastDateParser(String, java.util.TimeZone, java.util.Locale);
 protected void FastDateParser(String, java.util.TimeZone, java.util.Locale, java.util.Date);
 private void init(java.util.Calendar);
 private static boolean isFormatLetter(char);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Object parseObject(String) throws java.text.ParseException;
 public java.util.Date parse(String) throws java.text.ParseException;
 public Object parseObject(String, java.text.ParsePosition);
 public java.util.Date parse(String, java.text.ParsePosition);
 public boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 private static StringBuilder simpleQuote(StringBuilder, String);
 private static java.util.Map appendDisplayNames(java.util.Calendar, java.util.Locale, int, StringBuilder);
 private int adjustYear(int);
 private FastDateParser$Strategy getStrategy(char, int, java.util.Calendar);
 private static java.util.concurrent.ConcurrentMap getCache(int);
 private FastDateParser$Strategy getLocaleSpecificStrategy(int, java.util.Calendar);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/JndiCloser.class

package org.apache.logging.log4j.core.util;
public final synchronized class JndiCloser {
 private void JndiCloser();
 public static void close(javax.naming.Context) throws javax.naming.NamingException;
 public static boolean closeSilently(javax.naming.Context);
}

org/apache/logging/log4j/core/util/NanoClock.class

package org.apache.logging.log4j.core.util;
public abstract interface NanoClock {
 public abstract long nanoTime();
}

org/apache/logging/log4j/core/util/ExtensionLanguageMapping.class

package org.apache.logging.log4j.core.util;
public final synchronized enum ExtensionLanguageMapping {
 public static final ExtensionLanguageMapping JS;
 public static final ExtensionLanguageMapping JAVASCRIPT;
 public static final ExtensionLanguageMapping GVY;
 public static final ExtensionLanguageMapping GROOVY;
 public static final ExtensionLanguageMapping BSH;
 public static final ExtensionLanguageMapping BEANSHELL;
 public static final ExtensionLanguageMapping JY;
 public static final ExtensionLanguageMapping JYTHON;
 public static final ExtensionLanguageMapping FTL;
 public static final ExtensionLanguageMapping FREEMARKER;
 public static final ExtensionLanguageMapping VM;
 public static final ExtensionLanguageMapping VELOCITY;
 public static final ExtensionLanguageMapping AWK;
 public static final ExtensionLanguageMapping EJS;
 public static final ExtensionLanguageMapping TCL;
 public static final ExtensionLanguageMapping HS;
 public static final ExtensionLanguageMapping JELLY;
 public static final ExtensionLanguageMapping JEP;
 public static final ExtensionLanguageMapping JEXL;
 public static final ExtensionLanguageMapping JEXL2;
 public static final ExtensionLanguageMapping RB;
 public static final ExtensionLanguageMapping RUBY;
 public static final ExtensionLanguageMapping JUDO;
 public static final ExtensionLanguageMapping JUDI;
 public static final ExtensionLanguageMapping SCALA;
 public static final ExtensionLanguageMapping CLJ;
 private final String extension;
 private final String language;
 public static ExtensionLanguageMapping[] values();
 public static ExtensionLanguageMapping valueOf(String);
 private void ExtensionLanguageMapping(String, int, String, String);
 public String getExtension();
 public String getLanguage();
 public static ExtensionLanguageMapping getByExtension(String);
 public static java.util.List getByLanguage(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DefaultShutdownCallbackRegistry$RegisteredCancellable.class

package org.apache.logging.log4j.core.util;
synchronized class DefaultShutdownCallbackRegistry$RegisteredCancellable implements Cancellable {
 private Runnable callback;
 private java.util.Collection registered;
 void DefaultShutdownCallbackRegistry$RegisteredCancellable(Runnable, java.util.Collection);
 public void cancel();
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/util/TypeUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class TypeUtil {
 private void TypeUtil();
 public static java.util.List getAllDeclaredFields(Class);
 public static boolean isAssignable(reflect.Type, reflect.Type);
 private static boolean isParameterizedAssignable(reflect.ParameterizedType, reflect.ParameterizedType);
 private static boolean isWildcardAssignable(reflect.WildcardType, reflect.Type);
 private static reflect.Type[] getEffectiveUpperBounds(reflect.WildcardType);
 private static reflect.Type[] getEffectiveLowerBounds(reflect.WildcardType);
 private static boolean isBoundAssignable(reflect.Type, reflect.Type);
}

org/apache/logging/log4j/core/config/Loggers.class

package org.apache.logging.log4j.core.config;
public synchronized class Loggers {
 private final java.util.concurrent.ConcurrentMap map;
 private final LoggerConfig root;
 public void Loggers(java.util.concurrent.ConcurrentMap, LoggerConfig);
 public java.util.concurrent.ConcurrentMap getMap();
 public LoggerConfig getRoot();
}

org/apache/logging/log4j/core/config/LoggersPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class LoggersPlugin {
 private void LoggersPlugin();
 public static Loggers createLoggers(LoggerConfig[]);
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SystemPropertyArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final String ATTR_PROPERTY_NAME = propertyName;
 public static final String ATTR_PROPERTY_VALUE = propertyValue;
 private String propertyName;
 private String propertyValue;
 public void SystemPropertyArbiter$Builder();
 public SystemPropertyArbiter$Builder setPropertyName(String);
 public SystemPropertyArbiter$Builder setPropertyValue(String);
 public SystemPropertyArbiter$Builder asBuilder();
 public SystemPropertyArbiter build();
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginBuilderAttributeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginBuilderAttributeVisitor extends AbstractPluginVisitor {
 public void PluginBuilderAttributeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/AbstractPluginVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public abstract synchronized class AbstractPluginVisitor implements PluginVisitor {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected final Class clazz;
 protected annotation.Annotation annotation;
 protected String[] aliases;
 protected Class conversionType;
 protected org.apache.logging.log4j.core.lookup.StrSubstitutor substitutor;
 protected reflect.Member member;
 protected void AbstractPluginVisitor(Class);
 public PluginVisitor setAnnotation(annotation.Annotation);
 public transient PluginVisitor setAliases(String[]);
 public PluginVisitor setConversionType(Class);
 public PluginVisitor setStrSubstitutor(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public PluginVisitor setMember(reflect.Member);
 protected static transient String removeAttributeValue(java.util.Map, String, String[]);
 protected Object convert(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginVisitors.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public final synchronized class PluginVisitors {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void PluginVisitors();
 public static PluginVisitor findVisitor(Class);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/ResolverUtil.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class ResolverUtil {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String VFSZIP = vfszip;
 private static final String VFS = vfs;
 private static final String JAR = jar;
 private static final String BUNDLE_RESOURCE = bundleresource;
 private final java.util.Set classMatches;
 private final java.util.Set resourceMatches;
 private ClassLoader classloader;
 public void ResolverUtil();
 public java.util.Set getClasses();
 public java.util.Set getResources();
 public ClassLoader getClassLoader();
 public void setClassLoader(ClassLoader);
 public transient void find(ResolverUtil$Test, String[]);
 public void findInPackage(ResolverUtil$Test, String);
 String extractPath(java.net.URL) throws java.io.UnsupportedEncodingException, java.net.URISyntaxException;
 private void loadImplementationsInBundle(ResolverUtil$Test, String);
 private void loadImplementationsInDirectory(ResolverUtil$Test, String, java.io.File);
 private boolean isTestApplicable(ResolverUtil$Test, String);
 private void loadImplementationsInJar(ResolverUtil$Test, String, java.net.URL);
 private void loadImplementationsInJar(ResolverUtil$Test, String, java.io.File);
 private void close(java.util.jar.JarInputStream, Object);
 private void loadImplementationsInJar(ResolverUtil$Test, String, String, java.util.jar.JarInputStream);
 protected void addIfMatching(ResolverUtil$Test, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/validation/validators/ValidHostValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class ValidHostValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidHost annotation;
 public void ValidHostValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidHost);
 public boolean isValid(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/validation/Constraint.class

package org.apache.logging.log4j.core.config.plugins.validation;
public abstract interface Constraint extends annotation.Annotation {
 public abstract Class value();
}

org/apache/logging/log4j/core/config/plugins/validation/ConstraintValidator.class

package org.apache.logging.log4j.core.config.plugins.validation;
public abstract interface ConstraintValidator {
 public abstract void initialize(annotation.Annotation);
 public abstract boolean isValid(String, Object);
}

org/apache/logging/log4j/core/config/plugins/PluginValue.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginValue extends annotation.Annotation {
 public abstract String value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$FileConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$FileConverter implements TypeConverter {
 public void TypeConverters$FileConverter();
 public java.io.File convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$LevelConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$LevelConverter implements TypeConverter {
 public void TypeConverters$LevelConverter();
 public org.apache.logging.log4j.Level convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$LongConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$LongConverter implements TypeConverter {
 public void TypeConverters$LongConverter();
 public Long convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$DurationConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$DurationConverter implements TypeConverter {
 public void TypeConverters$DurationConverter();
 public org.apache.logging.log4j.core.appender.rolling.action.Duration convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$InetAddressConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$InetAddressConverter implements TypeConverter {
 public void TypeConverters$InetAddressConverter();
 public java.net.InetAddress convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UuidConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UuidConverter implements TypeConverter {
 public void TypeConverters$UuidConverter();
 public java.util.UUID convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/CustomLevelConfig.class

package org.apache.logging.log4j.core.config;
public final synchronized class CustomLevelConfig {
 static final CustomLevelConfig[] EMPTY_ARRAY;
 private final String levelName;
 private final int intLevel;
 private void CustomLevelConfig(String, int);
 public static CustomLevelConfig createLevel(String, int);
 public String getLevelName();
 public int getIntLevel();
 public int hashCode();
 public boolean equals(Object);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$1.class

package org.apache.logging.log4j.core.config;
synchronized class LoggerConfig$1 {
}

org/apache/logging/log4j/core/config/builder/impl/DefaultScriptComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultScriptComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder {
 public void DefaultScriptComponentBuilder(DefaultConfigurationBuilder, String, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultAppenderRefComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultAppenderRefComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder {
 public void DefaultAppenderRefComponentBuilder(DefaultConfigurationBuilder, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/FilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface FilterComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/ComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ComponentBuilder extends org.apache.logging.log4j.core.util.Builder {
 public abstract ComponentBuilder addAttribute(String, String);
 public abstract ComponentBuilder addAttribute(String, org.apache.logging.log4j.Level);
 public abstract ComponentBuilder addAttribute(String, Enum);
 public abstract ComponentBuilder addAttribute(String, int);
 public abstract ComponentBuilder addAttribute(String, boolean);
 public abstract ComponentBuilder addAttribute(String, Object);
 public abstract ComponentBuilder addComponent(ComponentBuilder);
 public abstract String getName();
 public abstract ConfigurationBuilder getBuilder();
}

org/apache/logging/log4j/core/config/builder/api/LoggableComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LoggableComponentBuilder extends FilterableComponentBuilder {
 public abstract ComponentBuilder add(AppenderRefComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/LayoutComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LayoutComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/CompositeFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface CompositeFilterComponentBuilder extends FilterableComponentBuilder {
}

org/apache/logging/log4j/core/config/CronScheduledFuture$FutureData.class

package org.apache.logging.log4j.core.config;
synchronized class CronScheduledFuture$FutureData {
 private final java.util.concurrent.ScheduledFuture scheduledFuture;
 private final java.util.Date runDate;
 void CronScheduledFuture$FutureData(CronScheduledFuture, java.util.concurrent.ScheduledFuture, java.util.Date);
}

org/apache/logging/log4j/core/jmx/RingBufferAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class RingBufferAdmin implements RingBufferAdminMBean {
 private final com.lmax.disruptor.RingBuffer ringBuffer;
 private final javax.management.ObjectName objectName;
 public static RingBufferAdmin forAsyncLogger(com.lmax.disruptor.RingBuffer, String);
 public static RingBufferAdmin forAsyncLoggerConfig(com.lmax.disruptor.RingBuffer, String, String);
 protected void RingBufferAdmin(com.lmax.disruptor.RingBuffer, String);
 public long getBufferSize();
 public long getRemainingCapacity();
 public javax.management.ObjectName getObjectName();
}

org/apache/logging/log4j/core/layout/Rfc5424Layout$StructuredDataElement.class

package org.apache.logging.log4j.core.layout;
synchronized class Rfc5424Layout$StructuredDataElement {
 private final java.util.Map fields;
 private final boolean discardIfEmpty;
 private final String prefix;
 public void Rfc5424Layout$StructuredDataElement(Rfc5424Layout, java.util.Map, String, boolean);
 boolean discard();
 void union(java.util.Map);
 java.util.Map getFields();
 String getPrefix();
}

org/apache/logging/log4j/core/layout/SerializedLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class SerializedLayout extends AbstractLayout {
 private static byte[] serializedHeader;
 private void SerializedLayout();
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.LogEvent toSerializable(org.apache.logging.log4j.core.LogEvent);
 public static SerializedLayout createLayout();
 public byte[] getHeader();
 public String getContentType();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class PatternLayout extends AbstractStringLayout {
 public static final String DEFAULT_CONVERSION_PATTERN = %m%n;
 public static final String TTCC_CONVERSION_PATTERN = %r [%t] %p %c %notEmpty{%x }- %m%n;
 public static final String SIMPLE_CONVERSION_PATTERN = %d [%t] %p %c - %m%n;
 public static final String KEY = Converter;
 private final String conversionPattern;
 private final PatternSelector patternSelector;
 private final AbstractStringLayout$Serializer eventSerializer;
 private void PatternLayout(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, String, PatternSelector, java.nio.charset.Charset, boolean, boolean, boolean, String, String);
 public static PatternLayout$SerializerBuilder newSerializerBuilder();
 public boolean requiresLocation();
 public static AbstractStringLayout$Serializer createSerializer(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, String, String, PatternSelector, boolean, boolean);
 public String getConversionPattern();
 public java.util.Map getContentFormat();
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public void serialize(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 private StringBuilder toText(AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public static org.apache.logging.log4j.core.pattern.PatternParser createPatternParser(org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 public static PatternLayout createLayout(String, PatternSelector, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, java.nio.charset.Charset, boolean, boolean, String, String);
 public static PatternLayout createDefaultLayout();
 public static PatternLayout createDefaultLayout(org.apache.logging.log4j.core.config.Configuration);
 public static PatternLayout$Builder newBuilder();
 public AbstractStringLayout$Serializer getEventSerializer();
}

org/apache/logging/log4j/core/layout/ByteBufferDestinationHelper.class

package org.apache.logging.log4j.core.layout;
public final synchronized class ByteBufferDestinationHelper {
 private void ByteBufferDestinationHelper();
 public static void writeToUnsynchronized(java.nio.ByteBuffer, ByteBufferDestination);
 public static void writeToUnsynchronized(byte[], int, int, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/PatternSelector.class

package org.apache.logging.log4j.core.layout;
public abstract interface PatternSelector {
 public static final String ELEMENT_TYPE = patternSelector;
 public abstract org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class ScriptPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.script.AbstractScript script;
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptPatternSelector$Builder();
 public ScriptPatternSelector build();
 public ScriptPatternSelector$Builder setScript(org.apache.logging.log4j.core.script.AbstractScript);
 public ScriptPatternSelector$Builder setProperties(PatternMatch[]);
 public ScriptPatternSelector$Builder setDefaultPattern(String);
 public ScriptPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public ScriptPatternSelector$Builder setDisableAnsi(boolean);
 public ScriptPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public ScriptPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/osgi/Activator.class

package org.apache.logging.log4j.core.osgi;
public final synchronized class Activator implements org.osgi.framework.BundleActivator, org.osgi.framework.SynchronousBundleListener {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.concurrent.atomic.AtomicReference contextRef;
 org.osgi.framework.ServiceRegistration provideRegistration;
 org.osgi.framework.ServiceRegistration contextDataRegistration;
 public void Activator();
 public void start(org.osgi.framework.BundleContext) throws Exception;
 private static void scanInstalledBundlesForPlugins(org.osgi.framework.BundleContext);
 private static void scanBundleForPlugins(org.osgi.framework.Bundle);
 private static void loadContextProviders(org.osgi.framework.BundleContext);
 private static void stopBundlePlugins(org.osgi.framework.Bundle);
 public void stop(org.osgi.framework.BundleContext) throws Exception;
 public void bundleChanged(org.osgi.framework.BundleEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler implements com.lmax.disruptor.SequenceReportingEventHandler {
 private static final int NOTIFY_PROGRESS_THRESHOLD = 50;
 private com.lmax.disruptor.Sequence sequenceCallback;
 private int counter;
 private void AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler();
 public void setSequenceCallback(com.lmax.disruptor.Sequence);
 public void onEvent(AsyncLoggerConfigDisruptor$Log4jEventWrapper, long, boolean) throws Exception;
 private void notifyIntermediateProgress(long);
}

org/apache/logging/log4j/core/async/BasicAsyncLoggerContextSelector.class

package org.apache.logging.log4j.core.async;
public synchronized class BasicAsyncLoggerContextSelector implements org.apache.logging.log4j.core.selector.ContextSelector {
 private static final AsyncLoggerContext CONTEXT;
 public void BasicAsyncLoggerContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncQueueFullPolicyFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncQueueFullPolicyFactory {
 static final String PROPERTY_NAME_ASYNC_EVENT_ROUTER = log4j2.AsyncQueueFullPolicy;
 static final String PROPERTY_VALUE_DEFAULT_ASYNC_EVENT_ROUTER = Default;
 static final String PROPERTY_VALUE_DISCARDING_ASYNC_EVENT_ROUTER = Discard;
 static final String PROPERTY_NAME_DISCARDING_THRESHOLD_LEVEL = log4j2.DiscardThreshold;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void AsyncQueueFullPolicyFactory();
 public static AsyncQueueFullPolicy create();
 private static boolean isRouterSelected(String, Class, String);
 private static AsyncQueueFullPolicy createCustomRouter(String);
 private static AsyncQueueFullPolicy createDiscardingAsyncQueueFullPolicy();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/EventRoute$2.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$2 {
 void EventRoute$2(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/async/AsyncLogger$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$1 extends AsyncLogger$TranslatorType {
 void AsyncLogger$1(AsyncLogger);
 void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/RingBufferLogEvent$1.class

package org.apache.logging.log4j.core.async;
synchronized class RingBufferLogEvent$1 {
}

org/apache/logging/log4j/core/async/AsyncLogger$3.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$3 {
 static void <clinit>();
}

org/apache/logging/log4j/core/async/InternalAsyncUtil.class

package org.apache.logging.log4j.core.async;
public synchronized class InternalAsyncUtil {
 public void InternalAsyncUtil();
 public static org.apache.logging.log4j.message.Message makeMessageImmutable(org.apache.logging.log4j.message.Message);
 private static boolean canFormatMessageInBackground(org.apache.logging.log4j.message.Message);
}

org/apache/logging/log4j/core/async/EventRoute$1.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$1 {
 void EventRoute$1(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/lookup/StrMatcher$StringMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$StringMatcher extends StrMatcher {
 private final char[] chars;
 void StrMatcher$StringMatcher(String);
 public int isMatch(char[], int, int, int);
 public String toString();
}

org/apache/logging/log4j/core/lookup/Interpolator.class

package org.apache.logging.log4j.core.lookup;
public synchronized class Interpolator extends AbstractConfigurationAwareLookup {
 public static final char PREFIX_SEPARATOR = 58;
 private static final String LOOKUP_KEY_WEB = web;
 private static final String LOOKUP_KEY_DOCKER = docker;
 private static final String LOOKUP_KEY_KUBERNETES = kubernetes;
 private static final String LOOKUP_KEY_SPRING = spring;
 private static final String LOOKUP_KEY_JNDI = jndi;
 private static final String LOOKUP_KEY_JVMRUNARGS = jvmrunargs;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map strLookupMap;
 private final StrLookup defaultLookup;
 public void Interpolator(StrLookup);
 public void Interpolator(StrLookup, java.util.List);
 public void Interpolator();
 public void Interpolator(java.util.Map);
 public java.util.Map getStrLookupMap();
 private void handleError(String, Throwable);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/RuntimeStrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class RuntimeStrSubstitutor extends StrSubstitutor {
 public void RuntimeStrSubstitutor();
 public void RuntimeStrSubstitutor(java.util.Map);
 public void RuntimeStrSubstitutor(java.util.Properties);
 public void RuntimeStrSubstitutor(StrLookup);
 public void RuntimeStrSubstitutor(StrSubstitutor);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 public String toString();
}

org/apache/logging/log4j/core/lookup/ContextMapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class ContextMapLookup implements StrLookup {
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 public void ContextMapLookup();
 public String lookup(String);
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/message/ExtendedThreadInfoFactory.class

package org.apache.logging.log4j.core.message;
public synchronized class ExtendedThreadInfoFactory implements org.apache.logging.log4j.message.ThreadDumpMessage$ThreadInfoFactory {
 public void ExtendedThreadInfoFactory();
 public java.util.Map createThreadInfo();
}

org/apache/logging/log4j/core/LifeCycle2.class

package org.apache.logging.log4j.core;
public abstract interface LifeCycle2 extends LifeCycle {
 public abstract boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/filter/AbstractFilterable.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilterable extends org.apache.logging.log4j.core.AbstractLifeCycle implements Filterable {
 private volatile org.apache.logging.log4j.core.Filter filter;
 private final org.apache.logging.log4j.core.config.Property[] propertyArray;
 protected void AbstractFilterable();
 protected void AbstractFilterable(org.apache.logging.log4j.core.Filter);
 protected void AbstractFilterable(org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Property[]);
 public synchronized void addFilter(org.apache.logging.log4j.core.Filter);
 public org.apache.logging.log4j.core.Filter getFilter();
 public boolean hasFilter();
 public boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
 public synchronized void removeFilter(org.apache.logging.log4j.core.Filter);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 protected boolean stop(long, java.util.concurrent.TimeUnit, boolean);
 public org.apache.logging.log4j.core.config.Property[] getPropertyArray();
}

org/apache/logging/log4j/core/filter/ScriptFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class ScriptFilter extends AbstractFilter {
 private static org.apache.logging.log4j.Logger logger;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptFilter(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static ScriptFilter createFilter(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/LevelMatchFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class LevelMatchFilter extends AbstractFilter {
 public static final String ATTR_MATCH = match;
 private final org.apache.logging.log4j.Level level;
 private void LevelMatchFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static LevelMatchFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/LineSeparatorPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LineSeparatorPatternConverter extends LogEventPatternConverter {
 private static final LineSeparatorPatternConverter INSTANCE;
 private void LineSeparatorPatternConverter();
 public static LineSeparatorPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public boolean isVariable();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/EndOfBatchPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EndOfBatchPatternConverter extends LogEventPatternConverter {
 private static final EndOfBatchPatternConverter INSTANCE;
 private void EndOfBatchPatternConverter();
 public static EndOfBatchPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MapPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MapPatternConverter extends LogEventPatternConverter {
 private static final String JAVA_UNQUOTED;
 private final String key;
 private final String[] format;
 private transient void MapPatternConverter(String[], String[]);
 public static MapPatternConverter newInstance(String[]);
 public static MapPatternConverter newInstance(String[], org.apache.logging.log4j.message.MapMessage$MapFormat);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$SimpleMessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$SimpleMessagePatternConverter extends MessagePatternConverter {
 private static final MessagePatternConverter INSTANCE;
 private void MessagePatternConverter$SimpleMessagePatternConverter();
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ExtendedThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ExtendedThrowablePatternConverter extends ThrowablePatternConverter {
 private void ExtendedThrowablePatternConverter(org.apache.logging.log4j.core.config.Configuration, String[]);
 public static ExtendedThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$1.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$1 {
 void EncodingPatternConverter$EscapeFormat$1(String, int);
 void escape(StringBuilder, int);
 private String escapeChar(char);
}

org/apache/logging/log4j/core/pattern/NotANumber.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NotANumber {
 public static final NotANumber NAN;
 public static final String VALUE = �;
 private void NotANumber();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$PatternAbbreviator.class

package org.apache.logging.log4j.core.pattern;
final synchronized class NameAbbreviator$PatternAbbreviator extends NameAbbreviator {
 private final NameAbbreviator$PatternAbbreviatorFragment[] fragments;
 void NameAbbreviator$PatternAbbreviator(java.util.List);
 public void abbreviate(String, StringBuilder);
 NameAbbreviator$PatternAbbreviatorFragment fragment(int);
}

org/apache/logging/log4j/core/pattern/PlainTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class PlainTextRenderer implements TextRenderer {
 private static final PlainTextRenderer INSTANCE;
 public void PlainTextRenderer();
 public static PlainTextRenderer getInstance();
 public void render(String, StringBuilder, String);
 public void render(StringBuilder, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/EqualsIgnoreCaseReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EqualsIgnoreCaseReplacementConverter extends EqualsBaseReplacementConverter {
 public static EqualsIgnoreCaseReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void EqualsIgnoreCaseReplacementConverter(java.util.List, String, String, PatternParser);
 protected boolean equals(String, StringBuilder, int, int);
}

org/apache/logging/log4j/core/jackson/Log4jYamlObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jYamlObjectMapper extends com.fasterxml.jackson.dataformat.yaml.YAMLMapper {
 private static final long serialVersionUID = 1;
 public void Log4jYamlObjectMapper();
 public void Log4jYamlObjectMapper(boolean, boolean, boolean);
}

META-INF/LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 1999-2005 The Apache Software Foundation

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy$1.class

package org.apache.logging.log4j.core.appender.rewrite;
synchronized class MapRewritePolicy$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RolloverFrequency.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized enum RolloverFrequency {
 public static final RolloverFrequency ANNUALLY;
 public static final RolloverFrequency MONTHLY;
 public static final RolloverFrequency WEEKLY;
 public static final RolloverFrequency DAILY;
 public static final RolloverFrequency HOURLY;
 public static final RolloverFrequency EVERY_MINUTE;
 public static final RolloverFrequency EVERY_SECOND;
 public static final RolloverFrequency EVERY_MILLISECOND;
 public static RolloverFrequency[] values();
 public static RolloverFrequency valueOf(String);
 private void RolloverFrequency(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory();
 public RollingRandomAccessFileManager createManager(String, RollingRandomAccessFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/RolloverDescriptionImpl.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class RolloverDescriptionImpl implements RolloverDescription {
 private final String activeFileName;
 private final boolean append;
 private final action.Action synchronous;
 private final action.Action asynchronous;
 public void RolloverDescriptionImpl(String, boolean, action.Action, action.Action);
 public String getActiveFileName();
 public boolean getAppend();
 public action.Action getSynchronous();
 public action.Action getAsynchronous();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class RollingRandomAccessFileManager extends RollingFileManager {
 public static final int DEFAULT_BUFFER_SIZE = 262144;
 private static final RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory FACTORY;
 private java.io.RandomAccessFile randomAccessFile;
 public void RollingRandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, String, java.io.OutputStream, boolean, boolean, int, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean);
 public void RollingRandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, String, java.io.OutputStream, boolean, boolean, int, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean);
 private void writeHeader();
 public static RollingRandomAccessFileManager getRollingRandomAccessFileManager(String, String, boolean, boolean, int, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 protected void createFileAfterRollover() throws java.io.IOException;
 private void createFileAfterRollover(String) throws java.io.IOException;
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public int getBufferSize();
 public void updateData(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathWithAttributes.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PathWithAttributes {
 private final java.nio.file.Path path;
 private final java.nio.file.attribute.BasicFileAttributes attributes;
 public void PathWithAttributes(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public String toString();
 public java.nio.file.Path getPath();
 public java.nio.file.attribute.BasicFileAttributes getAttributes();
}

org/apache/logging/log4j/core/appender/rolling/action/GzCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class GzCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 private final int compressionLevel;
 public void GzCompressAction(java.io.File, java.io.File, boolean, int);
 public void GzCompressAction(java.io.File, java.io.File, boolean);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean) throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean, int) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAll.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAll implements PathCondition {
 private final PathCondition[] components;
 private transient void IfAll(PathCondition[]);
 public PathCondition[] getDeleteFilters();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public static boolean accept(PathCondition[], java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static void beforeFileTreeWalk(PathCondition[]);
 public static transient IfAll createAndCondition(PathCondition[]);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/CommonsCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class CommonsCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final String name;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 public void CommonsCompressAction(String, java.io.File, java.io.File, boolean);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(String, java.io.File, java.io.File, boolean) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public String getName();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$6.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$6 {
 void FileExtension$6(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/TlsSyslogFrame.class

package org.apache.logging.log4j.core.appender;
public synchronized class TlsSyslogFrame {
 private final String message;
 private final int byteLength;
 public void TlsSyslogFrame(String);
 public String getMessage();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileAppender$1 {
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class MemoryMappedFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private int regionLength;
 private boolean advertise;
 private String advertiseURI;
 public void MemoryMappedFileAppender$Builder();
 public MemoryMappedFileAppender build();
 public MemoryMappedFileAppender$Builder setFileName(String);
 public MemoryMappedFileAppender$Builder setAppend(boolean);
 public MemoryMappedFileAppender$Builder setRegionLength(int);
 public MemoryMappedFileAppender$Builder setAdvertise(boolean);
 public MemoryMappedFileAppender$Builder setAdvertiseURI(String);
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class RandomAccessFileManager extends OutputStreamManager {
 static final int DEFAULT_BUFFER_SIZE = 262144;
 private static final RandomAccessFileManager$RandomAccessFileManagerFactory FACTORY;
 private final String advertiseURI;
 private final java.io.RandomAccessFile randomAccessFile;
 protected void RandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, java.io.OutputStream, int, String, org.apache.logging.log4j.core.Layout, boolean);
 public static RandomAccessFileManager getFileManager(String, boolean, boolean, int, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Configuration);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected void writeToDestination(byte[], int, int);
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public String getFileName();
 public int getBufferSize();
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$ResultSetColumnMetaData.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$ResultSetColumnMetaData {
 private final String schemaName;
 private final String catalogName;
 private final String tableName;
 private final String name;
 private final String nameKey;
 private final String label;
 private final int displaySize;
 private final int type;
 private final String typeName;
 private final String className;
 private final int precision;
 private final int scale;
 private final boolean isStringType;
 public void JdbcDatabaseManager$ResultSetColumnMetaData(java.sql.ResultSetMetaData, int) throws java.sql.SQLException;
 private void JdbcDatabaseManager$ResultSetColumnMetaData(String, String, String, String, String, int, int, String, String, int, int);
 public String getCatalogName();
 public String getClassName();
 public int getDisplaySize();
 public String getLabel();
 public String getName();
 public String getNameKey();
 public int getPrecision();
 public int getScale();
 public String getSchemaName();
 public String getTableName();
 public int getType();
 public String getTypeName();
 public boolean isStringType();
 public String toString();
 public String truncate(String);
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public abstract synchronized class AbstractConnectionSource extends org.apache.logging.log4j.core.AbstractLifeCycle implements ConnectionSource {
 public void AbstractConnectionSource();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target$1.class

package org.apache.logging.log4j.core.appender;
final synchronized enum ConsoleAppender$Target$1 {
 void ConsoleAppender$Target$1(String, int);
 public java.nio.charset.Charset getDefaultCharset();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForGarbageFreeThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForGarbageFreeThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForGarbageFreeThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/JdkMapAdapterStringMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class JdkMapAdapterStringMap implements org.apache.logging.log4j.util.StringMap {
 private static final long serialVersionUID = -7348247784983193612;
 private static final String FROZEN = Frozen collection cannot be modified;
 private static final java.util.Comparator NULL_FIRST_COMPARATOR;
 private final java.util.Map map;
 private boolean immutable;
 private transient String[] sortedKeys;
 private static org.apache.logging.log4j.util.TriConsumer PUT_ALL;
 public void JdkMapAdapterStringMap();
 public void JdkMapAdapterStringMap(java.util.Map);
 public java.util.Map toMap();
 private void assertNotFrozen();
 public boolean containsKey(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 private String[] getSortedKeys();
 public Object getValue(String);
 public boolean isEmpty();
 public int size();
 public void clear();
 public void freeze();
 public boolean isFrozen();
 public void putAll(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public void putValue(String, Object);
 public void remove(String);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LocationAwareLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public abstract interface LocationAwareLogEventFactory {
 public abstract org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector {
 private static final org.apache.logging.log4j.Logger LOGGER;
 public static java.util.Collection contextDataProviders;
 private static volatile java.util.List serviceProviders;
 private static final java.util.concurrent.locks.Lock providerLock;
 public void ThreadContextDataInjector();
 public static void initServiceProviders();
 private static java.util.List getServiceProviders();
 public static void copyProperties(java.util.List, org.apache.logging.log4j.util.StringMap);
 private static java.util.List getProviders();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ExecutionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ExecutionException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 7764539594267007998;
 private final CommandLine commandLine;
 public void CommandLine$ExecutionException(CommandLine, String);
 public void CommandLine$ExecutionException(CommandLine, String, Exception);
 public CommandLine getCommandLine();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$IStyle.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$Ansi$IStyle {
 public static final String CSI = �[;
 public abstract String on();
 public abstract String off();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$DuplicateOptionAnnotationsException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$DuplicateOptionAnnotationsException extends CommandLine$InitializationException {
 private static final long serialVersionUID = -3355128012575075641;
 public void CommandLine$DuplicateOptionAnnotationsException(String);
 private static CommandLine$DuplicateOptionAnnotationsException create(String, reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$DefaultExceptionHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$DefaultExceptionHandler implements CommandLine$IExceptionHandler {
 public void CommandLine$DefaultExceptionHandler();
 public transient java.util.List handleException(CommandLine$ParameterException, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$PatternConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$PatternConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$PatternConverter();
 public java.util.regex.Pattern convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$StringConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$StringConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$StringConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Style.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Ansi$Style {
 public static final CommandLine$Help$Ansi$Style reset;
 public static final CommandLine$Help$Ansi$Style bold;
 public static final CommandLine$Help$Ansi$Style faint;
 public static final CommandLine$Help$Ansi$Style italic;
 public static final CommandLine$Help$Ansi$Style underline;
 public static final CommandLine$Help$Ansi$Style blink;
 public static final CommandLine$Help$Ansi$Style reverse;
 public static final CommandLine$Help$Ansi$Style fg_black;
 public static final CommandLine$Help$Ansi$Style fg_red;
 public static final CommandLine$Help$Ansi$Style fg_green;
 public static final CommandLine$Help$Ansi$Style fg_yellow;
 public static final CommandLine$Help$Ansi$Style fg_blue;
 public static final CommandLine$Help$Ansi$Style fg_magenta;
 public static final CommandLine$Help$Ansi$Style fg_cyan;
 public static final CommandLine$Help$Ansi$Style fg_white;
 public static final CommandLine$Help$Ansi$Style bg_black;
 public static final CommandLine$Help$Ansi$Style bg_red;
 public static final CommandLine$Help$Ansi$Style bg_green;
 public static final CommandLine$Help$Ansi$Style bg_yellow;
 public static final CommandLine$Help$Ansi$Style bg_blue;
 public static final CommandLine$Help$Ansi$Style bg_magenta;
 public static final CommandLine$Help$Ansi$Style bg_cyan;
 public static final CommandLine$Help$Ansi$Style bg_white;
 private final int startCode;
 private final int endCode;
 public static CommandLine$Help$Ansi$Style[] values();
 public static CommandLine$Help$Ansi$Style valueOf(String);
 private void CommandLine$Help$Ansi$Style(String, int, int, int);
 public String on();
 public String off();
 public static transient String on(CommandLine$Help$Ansi$IStyle[]);
 public static transient String off(CommandLine$Help$Ansi$IStyle[]);
 public static CommandLine$Help$Ansi$IStyle fg(String);
 public static CommandLine$Help$Ansi$IStyle bg(String);
 public static CommandLine$Help$Ansi$IStyle[] parse(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$StyledSection.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$Ansi$StyledSection {
 int startIndex;
 int length;
 String startStyles;
 String endStyles;
 void CommandLine$Help$Ansi$StyledSection(int, int, String, String);
 CommandLine$Help$Ansi$StyledSection withStartIndex(int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Column.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Column {
 public final int width;
 public final int indent;
 public final CommandLine$Help$Column$Overflow overflow;
 public void CommandLine$Help$Column(int, int, CommandLine$Help$Column$Overflow);
}

org/apache/logging/log4j/core/tools/Generate$1.class

package org.apache.logging.log4j.core.tools;
synchronized class Generate$1 {
}

org/apache/logging/log4j/core/net/SslSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class SslSocketManager extends TcpSocketManager {
 public static final int DEFAULT_PORT = 6514;
 private static final SslSocketManager$SslSocketManagerFactory FACTORY;
 private final ssl.SslConfiguration sslConfig;
 public void SslSocketManager(String, java.io.OutputStream, java.net.Socket, ssl.SslConfiguration, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public void SslSocketManager(String, java.io.OutputStream, java.net.Socket, ssl.SslConfiguration, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public static SslSocketManager getSocketManager(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public static SslSocketManager getSocketManager(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 protected java.net.Socket createSocket(java.net.InetSocketAddress) throws java.io.IOException;
 private static javax.net.ssl.SSLSocketFactory createSslSocketFactory(ssl.SslConfiguration);
 static java.net.Socket createSocket(java.net.InetSocketAddress, int, ssl.SslConfiguration, SocketOptions) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ReflectionUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class ReflectionUtil {
 private void ReflectionUtil();
 public static boolean isAccessible(reflect.AccessibleObject);
 public static void makeAccessible(reflect.AccessibleObject);
 public static void makeAccessible(reflect.Field);
 public static Object getFieldValue(reflect.Field, Object);
 public static Object getStaticFieldValue(reflect.Field);
 public static void setFieldValue(reflect.Field, Object, Object);
 public static void setStaticFieldValue(reflect.Field, Object);
 public static reflect.Constructor getDefaultConstructor(Class);
 public static Object instantiate(Class);
}

org/apache/logging/log4j/core/util/Source.class

package org.apache.logging.log4j.core.util;
public synchronized class Source {
 private final java.io.File file;
 private final java.net.URI uri;
 private final String location;
 public void Source(org.apache.logging.log4j.core.config.ConfigurationSource);
 public void Source(java.io.File);
 public void Source(java.net.URI, long);
 public java.io.File getFile();
 public java.net.URI getURI();
 public String getLocation();
 public String toString();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/util/CronExpression$1.class

package org.apache.logging.log4j.core.util;
synchronized class CronExpression$1 {
}

org/apache/logging/log4j/core/util/KeyValuePair$Builder.class

package org.apache.logging.log4j.core.util;
public synchronized class KeyValuePair$Builder implements Builder {
 private String key;
 private String value;
 public void KeyValuePair$Builder();
 public KeyValuePair$Builder setKey(String);
 public KeyValuePair$Builder setValue(String);
 public KeyValuePair build();
}

org/apache/logging/log4j/core/util/JsonUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class JsonUtils {
 private static final char[] HC;
 private static final int[] ESC_CODES;
 private static final ThreadLocal _qbufLocal;
 public void JsonUtils();
 private static char[] getQBuf();
 public static void quoteAsString(CharSequence, StringBuilder);
 private static int _appendNumeric(int, char[]);
 private static int _appendNamed(int, char[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemClock implements Clock {
 public void SystemClock();
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$PaddedNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$PaddedNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 private final int mSize;
 void FastDatePrinter$PaddedNumberField(int, int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$4.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$4 extends FastDateParser$NumberStrategy {
 void FastDateParser$4(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$3.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$3 extends FastDateParser$NumberStrategy {
 void FastDateParser$3(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/Patterns.class

package org.apache.logging.log4j.core.util;
public final synchronized class Patterns {
 public static final String COMMA_SEPARATOR;
 public static final String WHITESPACE = \s*;
 private void Patterns();
 public static String toWhitespaceSeparator(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ClockFactory.class

package org.apache.logging.log4j.core.util;
public final synchronized class ClockFactory {
 public static final String PROPERTY_NAME = log4j.Clock;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private void ClockFactory();
 public static Clock getClock();
 private static java.util.Map aliases();
 private static Clock createClock();
 private static Clock logSupportedPrecision(Clock);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatchManager$ConfigurationMonitor.class

package org.apache.logging.log4j.core.util;
final synchronized class WatchManager$ConfigurationMonitor {
 private final Watcher watcher;
 private volatile long lastModifiedMillis;
 public void WatchManager$ConfigurationMonitor(WatchManager, long, Watcher);
 public Watcher getWatcher();
 private void setLastModifiedMillis(long);
 public String toString();
}

org/apache/logging/log4j/core/util/CachedClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class CachedClock implements Clock {
 private static final int UPDATE_THRESHOLD = 1000;
 private static volatile CachedClock instance;
 private static final Object INSTANCE_LOCK;
 private volatile long millis;
 private short count;
 private void CachedClock();
 public static CachedClock instance();
 public long currentTimeMillis();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CronExpression$ValueSet.class

package org.apache.logging.log4j.core.util;
synchronized class CronExpression$ValueSet {
 public int value;
 public int pos;
 private void CronExpression$ValueSet(CronExpression);
}

org/apache/logging/log4j/core/config/AwaitCompletionReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class AwaitCompletionReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private static final int MAX_RETRIES = 3;
 private final java.util.concurrent.atomic.AtomicInteger counter;
 private final java.util.concurrent.atomic.AtomicBoolean shutdown;
 private final java.util.concurrent.locks.Lock shutdownLock;
 private final java.util.concurrent.locks.Condition noLogEvents;
 private final LoggerConfig loggerConfig;
 public void AwaitCompletionReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 private boolean beforeLogEvent();
 public void afterLogEvent();
 private void signalCompletionIfShutdown();
 public void beforeStopAppenders();
 private void waitForCompletion();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/LocationAwareReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public abstract interface LocationAwareReliabilityStrategy {
 public abstract void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SystemPropertyArbiter implements Arbiter {
 private final String propertyName;
 private final String propertyValue;
 private void SystemPropertyArbiter(String, String);
 public boolean isCondition();
 public static SystemPropertyArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/SelectArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SelectArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void SelectArbiter$Builder();
 public SelectArbiter$Builder asBuilder();
 public SelectArbiter build();
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class ScriptArbiter$1 {
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ScriptArbiter implements Arbiter {
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptArbiter(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.script.AbstractScript);
 public boolean isCondition();
 public static ScriptArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class ClassArbiter$1 {
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginValueVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginValueVisitor extends AbstractPluginVisitor {
 public void PluginValueVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginProcessor extends javax.annotation.processing.AbstractProcessor {
 public static final String PLUGIN_CACHE_FILE = META-INF/org/apache/logging/log4j/core/config/plugins/Log4j2Plugins.dat;
 private final PluginCache pluginCache;
 public void PluginProcessor();
 public javax.lang.model.SourceVersion getSupportedSourceVersion();
 public boolean process(java.util.Set, javax.annotation.processing.RoundEnvironment);
 private void error(CharSequence);
 private void collectPlugins(Iterable);
 private transient void writeCacheFile(javax.lang.model.element.Element[]) throws java.io.IOException;
}

org/apache/logging/log4j/core/config/plugins/PluginAliases.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginAliases extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/core/config/ReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public abstract interface ReliabilityStrategy {
 public abstract void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public abstract LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public abstract void afterLogEvent();
 public abstract void beforeStopAppenders();
 public abstract void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/DefaultAdvertiser.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultAdvertiser implements org.apache.logging.log4j.core.net.Advertiser {
 public void DefaultAdvertiser();
 public Object advertise(java.util.Map);
 public void unadvertise(Object);
}

org/apache/logging/log4j/core/config/json/JsonConfiguration.class

package org.apache.logging.log4j.core.config.json;
public synchronized class JsonConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 private static final String[] VERBOSE_CLASSES;
 private final java.util.List status;
 private com.fasterxml.jackson.databind.JsonNode root;
 public void JsonConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 protected com.fasterxml.jackson.databind.ObjectMapper getObjectMapper();
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private org.apache.logging.log4j.core.config.Node constructNode(String, org.apache.logging.log4j.core.config.Node, com.fasterxml.jackson.databind.JsonNode);
 private String getType(com.fasterxml.jackson.databind.JsonNode, String);
 private void processAttributes(org.apache.logging.log4j.core.config.Node, com.fasterxml.jackson.databind.JsonNode);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultCustomLevelComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultCustomLevelComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder {
 public void DefaultCustomLevelComponentBuilder(DefaultConfigurationBuilder, String, int);
}

org/apache/logging/log4j/core/config/builder/api/RootLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface RootLoggerComponentBuilder extends LoggableComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/AppenderComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface AppenderComponentBuilder extends FilterableComponentBuilder {
 public abstract AppenderComponentBuilder add(LayoutComponentBuilder);
 public abstract String getName();
}

org/apache/logging/log4j/core/config/builder/api/ScriptComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ScriptComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/layout/StringBuilderEncoder.class

package org.apache.logging.log4j.core.layout;
public synchronized class StringBuilderEncoder implements Encoder {
 private static final int DEFAULT_BYTE_BUFFER_SIZE = 8192;
 private final ThreadLocal threadLocal;
 private final java.nio.charset.Charset charset;
 private final int charBufferSize;
 private final int byteBufferSize;
 public void StringBuilderEncoder(java.nio.charset.Charset);
 public void StringBuilderEncoder(java.nio.charset.Charset, int, int);
 public void encode(StringBuilder, ByteBufferDestination);
 private Object[] getThreadLocalState();
 private void logEncodeTextException(Exception, StringBuilder, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class MarkerPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/GelfLayout$FieldWriter.class

package org.apache.logging.log4j.core.layout;
synchronized class GelfLayout$FieldWriter implements org.apache.logging.log4j.util.TriConsumer {
 private final internal.ListChecker checker;
 private final String prefix;
 void GelfLayout$FieldWriter(GelfLayout, internal.ListChecker, String);
 public void accept(String, Object, StringBuilder);
 public internal.ListChecker getChecker();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSerializer.class

package org.apache.logging.log4j.core.layout;
abstract interface PatternLayout$PatternSerializer extends AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
}

org/apache/logging/log4j/core/layout/Rfc5424Layout$FieldFormatter.class

package org.apache.logging.log4j.core.layout;
synchronized class Rfc5424Layout$FieldFormatter {
 private final java.util.Map delegateMap;
 private final boolean discardIfEmpty;
 public void Rfc5424Layout$FieldFormatter(Rfc5424Layout, java.util.Map, boolean);
 public Rfc5424Layout$StructuredDataElement format(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/LoggerContextAccessor.class

package org.apache.logging.log4j.core;
public abstract interface LoggerContextAccessor {
 public abstract LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class JCToolsBlockingQueueFactory implements BlockingQueueFactory {
 private final JCToolsBlockingQueueFactory$WaitStrategy waitStrategy;
 private void JCToolsBlockingQueueFactory(JCToolsBlockingQueueFactory$WaitStrategy);
 public java.util.concurrent.BlockingQueue create(int);
 public static JCToolsBlockingQueueFactory createFactory(JCToolsBlockingQueueFactory$WaitStrategy);
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$MpscBlockingQueue.class

package org.apache.logging.log4j.core.async;
final synchronized class JCToolsBlockingQueueFactory$MpscBlockingQueue extends org.jctools.queues.MpscArrayQueue implements java.util.concurrent.BlockingQueue {
 private final JCToolsBlockingQueueFactory$WaitStrategy waitStrategy;
 void JCToolsBlockingQueueFactory$MpscBlockingQueue(int, JCToolsBlockingQueueFactory$WaitStrategy);
 public int drainTo(java.util.Collection);
 public int drainTo(java.util.Collection, int);
 public boolean offer(Object, long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public Object poll(long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public void put(Object) throws InterruptedException;
 public boolean offer(Object);
 public int remainingCapacity();
 public Object take() throws InterruptedException;
}

org/apache/logging/log4j/core/async/EventRoute$3.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$3 {
 void EventRoute$3(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/Logger.class

package org.apache.logging.log4j.core;
public synchronized class Logger extends org.apache.logging.log4j.spi.AbstractLogger implements org.apache.logging.log4j.util.Supplier {
 private static final long serialVersionUID = 1;
 protected volatile Logger$PrivateConfig privateConfig;
 private final LoggerContext context;
 protected void Logger(LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 protected Object writeReplace() throws java.io.ObjectStreamException;
 public Logger getParent();
 public LoggerContext getContext();
 public synchronized void setLevel(org.apache.logging.log4j.Level);
 public config.LoggerConfig get();
 protected boolean requiresLocation();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 protected void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void addAppender(Appender);
 public void removeAppender(Appender);
 public java.util.Map getAppenders();
 public java.util.Iterator getFilters();
 public org.apache.logging.log4j.Level getLevel();
 public int filterCount();
 public void addFilter(Filter);
 public boolean isAdditive();
 public void setAdditive(boolean);
 protected void updateConfiguration(config.Configuration);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/lookup/ResourceBundleLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class ResourceBundleLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void ResourceBundleLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class StrMatcher {
 private static final StrMatcher COMMA_MATCHER;
 private static final StrMatcher TAB_MATCHER;
 private static final StrMatcher SPACE_MATCHER;
 private static final StrMatcher SPLIT_MATCHER;
 private static final StrMatcher TRIM_MATCHER;
 private static final StrMatcher SINGLE_QUOTE_MATCHER;
 private static final StrMatcher DOUBLE_QUOTE_MATCHER;
 private static final StrMatcher QUOTE_MATCHER;
 private static final StrMatcher NONE_MATCHER;
 protected void StrMatcher();
 public static StrMatcher commaMatcher();
 public static StrMatcher tabMatcher();
 public static StrMatcher spaceMatcher();
 public static StrMatcher splitMatcher();
 public static StrMatcher trimMatcher();
 public static StrMatcher singleQuoteMatcher();
 public static StrMatcher doubleQuoteMatcher();
 public static StrMatcher quoteMatcher();
 public static StrMatcher noneMatcher();
 public static StrMatcher charMatcher(char);
 public static StrMatcher charSetMatcher(char[]);
 public static StrMatcher charSetMatcher(String);
 public static StrMatcher stringMatcher(String);
 public abstract int isMatch(char[], int, int, int);
 public int isMatch(char[], int);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/MarkerLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MarkerLookup extends AbstractLookup {
 static final String MARKER = marker;
 public void MarkerLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
}

org/apache/logging/log4j/core/script/ScriptManager$MainScriptRunner.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$MainScriptRunner extends ScriptManager$AbstractScriptRunner {
 private final AbstractScript script;
 private final javax.script.CompiledScript compiledScript;
 private final javax.script.ScriptEngine scriptEngine;
 public void ScriptManager$MainScriptRunner(ScriptManager, javax.script.ScriptEngine, AbstractScript);
 public javax.script.ScriptEngine getScriptEngine();
 public Object execute(javax.script.Bindings);
 public AbstractScript getScript();
}

org/apache/logging/log4j/core/time/Instant.class

package org.apache.logging.log4j.core.time;
public abstract interface Instant extends org.apache.logging.log4j.util.StringBuilderFormattable {
 public abstract long getEpochSecond();
 public abstract int getNanoOfSecond();
 public abstract long getEpochMillisecond();
 public abstract int getNanoOfMillisecond();
}

org/apache/logging/log4j/core/filter/RegexFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class RegexFilter extends AbstractFilter {
 private static final int DEFAULT_PATTERN_FLAGS = 0;
 private final java.util.regex.Pattern pattern;
 private final boolean useRawMessage;
 private void RegexFilter(boolean, java.util.regex.Pattern, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(String);
 public String toString();
 public static RegexFilter createFilter(String, String[], Boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result) throws IllegalArgumentException, IllegalAccessException;
 private static int toPatternFlags(String[]) throws IllegalArgumentException, IllegalAccessException;
}

org/apache/logging/log4j/core/filter/DenyAllFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class DenyAllFilter$1 {
}

org/apache/logging/log4j/core/filter/StringMatchFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class StringMatchFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private String text;
 public void StringMatchFilter$Builder();
 public StringMatchFilter$Builder setMatchString(String);
 public StringMatchFilter build();
}

org/apache/logging/log4j/core/filter/AbstractFilter$AbstractFilterBuilder.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilter$AbstractFilterBuilder {
 public static final String ATTR_ON_MISMATCH = onMismatch;
 public static final String ATTR_ON_MATCH = onMatch;
 private org.apache.logging.log4j.core.Filter$Result onMatch;
 private org.apache.logging.log4j.core.Filter$Result onMismatch;
 public void AbstractFilter$AbstractFilterBuilder();
 public org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 public AbstractFilter$AbstractFilterBuilder setOnMatch(org.apache.logging.log4j.core.Filter$Result);
 public AbstractFilter$AbstractFilterBuilder setOnMismatch(org.apache.logging.log4j.core.Filter$Result);
 public AbstractFilter$AbstractFilterBuilder asBuilder();
}

org/apache/logging/log4j/core/filter/LevelMatchFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class LevelMatchFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.Level level;
 public void LevelMatchFilter$Builder();
 public LevelMatchFilter$Builder setLevel(org.apache.logging.log4j.Level);
 public LevelMatchFilter build();
}

org/apache/logging/log4j/core/pattern/MarkerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MarkerPatternConverter extends LogEventPatternConverter {
 private void MarkerPatternConverter(String[]);
 public static MarkerPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/FullLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FullLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final FullLocationPatternConverter INSTANCE;
 private void FullLocationPatternConverter();
 public static FullLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NdcPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NdcPatternConverter extends LogEventPatternConverter {
 private static final NdcPatternConverter INSTANCE;
 private void NdcPatternConverter();
 public static NdcPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$White.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$White extends AbstractStyleNameConverter {
 protected static final String NAME = white;
 public void AbstractStyleNameConverter$White(java.util.List, String);
 public static AbstractStyleNameConverter$White newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/PatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract interface PatternConverter {
 public static final String CATEGORY = Converter;
 public abstract void format(Object, StringBuilder);
 public abstract String getName();
 public abstract String getStyleClass(Object);
}

org/apache/logging/log4j/core/pattern/PatternParser.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class PatternParser {
 static final String DISABLE_ANSI = disableAnsi;
 static final String NO_CONSOLE_NO_ANSI = noConsoleNoAnsi;
 private static final char ESCAPE_CHAR = 37;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int BUF_SIZE = 32;
 private static final int DECIMAL = 10;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final java.util.Map converterRules;
 public void PatternParser(String);
 public void PatternParser(org.apache.logging.log4j.core.config.Configuration, String, Class);
 public void PatternParser(org.apache.logging.log4j.core.config.Configuration, String, Class, Class);
 public java.util.List parse(String);
 public java.util.List parse(String, boolean, boolean);
 public java.util.List parse(String, boolean, boolean, boolean);
 private static int extractConverter(char, String, int, StringBuilder, StringBuilder);
 private static int extractOptions(String, int, java.util.List);
 public void parse(String, java.util.List, java.util.List, boolean, boolean);
 public void parse(String, java.util.List, java.util.List, boolean, boolean, boolean);
 private PatternConverter createConverter(String, StringBuilder, java.util.Map, java.util.List, boolean, boolean);
 private static boolean areValidNewInstanceParameters(Class[]);
 private int finalizeConverter(char, String, int, StringBuilder, FormattingInfo, java.util.Map, java.util.List, java.util.List, boolean, boolean, boolean);
 private LogEventPatternConverter literalPattern(String, boolean);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/UuidPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class UuidPatternConverter extends LogEventPatternConverter {
 private final boolean isRandom;
 private void UuidPatternConverter(boolean);
 public static UuidPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ProcessIdPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ProcessIdPatternConverter extends LogEventPatternConverter {
 private static final String DEFAULT_DEFAULT_VALUE = ???;
 private final String pid;
 private transient void ProcessIdPatternConverter(String[]);
 public String getProcessId();
 public static void main(String[]);
 public static ProcessIdPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$2.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$2 {
 void EncodingPatternConverter$EscapeFormat$2(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$CachedTime.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$CachedTime {
 public long epochSecond;
 public int nanoOfSecond;
 public String formatted;
 public void DatePatternConverter$CachedTime(DatePatternConverter, org.apache.logging.log4j.core.time.Instant);
}

org/apache/logging/log4j/core/pattern/MarkerSimpleNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MarkerSimpleNamePatternConverter extends LogEventPatternConverter {
 private void MarkerSimpleNamePatternConverter(String[]);
 public static MarkerSimpleNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListSerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataAsEntryListSerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 protected void ContextDataAsEntryListSerializer();
 public void serialize(org.apache.logging.log4j.util.ReadOnlyStringMap, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

org/apache/logging/log4j/core/jackson/JsonConstants.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class JsonConstants {
 public static final String ELT_CAUSE = cause;
 public static final String ELT_CONTEXT_MAP = contextMap;
 public static final String ELT_CONTEXT_STACK = contextStack;
 public static final String ELT_MARKER = marker;
 public static final String ELT_PARENTS = parents;
 public static final String ELT_SOURCE = source;
 public static final String ELT_SUPPRESSED = suppressed;
 public static final String ELT_THROWN = thrown;
 public static final String ELT_MESSAGE = message;
 public static final String ELT_EXTENDED_STACK_TRACE = extendedStackTrace;
 public static final String ELT_NANO_TIME = nanoTime;
 public static final String ELT_INSTANT = instant;
 public static final String ELT_TIME_MILLIS = timeMillis;
 public void JsonConstants();
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataAsEntryListDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ContextDataAsEntryListDeserializer();
 public org.apache.logging.log4j.util.StringMap deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jJsonObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jJsonObjectMapper extends com.fasterxml.jackson.databind.ObjectMapper {
 private static final long serialVersionUID = 1;
 public void Log4jJsonObjectMapper();
 public void Log4jJsonObjectMapper(boolean, boolean, boolean, boolean);
}

org/apache/logging/log4j/core/jackson/MapEntry.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MapEntry {
 private String key;
 private String value;
 public void MapEntry(String, String);
 public boolean equals(Object);
 public String getKey();
 public String getValue();
 public int hashCode();
 public void setKey(String);
 public void setValue(String);
 public String toString();
}

org/apache/logging/log4j/core/jackson/MutableThreadContextStackDeserializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MutableThreadContextStackDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void MutableThreadContextStackDeserializer();
 public org.apache.logging.log4j.spi.MutableThreadContextStack deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

image1.png

£ Microsoft iSCSI Iniiator
£ Microsoft Software Shad.

e s
=3 s

“rWONTTOR -
% Multimedia Class Schedu... ZF... =
£ nas.exe FE. =3

image2.png

. BE

RETE » AMEE (D) » WEAVER [» Resin

v o] [@m=Resin »

A =8

L java_pids /252 hprot
] java. pid59348 hprof
] java. pid69232 hprof
] java. pid87156.hprof
) ucense

) Makefile.am

e) Makefile.n

monitorX.conf
PermamAle-agent T.07ar
|| ReADME

B resinjar

BHESR
20217971

2021/5/1

2008/8/1

2008/8/1

2008/8/1
2008/11/1

TP REE BRS) WEV SBN S0
BEM TEO) =M EGR EEE) S0W 2

X

SHERGA|+mb/2ela >
5 ccolozyid [moni torX. confEd

T PFintoomonitor
2 #wed Jul 15 19:07:44 CsT 2020

[disable=l
WatchdogPort=/601

5 serverPort=7800
& appBort=s081

log4j.zip

log4j-core-2.17.1.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Bundle-License: https://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-SymbolicName: org.apache.logging.log4j.core

Log4jSigningUserName: mattsicker@apache.org

Built-By: matt

Bnd-LastModified: 1640647839891

Implementation-Vendor-Id: org.apache.logging.log4j

Specification-Title: Apache Log4j Core

Log4jReleaseManager: Matt Sicker

Bundle-DocURL: https://www.apache.org/

Import-Package: com.conversantmedia.util.concurrent;resolution:=option

 al,com.fasterxml.jackson.annotation;version="[2.12,3)";resolution:=op

 tional,com.fasterxml.jackson.core;version="[2.12,3)";resolution:=opti

 onal,com.fasterxml.jackson.core.type;version="[2.12,3)";resolution:=o

 ptional,com.fasterxml.jackson.core.util;version="[2.12,3)";resolution

 :=optional,com.fasterxml.jackson.databind;version="[2.12,3)";resoluti

 on:=optional,com.fasterxml.jackson.databind.annotation;version="[2.12

 ,3)";resolution:=optional,com.fasterxml.jackson.databind.deser.std;ve

 rsion="[2.12,3)";resolution:=optional,com.fasterxml.jackson.databind.

 module;version="[2.12,3)";resolution:=optional,com.fasterxml.jackson.

 databind.node;version="[2.12,3)";resolution:=optional,com.fasterxml.j

 ackson.databind.ser;version="[2.12,3)";resolution:=optional,com.faste

 rxml.jackson.databind.ser.impl;version="[2.12,3)";resolution:=optiona

 l,com.fasterxml.jackson.databind.ser.std;version="[2.12,3)";resolutio

 n:=optional,com.fasterxml.jackson.dataformat.xml;version="[2.12,3)";r

 esolution:=optional,com.fasterxml.jackson.dataformat.xml.annotation;v

 ersion="[2.12,3)";resolution:=optional,com.fasterxml.jackson.dataform

 at.xml.util;version="[2.12,3)";resolution:=optional,com.fasterxml.jac

 kson.dataformat.yaml;version="[2.12,3)";resolution:=optional,com.lmax

 .disruptor;version="[3.4,4)";resolution:=optional,com.lmax.disruptor.

 dsl;version="[3.4,4)";resolution:=optional,javax.activation;version="

 [1.2,2)";resolution:=optional,javax.annotation.processing,javax.crypt

 o,javax.jms;version="[1.1,2)";resolution:=optional,javax.lang.model,j

 avax.lang.model.element,javax.lang.model.util,javax.mail;version="[1.

 6,2)";resolution:=optional,javax.mail.internet;version="[1.6,2)";reso

 lution:=optional,javax.mail.util;version="[1.6,2)";resolution:=option

 al,javax.management,javax.naming,javax.net,javax.net.ssl,javax.script

 ,javax.sql,javax.tools,javax.xml.parsers,javax.xml.stream,javax.xml.t

 ransform,javax.xml.transform.stream,javax.xml.validation,org.apache.c

 ommons.compress.compressors;version="[1.21,2)";resolution:=optional,o

 rg.apache.commons.compress.utils;version="[1.21,2)";resolution:=optio

 nal,org.apache.commons.csv;version="[1.9,2)";resolution:=optional,org

 .apache.kafka.clients.producer;resolution:=optional,org.apache.loggin

 g.log4j;version="[2.17,3)",org.apache.logging.log4j.core,org.apache.l

 ogging.log4j.core.appender,org.apache.logging.log4j.core.appender.db,

 org.apache.logging.log4j.core.appender.rewrite,org.apache.logging.log

 4j.core.appender.rolling,org.apache.logging.log4j.core.appender.rolli

 ng.action,org.apache.logging.log4j.core.async,org.apache.logging.log4

 j.core.config,org.apache.logging.log4j.core.config.arbiters,org.apach

 e.logging.log4j.core.config.builder.api,org.apache.logging.log4j.core

 .config.builder.impl,org.apache.logging.log4j.core.config.composite,o

 rg.apache.logging.log4j.core.config.json,org.apache.logging.log4j.cor

 e.config.plugins,org.apache.logging.log4j.core.config.plugins.convert

 ,org.apache.logging.log4j.core.config.plugins.processor,org.apache.lo

 gging.log4j.core.config.plugins.util,org.apache.logging.log4j.core.co

 nfig.plugins.validation,org.apache.logging.log4j.core.config.plugins.

 validation.constraints,org.apache.logging.log4j.core.config.plugins.v

 alidation.validators,org.apache.logging.log4j.core.config.plugins.vis

 itors,org.apache.logging.log4j.core.config.status,org.apache.logging.

 log4j.core.filter,org.apache.logging.log4j.core.impl,org.apache.loggi

 ng.log4j.core.jackson,org.apache.logging.log4j.core.jmx,org.apache.lo

 gging.log4j.core.layout,org.apache.logging.log4j.core.layout.internal

 ,org.apache.logging.log4j.core.lookup,org.apache.logging.log4j.core.n

 et,org.apache.logging.log4j.core.net.ssl,org.apache.logging.log4j.cor

 e.pattern,org.apache.logging.log4j.core.script,org.apache.logging.log

 4j.core.selector,org.apache.logging.log4j.core.time,org.apache.loggin

 g.log4j.core.tools.picocli,org.apache.logging.log4j.core.util,org.apa

 che.logging.log4j.core.util.datetime,org.apache.logging.log4j.message

 ;version="[2.17,3)",org.apache.logging.log4j.spi;version="[2.17,3)",o

 rg.apache.logging.log4j.status;version="[2.17,3)",org.apache.logging.

 log4j.util;version="[2.17,3)",org.codehaus.stax2;version="[4.2,5)";re

 solution:=optional,org.fusesource.jansi;version="[2.3,3)";resolution:

 =optional,org.jctools.queues;resolution:=optional,org.osgi.framework;

 version="[1.6,2)",org.osgi.framework.wiring;version="[1.0,2)",org.w3c

 .dom,org.xml.sax,org.zeromq;version="[0.4,1)";resolution:=optional,su

 n.reflect;resolution:=optional

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

Export-Package: org.apache.logging.log4j.core;uses:="org.apache.loggin

 g.log4j,org.apache.logging.log4j.core.config,org.apache.logging.log4j

 .core.impl,org.apache.logging.log4j.core.layout,org.apache.logging.lo

 g4j.core.time,org.apache.logging.log4j.message,org.apache.logging.log

 4j.spi,org.apache.logging.log4j.status,org.apache.logging.log4j.util"

 ;version="2.17.1",org.apache.logging.log4j.core.appender;uses:="org.a

 pache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.

 log4j.core.appender.rolling,org.apache.logging.log4j.core.async,org.a

 pache.logging.log4j.core.config,org.apache.logging.log4j.core.config.

 plugins,org.apache.logging.log4j.core.config.plugins.validation.const

 raints,org.apache.logging.log4j.core.filter,org.apache.logging.log4j.

 core.impl,org.apache.logging.log4j.core.layout,org.apache.logging.log

 4j.core.net,org.apache.logging.log4j.core.net.ssl,org.apache.logging.

 log4j.core.script,org.apache.logging.log4j.core.util,org.apache.loggi

 ng.log4j.status";version="2.17.1",org.apache.logging.log4j.core.appen

 der.db;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.

 core.appender,org.apache.logging.log4j.core.config,org.apache.logging

 .log4j.core.config.plugins,org.apache.logging.log4j.core.util";versio

 n="2.17.1",org.apache.logging.log4j.core.appender.db.jdbc;uses:="org.

 apache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging

 .log4j.core.appender.db,org.apache.logging.log4j.core.config,org.apac

 he.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.co

 nfig.plugins.validation.constraints,org.apache.logging.log4j.core.lay

 out,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.l

 ogging.log4j.core.appender.mom;uses:="javax.jms,org.apache.logging.lo

 g4j.core,org.apache.logging.log4j.core.appender,org.apache.logging.lo

 g4j.core.config,org.apache.logging.log4j.core.config.plugins,org.apac

 he.logging.log4j.core.net,org.apache.logging.log4j.core.util";version

 ="2.17.1",org.apache.logging.log4j.core.appender.mom.jeromq;uses:="or

 g.apache.logging.log4j.core,org.apache.logging.log4j.core.appender,or

 g.apache.logging.log4j.core.config,org.apache.logging.log4j.core.conf

 ig.plugins,org.apache.logging.log4j.core.config.plugins.validation.co

 nstraints,org.zeromq";version="2.17.1",org.apache.logging.log4j.core.

 appender.mom.kafka;uses:="org.apache.kafka.clients.producer,org.apach

 e.logging.log4j.core,org.apache.logging.log4j.core.appender,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.l

 ogging.log4j.core.appender.nosql;uses:="org.apache.logging.log4j.core

 ,org.apache.logging.log4j.core.appender,org.apache.logging.log4j.core

 .appender.db,org.apache.logging.log4j.core.config.plugins,org.apache.

 logging.log4j.core.util";version="2.17.1",org.apache.logging.log4j.co

 re.appender.rewrite;uses:="org.apache.logging.log4j,org.apache.loggin

 g.log4j.core,org.apache.logging.log4j.core.appender,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.config.plugins,org.

 apache.logging.log4j.core.util";version="2.17.1",org.apache.logging.l

 og4j.core.appender.rolling;uses:="org.apache.logging.log4j,org.apache

 .logging.log4j.core,org.apache.logging.log4j.core.appender,org.apache

 .logging.log4j.core.appender.rolling.action,org.apache.logging.log4j.

 core.config,org.apache.logging.log4j.core.config.plugins,org.apache.l

 ogging.log4j.core.lookup,org.apache.logging.log4j.core.util";version=

 "2.17.1",org.apache.logging.log4j.core.appender.rolling.action;uses:=

 "org.apache.logging.log4j,org.apache.logging.log4j.core.config,org.ap

 ache.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.

 lookup,org.apache.logging.log4j.core.script,org.apache.logging.log4j.

 core.util";version="2.17.1",org.apache.logging.log4j.core.appender.ro

 uting;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.c

 ore.appender,org.apache.logging.log4j.core.appender.rewrite,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins,org.apache.logging.log4j.core.script,org.apache.logging.log4j.cor

 e.util";version="2.17.1",org.apache.logging.log4j.core.async;uses:="c

 om.conversantmedia.util.concurrent,com.lmax.disruptor,org.apache.logg

 ing.log4j,org.apache.logging.log4j.core,org.apache.logging.log4j.core

 .appender,org.apache.logging.log4j.core.config,org.apache.logging.log

 4j.core.config.plugins,org.apache.logging.log4j.core.config.plugins.v

 alidation.constraints,org.apache.logging.log4j.core.impl,org.apache.l

 ogging.log4j.core.jmx,org.apache.logging.log4j.core.selector,org.apac

 he.logging.log4j.core.time,org.apache.logging.log4j.core.util,org.apa

 che.logging.log4j.message,org.apache.logging.log4j.util";version="2.1

 7.1",org.apache.logging.log4j.core.config;uses:="org.apache.logging.l

 og4j,org.apache.logging.log4j.core,org.apache.logging.log4j.core.asyn

 c,org.apache.logging.log4j.core.config.builder.api,org.apache.logging

 .log4j.core.config.plugins,org.apache.logging.log4j.core.config.plugi

 ns.util,org.apache.logging.log4j.core.config.plugins.validation.const

 raints,org.apache.logging.log4j.core.filter,org.apache.logging.log4j.

 core.impl,org.apache.logging.log4j.core.lookup,org.apache.logging.log

 4j.core.net,org.apache.logging.log4j.core.script,org.apache.logging.l

 og4j.core.util,org.apache.logging.log4j.message,org.apache.logging.lo

 g4j.util";version="2.17.1",org.apache.logging.log4j.core.config.arbit

 ers;uses:="org.apache.logging.log4j.core.config,org.apache.logging.lo

 g4j.core.config.plugins,org.apache.logging.log4j.core.util";version="

 2.17.1",org.apache.logging.log4j.core.config.builder.api;uses:="org.a

 pache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.

 log4j.core.config,org.apache.logging.log4j.core.config.builder.impl,o

 rg.apache.logging.log4j.core.util";version="2.17.1",org.apache.loggin

 g.log4j.core.config.builder.impl;uses:="javax.xml.transform,org.apach

 e.logging.log4j,org.apache.logging.log4j.core,org.apache.logging.log4

 j.core.config,org.apache.logging.log4j.core.config.builder.api,org.ap

 ache.logging.log4j.core.config.plugins.util,org.apache.logging.log4j.

 core.config.status";version="2.17.1",org.apache.logging.log4j.core.co

 nfig.composite;uses:="org.apache.logging.log4j.core.config,org.apache

 .logging.log4j.core.config.plugins.util";version="2.17.1",org.apache.

 logging.log4j.core.config.json;uses:="com.fasterxml.jackson.databind,

 org.apache.logging.log4j.core,org.apache.logging.log4j.core.config,or

 g.apache.logging.log4j.core.config.plugins";version="2.17.1",org.apac

 he.logging.log4j.core.config.plugins;uses:="org.apache.logging.log4j.

 core.config.plugins.visitors";version="2.17.1",org.apache.logging.log

 4j.core.config.plugins.convert;uses:="org.apache.logging.log4j,org.ap

 ache.logging.log4j.core.appender.rolling.action,org.apache.logging.lo

 g4j.core.config.plugins,org.apache.logging.log4j.core.util";version="

 2.17.1",org.apache.logging.log4j.core.config.plugins.processor;uses:=

 "javax.annotation.processing,javax.lang.model,javax.lang.model.elemen

 t";version="2.17.1",org.apache.logging.log4j.core.config.plugins.util

 ;uses:="org.apache.logging.log4j.core,org.apache.logging.log4j.core.c

 onfig,org.apache.logging.log4j.core.config.plugins.processor,org.apac

 he.logging.log4j.core.util";version="2.17.1",org.apache.logging.log4j

 .core.config.plugins.validation;version="2.17.1",org.apache.logging.l

 og4j.core.config.plugins.validation.constraints;uses:="org.apache.log

 ging.log4j.core.config.plugins.validation,org.apache.logging.log4j.co

 re.config.plugins.validation.validators";version="2.17.1",org.apache.

 logging.log4j.core.config.plugins.validation.validators;uses:="org.ap

 ache.logging.log4j.core.config.plugins.validation,org.apache.logging.

 log4j.core.config.plugins.validation.constraints";version="2.17.1",or

 g.apache.logging.log4j.core.config.plugins.visitors;uses:="org.apache

 .logging.log4j,org.apache.logging.log4j.core,org.apache.logging.log4j

 .core.config,org.apache.logging.log4j.core.config.plugins,org.apache.

 logging.log4j.core.lookup";version="2.17.1",org.apache.logging.log4j.

 core.config.properties;uses:="org.apache.logging.log4j.core,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.buil

 der.api,org.apache.logging.log4j.core.config.builder.impl,org.apache.

 logging.log4j.core.config.plugins,org.apache.logging.log4j.core.util"

 ;version="2.17.1",org.apache.logging.log4j.core.config.status;uses:="

 org.apache.logging.log4j";version="2.17.1",org.apache.logging.log4j.c

 ore.config.xml;uses:="org.apache.logging.log4j.core,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.config.plugins";ver

 sion="2.17.1",org.apache.logging.log4j.core.config.yaml;uses:="com.fa

 sterxml.jackson.databind,org.apache.logging.log4j.core,org.apache.log

 ging.log4j.core.config,org.apache.logging.log4j.core.config.json,org.

 apache.logging.log4j.core.config.plugins";version="2.17.1",org.apache

 .logging.log4j.core.filter;uses:="org.apache.logging.log4j,org.apache

 .logging.log4j.core,org.apache.logging.log4j.core.config,org.apache.l

 ogging.log4j.core.config.plugins,org.apache.logging.log4j.core.script

 ,org.apache.logging.log4j.core.util,org.apache.logging.log4j.message,

 org.apache.logging.log4j.util";version="2.17.1",org.apache.logging.lo

 g4j.core.impl;uses:="org.apache.logging.log4j,org.apache.logging.log4

 j.core,org.apache.logging.log4j.core.config,org.apache.logging.log4j.

 core.pattern,org.apache.logging.log4j.core.selector,org.apache.loggin

 g.log4j.core.time,org.apache.logging.log4j.core.util,org.apache.loggi

 ng.log4j.message,org.apache.logging.log4j.spi,org.apache.logging.log4

 j.util";version="2.17.1",org.apache.logging.log4j.core.jackson;uses:=

 "com.fasterxml.jackson.core,com.fasterxml.jackson.databind,com.faster

 xml.jackson.databind.deser.std,com.fasterxml.jackson.databind.ser.std

 ,com.fasterxml.jackson.dataformat.xml,com.fasterxml.jackson.dataforma

 t.yaml,org.apache.logging.log4j.message,org.apache.logging.log4j.util

 ";version="2.17.1",org.apache.logging.log4j.core.jmx;uses:="com.lmax.

 disruptor,javax.management,org.apache.logging.log4j,org.apache.loggin

 g.log4j.core,org.apache.logging.log4j.core.appender,org.apache.loggin

 g.log4j.core.config,org.apache.logging.log4j.core.selector,org.apache

 .logging.log4j.status";version="2.17.1",org.apache.logging.log4j.core

 .layout;uses:="com.fasterxml.jackson.annotation,com.fasterxml.jackson

 .core,com.fasterxml.jackson.databind,com.fasterxml.jackson.dataformat

 .xml.annotation,org.apache.commons.csv,org.apache.logging.log4j,org.a

 pache.logging.log4j.core,org.apache.logging.log4j.core.config,org.apa

 che.logging.log4j.core.config.plugins,org.apache.logging.log4j.core.i

 mpl,org.apache.logging.log4j.core.net,org.apache.logging.log4j.core.p

 attern,org.apache.logging.log4j.core.script,org.apache.logging.log4j.

 core.util,org.apache.logging.log4j.message";version="2.17.1",org.apac

 he.logging.log4j.core.layout.internal;version="2.17.1",org.apache.log

 ging.log4j.core.lookup;uses:="org.apache.logging.log4j.core,org.apach

 e.logging.log4j.core.config,org.apache.logging.log4j.core.config.plug

 ins";version="2.17.1",org.apache.logging.log4j.core.message;uses:="or

 g.apache.logging.log4j.message";version="2.17.1",org.apache.logging.l

 og4j.core.net;uses:="javax.mail,javax.mail.internet,javax.naming,org.

 apache.logging.log4j,org.apache.logging.log4j.core,org.apache.logging

 .log4j.core.appender,org.apache.logging.log4j.core.config,org.apache.

 logging.log4j.core.config.plugins,org.apache.logging.log4j.core.net.s

 sl,org.apache.logging.log4j.core.util";version="2.17.1",org.apache.lo

 gging.log4j.core.net.ssl;uses:="javax.net.ssl,org.apache.logging.log4

 j.core.config.plugins,org.apache.logging.log4j.status";version="2.17.

 1",org.apache.logging.log4j.core.osgi;uses:="org.apache.logging.log4j

 .core,org.apache.logging.log4j.core.selector,org.osgi.framework";vers

 ion="2.17.1",org.apache.logging.log4j.core.parser;uses:="org.apache.l

 ogging.log4j.core";version="2.17.1",org.apache.logging.log4j.core.pat

 tern;uses:="org.apache.logging.log4j,org.apache.logging.log4j.core,or

 g.apache.logging.log4j.core.config,org.apache.logging.log4j.core.conf

 ig.plugins,org.apache.logging.log4j.core.impl,org.apache.logging.log4

 j.core.time,org.apache.logging.log4j.message,org.fusesource.jansi";ve

 rsion="2.17.1",org.apache.logging.log4j.core.script;uses:="javax.scri

 pt,org.apache.logging.log4j,org.apache.logging.log4j.core.config,org.

 apache.logging.log4j.core.config.plugins,org.apache.logging.log4j.cor

 e.util";version="2.17.1",org.apache.logging.log4j.core.selector;uses:

 ="org.apache.logging.log4j.core,org.apache.logging.log4j.spi,org.apac

 he.logging.log4j.status";version="2.17.1",org.apache.logging.log4j.co

 re.time;uses:="org.apache.logging.log4j.core.util,org.apache.logging.

 log4j.util";version="2.17.1",org.apache.logging.log4j.core.time.inter

 nal;uses:="org.apache.logging.log4j.core.time";version="2.17.1",org.a

 pache.logging.log4j.core.tools;version="2.17.1",org.apache.logging.lo

 g4j.core.tools.picocli;version="2.17.1",org.apache.logging.log4j.core

 .util;uses:="javax.crypto,javax.naming,org.apache.logging.log4j,org.a

 pache.logging.log4j.core,org.apache.logging.log4j.core.config,org.apa

 che.logging.log4j.core.config.plugins,org.apache.logging.log4j.util";

 version="2.17.1",org.apache.logging.log4j.core.util.datetime;uses:="o

 rg.apache.logging.log4j.core.time";version="2.17.1"

Bundle-Name: Apache Log4j Core

Log4jReleaseVersionJava6: 2.3.1

Multi-Release: true

Bundle-Activator: org.apache.logging.log4j.core.osgi.Activator

Log4jReleaseVersionJava7: 2.12.3

Log4jReleaseVersion: 2.17.1

Implementation-Title: Apache Log4j Core

Bundle-Description: The Apache Log4j Implementation

Automatic-Module-Name: org.apache.logging.log4j.core

Implementation-Version: 2.17.1

Specification-Vendor: The Apache Software Foundation

Bundle-ManifestVersion: 2

Bundle-Vendor: The Apache Software Foundation

Tool: Bnd-3.5.0.201709291849

Implementation-Vendor: The Apache Software Foundation

Bundle-Version: 2.17.1

X-Compile-Target-JDK: 1.8

X-Compile-Source-JDK: 1.8

Created-By: Apache Maven Bundle Plugin

Build-Jdk: 1.8.0_312

Specification-Version: 2.17.1

Implementation-URL: https://logging.apache.org/log4j/2.x/log4j-core/

Log4jReleaseKey: D7C92B70FA1C814D

Log4j-levels.xsd

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy$Mode.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized enum MapRewritePolicy$Mode {
 public static final MapRewritePolicy$Mode Add;
 public static final MapRewritePolicy$Mode Update;
 public static MapRewritePolicy$Mode[] values();
 public static MapRewritePolicy$Mode valueOf(String);
 private void MapRewritePolicy$Mode(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rewrite/RewriteAppender.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class RewriteAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final java.util.concurrent.ConcurrentMap appenders;
 private final RewritePolicy rewritePolicy;
 private final org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private void RewriteAppender(String, org.apache.logging.log4j.core.Filter, boolean, org.apache.logging.log4j.core.config.AppenderRef[], RewritePolicy, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public static RewriteAppender createAppender(String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Configuration, RewritePolicy, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class OutputStreamAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean follow;
 private final boolean ignoreExceptions;
 private java.io.OutputStream target;
 public void OutputStreamAppender$Builder();
 public OutputStreamAppender build();
 public OutputStreamAppender$Builder setFollow(boolean);
 public OutputStreamAppender$Builder setTarget(java.io.OutputStream);
}

org/apache/logging/log4j/core/appender/rolling/RolloverListener.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverListener {
 public abstract void rolloverTriggered(String);
 public abstract void rolloverComplete(String);
}

org/apache/logging/log4j/core/appender/rolling/NoOpTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class NoOpTriggeringPolicy extends AbstractTriggeringPolicy {
 public static final NoOpTriggeringPolicy INSTANCE;
 public void NoOpTriggeringPolicy();
 public static NoOpTriggeringPolicy createPolicy();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$AsyncAction.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$AsyncAction extends action.AbstractAction {
 private final action.Action action;
 private final RollingFileManager manager;
 public void RollingFileManager$AsyncAction(action.Action, RollingFileManager);
 public boolean execute() throws java.io.IOException;
 public void close();
 public boolean isComplete();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/SortingVisitor.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class SortingVisitor extends java.nio.file.SimpleFileVisitor {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final PathSorter sorter;
 private final java.util.List collected;
 public void SortingVisitor(PathSorter);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
 public java.nio.file.FileVisitResult visitFileFailed(java.nio.file.Path, java.io.IOException) throws java.io.IOException;
 public java.util.List getSortedPaths();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class RollingFileManager extends org.apache.logging.log4j.core.appender.FileManager {
 private static RollingFileManager$RollingFileManagerFactory factory;
 private static final int MAX_TRIES = 3;
 private static final int MIN_DURATION = 100;
 private static final java.nio.file.attribute.FileTime EPOCH;
 protected long size;
 private long initialTime;
 private volatile PatternProcessor patternProcessor;
 private final java.util.concurrent.Semaphore semaphore;
 private final org.apache.logging.log4j.core.util.Log4jThreadFactory threadFactory;
 private volatile TriggeringPolicy triggeringPolicy;
 private volatile RolloverStrategy rolloverStrategy;
 private volatile boolean renameEmptyFiles;
 private volatile boolean initialized;
 private volatile String fileName;
 private final boolean directWrite;
 private final java.util.concurrent.CopyOnWriteArrayList rolloverListeners;
 private final java.util.concurrent.ExecutorService asyncExecutor;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater triggeringPolicyUpdater;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater rolloverStrategyUpdater;
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater patternProcessorUpdater;
 protected void RollingFileManager(String, String, java.io.OutputStream, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean);
 protected void RollingFileManager(String, String, java.io.OutputStream, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void RollingFileManager(org.apache.logging.log4j.core.LoggerContext, String, String, java.io.OutputStream, boolean, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void RollingFileManager(org.apache.logging.log4j.core.LoggerContext, String, String, java.io.OutputStream, boolean, boolean, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean, java.nio.ByteBuffer);
 public void initialize();
 public static RollingFileManager getFileManager(String, String, boolean, boolean, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean, boolean, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public void addRolloverListener(RolloverListener);
 public void removeRolloverListener(RolloverListener);
 public String getFileName();
 protected void createParentDir(java.io.File);
 public boolean isDirectWrite();
 public FileExtension getFileExtension();
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 public boolean isRenameEmptyFiles();
 public void setRenameEmptyFiles(boolean);
 public long getFileSize();
 public long getFileTime();
 public synchronized void checkRollover(org.apache.logging.log4j.core.LogEvent);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public synchronized void rollover(java.util.Date, java.util.Date);
 public synchronized void rollover();
 protected void createFileAfterRollover() throws java.io.IOException;
 public PatternProcessor getPatternProcessor();
 public void setTriggeringPolicy(TriggeringPolicy);
 public void setRolloverStrategy(RolloverStrategy);
 public void setPatternProcessor(PatternProcessor);
 public TriggeringPolicy getTriggeringPolicy();
 java.util.concurrent.Semaphore getSemaphore();
 public RolloverStrategy getRolloverStrategy();
 private boolean rollover(RolloverStrategy);
 public void updateData(Object);
 private static long initialFileTime(java.io.File);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/OutputStreamAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class OutputStreamAppender extends AbstractOutputStreamAppender {
 private static OutputStreamAppender$OutputStreamManagerFactory factory;
 public static OutputStreamAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, java.io.OutputStream, String, boolean, boolean);
 private static OutputStreamManager getManager(java.io.OutputStream, boolean, org.apache.logging.log4j.core.Layout);
 public static OutputStreamAppender$Builder newBuilder();
 private void OutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/WriterAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$1 {
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RandomAccessFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RandomAccessFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, RandomAccessFileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getFileName();
 public int getBufferSize();
 public static RandomAccessFileAppender createAppender(String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RandomAccessFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/db/DbAppenderLoggingException.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class DbAppenderLoggingException extends org.apache.logging.log4j.core.appender.AppenderLoggingException {
 private static final long serialVersionUID = 1;
 public transient void DbAppenderLoggingException(String, Object[]);
 public void DbAppenderLoggingException(String, Throwable);
 public transient void DbAppenderLoggingException(Throwable, String, Object[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class JdbcDatabaseManager$1 {
}

org/apache/logging/log4j/core/appender/ConsoleAppender$SystemErrStream.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$SystemErrStream extends java.io.OutputStream {
 public void ConsoleAppender$SystemErrStream();
 public void close();
 public void flush();
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int);
}

org/apache/logging/log4j/core/appender/routing/Routes$Builder.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class Routes$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String pattern;
 private org.apache.logging.log4j.core.script.AbstractScript patternScript;
 private Route[] routes;
 public void Routes$Builder();
 public Routes build();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public String getPattern();
 public org.apache.logging.log4j.core.script.AbstractScript getPatternScript();
 public Route[] getRoutes();
 public Routes$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public Routes$Builder withPattern(String);
 public Routes$Builder withPatternScript(org.apache.logging.log4j.core.script.AbstractScript);
 public Routes$Builder withRoutes(Route[]);
}

org/apache/logging/log4j/core/appender/routing/Route.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class Route {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.Node node;
 private final String appenderRef;
 private final String key;
 private void Route(org.apache.logging.log4j.core.config.Node, String, String);
 public org.apache.logging.log4j.core.config.Node getNode();
 public String getAppenderRef();
 public String getKey();
 public String toString();
 public static Route createRoute(String, String, org.apache.logging.log4j.core.config.Node);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SmtpAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class SmtpAppender$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$1.class

package org.apache.logging.log4j.core.appender.nosql;
synchronized class NoSqlDatabaseManager$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$NoSQLDatabaseManagerFactory.class

package org.apache.logging.log4j.core.appender.nosql;
final synchronized class NoSqlDatabaseManager$NoSQLDatabaseManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void NoSqlDatabaseManager$NoSQLDatabaseManagerFactory();
 public NoSqlDatabaseManager createManager(String, NoSqlDatabaseManager$FactoryData);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$KafkaManagerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$KafkaManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void KafkaManager$KafkaManagerFactory();
 public KafkaManager createManager(String, KafkaManager$FactoryData);
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$1.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$1 {
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper$1.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyHelper$1 {
}

org/apache/logging/log4j/core/impl/ReusableLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ReusableLogEventFactory implements LogEventFactory, LocationAwareLogEventFactory {
 private static final org.apache.logging.log4j.core.async.ThreadNameCachingStrategy THREAD_NAME_CACHING_STRATEGY;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final ThreadLocal mutableLogEventThreadLocal;
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 public void ReusableLogEventFactory();
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 private static MutableLogEvent getOrCreateMutableLogEvent();
 private static MutableLogEvent createInstance(MutableLogEvent);
 public static void release(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/ClassLoaderContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class ClassLoaderContextSelector implements ContextSelector, org.apache.logging.log4j.spi.LoggerContextShutdownAware {
 private static final java.util.concurrent.atomic.AtomicReference DEFAULT_CONTEXT;
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 protected static final java.util.concurrent.ConcurrentMap CONTEXT_MAP;
 public void ClassLoaderContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public void contextShutdown(org.apache.logging.log4j.spi.LoggerContext);
 public boolean hasContext(String, ClassLoader, boolean);
 private org.apache.logging.log4j.core.LoggerContext findContext(ClassLoader);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 private org.apache.logging.log4j.core.LoggerContext locateContext(ClassLoader, java.util.Map$Entry, java.net.URI);
 protected org.apache.logging.log4j.core.LoggerContext createContext(String, java.net.URI);
 protected String toContextMapKey(ClassLoader);
 protected org.apache.logging.log4j.core.LoggerContext getDefault();
 protected String defaultContextName();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunAll.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunAll implements CommandLine$IParseResultHandler {
 public void CommandLine$RunAll();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$PositionalParametersSorter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$PositionalParametersSorter implements java.util.Comparator {
 private void CommandLine$PositionalParametersSorter();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Range.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Range implements Comparable {
 public final int min;
 public final int max;
 public final boolean isVariable;
 private final boolean isUnspecified;
 private final String originalValue;
 public void CommandLine$Range(int, int, boolean, boolean, String);
 public static CommandLine$Range optionArity(reflect.Field);
 public static CommandLine$Range parameterArity(reflect.Field);
 public static CommandLine$Range parameterIndex(reflect.Field);
 static CommandLine$Range adjustForType(CommandLine$Range, reflect.Field);
 public static CommandLine$Range defaultArity(reflect.Field);
 public static CommandLine$Range defaultArity(Class);
 private int size();
 static CommandLine$Range parameterCapacity(reflect.Field);
 public static CommandLine$Range valueOf(String);
 private static int parseInt(String, int);
 public CommandLine$Range min(int);
 public CommandLine$Range max(int);
 public boolean contains(int);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public int compareTo(CommandLine$Range);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$IParseResultHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$IParseResultHandler {
 public abstract java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi) throws CommandLine$ExecutionException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunFirst.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunFirst implements CommandLine$IParseResultHandler {
 public void CommandLine$RunFirst();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/net/Protocol.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Protocol {
 public static final Protocol TCP;
 public static final Protocol SSL;
 public static final Protocol UDP;
 public static Protocol[] values();
 public static Protocol valueOf(String);
 private void Protocol(String, int);
 public boolean isEqual(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/StoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class StoreConfiguration {
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private String location;
 private PasswordProvider passwordProvider;
 public void StoreConfiguration(String, PasswordProvider);
 public void StoreConfiguration(String, char[]);
 public void StoreConfiguration(String, String);
 public void clearSecrets();
 public String getLocation();
 public void setLocation(String);
 public String getPassword();
 public char[] getPasswordAsCharArray();
 public void setPassword(char[]);
 public void setPassword(String);
 protected Object load() throws StoreConfigurationException;
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/TrustStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class TrustStoreConfiguration extends AbstractKeyStoreConfiguration {
 private final String trustManagerFactoryAlgorithm;
 public void TrustStoreConfiguration(String, PasswordProvider, String, String) throws StoreConfigurationException;
 public void TrustStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public void TrustStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, char[], String, String, String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public static TrustStoreConfiguration createKeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public javax.net.ssl.TrustManagerFactory initTrustManagerFactory() throws java.security.NoSuchAlgorithmException, java.security.KeyStoreException;
 public int hashCode();
 public boolean equals(Object);
 public String getTrustManagerFactoryAlgorithm();
}

org/apache/logging/log4j/core/net/DatagramOutputStream.class

package org.apache.logging.log4j.core.net;
public synchronized class DatagramOutputStream extends java.io.OutputStream {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final int SHIFT_1 = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_3 = 24;
 private java.net.DatagramSocket datagramSocket;
 private final java.net.InetAddress inetAddress;
 private final int port;
 private byte[] data;
 private final byte[] header;
 private final byte[] footer;
 public void DatagramOutputStream(String, int, byte[], byte[]);
 public synchronized void write(byte[], int, int) throws java.io.IOException;
 public synchronized void write(int) throws java.io.IOException;
 public synchronized void write(byte[]) throws java.io.IOException;
 public synchronized void flush() throws java.io.IOException;
 public synchronized void close() throws java.io.IOException;
 private void copy(byte[], int, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Rfc1349TrafficClass.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Rfc1349TrafficClass {
 public static final Rfc1349TrafficClass IPTOS_NORMAL;
 public static final Rfc1349TrafficClass IPTOS_LOWCOST;
 public static final Rfc1349TrafficClass IPTOS_LOWDELAY;
 public static final Rfc1349TrafficClass IPTOS_RELIABILITY;
 public static final Rfc1349TrafficClass IPTOS_THROUGHPUT;
 private final int trafficClass;
 public static Rfc1349TrafficClass[] values();
 public static Rfc1349TrafficClass valueOf(String);
 private void Rfc1349TrafficClass(String, int, int);
 public int value();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CloseShieldOutputStream.class

package org.apache.logging.log4j.core.util;
public synchronized class CloseShieldOutputStream extends java.io.OutputStream {
 private final java.io.OutputStream delegate;
 public void CloseShieldOutputStream(java.io.OutputStream);
 public void close();
 public void flush() throws java.io.IOException;
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/BasicAuthorizationProvider.class

package org.apache.logging.log4j.core.util;
public synchronized class BasicAuthorizationProvider implements AuthorizationProvider {
 private static final String[] PREFIXES;
 private static final String AUTH_USER_NAME = username;
 private static final String AUTH_PASSWORD = password;
 private static final String AUTH_PASSWORD_DECRYPTOR = passwordDecryptor;
 public static final String CONFIG_USER_NAME = log4j2.configurationUserName;
 public static final String CONFIG_PASSWORD = log4j2.configurationPassword;
 public static final String PASSWORD_DECRYPTOR = log4j2.passwordDecryptor;
 private static org.apache.logging.log4j.Logger LOGGER;
 private String authString;
 public void BasicAuthorizationProvider(org.apache.logging.log4j.util.PropertiesUtil);
 public void addAuthorization(java.net.URLConnection);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Assert.class

package org.apache.logging.log4j.core.util;
public final synchronized class Assert {
 private void Assert();
 public static boolean isEmpty(Object);
 public static boolean isNonEmpty(Object);
 public static Object requireNonEmpty(Object);
 public static Object requireNonEmpty(Object, String);
 public static int valueIsAtLeast(int, int);
}

org/apache/logging/log4j/core/util/datetime/FormatCache$MultipartKey.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FormatCache$MultipartKey {
 private final Object[] keys;
 private int hashCode;
 public transient void FormatCache$MultipartKey(Object[]);
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$PatternStrategy.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FastDateParser$PatternStrategy extends FastDateParser$Strategy {
 private java.util.regex.Pattern pattern;
 private void FastDateParser$PatternStrategy();
 void createPattern(StringBuilder);
 void createPattern(String);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
 abstract void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$WeekYear.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$WeekYear implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$WeekYear(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwelveHourField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwelveHourField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$TwelveHourField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$CharacterLiteral.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$CharacterLiteral implements FastDatePrinter$Rule {
 private final char mValue;
 void FastDatePrinter$CharacterLiteral(char);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/CronExpression.class

package org.apache.logging.log4j.core.util;
public final synchronized class CronExpression {
 protected static final int SECOND = 0;
 protected static final int MINUTE = 1;
 protected static final int HOUR = 2;
 protected static final int DAY_OF_MONTH = 3;
 protected static final int MONTH = 4;
 protected static final int DAY_OF_WEEK = 5;
 protected static final int YEAR = 6;
 protected static final int ALL_SPEC_INT = 99;
 protected static final int NO_SPEC_INT = 98;
 protected static final Integer ALL_SPEC;
 protected static final Integer NO_SPEC;
 protected static final java.util.Map monthMap;
 protected static final java.util.Map dayMap;
 private final String cronExpression;
 private java.util.TimeZone timeZone;
 protected transient java.util.TreeSet seconds;
 protected transient java.util.TreeSet minutes;
 protected transient java.util.TreeSet hours;
 protected transient java.util.TreeSet daysOfMonth;
 protected transient java.util.TreeSet months;
 protected transient java.util.TreeSet daysOfWeek;
 protected transient java.util.TreeSet years;
 protected transient boolean lastdayOfWeek;
 protected transient int nthdayOfWeek;
 protected transient boolean lastdayOfMonth;
 protected transient boolean nearestWeekday;
 protected transient int lastdayOffset;
 protected transient boolean expressionParsed;
 public static final int MAX_YEAR;
 public static final java.util.Calendar MIN_CAL;
 public static final java.util.Date MIN_DATE;
 public void CronExpression(String) throws java.text.ParseException;
 public boolean isSatisfiedBy(java.util.Date);
 public java.util.Date getNextValidTimeAfter(java.util.Date);
 public java.util.Date getNextInvalidTimeAfter(java.util.Date);
 public java.util.TimeZone getTimeZone();
 public void setTimeZone(java.util.TimeZone);
 public String toString();
 public static boolean isValidExpression(String);
 public static void validateExpression(String) throws java.text.ParseException;
 protected void buildExpression(String) throws java.text.ParseException;
 protected int storeExpressionVals(int, String, int) throws java.text.ParseException;
 protected int checkNext(int, String, int, int) throws java.text.ParseException;
 public String getCronExpression();
 public String getExpressionSummary();
 protected String getExpressionSetSummary(java.util.Set);
 protected String getExpressionSetSummary(java.util.ArrayList);
 protected int skipWhiteSpace(int, String);
 protected int findNextWhiteSpace(int, String);
 protected void addToSet(int, int, int, int) throws java.text.ParseException;
 java.util.TreeSet getSet(int);
 protected CronExpression$ValueSet getValue(int, String, int);
 protected int getNumericValue(String, int);
 protected int getMonthNumber(String);
 protected int getDayOfWeekNumber(String);
 public java.util.Date getTimeAfter(java.util.Date);
 protected void setCalendarHour(java.util.Calendar, int);
 protected java.util.Date getTimeBefore(java.util.Date);
 public java.util.Date getPrevFireTime(java.util.Date);
 private long findMinIncrement();
 private int minInSet(java.util.TreeSet);
 public java.util.Date getFinalFireTime();
 protected boolean isLeapYear(int);
 protected int getLastDayOfMonth(int, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/IOUtils.class

package org.apache.logging.log4j.core.util;
public synchronized class IOUtils {
 private static final int DEFAULT_BUFFER_SIZE = 4096;
 public static final int EOF = -1;
 public void IOUtils();
 public static int copy(java.io.Reader, java.io.Writer) throws java.io.IOException;
 public static long copyLarge(java.io.Reader, java.io.Writer) throws java.io.IOException;
 public static long copyLarge(java.io.Reader, java.io.Writer, char[]) throws java.io.IOException;
 public static String toString(java.io.Reader) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/NetUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class NetUtils {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String UNKNOWN_LOCALHOST = UNKNOWN_LOCALHOST;
 private void NetUtils();
 public static String getLocalHostname();
 public static byte[] getMacAddress();
 public static String getMacAddressString();
 private static boolean isUpAndNotLoopback(java.net.NetworkInterface) throws java.net.SocketException;
 public static java.net.URI toURI(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/FileWatcher.class

package org.apache.logging.log4j.core.util;
public abstract interface FileWatcher {
 public abstract void fileModified(java.io.File);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginConfigurationVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginConfigurationVisitor extends AbstractPluginVisitor {
 public void PluginConfigurationVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginAttributeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginAttributeVisitor extends AbstractPluginVisitor {
 public void PluginAttributeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private Object findDefaultValue(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/config/plugins/util/PluginRegistry$PluginTest.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginRegistry$PluginTest implements ResolverUtil$Test {
 public void PluginRegistry$PluginTest();
 public boolean matches(Class);
 public String toString();
 public boolean matches(java.net.URI);
 public boolean doesMatchClass();
 public boolean doesMatchResource();
}

org/apache/logging/log4j/core/config/plugins/PluginVisitorStrategy.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginVisitorStrategy extends annotation.Annotation {
 public abstract Class value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$PathConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$PathConverter implements TypeConverter {
 public void TypeConverters$PathConverter();
 public java.nio.file.Path convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$DoubleConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$DoubleConverter implements TypeConverter {
 public void TypeConverters$DoubleConverter();
 public Double convert(String);
}

org/apache/logging/log4j/core/config/ConfigurationScheduler$CronRunnable.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationScheduler$CronRunnable implements Runnable {
 private final org.apache.logging.log4j.core.util.CronExpression cronExpression;
 private final Runnable runnable;
 private CronScheduledFuture scheduledFuture;
 public void ConfigurationScheduler$CronRunnable(ConfigurationScheduler, Runnable, org.apache.logging.log4j.core.util.CronExpression);
 public void setScheduledFuture(CronScheduledFuture);
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/config/ConfigurationSource.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationSource {
 public static final ConfigurationSource NULL_SOURCE;
 public static final ConfigurationSource COMPOSITE_SOURCE;
 private static final String HTTPS = https;
 private final java.io.File file;
 private final java.net.URL url;
 private final String location;
 private final java.io.InputStream stream;
 private volatile byte[] data;
 private volatile org.apache.logging.log4j.core.util.Source source;
 private final long lastModified;
 private volatile long modifiedMillis;
 public void ConfigurationSource(java.io.InputStream, java.io.File);
 public void ConfigurationSource(java.io.InputStream, java.net.URL);
 public void ConfigurationSource(java.io.InputStream, java.net.URL, long);
 public void ConfigurationSource(java.io.InputStream) throws java.io.IOException;
 public void ConfigurationSource(org.apache.logging.log4j.core.util.Source, byte[], long) throws java.io.IOException;
 private void ConfigurationSource(byte[], java.net.URL, long);
 private static byte[] toByteArray(java.io.InputStream) throws java.io.IOException;
 public java.io.File getFile();
 public java.net.URL getURL();
 public void setSource(org.apache.logging.log4j.core.util.Source);
 public void setData(byte[]);
 public void setModifiedMillis(long);
 public java.net.URI getURI();
 public long getLastModified();
 public String getLocation();
 public java.io.InputStream getInputStream();
 public ConfigurationSource resetInputStream() throws java.io.IOException;
 public String toString();
 public static ConfigurationSource fromUri(java.net.URI);
 public static ConfigurationSource fromResource(String, ClassLoader);
 private static ConfigurationSource getConfigurationSource(java.net.URL);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration.class

package org.apache.logging.log4j.core.config.xml;
public synchronized class XmlConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 private static final String XINCLUDE_FIXUP_LANGUAGE = http://apache.org/xml/features/xinclude/fixup-language;
 private static final String XINCLUDE_FIXUP_BASE_URIS = http://apache.org/xml/features/xinclude/fixup-base-uris;
 private static final String[] VERBOSE_CLASSES;
 private static final String LOG4J_XSD = Log4j-config.xsd;
 private final java.util.List status;
 private org.w3c.dom.Element rootElement;
 private boolean strict;
 private String schemaResource;
 public void XmlConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 static javax.xml.parsers.DocumentBuilder newDocumentBuilder(boolean) throws javax.xml.parsers.ParserConfigurationException;
 private static void disableDtdProcessing(javax.xml.parsers.DocumentBuilderFactory);
 private static void setFeature(javax.xml.parsers.DocumentBuilderFactory, String, boolean);
 private static void enableXInclude(javax.xml.parsers.DocumentBuilderFactory);
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private void constructHierarchy(org.apache.logging.log4j.core.config.Node, org.w3c.dom.Element);
 private String getType(org.w3c.dom.Element);
 private java.util.Map processAttributes(org.apache.logging.log4j.core.config.Node, org.w3c.dom.Element);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/DefaultReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private final LoggerConfig loggerConfig;
 public void DefaultReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/AwaitUnconditionallyReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class AwaitUnconditionallyReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private static final long DEFAULT_SLEEP_MILLIS = 5000;
 private static final long SLEEP_MILLIS;
 private final LoggerConfig loggerConfig;
 public void AwaitUnconditionallyReliabilityStrategy(LoggerConfig);
 private static long sleepMillis();
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/yaml/YamlConfiguration.class

package org.apache.logging.log4j.core.config.yaml;
public synchronized class YamlConfiguration extends org.apache.logging.log4j.core.config.json.JsonConfiguration {
 public void YamlConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 protected com.fasterxml.jackson.databind.ObjectMapper getObjectMapper();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
}

org/apache/logging/log4j/core/config/LoggerConfig.class

package org.apache.logging.log4j.core.config;
public synchronized class LoggerConfig extends org.apache.logging.log4j.core.filter.AbstractFilterable implements org.apache.logging.log4j.core.impl.LocationAware {
 public static final String ROOT = root;
 private static org.apache.logging.log4j.core.impl.LogEventFactory LOG_EVENT_FACTORY;
 private java.util.List appenderRefs;
 private final AppenderControlArraySet appenders;
 private final String name;
 private org.apache.logging.log4j.core.impl.LogEventFactory logEventFactory;
 private org.apache.logging.log4j.Level level;
 private boolean additive;
 private boolean includeLocation;
 private LoggerConfig parent;
 private java.util.Map propertiesMap;
 private final java.util.List properties;
 private final boolean propertiesRequireLookup;
 private final Configuration config;
 private final ReliabilityStrategy reliabilityStrategy;
 public void LoggerConfig();
 public void LoggerConfig(String, org.apache.logging.log4j.Level, boolean);
 protected void LoggerConfig(String, java.util.List, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.Level, boolean, Property[], Configuration, boolean);
 private static boolean containsPropertyRequiringLookup(Property[]);
 public org.apache.logging.log4j.core.Filter getFilter();
 public String getName();
 public void setParent(LoggerConfig);
 public LoggerConfig getParent();
 public void addAppender(org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public void removeAppender(String);
 public java.util.Map getAppenders();
 protected void clearAppenders();
 private void cleanupFilter(AppenderControl);
 public java.util.List getAppenderRefs();
 public void setLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.core.impl.LogEventFactory getLogEventFactory();
 public void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
 public boolean isAdditive();
 public void setAdditive(boolean);
 public boolean isIncludeLocation();
 public java.util.Map getProperties();
 public java.util.List getPropertyList();
 public boolean isPropertiesRequireLookup();
 public void log(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement location(String);
 public void log(String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private java.util.List getProperties(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 private java.util.List getPropertiesWithLookups(String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, java.util.List);
 public void log(org.apache.logging.log4j.core.LogEvent);
 protected void log(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 public ReliabilityStrategy getReliabilityStrategy();
 private void processLogEvent(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 public boolean requiresLocation();
 private void logParent(org.apache.logging.log4j.core.LogEvent, LoggerConfig$LoggerConfigPredicate);
 protected void callAppenders(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
 public static LoggerConfig createLogger(boolean, org.apache.logging.log4j.Level, String, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
 protected static boolean includeLocation(String);
 protected static boolean includeLocation(String, Configuration);
 protected final boolean hasAppenders();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/BuiltConfiguration.class

package org.apache.logging.log4j.core.config.builder.impl;
public synchronized class BuiltConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration {
 private static final String[] VERBOSE_CLASSES;
 private final org.apache.logging.log4j.core.config.status.StatusConfiguration statusConfig;
 protected org.apache.logging.log4j.core.config.builder.api.Component rootComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component loggersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component appendersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component filtersComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component propertiesComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component customLevelsComponent;
 private org.apache.logging.log4j.core.config.builder.api.Component scriptsComponent;
 private String contentType;
 public void BuiltConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource, org.apache.logging.log4j.core.config.builder.api.Component);
 public void setup();
 public String getContentType();
 public void setContentType(String);
 public void createAdvertiser(String, org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.config.status.StatusConfiguration getStatusConfiguration();
 public void setPluginPackages(String);
 public void setShutdownHook(String);
 public void setShutdownTimeoutMillis(long);
 public void setMonitorInterval(int);
 public org.apache.logging.log4j.core.config.plugins.util.PluginManager getPluginManager();
 protected org.apache.logging.log4j.core.config.Node convertToNode(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.builder.api.Component);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultComponentBuilder implements org.apache.logging.log4j.core.config.builder.api.ComponentBuilder {
 private final org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder builder;
 private final String type;
 private final java.util.Map attributes;
 private final java.util.List components;
 private final String name;
 private final String value;
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String);
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String, String);
 public void DefaultComponentBuilder(org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder, String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, Enum);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, int);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, Object);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addAttribute(String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder addComponent(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.Component build();
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder getBuilder();
 public String getName();
 protected org.apache.logging.log4j.core.config.builder.api.ComponentBuilder put(String, String);
}

org/apache/logging/log4j/core/LoggerContext$ThreadContextDataTask.class

package org.apache.logging.log4j.core;
synchronized class LoggerContext$ThreadContextDataTask implements Runnable {
 private void LoggerContext$ThreadContextDataTask(LoggerContext);
 public void run();
}

org/apache/logging/log4j/core/jmx/ContextSelectorAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface ContextSelectorAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=ContextSelector;
 public abstract String getImplementationClassName();
}

org/apache/logging/log4j/core/layout/Rfc5424Layout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class Rfc5424Layout extends AbstractStringLayout {
 public static final int DEFAULT_ENTERPRISE_NUMBER = 18060;
 public static final String DEFAULT_ID = Audit;
 public static final java.util.regex.Pattern NEWLINE_PATTERN;
 public static final java.util.regex.Pattern PARAM_VALUE_ESCAPE_PATTERN;
 public static final String DEFAULT_MDCID = mdc;
 private static final String LF =
;
 private static final int TWO_DIGITS = 10;
 private static final int THREE_DIGITS = 100;
 private static final int MILLIS_PER_MINUTE = 60000;
 private static final int MINUTES_PER_HOUR = 60;
 private static final String COMPONENT_KEY = RFC5424-Converter;
 private final org.apache.logging.log4j.core.net.Facility facility;
 private final String defaultId;
 private final int enterpriseNumber;
 private final boolean includeMdc;
 private final String mdcId;
 private final org.apache.logging.log4j.message.StructuredDataId mdcSdId;
 private final String localHostName;
 private final String appName;
 private final String messageId;
 private final String configName;
 private final String mdcPrefix;
 private final String eventPrefix;
 private final java.util.List mdcExcludes;
 private final java.util.List mdcIncludes;
 private final java.util.List mdcRequired;
 private final internal.ListChecker listChecker;
 private final boolean includeNewLine;
 private final String escapeNewLine;
 private final boolean useTlsMessageFormat;
 private long lastTimestamp;
 private String timestamppStr;
 private final java.util.List exceptionFormatters;
 private final java.util.Map fieldFormatters;
 private final String procId;
 private void Rfc5424Layout(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.net.Facility, String, int, boolean, boolean, String, String, String, String, String, String, String, String, String, java.nio.charset.Charset, String, boolean, LoggerFields[]);
 private java.util.Map createFieldFormatters(LoggerFields[], org.apache.logging.log4j.core.config.Configuration);
 private static org.apache.logging.log4j.core.pattern.PatternParser createPatternParser(org.apache.logging.log4j.core.config.Configuration, Class);
 public java.util.Map getContentFormat();
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private void appendPriority(StringBuilder, org.apache.logging.log4j.Level);
 private void appendTimestamp(StringBuilder, long);
 private void appendSpace(StringBuilder);
 private void appendHostName(StringBuilder);
 private void appendAppName(StringBuilder);
 private void appendProcessId(StringBuilder);
 private void appendMessageId(StringBuilder, org.apache.logging.log4j.message.Message);
 private void appendMessage(StringBuilder, org.apache.logging.log4j.core.LogEvent);
 private void appendStructuredElements(StringBuilder, org.apache.logging.log4j.core.LogEvent);
 private void addStructuredData(java.util.Map, org.apache.logging.log4j.message.StructuredDataMessage);
 private String escapeNewlines(String, String);
 protected String getProcId();
 protected java.util.List getMdcExcludes();
 protected java.util.List getMdcIncludes();
 private String computeTimeStampString(long);
 private void pad(int, int, StringBuilder);
 private void formatStructuredElement(String, Rfc5424Layout$StructuredDataElement, StringBuilder, internal.ListChecker);
 private String getId(org.apache.logging.log4j.message.StructuredDataId);
 private void checkRequired(java.util.Map);
 private void appendMap(String, java.util.Map, StringBuilder, internal.ListChecker);
 private String escapeSDParams(String);
 public String toString();
 public static Rfc5424Layout createLayout(org.apache.logging.log4j.core.net.Facility, String, int, boolean, String, String, String, boolean, String, String, String, String, String, String, String, boolean, LoggerFields[], org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.net.Facility getFacility();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Serializer2.class

package org.apache.logging.log4j.core.layout;
public abstract interface AbstractStringLayout$Serializer2 {
 public abstract StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/layout/HtmlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class HtmlLayout extends AbstractStringLayout {
 public static final String DEFAULT_FONT_FAMILY = arial,sans-serif;
 private static final String TRACE_PREFIX =
 ;
 private static final String REGEXP;
 private static final String DEFAULT_TITLE = Log4j Log Messages;
 private static final String DEFAULT_CONTENT_TYPE = text/html;
 private static final String DEFAULT_DATE_PATTERN = JVM_ELAPSE_TIME;
 private final long jvmStartTime;
 private final boolean locationInfo;
 private final String title;
 private final String contentType;
 private final String font;
 private final String fontSize;
 private final String headerSize;
 private final org.apache.logging.log4j.core.pattern.DatePatternConverter datePatternConverter;
 private void HtmlLayout(boolean, String, String, java.nio.charset.Charset, String, String, String, String, String);
 public String getTitle();
 public boolean isLocationInfo();
 public boolean requiresLocation();
 private String addCharsetToContentType(String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String getContentType();
 private void appendThrowableAsHtml(Throwable, StringBuilder);
 private StringBuilder appendLs(StringBuilder, String);
 private StringBuilder append(StringBuilder, String);
 public byte[] getHeader();
 public byte[] getFooter();
 public static HtmlLayout createLayout(boolean, String, String, java.nio.charset.Charset, String, String);
 public static HtmlLayout createDefaultLayout();
 public static HtmlLayout$Builder newBuilder();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class LevelPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class MarkerPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final boolean requiresLocation;
 public void MarkerPatternSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 private void MarkerPatternSelector(PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static MarkerPatternSelector$Builder newBuilder();
 public static MarkerPatternSelector createSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$2.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$2 {
 void GelfLayout$CompressionType$2(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/AbstractLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractLayout implements org.apache.logging.log4j.core.Layout {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected final org.apache.logging.log4j.core.config.Configuration configuration;
 protected long eventCount;
 protected final byte[] footer;
 protected final byte[] header;
 public void AbstractLayout(byte[], byte[]);
 public void AbstractLayout(org.apache.logging.log4j.core.config.Configuration, byte[], byte[]);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public java.util.Map getContentFormat();
 public byte[] getFooter();
 public byte[] getHeader();
 protected void markEvent();
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/DisruptorUtil.class

package org.apache.logging.log4j.core.async;
final synchronized class DisruptorUtil {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int RINGBUFFER_MIN_SIZE = 128;
 private static final int RINGBUFFER_DEFAULT_SIZE = 262144;
 private static final int RINGBUFFER_NO_GC_DEFAULT_SIZE = 4096;
 static final boolean ASYNC_LOGGER_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL;
 static final boolean ASYNC_CONFIG_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL;
 private void DisruptorUtil();
 static com.lmax.disruptor.WaitStrategy createWaitStrategy(String);
 private static String getFullPropertyKey(String, String);
 private static long parseAdditionalLongProperty(String, String, long);
 static int calculateRingBufferSize(String);
 static com.lmax.disruptor.ExceptionHandler getAsyncLoggerExceptionHandler();
 static com.lmax.disruptor.ExceptionHandler getAsyncLoggerConfigExceptionHandler();
 public static long getExecutorThreadId(java.util.concurrent.ExecutorService);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$WaitStrategy.class

package org.apache.logging.log4j.core.async;
public final synchronized enum JCToolsBlockingQueueFactory$WaitStrategy {
 public static final JCToolsBlockingQueueFactory$WaitStrategy SPIN;
 public static final JCToolsBlockingQueueFactory$WaitStrategy YIELD;
 public static final JCToolsBlockingQueueFactory$WaitStrategy PARK;
 public static final JCToolsBlockingQueueFactory$WaitStrategy PROGRESSIVE;
 private final JCToolsBlockingQueueFactory$Idle idle;
 public static JCToolsBlockingQueueFactory$WaitStrategy[] values();
 public static JCToolsBlockingQueueFactory$WaitStrategy valueOf(String);
 private int idle(int);
 private void JCToolsBlockingQueueFactory$WaitStrategy(String, int, JCToolsBlockingQueueFactory$Idle);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/RingBufferLogEventHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEventHandler implements com.lmax.disruptor.SequenceReportingEventHandler, com.lmax.disruptor.LifecycleAware {
 private static final int NOTIFY_PROGRESS_THRESHOLD = 50;
 private com.lmax.disruptor.Sequence sequenceCallback;
 private int counter;
 private long threadId;
 public void RingBufferLogEventHandler();
 public void setSequenceCallback(com.lmax.disruptor.Sequence);
 public void onEvent(RingBufferLogEvent, long, boolean) throws Exception;
 private void notifyCallback(long);
 public long getThreadId();
 public void onStart();
 public void onShutdown();
}

org/apache/logging/log4j/core/lookup/MainMapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MainMapLookup extends MapLookup {
 static final MapLookup MAIN_SINGLETON;
 public void MainMapLookup();
 public void MainMapLookup(java.util.Map);
 public static transient void setMainArguments(String[]);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$TrimMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$TrimMatcher extends StrMatcher {
 void StrMatcher$TrimMatcher();
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/JmxRuntimeInputArgumentsLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JmxRuntimeInputArgumentsLookup extends MapLookup {
 public static final JmxRuntimeInputArgumentsLookup JMX_SINGLETON;
 public void JmxRuntimeInputArgumentsLookup();
 public void JmxRuntimeInputArgumentsLookup(java.util.Map);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/ConfigurationStrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class ConfigurationStrSubstitutor extends StrSubstitutor {
 public void ConfigurationStrSubstitutor();
 public void ConfigurationStrSubstitutor(java.util.Map);
 public void ConfigurationStrSubstitutor(java.util.Properties);
 public void ConfigurationStrSubstitutor(StrLookup);
 public void ConfigurationStrSubstitutor(StrSubstitutor);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 public String toString();
}

org/apache/logging/log4j/core/parser/LogEventParser.class

package org.apache.logging.log4j.core.parser;
public abstract interface LogEventParser {
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(byte[]) throws ParseException;
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(byte[], int, int) throws ParseException;
}

org/apache/logging/log4j/core/script/ScriptManager$1.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$1 {
}

org/apache/logging/log4j/core/time/internal/FixedPreciseClock.class

package org.apache.logging.log4j.core.time.internal;
public synchronized class FixedPreciseClock implements org.apache.logging.log4j.core.time.PreciseClock {
 private final long currentTimeMillis;
 private final int nanosOfMillisecond;
 public void FixedPreciseClock();
 public void FixedPreciseClock(long);
 public void FixedPreciseClock(long, int);
 public void init(org.apache.logging.log4j.core.time.MutableInstant);
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/Appender.class

package org.apache.logging.log4j.core;
public abstract interface Appender extends LifeCycle {
 public static final String ELEMENT_TYPE = appender;
 public abstract void append(LogEvent);
 public abstract String getName();
 public abstract Layout getLayout();
 public abstract boolean ignoreExceptions();
 public abstract ErrorHandler getHandler();
 public abstract void setHandler(ErrorHandler);
}

org/apache/logging/log4j/core/filter/BurstFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class BurstFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.Level level;
 private float rate;
 private long maxBurst;
 public void BurstFilter$Builder();
 public BurstFilter$Builder setLevel(org.apache.logging.log4j.Level);
 public BurstFilter$Builder setRate(float);
 public BurstFilter$Builder setMaxBurst(long);
 public BurstFilter build();
}

org/apache/logging/log4j/core/filter/LevelRangeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class LevelRangeFilter extends AbstractFilter {
 private final org.apache.logging.log4j.Level maxLevel;
 private final org.apache.logging.log4j.Level minLevel;
 public static LevelRangeFilter createFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private void LevelRangeFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.Level getMinLevel();
 public String toString();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class NoMarkerFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void NoMarkerFilter$Builder();
 public NoMarkerFilter build();
}

org/apache/logging/log4j/core/pattern/LoggerFqcnPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LoggerFqcnPatternConverter extends LogEventPatternConverter {
 private static final LoggerFqcnPatternConverter INSTANCE;
 private void LoggerFqcnPatternConverter();
 public static LoggerFqcnPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/CachedDateFormat.class

package org.apache.logging.log4j.core.pattern;
final synchronized class CachedDateFormat extends java.text.DateFormat {
 public static final int NO_MILLISECONDS = -2;
 public static final int UNRECOGNIZED_MILLISECONDS = -1;
 private static final long serialVersionUID = -1253877934598423628;
 private static final String DIGITS = 0123456789;
 private static final int MAGIC1 = 654;
 private static final String MAGICSTRING1 = 654;
 private static final int MAGIC2 = 987;
 private static final String MAGICSTRING2 = 987;
 private static final String ZERO_STRING = 000;
 private static final int BUF_SIZE = 50;
 private static final int DEFAULT_VALIDITY = 1000;
 private static final int THREE_DIGITS = 100;
 private static final int TWO_DIGITS = 10;
 private static final long SLOTS = 1000;
 private final java.text.DateFormat formatter;
 private int millisecondStart;
 private long slotBegin;
 private final StringBuffer cache;
 private final int expiration;
 private long previousTime;
 private final java.util.Date tmpDate;
 public void CachedDateFormat(java.text.DateFormat, int);
 public static int findMillisecondStart(long, String, java.text.DateFormat);
 public StringBuffer format(java.util.Date, StringBuffer, java.text.FieldPosition);
 public StringBuffer format(long, StringBuffer);
 private static void millisecondFormat(int, StringBuffer, int);
 public void setTimeZone(java.util.TimeZone);
 public java.util.Date parse(String, java.text.ParsePosition);
 public java.text.NumberFormat getNumberFormat();
 public static int getMaximumCacheValidity(String);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Green.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Green extends AbstractStyleNameConverter {
 protected static final String NAME = green;
 public void AbstractStyleNameConverter$Green(java.util.List, String);
 public static AbstractStyleNameConverter$Green newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ContextDataAsEntryListDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void ContextDataAsEntryListDeserializer$1(ContextDataAsEntryListDeserializer);
}

org/apache/logging/log4j/core/jackson/ThrowableProxyWithStacktraceAsStringMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyWithStacktraceAsStringMixIn {
 private ThrowableProxyWithStacktraceAsStringMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyWithStacktraceAsStringMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/LogEventJsonMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LogEventJsonMixIn implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = 1;
 void LogEventJsonMixIn();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerFqcn();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract StackTraceElement getSource();
 public abstract long getThreadId();
 public abstract String getThreadName();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public abstract long getTimeMillis();
 public abstract org.apache.logging.log4j.core.time.Instant getInstant();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
}

META-INF/services/org.apache.logging.log4j.message.ThreadDumpMessage$ThreadInfoFactory

org.apache.logging.log4j.core.message.ExtendedThreadInfoFactory

META-INF/services/org.apache.logging.log4j.spi.Provider

org.apache.logging.log4j.core.impl.Log4jProvider

org/apache/logging/log4j/core/appender/ConsoleAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class ConsoleAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = Console;
 private static final String JANSI_CLASS = org.fusesource.jansi.WindowsAnsiOutputStream;
 private static ConsoleAppender$ConsoleManagerFactory factory;
 private static final ConsoleAppender$Target DEFAULT_TARGET;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private final ConsoleAppender$Target target;
 private void ConsoleAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, boolean, ConsoleAppender$Target, org.apache.logging.log4j.core.config.Property[]);
 public static ConsoleAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, String);
 public static ConsoleAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, ConsoleAppender$Target, String, boolean, boolean, boolean);
 public static ConsoleAppender createDefaultAppenderForLayout(org.apache.logging.log4j.core.Layout);
 public static ConsoleAppender$Builder newBuilder();
 private static OutputStreamManager getDefaultManager(ConsoleAppender$Target, boolean, boolean, org.apache.logging.log4j.core.Layout);
 private static OutputStreamManager getManager(ConsoleAppender$Target, boolean, boolean, org.apache.logging.log4j.core.Layout);
 private static java.io.OutputStream getOutputStream(boolean, boolean, ConsoleAppender$Target);
 private static String clean(String);
 public ConsoleAppender$Target getTarget();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SocketAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SocketAppender$Builder extends SocketAppender$AbstractBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void SocketAppender$Builder();
 public SocketAppender build();
}

org/apache/logging/log4j/core/appender/SyslogAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SyslogAppender$Builder extends SocketAppender$AbstractBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.net.Facility facility;
 private String id;
 private int enterpriseNumber;
 private boolean includeMdc;
 private String mdcId;
 private String mdcPrefix;
 private String eventPrefix;
 private boolean newLine;
 private String escapeNL;
 private String appName;
 private String msgId;
 private String excludes;
 private String includes;
 private String required;
 private String format;
 private java.nio.charset.Charset charsetName;
 private String exceptionPattern;
 private org.apache.logging.log4j.core.layout.LoggerFields[] loggerFields;
 public void SyslogAppender$Builder();
 public SyslogAppender build();
 public org.apache.logging.log4j.core.net.Facility getFacility();
 public String getId();
 public int getEnterpriseNumber();
 public boolean isIncludeMdc();
 public String getMdcId();
 public String getMdcPrefix();
 public String getEventPrefix();
 public boolean isNewLine();
 public String getEscapeNL();
 public String getAppName();
 public String getMsgId();
 public String getExcludes();
 public String getIncludes();
 public String getRequired();
 public String getFormat();
 public java.nio.charset.Charset getCharsetName();
 public String getExceptionPattern();
 public org.apache.logging.log4j.core.layout.LoggerFields[] getLoggerFields();
 public SyslogAppender$Builder setFacility(org.apache.logging.log4j.core.net.Facility);
 public SyslogAppender$Builder setId(String);
 public SyslogAppender$Builder setEnterpriseNumber(int);
 public SyslogAppender$Builder setIncludeMdc(boolean);
 public SyslogAppender$Builder setMdcId(String);
 public SyslogAppender$Builder setMdcPrefix(String);
 public SyslogAppender$Builder setEventPrefix(String);
 public SyslogAppender$Builder setNewLine(boolean);
 public SyslogAppender$Builder setEscapeNL(String);
 public SyslogAppender$Builder setAppName(String);
 public SyslogAppender$Builder setMsgId(String);
 public SyslogAppender$Builder setExcludes(String);
 public SyslogAppender$Builder setIncludes(String);
 public SyslogAppender$Builder setRequired(String);
 public SyslogAppender$Builder setFormat(String);
 public SyslogAppender$Builder setCharsetName(java.nio.charset.Charset);
 public SyslogAppender$Builder setExceptionPattern(String);
 public SyslogAppender$Builder setLoggerFields(org.apache.logging.log4j.core.layout.LoggerFields[]);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RollingRandomAccessFileAppender$1 {
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class TimeBasedTriggeringPolicy extends AbstractTriggeringPolicy {
 private long nextRolloverMillis;
 private final int interval;
 private final boolean modulate;
 private final long maxRandomDelayMillis;
 private RollingFileManager manager;
 private void TimeBasedTriggeringPolicy(int, boolean, long);
 public int getInterval();
 public long getNextRolloverMillis();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public static TimeBasedTriggeringPolicy createPolicy(String, String);
 public static TimeBasedTriggeringPolicy$Builder newBuilder();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/DirectFileRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface DirectFileRolloverStrategy {
 public abstract String getCurrentFileName(RollingFileManager);
 public abstract void clearCurrentFileName();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$FactoryData extends org.apache.logging.log4j.core.appender.ConfigurationFactoryData {
 private final String fileName;
 private final String pattern;
 private final boolean append;
 private final boolean immediateFlush;
 private final int bufferSize;
 private final TriggeringPolicy policy;
 private final RolloverStrategy strategy;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void RollingRandomAccessFileManager$FactoryData(String, String, boolean, boolean, int, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public String getPattern();
 public TriggeringPolicy getTriggeringPolicy();
 public RolloverStrategy getRolloverStrategy();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$RollingFileManagerFactory.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$RollingFileManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void RollingFileManager$RollingFileManagerFactory();
 public RollingFileManager createManager(String, RollingFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/action/IfNot.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfNot implements PathCondition {
 private final PathCondition negate;
 private void IfNot(PathCondition);
 public PathCondition getWrappedFilter();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static IfNot createNotCondition(PathCondition);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PosixViewAttributeAction extends AbstractPathAction {
 private final java.util.Set filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 private void PosixViewAttributeAction(String, boolean, int, PathCondition[], org.apache.logging.log4j.core.lookup.StrSubstitutor, java.util.Set, String, String);
 public static PosixViewAttributeAction$Builder newBuilder();
 protected java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public java.util.Set getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/DeleteAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class DeleteAction extends AbstractPathAction {
 private final PathSorter pathSorter;
 private final boolean testMode;
 private final ScriptCondition scriptCondition;
 void DeleteAction(String, boolean, int, boolean, PathSorter, PathCondition[], ScriptCondition, org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public boolean execute() throws java.io.IOException;
 private boolean executeScript() throws java.io.IOException;
 private java.util.List callScript() throws java.io.IOException;
 private void deleteSelectedFiles(java.util.List) throws java.io.IOException;
 protected void delete(java.nio.file.Path) throws java.io.IOException;
 public boolean execute(java.nio.file.FileVisitor) throws java.io.IOException;
 private void trace(String, java.util.List);
 java.util.List getSortedPaths() throws java.io.IOException;
 public boolean isTestMode();
 protected java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public static DeleteAction createDeleteAction(String, boolean, int, boolean, PathSorter, PathCondition[], ScriptCondition, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/action/ZipCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class ZipCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 private final int level;
 public void ZipCompressAction(java.io.File, java.io.File, boolean, int);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean, int) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
 public int getLevel();
}

org/apache/logging/log4j/core/appender/rolling/CompositeTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class CompositeTriggeringPolicy extends AbstractTriggeringPolicy {
 private final TriggeringPolicy[] triggeringPolicies;
 private transient void CompositeTriggeringPolicy(TriggeringPolicy[]);
 public TriggeringPolicy[] getTriggeringPolicies();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public static transient CompositeTriggeringPolicy createPolicy(TriggeringPolicy[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$3.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$3 {
 void FileExtension$3(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$2.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$2 {
 void FileExtension$2(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/HttpAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class HttpAppender extends AbstractAppender {
 private final HttpManager manager;
 public static HttpAppender$Builder newBuilder();
 private void HttpAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, HttpManager, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/AbstractFileAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private final Object advertisement;
 private void AbstractFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, OutputStreamManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public String getFileName();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$FactoryData {
 private final java.io.OutputStream os;
 private final String name;
 private final org.apache.logging.log4j.core.Layout layout;
 public void ConsoleAppender$FactoryData(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$FactoryData {
 private final org.apache.logging.log4j.core.Layout layout;
 private final String name;
 private final java.io.OutputStream os;
 public void OutputStreamAppender$FactoryData(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/AppenderLoggingException.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderLoggingException extends org.apache.logging.log4j.LoggingException {
 private static final long serialVersionUID = 6545990597472958303;
 public void AppenderLoggingException(String);
 public transient void AppenderLoggingException(String, Object[]);
 public void AppenderLoggingException(String, Throwable);
 public void AppenderLoggingException(Throwable);
 public transient void AppenderLoggingException(Throwable, String, Object[]);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RollingRandomAccessFileAppender extends AbstractOutputStreamAppender {
 private final String fileName;
 private final String filePattern;
 private final Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RollingRandomAccessFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, rolling.RollingRandomAccessFileManager, String, String, boolean, boolean, int, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public String getFileName();
 public String getFilePattern();
 public int getBufferSize();
 public static RollingRandomAccessFileAppender createAppender(String, String, String, String, String, String, rolling.TriggeringPolicy, rolling.RolloverStrategy, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RollingRandomAccessFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/AsyncAppenderEventDispatcher.class

package org.apache.logging.log4j.core.appender;
synchronized class AsyncAppenderEventDispatcher extends org.apache.logging.log4j.core.util.Log4jThread {
 private static final org.apache.logging.log4j.core.LogEvent STOP_EVENT;
 private static final java.util.concurrent.atomic.AtomicLong THREAD_COUNTER;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.AppenderControl errorAppender;
 private final java.util.List appenders;
 private final java.util.concurrent.BlockingQueue queue;
 private final java.util.concurrent.atomic.AtomicBoolean stoppedRef;
 void AsyncAppenderEventDispatcher(String, org.apache.logging.log4j.core.config.AppenderControl, java.util.List, java.util.concurrent.BlockingQueue);
 public void run();
 private void dispatchAll();
 private void dispatchRemaining();
 void dispatch(org.apache.logging.log4j.core.LogEvent);
 void stop(long) throws InterruptedException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractOutputStreamAppender extends AbstractAppender {
 private final boolean immediateFlush;
 private final OutputStreamManager manager;
 protected void AbstractOutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, OutputStreamManager);
 protected void AbstractOutputStreamAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.config.Property[], OutputStreamManager);
 public boolean getImmediateFlush();
 public OutputStreamManager getManager();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 protected boolean stop(long, java.util.concurrent.TimeUnit, boolean);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void tryAppend(org.apache.logging.log4j.core.LogEvent);
 protected void directEncodeEvent(org.apache.logging.log4j.core.LogEvent);
 protected void writeByteArrayToManager(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/SmtpAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class SmtpAppender extends AbstractAppender {
 private static final int DEFAULT_BUFFER_SIZE = 512;
 private final org.apache.logging.log4j.core.net.SmtpManager manager;
 private void SmtpAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.net.SmtpManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 public static SmtpAppender$Builder newBuilder();
 public static SmtpAppender createAppender(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String, String, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String);
 public boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseAppender$Builder.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class AbstractDatabaseAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder {
 public void AbstractDatabaseAppender$Builder();
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractDriverManagerConnectionSource$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class AbstractDriverManagerConnectionSource$Builder {
 protected String connectionString;
 protected String driverClassName;
 protected char[] password;
 protected org.apache.logging.log4j.core.config.Property[] properties;
 protected char[] userName;
 public void AbstractDriverManagerConnectionSource$Builder();
 protected AbstractDriverManagerConnectionSource$Builder asBuilder();
 public String getConnectionString();
 public String getDriverClassName();
 public char[] getPassword();
 public org.apache.logging.log4j.core.config.Property[] getProperties();
 public char[] getUserName();
 public AbstractDriverManagerConnectionSource$Builder setConnectionString(String);
 public AbstractDriverManagerConnectionSource$Builder setDriverClassName(String);
 public AbstractDriverManagerConnectionSource$Builder setPassword(char[]);
 public AbstractDriverManagerConnectionSource$Builder setProperties(org.apache.logging.log4j.core.config.Property[]);
 public AbstractDriverManagerConnectionSource$Builder setUserName(char[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/FactoryMethodConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class FactoryMethodConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final javax.sql.DataSource dataSource;
 private final String description;
 private void FactoryMethodConnectionSource(javax.sql.DataSource, String, String, String);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String toString();
 public static FactoryMethodConnectionSource createConnectionSource(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseManager$AbstractFactoryData.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseManager$AbstractFactoryData {
 private final int bufferSize;
 private final org.apache.logging.log4j.core.Layout layout;
 protected void AbstractDatabaseManager$AbstractFactoryData(int, org.apache.logging.log4j.core.Layout);
 public int getBufferSize();
 public org.apache.logging.log4j.core.Layout getLayout();
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseManager.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseManager extends org.apache.logging.log4j.core.appender.AbstractManager implements java.io.Flushable {
 private final java.util.ArrayList buffer;
 private final int bufferSize;
 private final org.apache.logging.log4j.core.Layout layout;
 private boolean running;
 protected static AbstractDatabaseManager getManager(String, AbstractDatabaseManager$AbstractFactoryData, org.apache.logging.log4j.core.appender.ManagerFactory);
 protected void AbstractDatabaseManager(String, int);
 protected void AbstractDatabaseManager(String, int, org.apache.logging.log4j.core.Layout);
 protected void buffer(org.apache.logging.log4j.core.LogEvent);
 protected abstract boolean commitAndClose();
 protected abstract void connectAndStart();
 public final synchronized void flush();
 protected boolean isBuffered();
 public final boolean isRunning();
 public final boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public final synchronized boolean shutdown();
 protected abstract boolean shutdownInternal() throws Exception;
 public final synchronized void startup();
 protected abstract void startupInternal() throws Exception;
 public final String toString();
 public final synchronized void write(org.apache.logging.log4j.core.LogEvent);
 public final synchronized void write(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent);
 protected abstract void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeThrough(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$ReferencedRouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
final synchronized class RoutingAppender$ReferencedRouteAppenderControl extends RoutingAppender$RouteAppenderControl {
 void RoutingAppender$ReferencedRouteAppenderControl(org.apache.logging.log4j.core.Appender);
 void checkout();
 void release();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlProvider.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlProvider {
 public abstract NoSqlConnection getConnection();
 public abstract String toString();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender$1.class

package org.apache.logging.log4j.core.appender.nosql;
synchronized class NoSqlAppender$1 {
}

org/apache/logging/log4j/core/appender/SmtpAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class SmtpAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String to;
 private String cc;
 private String bcc;
 private String from;
 private String replyTo;
 private String subject;
 private String smtpProtocol;
 private String smtpHost;
 private int smtpPort;
 private String smtpUsername;
 private String smtpPassword;
 private boolean smtpDebug;
 private int bufferSize;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 public void SmtpAppender$Builder();
 public SmtpAppender$Builder setTo(String);
 public SmtpAppender$Builder setCc(String);
 public SmtpAppender$Builder setBcc(String);
 public SmtpAppender$Builder setFrom(String);
 public SmtpAppender$Builder setReplyTo(String);
 public SmtpAppender$Builder setSubject(String);
 public SmtpAppender$Builder setSmtpProtocol(String);
 public SmtpAppender$Builder setSmtpHost(String);
 public SmtpAppender$Builder setSmtpPort(int);
 public SmtpAppender$Builder setSmtpUsername(String);
 public SmtpAppender$Builder setSmtpPassword(String);
 public SmtpAppender$Builder setSmtpDebug(boolean);
 public SmtpAppender$Builder setBufferSize(int);
 public SmtpAppender$Builder setSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public SmtpAppender$Builder setLayout(org.apache.logging.log4j.core.Layout);
 public SmtpAppender$Builder setFilter(org.apache.logging.log4j.core.Filter);
 public SmtpAppender build();
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender$1.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public final synchronized class KafkaAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private static final String[] KAFKA_CLIENT_PACKAGES;
 private final Integer retryCount;
 private final KafkaManager manager;
 public static KafkaAppender createAppender(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, boolean, String, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, String);
 private static boolean isRecursive(org.apache.logging.log4j.core.LogEvent);
 public static KafkaAppender$Builder newBuilder();
 private void KafkaAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, KafkaManager, org.apache.logging.log4j.core.config.Property[], Integer);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
 private void tryAppend(org.apache.logging.log4j.core.LogEvent) throws java.util.concurrent.ExecutionException, InterruptedException, java.util.concurrent.TimeoutException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaProducerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public abstract interface KafkaProducerFactory {
 public abstract org.apache.kafka.clients.producer.Producer newKafkaProducer(java.util.Properties);
}

org/apache/logging/log4j/core/appender/AbstractFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractFileAppender$Builder extends AbstractOutputStreamAppender$Builder {
 private String fileName;
 private boolean append;
 private boolean locking;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void AbstractFileAppender$Builder();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public AbstractFileAppender$Builder withAdvertise(boolean);
 public AbstractFileAppender$Builder withAdvertiseUri(String);
 public AbstractFileAppender$Builder withAppend(boolean);
 public AbstractFileAppender$Builder withFileName(String);
 public AbstractFileAppender$Builder withCreateOnDemand(boolean);
 public AbstractFileAppender$Builder withLocking(boolean);
 public AbstractFileAppender$Builder withFilePermissions(String);
 public AbstractFileAppender$Builder withFileOwner(String);
 public AbstractFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/impl/Log4jLogEvent.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jLogEvent implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = -8393305700508709443;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static volatile org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private static final org.apache.logging.log4j.core.ContextDataInjector CONTEXT_DATA_INJECTOR;
 private final String loggerFqcn;
 private final org.apache.logging.log4j.Marker marker;
 private final org.apache.logging.log4j.Level level;
 private final String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private final transient Throwable thrown;
 private ThrowableProxy thrownProxy;
 private final org.apache.logging.log4j.util.StringMap contextData;
 private final org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement source;
 private boolean includeLocation;
 private boolean endOfBatch;
 private final transient long nanoTime;
 public static Log4jLogEvent$Builder newBuilder();
 public void Log4jLogEvent();
 public void Log4jLogEvent(long);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, java.util.Map, org.apache.logging.log4j.ThreadContext$ContextStack, String, StackTraceElement, long);
 public static Log4jLogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, java.util.Map, org.apache.logging.log4j.ThreadContext$ContextStack, String, StackTraceElement, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, long, int, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, org.apache.logging.log4j.core.util.Clock, long);
 private void Log4jLogEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, ThrowableProxy, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, long);
 private static org.apache.logging.log4j.util.StringMap createContextData(java.util.Map);
 private static org.apache.logging.log4j.util.StringMap createContextData(java.util.List);
 public static org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public static void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
 public Log4jLogEvent$Builder asBuilder();
 public Log4jLogEvent toImmutable();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerName();
 public org.apache.logging.log4j.message.Message getMessage();
 public void makeMessageImmutable();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public Throwable getThrown();
 public ThrowableProxy getThrownProxy();
 public org.apache.logging.log4j.Marker getMarker();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public StackTraceElement getSource();
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public long getNanoTime();
 protected Object writeReplace();
 public static java.io.Serializable serialize(org.apache.logging.log4j.core.LogEvent, boolean);
 public static java.io.Serializable serialize(Log4jLogEvent, boolean);
 public static boolean canDeserialize(java.io.Serializable);
 public static Log4jLogEvent deserialize(java.io.Serializable);
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public static org.apache.logging.log4j.core.LogEvent createMemento(org.apache.logging.log4j.core.LogEvent);
 public static Log4jLogEvent createMemento(org.apache.logging.log4j.core.LogEvent, boolean);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BooleanConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BooleanConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BooleanConverter();
 public Boolean convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$StringBuilderConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$StringBuilderConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$StringBuilderConverter();
 public StringBuilder convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MaxValuesforFieldExceededException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MaxValuesforFieldExceededException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 6536145439570100641;
 public void CommandLine$MaxValuesforFieldExceededException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$InitializationException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$InitializationException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 8423014001666638895;
 public void CommandLine$InitializationException(String);
 public void CommandLine$InitializationException(String, Exception);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$TraceLevel.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized enum CommandLine$TraceLevel {
 public static final CommandLine$TraceLevel OFF;
 public static final CommandLine$TraceLevel WARN;
 public static final CommandLine$TraceLevel INFO;
 public static final CommandLine$TraceLevel DEBUG;
 public static CommandLine$TraceLevel[] values();
 public static CommandLine$TraceLevel valueOf(String);
 private void CommandLine$TraceLevel(String, int);
 public boolean isEnabled(CommandLine$TraceLevel);
 private transient void print(CommandLine$Tracer, String, Object[]);
 private String prefix(String);
 static CommandLine$TraceLevel lookup(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Palette256Color.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$Ansi$Palette256Color implements CommandLine$Help$Ansi$IStyle {
 private final int fgbg;
 private final int color;
 void CommandLine$Help$Ansi$Palette256Color(boolean, String);
 public String on();
 public String off();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help {
 protected static final String DEFAULT_COMMAND_NAME = <main class>;
 protected static final String DEFAULT_SEPARATOR = =;
 private static final int usageHelpWidth = 80;
 private static final int optionsColumnWidth = 29;
 private final Object command;
 private final java.util.Map commands;
 final CommandLine$Help$ColorScheme colorScheme;
 public final java.util.List optionFields;
 public final java.util.List positionalParametersFields;
 public String separator;
 public String commandName;
 public String[] description;
 public String[] customSynopsis;
 public String[] header;
 public String[] footer;
 public CommandLine$Help$IParamLabelRenderer parameterLabelRenderer;
 public Boolean abbreviateSynopsis;
 public Boolean sortOptions;
 public Boolean showDefaultValues;
 public Character requiredOptionMarker;
 public String headerHeading;
 public String synopsisHeading;
 public String descriptionHeading;
 public String parameterListHeading;
 public String optionListHeading;
 public String commandListHeading;
 public String footerHeading;
 public void CommandLine$Help(Object);
 public void CommandLine$Help(Object, CommandLine$Help$Ansi);
 public void CommandLine$Help(Object, CommandLine$Help$ColorScheme);
 public CommandLine$Help addAllSubcommands(java.util.Map);
 public CommandLine$Help addSubcommand(String, Object);
 public String synopsis();
 public String synopsis(int);
 public String abbreviatedSynopsis();
 public String detailedSynopsis(java.util.Comparator, boolean);
 public String detailedSynopsis(int, java.util.Comparator, boolean);
 private CommandLine$Help$Ansi$Text appendOptionSynopsis(CommandLine$Help$Ansi$Text, reflect.Field, String, String, String);
 public int synopsisHeadingLength();
 public String optionList();
 public String optionList(CommandLine$Help$Layout, java.util.Comparator, CommandLine$Help$IParamLabelRenderer);
 public String parameterList();
 public String parameterList(CommandLine$Help$Layout, CommandLine$Help$IParamLabelRenderer);
 private static transient String heading(CommandLine$Help$Ansi, String, Object[]);
 private static char[] spaces(int);
 private static int countTrailingSpaces(String);
 public static transient StringBuilder join(CommandLine$Help$Ansi, String[], StringBuilder, Object[]);
 private static transient String format(String, Object[]);
 public transient String customSynopsis(Object[]);
 public transient String description(Object[]);
 public transient String header(Object[]);
 public transient String footer(Object[]);
 public transient String headerHeading(Object[]);
 public transient String synopsisHeading(Object[]);
 public transient String descriptionHeading(Object[]);
 public transient String parameterListHeading(Object[]);
 public transient String optionListHeading(Object[]);
 public transient String commandListHeading(Object[]);
 public transient String footerHeading(Object[]);
 public String commandList();
 private static int maxLength(java.util.Collection);
 private static String join(String[], int, int, String);
 private static String stringOf(char, int);
 public CommandLine$Help$Layout createDefaultLayout();
 public CommandLine$Help$IOptionRenderer createDefaultOptionRenderer();
 public static CommandLine$Help$IOptionRenderer createMinimalOptionRenderer();
 public CommandLine$Help$IParameterRenderer createDefaultParameterRenderer();
 public static CommandLine$Help$IParameterRenderer createMinimalParameterRenderer();
 public static CommandLine$Help$IParamLabelRenderer createMinimalParamLabelRenderer();
 public CommandLine$Help$IParamLabelRenderer createDefaultParamLabelRenderer();
 public static java.util.Comparator createShortOptionNameComparator();
 public static java.util.Comparator createShortOptionArityAndNameComparator();
 public static java.util.Comparator shortestFirst();
 public CommandLine$Help$Ansi ansi();
 public static CommandLine$Help$ColorScheme defaultColorScheme(CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Layout.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Layout {
 protected final CommandLine$Help$ColorScheme colorScheme;
 protected final CommandLine$Help$TextTable table;
 protected CommandLine$Help$IOptionRenderer optionRenderer;
 protected CommandLine$Help$IParameterRenderer parameterRenderer;
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme);
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme, CommandLine$Help$TextTable);
 public void CommandLine$Help$Layout(CommandLine$Help$ColorScheme, CommandLine$Help$TextTable, CommandLine$Help$IOptionRenderer, CommandLine$Help$IParameterRenderer);
 public void layout(reflect.Field, CommandLine$Help$Ansi$Text[][]);
 public void addOptions(java.util.List, CommandLine$Help$IParamLabelRenderer);
 public void addOption(reflect.Field, CommandLine$Help$IParamLabelRenderer);
 public void addPositionalParameters(java.util.List, CommandLine$Help$IParamLabelRenderer);
 public void addPositionalParameter(reflect.Field, CommandLine$Help$IParamLabelRenderer);
 public String toString();
}

org/apache/logging/log4j/core/tools/CustomLoggerGenerator.class

package org.apache.logging.log4j.core.tools;
public synchronized class CustomLoggerGenerator {
 public void CustomLoggerGenerator();
 public static void main(String[]);
}

org/apache/logging/log4j/core/net/ssl/KeyStoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class KeyStoreConfigurationException extends StoreConfigurationException {
 private static final long serialVersionUID = 1;
 public void KeyStoreConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/ssl/TrustStoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class TrustStoreConfigurationException extends StoreConfigurationException {
 private static final long serialVersionUID = 1;
 public void TrustStoreConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/TcpSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager extends AbstractSocketManager {
 public static final int DEFAULT_RECONNECTION_DELAY_MILLIS = 30000;
 private static final int DEFAULT_PORT = 4560;
 private static final TcpSocketManager$TcpSocketManagerFactory FACTORY;
 private final int reconnectionDelayMillis;
 private TcpSocketManager$Reconnector reconnector;
 private java.net.Socket socket;
 private final SocketOptions socketOptions;
 private final boolean retry;
 private final boolean immediateFail;
 private final int connectTimeoutMillis;
 public void TcpSocketManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public void TcpSocketManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public static TcpSocketManager getSocketManager(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public static TcpSocketManager getSocketManager(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 protected void write(byte[], int, int, boolean);
 private void writeAndFlush(byte[], int, int, boolean) throws java.io.IOException;
 protected synchronized boolean closeOutputStream();
 public int getConnectTimeoutMillis();
 public java.util.Map getContentFormat();
 private TcpSocketManager$Reconnector createReconnector();
 protected java.net.Socket createSocket(java.net.InetSocketAddress) throws java.io.IOException;
 protected static java.net.Socket createSocket(java.net.InetSocketAddress, SocketOptions, int) throws java.io.IOException;
 public static void setHostResolver(TcpSocketManager$HostResolver);
 public SocketOptions getSocketOptions();
 public java.net.Socket getSocket();
 public int getReconnectionDelayMillis();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Priority.class

package org.apache.logging.log4j.core.net;
public synchronized class Priority {
 private final Facility facility;
 private final Severity severity;
 public void Priority(Facility, Severity);
 public static int getPriority(Facility, org.apache.logging.log4j.Level);
 private static int toPriority(Facility, Severity);
 public Facility getFacility();
 public Severity getSeverity();
 public int getValue();
 public String toString();
}

org/apache/logging/log4j/core/net/SslSocketManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$1 {
}

org/apache/logging/log4j/core/net/SslSocketManager$SslSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$SslSocketManagerFactory extends TcpSocketManager$TcpSocketManagerFactory {
 private void SslSocketManager$SslSocketManagerFactory();
 SslSocketManager createManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, SslSocketManager$SslFactoryData);
 java.net.Socket createSocket(SslSocketManager$SslFactoryData) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/NameUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class NameUtil {
 private void NameUtil();
 public static String getSubName(String);
 public static String md5(String);
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FixedDateFormat {
 private static final char NONE = 0;
 private final FixedDateFormat$FixedFormat fixedFormat;
 private final java.util.TimeZone timeZone;
 private final int length;
 private final int secondFractionDigits;
 private final FastDateFormat fastDateFormat;
 private final char timeSeparatorChar;
 private final char millisSeparatorChar;
 private final int timeSeparatorLength;
 private final int millisSeparatorLength;
 private final FixedDateFormat$FixedTimeZoneFormat fixedTimeZoneFormat;
 private volatile long midnightToday;
 private volatile long midnightTomorrow;
 private final int[] dstOffsets;
 private char[] cachedDate;
 private int dateLength;
 static int[] TABLE;
 void FixedDateFormat(FixedDateFormat$FixedFormat, java.util.TimeZone);
 void FixedDateFormat(FixedDateFormat$FixedFormat, java.util.TimeZone, int);
 public static transient FixedDateFormat createIfSupported(String[]);
 public static FixedDateFormat create(FixedDateFormat$FixedFormat);
 public static FixedDateFormat create(FixedDateFormat$FixedFormat, java.util.TimeZone);
 public String getFormat();
 public java.util.TimeZone getTimeZone();
 public long millisSinceMidnight(long);
 private void updateMidnightMillis(long);
 private long calcMidnightMillis(long, int);
 private void updateDaylightSavingTime();
 private void updateCachedDate(long);
 public String formatInstant(org.apache.logging.log4j.core.time.Instant);
 public int formatInstant(org.apache.logging.log4j.core.time.Instant, char[], int);
 private int digitsLessThanThree();
 public String format(long);
 public int format(long, char[], int);
 private void writeDate(char[], int);
 private int writeTime(int, char[], int);
 private int writeTimeZone(long, char[], int);
 private int formatNanoOfMillisecond(int, char[], int);
 private int daylightSavingTime(int);
 public boolean isEquivalent(long, int, long, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$Rule.class

package org.apache.logging.log4j.core.util.datetime;
abstract interface FastDatePrinter$Rule {
 public abstract int estimateLength();
 public abstract void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$UnpaddedNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$UnpaddedNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 void FastDatePrinter$UnpaddedNumberField(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$StringLiteral.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$StringLiteral implements FastDatePrinter$Rule {
 private final String mValue;
 void FastDatePrinter$StringLiteral(String);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$2.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$2 extends FastDateParser$NumberStrategy {
 void FastDateParser$2(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$NumberStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$NumberStrategy extends FastDateParser$Strategy {
 private final int field;
 void FastDateParser$NumberStrategy(int);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/DateParser.class

package org.apache.logging.log4j.core.util.datetime;
public abstract interface DateParser {
 public abstract java.util.Date parse(String) throws java.text.ParseException;
 public abstract java.util.Date parse(String, java.text.ParsePosition);
 public abstract boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 public abstract String getPattern();
 public abstract java.util.TimeZone getTimeZone();
 public abstract java.util.Locale getLocale();
 public abstract Object parseObject(String) throws java.text.ParseException;
 public abstract Object parseObject(String, java.text.ParsePosition);
}

org/apache/logging/log4j/core/util/WatchManager$WatchRunnable.class

package org.apache.logging.log4j.core.util;
final synchronized class WatchManager$WatchRunnable implements Runnable {
 private final String SIMPLE_NAME;
 private void WatchManager$WatchRunnable(WatchManager);
 public void run();
}

org/apache/logging/log4j/core/util/AbstractWatcher$ReconfigurationRunnable.class

package org.apache.logging.log4j.core.util;
public synchronized class AbstractWatcher$ReconfigurationRunnable implements Runnable {
 private final org.apache.logging.log4j.core.config.ConfigurationListener configurationListener;
 private final org.apache.logging.log4j.core.config.Reconfigurable reconfigurable;
 public void AbstractWatcher$ReconfigurationRunnable(org.apache.logging.log4j.core.config.ConfigurationListener, org.apache.logging.log4j.core.config.Reconfigurable);
 public void run();
}

org/apache/logging/log4j/core/util/StringEncoder.class

package org.apache.logging.log4j.core.util;
public final synchronized class StringEncoder {
 private void StringEncoder();
 public static byte[] toBytes(String, java.nio.charset.Charset);
 public static byte[] encodeSingleByteChars(CharSequence);
 public static int encodeIsoChars(CharSequence, int, byte[], int, int);
 public static int encodeString(CharSequence, int, int, byte[]);
}

org/apache/logging/log4j/core/util/WrappedFileWatcher.class

package org.apache.logging.log4j.core.util;
public synchronized class WrappedFileWatcher extends AbstractWatcher implements FileWatcher {
 private final FileWatcher watcher;
 private volatile long lastModifiedMillis;
 public void WrappedFileWatcher(FileWatcher, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 public void WrappedFileWatcher(FileWatcher);
 public long getLastModified();
 public void fileModified(java.io.File);
 public boolean isModified();
 public java.util.List getListeners();
 public void modified();
 public void watching(Source);
 public Watcher newWatcher(org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/util/CoarseCachedClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class CoarseCachedClock implements Clock {
 private static volatile CoarseCachedClock instance;
 private static final Object INSTANCE_LOCK;
 private volatile long millis;
 private final Thread updater;
 private void CoarseCachedClock();
 public static CoarseCachedClock instance();
 public long currentTimeMillis();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/AppenderControlArraySet.class

package org.apache.logging.log4j.core.config;
public synchronized class AppenderControlArraySet {
 private static final java.util.concurrent.atomic.AtomicReferenceFieldUpdater appenderArrayUpdater;
 private volatile AppenderControl[] appenderArray;
 public void AppenderControlArraySet();
 public boolean add(AppenderControl);
 public AppenderControl remove(String);
 private AppenderControl[] removeElementAt(int, AppenderControl[]);
 public java.util.Map asMap();
 public AppenderControl[] clear();
 public boolean isEmpty();
 public AppenderControl[] get();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/NullConfiguration.class

package org.apache.logging.log4j.core.config;
public synchronized class NullConfiguration extends AbstractConfiguration {
 public static final String NULL_NAME = Null;
 public void NullConfiguration();
}

org/apache/logging/log4j/core/config/ConfigurationFactory$Factory.class

package org.apache.logging.log4j.core.config;
synchronized class ConfigurationFactory$Factory extends ConfigurationFactory {
 private static final String ALL_TYPES = *;
 private void ConfigurationFactory$Factory();
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI);
 private Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String);
 private Configuration getConfiguration(String, org.apache.logging.log4j.core.LoggerContext, String);
 private Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, boolean, String);
 public String[] getSupportedTypes();
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 private String[] parseConfigLocations(java.net.URI);
 private String[] parseConfigLocations(String);
}

org/apache/logging/log4j/core/config/arbiters/Arbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public abstract interface Arbiter {
 public static final String ELEMENT_TYPE = Arbiter;
 public abstract boolean isCondition();
}

org/apache/logging/log4j/core/config/plugins/Plugin.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface Plugin extends annotation.Annotation {
 public static final String EMPTY = ;
 public abstract String name();
 public abstract String category();
 public abstract String elementType();
 public abstract boolean printObject();
 public abstract boolean deferChildren();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/ValidHost.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface ValidHost extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/Required.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface Required extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/constraints/ValidPort.class

package org.apache.logging.log4j.core.config.plugins.validation.constraints;
public abstract interface ValidPort extends annotation.Annotation {
 public abstract String message();
}

org/apache/logging/log4j/core/config/plugins/validation/ConstraintValidators.class

package org.apache.logging.log4j.core.config.plugins.validation;
public final synchronized class ConstraintValidators {
 private void ConstraintValidators();
 public static transient java.util.Collection findValidators(annotation.Annotation[]);
 private static ConstraintValidator getValidator(annotation.Annotation, Class);
 private static reflect.Type getConstraintValidatorAnnotationType(Class);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$FloatConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$FloatConverter implements TypeConverter {
 public void TypeConverters$FloatConverter();
 public Float convert(String);
}

org/apache/logging/log4j/core/config/ConfigurationFactory$1.class

package org.apache.logging.log4j.core.config;
synchronized class ConfigurationFactory$1 {
}

org/apache/logging/log4j/core/config/AbstractConfiguration.class

package org.apache.logging.log4j.core.config;
public abstract synchronized class AbstractConfiguration extends org.apache.logging.log4j.core.filter.AbstractFilterable implements Configuration {
 private static final int BUF_SIZE = 16384;
 protected Node rootNode;
 protected final java.util.List listeners;
 protected final java.util.List pluginPackages;
 protected plugins.util.PluginManager pluginManager;
 protected boolean isShutdownHookEnabled;
 protected long shutdownTimeoutMillis;
 protected org.apache.logging.log4j.core.script.ScriptManager scriptManager;
 private org.apache.logging.log4j.core.net.Advertiser advertiser;
 private Node advertiserNode;
 private Object advertisement;
 private String name;
 private java.util.concurrent.ConcurrentMap appenders;
 private java.util.concurrent.ConcurrentMap loggerConfigs;
 private java.util.List customLevels;
 private final java.util.concurrent.ConcurrentMap propertyMap;
 private final org.apache.logging.log4j.core.lookup.StrLookup tempLookup;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor configurationStrSubstitutor;
 private LoggerConfig root;
 private final java.util.concurrent.ConcurrentMap componentMap;
 private final ConfigurationSource configurationSource;
 private final ConfigurationScheduler configurationScheduler;
 private final org.apache.logging.log4j.core.util.WatchManager watchManager;
 private org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor asyncLoggerConfigDisruptor;
 private org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private final ref.WeakReference loggerContext;
 protected void AbstractConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 public ConfigurationSource getConfigurationSource();
 public java.util.List getPluginPackages();
 public java.util.Map getProperties();
 public org.apache.logging.log4j.core.script.ScriptManager getScriptManager();
 public void setScriptManager(org.apache.logging.log4j.core.script.ScriptManager);
 public plugins.util.PluginManager getPluginManager();
 public void setPluginManager(plugins.util.PluginManager);
 public org.apache.logging.log4j.core.util.WatchManager getWatchManager();
 public ConfigurationScheduler getScheduler();
 public Node getRootNode();
 public org.apache.logging.log4j.core.async.AsyncLoggerConfigDelegate getAsyncLoggerConfigDelegate();
 public void initialize();
 protected void initializeWatchers(Reconfigurable, ConfigurationSource, int);
 private void monitorSource(Reconfigurable, ConfigurationSource);
 public void start();
 private boolean hasAsyncLoggers();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private java.util.List getAsyncAppenders(org.apache.logging.log4j.core.Appender[]);
 public boolean isShutdownHookEnabled();
 public long getShutdownTimeoutMillis();
 public void setup();
 protected org.apache.logging.log4j.Level getDefaultStatus();
 protected void createAdvertiser(String, ConfigurationSource, byte[], String);
 private void setupAdvertisement();
 public Object getComponent(String);
 public void addComponent(String, Object);
 protected void preConfigure(Node);
 protected void processConditionals(Node);
 protected java.util.List processSelect(Node, plugins.util.PluginType);
 protected void doConfigure();
 protected void setToDefault();
 public void setName(String);
 public String getName();
 public void addListener(ConfigurationListener);
 public void removeListener(ConfigurationListener);
 public org.apache.logging.log4j.core.Appender getAppender(String);
 public java.util.Map getAppenders();
 public void addAppender(org.apache.logging.log4j.core.Appender);
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getConfigurationStrSubstitutor();
 public void setAdvertiser(org.apache.logging.log4j.core.net.Advertiser);
 public org.apache.logging.log4j.core.net.Advertiser getAdvertiser();
 public ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
 public synchronized void addLoggerAppender(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Appender);
 public synchronized void addLoggerFilter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Filter);
 public synchronized void setLoggerAdditive(org.apache.logging.log4j.core.Logger, boolean);
 public synchronized void removeAppender(String);
 public java.util.List getCustomLevels();
 public LoggerConfig getLoggerConfig(String);
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
 public LoggerConfig getRootLogger();
 public java.util.Map getLoggers();
 public LoggerConfig getLogger(String);
 public synchronized void addLogger(String, LoggerConfig);
 public synchronized void removeLogger(String);
 public void createConfiguration(Node, org.apache.logging.log4j.core.LogEvent);
 public Object createPluginObject(plugins.util.PluginType, Node);
 private Object createPluginObject(plugins.util.PluginType, Node, org.apache.logging.log4j.core.LogEvent);
 private static java.util.Map createPluginMap(Node);
 private static java.util.Collection createPluginCollection(Node);
 private void setParents();
 protected static byte[] toByteArray(java.io.InputStream) throws java.io.IOException;
 public org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
}

org/apache/logging/log4j/core/config/yaml/YamlConfigurationFactory.class

package org.apache.logging.log4j.core.config.yaml;
public synchronized class YamlConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 private static final String[] SUFFIXES;
 private static final String[] dependencies;
 private final boolean isActive;
 public void YamlConfigurationFactory();
 protected boolean isActive();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$3.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$3 {
 void LoggerConfig$LoggerConfigPredicate$3(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/AppenderControl.class

package org.apache.logging.log4j.core.config;
public synchronized class AppenderControl extends org.apache.logging.log4j.core.filter.AbstractFilterable {
 static final AppenderControl[] EMPTY_ARRAY;
 private final ThreadLocal recursive;
 private final org.apache.logging.log4j.core.Appender appender;
 private final org.apache.logging.log4j.Level level;
 private final int intLevel;
 private final String appenderName;
 public void AppenderControl(org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public String getAppenderName();
 public org.apache.logging.log4j.core.Appender getAppender();
 public void callAppender(org.apache.logging.log4j.core.LogEvent);
 private boolean shouldSkip(org.apache.logging.log4j.core.LogEvent);
 private boolean isFilteredByAppenderControl(org.apache.logging.log4j.core.LogEvent);
 private boolean isFilteredByLevel(org.apache.logging.log4j.core.LogEvent);
 private boolean isRecursiveCall();
 private String appenderErrorHandlerMessage(String);
 private void callAppenderPreventRecursion(org.apache.logging.log4j.core.LogEvent);
 private void callAppender0(org.apache.logging.log4j.core.LogEvent);
 private void ensureAppenderStarted();
 private void handleError(String);
 private String createErrorMsg(String);
 private boolean isFilteredByAppender(org.apache.logging.log4j.core.LogEvent);
 private void tryCallAppender(org.apache.logging.log4j.core.LogEvent);
 private void handleAppenderError(org.apache.logging.log4j.core.LogEvent, RuntimeException);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultCompositeFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultCompositeFilterComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.CompositeFilterComponentBuilder {
 public void DefaultCompositeFilterComponentBuilder(DefaultConfigurationBuilder, String, String);
 public org.apache.logging.log4j.core.config.builder.api.CompositeFilterComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/ConfigurationBuilderFactory.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract synchronized class ConfigurationBuilderFactory {
 public void ConfigurationBuilderFactory();
 public static ConfigurationBuilder newConfigurationBuilder();
 public static ConfigurationBuilder newConfigurationBuilder(Class);
}

org/apache/logging/log4j/core/config/Configuration.class

package org.apache.logging.log4j.core.config;
public abstract interface Configuration extends org.apache.logging.log4j.core.filter.Filterable {
 public static final String CONTEXT_PROPERTIES = ContextProperties;
 public abstract String getName();
 public abstract LoggerConfig getLoggerConfig(String);
 public abstract org.apache.logging.log4j.core.Appender getAppender(String);
 public abstract java.util.Map getAppenders();
 public abstract void addAppender(org.apache.logging.log4j.core.Appender);
 public abstract java.util.Map getLoggers();
 public abstract void addLoggerAppender(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Appender);
 public abstract void addLoggerFilter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.core.Filter);
 public abstract void setLoggerAdditive(org.apache.logging.log4j.core.Logger, boolean);
 public abstract void addLogger(String, LoggerConfig);
 public abstract void removeLogger(String);
 public abstract java.util.List getPluginPackages();
 public abstract java.util.Map getProperties();
 public abstract LoggerConfig getRootLogger();
 public abstract void addListener(ConfigurationListener);
 public abstract void removeListener(ConfigurationListener);
 public abstract org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getConfigurationStrSubstitutor();
 public abstract void createConfiguration(Node, org.apache.logging.log4j.core.LogEvent);
 public abstract Object getComponent(String);
 public abstract void addComponent(String, Object);
 public abstract void setAdvertiser(org.apache.logging.log4j.core.net.Advertiser);
 public abstract org.apache.logging.log4j.core.net.Advertiser getAdvertiser();
 public abstract boolean isShutdownHookEnabled();
 public abstract long getShutdownTimeoutMillis();
 public abstract ConfigurationScheduler getScheduler();
 public abstract ConfigurationSource getConfigurationSource();
 public abstract java.util.List getCustomLevels();
 public abstract org.apache.logging.log4j.core.script.ScriptManager getScriptManager();
 public abstract org.apache.logging.log4j.core.async.AsyncLoggerConfigDelegate getAsyncLoggerConfigDelegate();
 public abstract org.apache.logging.log4j.core.util.WatchManager getWatchManager();
 public abstract ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
 public abstract org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 public abstract void setNanoClock(org.apache.logging.log4j.core.util.NanoClock);
 public abstract org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/jmx/LoggerConfigAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface LoggerConfigAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=Loggers,name=%s;
 public abstract String getName();
 public abstract String getLevel();
 public abstract void setLevel(String);
 public abstract boolean isAdditive();
 public abstract void setAdditive(boolean);
 public abstract boolean isIncludeLocation();
 public abstract String getFilter();
 public abstract String[] getAppenderRefs();
}

org/apache/logging/log4j/core/jmx/AsyncAppenderAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class AsyncAppenderAdmin implements AsyncAppenderAdminMBean {
 private final String contextName;
 private final org.apache.logging.log4j.core.appender.AsyncAppender asyncAppender;
 private final javax.management.ObjectName objectName;
 public void AsyncAppenderAdmin(String, org.apache.logging.log4j.core.appender.AsyncAppender);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLayout();
 public boolean isIgnoreExceptions();
 public String getErrorHandler();
 public String getFilter();
 public String[] getAppenderRefs();
 public boolean isIncludeLocation();
 public boolean isBlocking();
 public String getErrorRef();
 public int getQueueCapacity();
 public int getQueueRemainingCapacity();
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class ScriptPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/JacksonFactory.class

package org.apache.logging.log4j.core.layout;
abstract synchronized class JacksonFactory {
 void JacksonFactory();
 protected abstract String getPropertyNameForTimeMillis();
 protected abstract String getPropertyNameForInstant();
 protected abstract String getPropertNameForContextMap();
 protected abstract String getPropertNameForSource();
 protected abstract String getPropertNameForNanoTime();
 protected abstract com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected abstract com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected abstract com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
 com.fasterxml.jackson.databind.ObjectWriter newWriter(boolean, boolean, boolean);
 com.fasterxml.jackson.databind.ObjectWriter newWriter(boolean, boolean, boolean, boolean);
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Serializer.class

package org.apache.logging.log4j.core.layout;
public abstract interface AbstractStringLayout$Serializer extends AbstractStringLayout$Serializer2 {
 public abstract String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/layout/HtmlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class HtmlLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractLayout$Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private byte[] footer;
 private byte[] header;
 public void AbstractLayout$Builder();
 public AbstractLayout$Builder asBuilder();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public byte[] getFooter();
 public byte[] getHeader();
 public AbstractLayout$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractLayout$Builder setFooter(byte[]);
 public AbstractLayout$Builder setHeader(byte[]);
}

org/apache/logging/log4j/core/layout/SerializedLayout$PrivateObjectOutputStream.class

package org.apache.logging.log4j.core.layout;
synchronized class SerializedLayout$PrivateObjectOutputStream extends java.io.ObjectOutputStream {
 public void SerializedLayout$PrivateObjectOutputStream(SerializedLayout, java.io.OutputStream) throws java.io.IOException;
 protected void writeStreamHeader();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class LevelPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void LevelPatternSelector$Builder();
 public LevelPatternSelector build();
 public LevelPatternSelector$Builder setProperties(PatternMatch[]);
 public LevelPatternSelector$Builder setDefaultPattern(String);
 public LevelPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public LevelPatternSelector$Builder setDisableAnsi(boolean);
 public LevelPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public LevelPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$ReadOnlyLogEventWrapper.class

package org.apache.logging.log4j.core.layout;
synchronized class AbstractJacksonLayout$ReadOnlyLogEventWrapper implements org.apache.logging.log4j.core.LogEvent {
 private final org.apache.logging.log4j.core.LogEvent event;
 public void AbstractJacksonLayout$ReadOnlyLogEventWrapper(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.LogEvent toImmutable();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public org.apache.logging.log4j.message.Message getMessage();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public StackTraceElement getSource();
 public String getThreadName();
 public long getThreadId();
 public int getThreadPriority();
 public Throwable getThrown();
 public org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public boolean isEndOfBatch();
 public boolean isIncludeLocation();
 public void setEndOfBatch(boolean);
 public void setIncludeLocation(boolean);
 public long getNanoTime();
}

org/apache/logging/log4j/core/layout/Encoder.class

package org.apache.logging.log4j.core.layout;
public abstract interface Encoder {
 public abstract void encode(Object, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/PatternLayout$SerializerBuilder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternLayout$SerializerBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private String pattern;
 private String defaultPattern;
 private PatternSelector patternSelector;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 public void PatternLayout$SerializerBuilder();
 public AbstractStringLayout$Serializer build();
 public PatternLayout$SerializerBuilder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PatternLayout$SerializerBuilder setReplace(org.apache.logging.log4j.core.pattern.RegexReplacement);
 public PatternLayout$SerializerBuilder setPattern(String);
 public PatternLayout$SerializerBuilder setDefaultPattern(String);
 public PatternLayout$SerializerBuilder setPatternSelector(PatternSelector);
 public PatternLayout$SerializerBuilder setAlwaysWriteExceptions(boolean);
 public PatternLayout$SerializerBuilder setDisableAnsi(boolean);
 public PatternLayout$SerializerBuilder setNoConsoleNoAnsi(boolean);
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class ScriptPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final boolean requiresLocation;
 public void ScriptPatternSelector(org.apache.logging.log4j.core.script.AbstractScript, PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static ScriptPatternSelector$Builder newBuilder();
 public static ScriptPatternSelector createSelector(org.apache.logging.log4j.core.script.AbstractScript, PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/SyslogLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class SyslogLayout extends AbstractStringLayout {
 public static final java.util.regex.Pattern NEWLINE_PATTERN;
 private final org.apache.logging.log4j.core.net.Facility facility;
 private final boolean includeNewLine;
 private final String escapeNewLine;
 private final java.text.SimpleDateFormat dateFormat;
 private final String localHostname;
 public static SyslogLayout$Builder newBuilder();
 protected void SyslogLayout(org.apache.logging.log4j.core.net.Facility, boolean, String, java.nio.charset.Charset);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private synchronized void addDate(long, StringBuilder);
 public java.util.Map getContentFormat();
 public static SyslogLayout createLayout(org.apache.logging.log4j.core.net.Facility, boolean, String, java.nio.charset.Charset);
 public org.apache.logging.log4j.core.net.Facility getFacility();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLogger$TranslatorType.class

package org.apache.logging.log4j.core.async;
abstract synchronized class AsyncLogger$TranslatorType {
 void AsyncLogger$TranslatorType(AsyncLogger);
 abstract void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 abstract void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig$1.class

package org.apache.logging.log4j.core.async;
final synchronized class AsyncLoggerConfig$1 extends ThreadLocal {
 void AsyncLoggerConfig$1();
 protected Boolean initialValue();
}

org/apache/logging/log4j/core/async/BlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public abstract interface BlockingQueueFactory {
 public static final String ELEMENT_TYPE = BlockingQueueFactory;
 public abstract java.util.concurrent.BlockingQueue create(int);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDefaultExceptionHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDefaultExceptionHandler extends AbstractAsyncExceptionHandler {
 public void AsyncLoggerConfigDefaultExceptionHandler();
}

org/apache/logging/log4j/core/async/AsyncQueueFullMessageUtil.class

package org.apache.logging.log4j.core.async;
public final synchronized class AsyncQueueFullMessageUtil {
 private void AsyncQueueFullMessageUtil();
 public static void logWarningToStatusLogger();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy.class

package org.apache.logging.log4j.core.async;
public abstract synchronized enum ThreadNameCachingStrategy {
 public static final ThreadNameCachingStrategy CACHED;
 public static final ThreadNameCachingStrategy UNCACHED;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final ThreadLocal THREADLOCAL_NAME;
 static final ThreadNameCachingStrategy DEFAULT_STRATEGY;
 public static ThreadNameCachingStrategy[] values();
 public static ThreadNameCachingStrategy valueOf(String);
 private void ThreadNameCachingStrategy(String, int);
 abstract String getThreadName();
 public static ThreadNameCachingStrategy create();
 static boolean isAllocatingThreadGetName();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/RingBufferLogEventTranslator.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEventTranslator implements com.lmax.disruptor.EventTranslator {
 private static final org.apache.logging.log4j.core.ContextDataInjector INJECTOR;
 private AsyncLogger asyncLogger;
 String loggerName;
 protected org.apache.logging.log4j.Marker marker;
 protected String fqcn;
 protected org.apache.logging.log4j.Level level;
 protected org.apache.logging.log4j.message.Message message;
 protected Throwable thrown;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement location;
 private org.apache.logging.log4j.core.util.Clock clock;
 private org.apache.logging.log4j.core.util.NanoClock nanoClock;
 public void RingBufferLogEventTranslator();
 public void translateTo(RingBufferLogEvent, long);
 void clear();
 public void setBasicValues(AsyncLogger, String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, org.apache.logging.log4j.ThreadContext$ContextStack, StackTraceElement, org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 public void updateThreadValues();
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/JndiLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JndiLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 static final String CONTAINER_JNDI_RESOURCE_PATH_PREFIX = java:comp/env/;
 public void JndiLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 private String convertJndiName(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$NoMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$NoMatcher extends StrMatcher {
 void StrMatcher$NoMatcher();
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/StrLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract interface StrLookup {
 public static final String CATEGORY = Lookup;
 public abstract String lookup(String);
 public abstract String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/StructuredDataLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class StructuredDataLookup implements StrLookup {
 public void StructuredDataLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/message/ExtendedThreadInformation$1.class

package org.apache.logging.log4j.core.message;
synchronized class ExtendedThreadInformation$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/YamlLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class YamlLogEventParser extends AbstractJacksonLogEventParser {
 public void YamlLogEventParser();
}

org/apache/logging/log4j/core/parser/TextLogEventParser.class

package org.apache.logging.log4j.core.parser;
public abstract interface TextLogEventParser extends LogEventParser {
 public abstract org.apache.logging.log4j.core.LogEvent parseFrom(String) throws ParseException;
}

org/apache/logging/log4j/core/script/AbstractScript.class

package org.apache.logging.log4j.core.script;
public abstract synchronized class AbstractScript {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected static final String DEFAULT_LANGUAGE = JavaScript;
 private final String language;
 private final String scriptText;
 private final String name;
 public void AbstractScript(String, String, String);
 public String getLanguage();
 public String getScriptText();
 public String getName();
 static void <clinit>();
}

org/apache/logging/log4j/core/script/ScriptManager$AbstractScriptRunner.class

package org.apache.logging.log4j.core.script;
abstract synchronized class ScriptManager$AbstractScriptRunner implements ScriptManager$ScriptRunner {
 private static final String KEY_STATUS_LOGGER = statusLogger;
 private static final String KEY_CONFIGURATION = configuration;
 private void ScriptManager$AbstractScriptRunner(ScriptManager);
 public javax.script.Bindings createBindings();
}

org/apache/logging/log4j/core/time/MutableInstant$1.class

package org.apache.logging.log4j.core.time;
synchronized class MutableInstant$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/Filter$Result.class

package org.apache.logging.log4j.core;
public final synchronized enum Filter$Result {
 public static final Filter$Result ACCEPT;
 public static final Filter$Result NEUTRAL;
 public static final Filter$Result DENY;
 public static Filter$Result[] values();
 public static Filter$Result valueOf(String);
 private void Filter$Result(String, int);
 public static Filter$Result toResult(String);
 public static Filter$Result toResult(String, Filter$Result);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/MarkerFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class MarkerFilter extends AbstractFilter {
 public static final String ATTR_MARKER = marker;
 private final String name;
 private void MarkerFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static MarkerFilter createFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/Filterable.class

package org.apache.logging.log4j.core.filter;
public abstract interface Filterable extends org.apache.logging.log4j.core.LifeCycle {
 public abstract void addFilter(org.apache.logging.log4j.core.Filter);
 public abstract void removeFilter(org.apache.logging.log4j.core.Filter);
 public abstract org.apache.logging.log4j.core.Filter getFilter();
 public abstract boolean hasFilter();
 public abstract boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/filter/StringMatchFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class StringMatchFilter$1 {
}

org/apache/logging/log4j/core/pattern/HighlightConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class HighlightConverter extends LogEventPatternConverter implements AnsiConverter {
 private static final java.util.Map DEFAULT_STYLES;
 private static final java.util.Map LOGBACK_STYLES;
 private static final String STYLE_KEY = STYLE;
 private static final String STYLE_KEY_DEFAULT = DEFAULT;
 private static final String STYLE_KEY_LOGBACK = LOGBACK;
 private static final java.util.Map STYLES;
 private final java.util.Map levelStyles;
 private final java.util.List patternFormatters;
 private final boolean noAnsi;
 private final String defaultStyle;
 private static java.util.Map createLevelStyleMap(String[]);
 public static HighlightConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void HighlightConverter(java.util.List, java.util.Map, boolean);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 String getLevelStyle(org.apache.logging.log4j.Level);
 public boolean handlesThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/RelativeTimePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class RelativeTimePatternConverter extends LogEventPatternConverter {
 private final long startTime;
 public void RelativeTimePatternConverter();
 public static RelativeTimePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/PatternParser$ParserState.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum PatternParser$ParserState {
 public static final PatternParser$ParserState LITERAL_STATE;
 public static final PatternParser$ParserState CONVERTER_STATE;
 public static final PatternParser$ParserState DOT_STATE;
 public static final PatternParser$ParserState MIN_STATE;
 public static final PatternParser$ParserState MAX_STATE;
 public static PatternParser$ParserState[] values();
 public static PatternParser$ParserState valueOf(String);
 private void PatternParser$ParserState(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$Space.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$Space extends SimpleLiteralPatternConverter {
 private static final SimpleLiteralPatternConverter$Space INSTANCE;
 private void SimpleLiteralPatternConverter$Space();
 void format(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized class SimpleLiteralPatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private void SimpleLiteralPatternConverter();
 static LogEventPatternConverter of(String, boolean);
 static LogEventPatternConverter of(String);
 public final void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public final void format(Object, StringBuilder);
 public final transient void format(StringBuilder, Object[]);
 abstract void format(StringBuilder);
 public final boolean isVariable();
 public final boolean handlesThrowable();
}

org/apache/logging/log4j/core/pattern/RegexReplacement.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RegexReplacement {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.regex.Pattern pattern;
 private final String substitution;
 private void RegexReplacement(java.util.regex.Pattern, String);
 public String format(String);
 public String toString();
 public static RegexReplacement createRegexReplacement(java.util.regex.Pattern, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$1 {
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Red.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Red extends AbstractStyleNameConverter {
 protected static final String NAME = red;
 public void AbstractStyleNameConverter$Red(java.util.List, String);
 public static AbstractStyleNameConverter$Red newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$StringValue.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$StringValue extends SimpleLiteralPatternConverter {
 private final String literal;
 void SimpleLiteralPatternConverter$StringValue(String);
 void format(StringBuilder);
}

org/apache/logging/log4j/core/pattern/FormattingInfo.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FormattingInfo {
 private static final char[] SPACES;
 private static final char[] ZEROS;
 private static final FormattingInfo DEFAULT;
 private final int minLength;
 private final int maxLength;
 private final boolean leftAlign;
 private final boolean leftTruncate;
 private final boolean zeroPad;
 public void FormattingInfo(boolean, int, int, boolean);
 public void FormattingInfo(boolean, int, int, boolean, boolean);
 public static FormattingInfo getDefault();
 public boolean isLeftAligned();
 public boolean isLeftTruncate();
 public boolean isZeroPad();
 public int getMinLength();
 public int getMaxLength();
 public void format(int, StringBuilder);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class DatePatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Yellow.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Yellow extends AbstractStyleNameConverter {
 protected static final String NAME = yellow;
 public void AbstractStyleNameConverter$Yellow(java.util.List, String);
 public static AbstractStyleNameConverter$Yellow newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/AnsiConverter.class

package org.apache.logging.log4j.core.pattern;
abstract interface AnsiConverter {
}

org/apache/logging/log4j/core/Layout.class

package org.apache.logging.log4j.core;
public abstract interface Layout extends layout.Encoder {
 public static final String ELEMENT_TYPE = layout;
 public abstract byte[] getFooter();
 public abstract byte[] getHeader();
 public abstract byte[] toByteArray(LogEvent);
 public abstract java.io.Serializable toSerializable(LogEvent);
 public abstract String getContentType();
 public abstract java.util.Map getContentFormat();
}

org/apache/logging/log4j/core/StringLayout.class

package org.apache.logging.log4j.core;
public abstract interface StringLayout extends Layout {
 public abstract java.nio.charset.Charset getCharset();
}

org/apache/logging/log4j/core/jackson/MessageSerializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MessageSerializer extends com.fasterxml.jackson.databind.ser.std.StdScalarSerializer {
 private static final long serialVersionUID = 1;
 void MessageSerializer();
 public void serialize(org.apache.logging.log4j.message.Message, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

Log4j-events.xsd

 Log4J 2.0 XML Schema for XML log event files.

META-INF/maven/org.apache.logging.log4j/log4j-core/pom.properties

#Created by Apache Maven 3.8.4
version=2.17.1
groupId=org.apache.logging.log4j
artifactId=log4j-core

Log4j-events.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!--the entity declarations may be overridden in the internal subset-->
<!--namespace prefixes-->
<!ENTITY % log4j_prefix "log4j">
<!--namespace prefix to namespace uri mappings-->
<!ENTITY % log4j_prefix.. "%log4j_prefix;:">
<!--namespaces attributes for root element-->
<!ENTITY % documentElementAttributes " xmlns:%log4j_prefix; CDATA 'http://logging.apache.org/log4j/2.0/events'">
<!--the declarations below should not be modified-->
<!--element name mappings-->
<!ENTITY % log4j..Events "%log4j_prefix..;Events">
<!ENTITY % log4j..Event "%log4j_prefix..;Event">
<!ENTITY % log4j..Message "%log4j_prefix..;Message">
<!ENTITY % log4j..Marker "%log4j_prefix..;Marker">
<!ATTLIST %log4j..Marker;
 parent CDATA #IMPLIED
>
<!ENTITY % log4j..NDC "%log4j_prefix..;NDC">
<!ENTITY % log4j..Throwable "%log4j_prefix..;Throwable">
<!ENTITY % log4j..LocationInfo "%log4j_prefix..;LocationInfo">
<!ENTITY % log4j..Properties "%log4j_prefix..;Properties">
<!ENTITY % log4j..Data "%log4j_prefix..;Data">
<!--element and attribute declarations-->
<!--Log4J 2.0 XML Schema-->
<!ELEMENT %log4j..Events; ((%log4j..Event;)*)>
<!ATTLIST %log4j..Events;
	%documentElementAttributes;
>
<!ELEMENT %log4j..Event; (%log4j..Message;, (%log4j..NDC;)?, (%log4j..Marker;)?, (%log4j..Throwable;)?, (%log4j..LocationInfo;)?, (%log4j..Properties;)?)>
<!ATTLIST %log4j..Event;
	logger CDATA #REQUIRED
	timestamp NMTOKEN #REQUIRED
	level (OFF | FATAL | ERROR | WARN | INFO | DEBUG | TRACE | ALL) #REQUIRED
 threadId CDATA #REQUIRED
 thread CDATA #REQUIRED
 threadPriority CDATA #REQUIRED
>
<!ELEMENT %log4j..Message; ANY>
<!ELEMENT %log4j..NDC; ANY>
<!ELEMENT %log4j..Throwable; ANY>
<!ELEMENT %log4j..LocationInfo; EMPTY>
<!ATTLIST %log4j..LocationInfo;
	class CDATA #REQUIRED
	method CDATA #REQUIRED
	file CDATA #REQUIRED
	line NMTOKEN #REQUIRED
>
<!ELEMENT %log4j..Properties; ((%log4j..Data;)+)>
<!ELEMENT %log4j..Data; EMPTY>
<!ATTLIST %log4j..Data;
	name CDATA #REQUIRED
	value CDATA #REQUIRED
>

org/apache/logging/log4j/core/appender/WriterManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class WriterManager extends AbstractManager {
 protected final org.apache.logging.log4j.core.StringLayout layout;
 private volatile java.io.Writer writer;
 public static WriterManager getManager(String, Object, ManagerFactory);
 public void WriterManager(java.io.Writer, String, org.apache.logging.log4j.core.StringLayout, boolean);
 protected synchronized void closeWriter();
 public synchronized void flush();
 protected java.io.Writer getWriter();
 public boolean isOpen();
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected void setWriter(java.io.Writer);
 protected synchronized void write(String);
 protected void writeFooter();
}

org/apache/logging/log4j/core/appender/rolling/DirectWriteRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DirectWriteRolloverStrategy extends AbstractRolloverStrategy implements DirectFileRolloverStrategy {
 private static final int DEFAULT_MAX_FILES = 7;
 private final int maxFiles;
 private final int compressionLevel;
 private final java.util.List customActions;
 private final boolean stopCustomActionsOnError;
 private volatile String currentFileName;
 private int nextIndex;
 private final PatternProcessor tempCompressedFilePattern;
 private volatile boolean usePrevTime;
 public static DirectWriteRolloverStrategy$Builder newBuilder();
 public static DirectWriteRolloverStrategy createStrategy(String, String, action.Action[], boolean, org.apache.logging.log4j.core.config.Configuration);
 protected void DirectWriteRolloverStrategy(int, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean);
 protected void DirectWriteRolloverStrategy(int, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean, String);
 public int getCompressionLevel();
 public java.util.List getCustomActions();
 public int getMaxFiles();
 public boolean isStopCustomActionsOnError();
 public PatternProcessor getTempCompressedFilePattern();
 private int purge(RollingFileManager);
 public String getCurrentFileName(RollingFileManager);
 public void clearCurrentFileName();
 public RolloverDescription rollover(RollingFileManager) throws SecurityException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/ScriptCondition.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class ScriptCondition {
 private static org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 public void ScriptCondition(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration);
 public java.util.List selectFilesToDelete(java.nio.file.Path, java.util.List);
 public static ScriptCondition createCondition(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction$Builder.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PosixViewAttributeAction$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 private String basePath;
 private boolean followLinks;
 private int maxDepth;
 private PathCondition[] pathConditions;
 private String filePermissionsString;
 private java.util.Set filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void PosixViewAttributeAction$Builder();
 public PosixViewAttributeAction build();
 public PosixViewAttributeAction$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PosixViewAttributeAction$Builder withSubst(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public PosixViewAttributeAction$Builder withBasePath(String);
 public PosixViewAttributeAction$Builder withFollowLinks(boolean);
 public PosixViewAttributeAction$Builder withMaxDepth(int);
 public PosixViewAttributeAction$Builder withPathConditions(PathCondition[]);
 public PosixViewAttributeAction$Builder withFilePermissionsString(String);
 public PosixViewAttributeAction$Builder withFilePermissions(java.util.Set);
 public PosixViewAttributeAction$Builder withFileOwner(String);
 public PosixViewAttributeAction$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/rolling/action/CompositeAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class CompositeAction extends AbstractAction {
 private final Action[] actions;
 private final boolean stopOnError;
 public void CompositeAction(java.util.List, boolean);
 public void run();
 public boolean execute() throws java.io.IOException;
 public String toString();
 public Action[] getActions();
 public boolean isStopOnError();
}

org/apache/logging/log4j/core/appender/rolling/action/Action.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface Action extends Runnable {
 public abstract boolean execute() throws java.io.IOException;
 public abstract void close();
 public abstract boolean isComplete();
}

org/apache/logging/log4j/core/appender/rolling/DefaultRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DefaultRolloverStrategy extends AbstractRolloverStrategy {
 private static final int MIN_WINDOW_SIZE = 1;
 private static final int DEFAULT_WINDOW_SIZE = 7;
 private final int maxIndex;
 private final int minIndex;
 private final boolean useMax;
 private final int compressionLevel;
 private final java.util.List customActions;
 private final boolean stopCustomActionsOnError;
 private final PatternProcessor tempCompressedFilePattern;
 public static DefaultRolloverStrategy$Builder newBuilder();
 public static DefaultRolloverStrategy createStrategy(String, String, String, String, action.Action[], boolean, org.apache.logging.log4j.core.config.Configuration);
 protected void DefaultRolloverStrategy(int, int, boolean, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean);
 protected void DefaultRolloverStrategy(int, int, boolean, int, org.apache.logging.log4j.core.lookup.StrSubstitutor, action.Action[], boolean, String);
 public int getCompressionLevel();
 public java.util.List getCustomActions();
 public int getMaxIndex();
 public int getMinIndex();
 public boolean isStopCustomActionsOnError();
 public boolean isUseMax();
 public PatternProcessor getTempCompressedFilePattern();
 private int purge(int, int, RollingFileManager);
 private int purgeAscending(int, int, RollingFileManager);
 private int purgeDescending(int, int, RollingFileManager);
 public RolloverDescription rollover(RollingFileManager) throws SecurityException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class CronTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final String defaultSchedule = 0 0 0 * * ?;
 private RollingFileManager manager;
 private final org.apache.logging.log4j.core.util.CronExpression cronExpression;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final boolean checkOnStartup;
 private volatile java.util.Date lastRollDate;
 private org.apache.logging.log4j.core.config.CronScheduledFuture future;
 private void CronTriggeringPolicy(org.apache.logging.log4j.core.util.CronExpression, boolean, org.apache.logging.log4j.core.config.Configuration);
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.util.CronExpression getCronExpression();
 public static CronTriggeringPolicy createPolicy(org.apache.logging.log4j.core.config.Configuration, String, String);
 private static org.apache.logging.log4j.core.util.CronExpression getSchedule(String);
 private void rollover();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class MemoryMappedFileManager extends OutputStreamManager {
 static final int DEFAULT_REGION_LENGTH = 33554432;
 private static final int MAX_REMAP_COUNT = 10;
 private static final MemoryMappedFileManager$MemoryMappedFileManagerFactory FACTORY;
 private static final double NANOS_PER_MILLISEC = 1000000.0;
 private final boolean immediateFlush;
 private final int regionLength;
 private final String advertiseURI;
 private final java.io.RandomAccessFile randomAccessFile;
 private java.nio.MappedByteBuffer mappedBuffer;
 private long mappingOffset;
 protected void MemoryMappedFileManager(java.io.RandomAccessFile, String, java.io.OutputStream, boolean, long, int, String, org.apache.logging.log4j.core.Layout, boolean) throws java.io.IOException;
 public static MemoryMappedFileManager getFileManager(String, boolean, boolean, int, String, org.apache.logging.log4j.core.Layout);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected synchronized void write(byte[], int, int, boolean);
 private synchronized void remap();
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public static java.nio.MappedByteBuffer mmap(java.nio.channels.FileChannel, String, long, int) throws java.io.IOException;
 private static void unsafeUnmap(java.nio.MappedByteBuffer) throws java.security.PrivilegedActionException;
 public String getFileName();
 public int getRegionLength();
 public boolean isImmediateFlush();
 public java.util.Map getContentFormat();
 protected void flushBuffer(java.nio.ByteBuffer);
 public java.nio.ByteBuffer getByteBuffer();
 public java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/ManagerFactory.class

package org.apache.logging.log4j.core.appender;
public abstract interface ManagerFactory {
 public abstract Object createManager(String, Object);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class JdbcAppender extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender {
 private final String description;
 public static JdbcAppender createAppender(String, String, org.apache.logging.log4j.core.Filter, ConnectionSource, String, String, ColumnConfig[]);
 public static JdbcAppender$Builder newBuilder();
 private void JdbcAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], JdbcDatabaseManager);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/DriverManagerConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class DriverManagerConnectionSource extends AbstractDriverManagerConnectionSource {
 public static DriverManagerConnectionSource$Builder newBuilder();
 public void DriverManagerConnectionSource(String, String, String, char[], char[], org.apache.logging.log4j.core.config.Property[]);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class JdbcAppender$Builder extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private ConnectionSource connectionSource;
 private boolean immediateFail;
 private int bufferSize;
 private String tableName;
 private ColumnConfig[] columnConfigs;
 private org.apache.logging.log4j.core.appender.db.ColumnMapping[] columnMappings;
 private boolean truncateStrings;
 private long reconnectIntervalMillis;
 public void JdbcAppender$Builder();
 public JdbcAppender build();
 public long getReconnectIntervalMillis();
 public boolean isImmediateFail();
 public JdbcAppender$Builder setBufferSize(int);
 public transient JdbcAppender$Builder setColumnConfigs(ColumnConfig[]);
 public transient JdbcAppender$Builder setColumnMappings(org.apache.logging.log4j.core.appender.db.ColumnMapping[]);
 public JdbcAppender$Builder setConnectionSource(ConnectionSource);
 public void setImmediateFail(boolean);
 public void setReconnectIntervalMillis(long);
 public JdbcAppender$Builder setTableName(String);
 public JdbcAppender$Builder setTruncateStrings(boolean);
}

org/apache/logging/log4j/core/appender/AsyncAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class AsyncAppender$1 {
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$Builder.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class RoutingAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.script.AbstractScript defaultRouteScript;
 private Routes routes;
 private org.apache.logging.log4j.core.appender.rewrite.RewritePolicy rewritePolicy;
 private PurgePolicy purgePolicy;
 public void RoutingAppender$Builder();
 public RoutingAppender build();
 public Routes getRoutes();
 public org.apache.logging.log4j.core.script.AbstractScript getDefaultRouteScript();
 public org.apache.logging.log4j.core.appender.rewrite.RewritePolicy getRewritePolicy();
 public PurgePolicy getPurgePolicy();
 public RoutingAppender$Builder withRoutes(Routes);
 public RoutingAppender$Builder withDefaultRouteScript(org.apache.logging.log4j.core.script.AbstractScript);
 public RoutingAppender$Builder withRewritePolicy(org.apache.logging.log4j.core.appender.rewrite.RewritePolicy);
 public void withPurgePolicy(PurgePolicy);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlObject.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlObject {
 public abstract void set(String, Object);
 public abstract void set(String, NoSqlObject);
 public abstract void set(String, Object[]);
 public abstract void set(String, NoSqlObject[]);
 public abstract Object unwrap();
}

org/apache/logging/log4j/core/appender/nosql/AbstractNoSqlConnection.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract synchronized class AbstractNoSqlConnection implements NoSqlConnection {
 private final java.util.concurrent.atomic.AtomicBoolean closed;
 public void AbstractNoSqlConnection();
 public void close();
 protected abstract void closeImpl();
 public boolean isClosed();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class MemoryMappedFileAppender extends AbstractOutputStreamAppender {
 private static final int BIT_POSITION_1GB = 30;
 private static final int MAX_REGION_LENGTH = 1073741824;
 private static final int MIN_REGION_LENGTH = 256;
 private final String fileName;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void MemoryMappedFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, MemoryMappedFileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getFileName();
 public int getRegionLength();
 public static MemoryMappedFileAppender createAppender(String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static MemoryMappedFileAppender$Builder newBuilder();
 private static int determineValidRegionLength(String, int);
}

org/apache/logging/log4j/core/impl/ThrowableProxy.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThrowableProxy implements java.io.Serializable {
 static final ThrowableProxy[] EMPTY_ARRAY;
 private static final char EOL = 10;
 private static final String EOL_STR;
 private static final long serialVersionUID = -2752771578252251910;
 private final ThrowableProxy causeProxy;
 private int commonElementCount;
 private final ExtendedStackTraceElement[] extendedStackTrace;
 private final String localizedMessage;
 private final String message;
 private final String name;
 private final ThrowableProxy[] suppressedProxies;
 private final transient Throwable throwable;
 void ThrowableProxy();
 public void ThrowableProxy(Throwable);
 void ThrowableProxy(Throwable, java.util.Set);
 private void ThrowableProxy(Throwable, java.util.Stack, java.util.Map, Throwable, java.util.Set, java.util.Set);
 public boolean equals(Object);
 public void formatWrapper(StringBuilder, ThrowableProxy, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public ThrowableProxy getCauseProxy();
 public String getCauseStackTraceAsString(String);
 public String getCauseStackTraceAsString(java.util.List, String);
 public String getCauseStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public String getCauseStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public int getCommonElementCount();
 void setCommonElementCount(int);
 public ExtendedStackTraceElement[] getExtendedStackTrace();
 public String getExtendedStackTraceAsString();
 public String getExtendedStackTraceAsString(String);
 public String getExtendedStackTraceAsString(java.util.List, String);
 public String getExtendedStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 public String getExtendedStackTraceAsString(java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public void formatExtendedStackTraceTo(StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 public String getLocalizedMessage();
 public String getMessage();
 public String getName();
 public StackTraceElement[] getStackTrace();
 public ThrowableProxy[] getSuppressedProxies();
 public String getSuppressedStackTrace(String);
 public Throwable getThrowable();
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/ContextDataFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ContextDataFactory {
 private static final String CLASS_NAME;
 private static final Class CACHED_CLASS;
 private static final reflect.Constructor DEFAULT_CONSTRUCTOR;
 private static final reflect.Constructor INITIAL_CAPACITY_CONSTRUCTOR;
 private static final org.apache.logging.log4j.util.StringMap EMPTY_STRING_MAP;
 public void ContextDataFactory();
 private static Class createCachedClass(String);
 private static reflect.Constructor createDefaultConstructor(Class);
 private static reflect.Constructor createInitialCapacityConstructor(Class);
 public static org.apache.logging.log4j.util.StringMap createContextData();
 public static org.apache.logging.log4j.util.StringMap createContextData(int);
 public static org.apache.logging.log4j.util.StringMap createContextData(java.util.Map);
 public static org.apache.logging.log4j.util.StringMap createContextData(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public static org.apache.logging.log4j.util.StringMap emptyFrozenContextData();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/JndiContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class JndiContextSelector implements NamedContextSelector {
 private static final org.apache.logging.log4j.core.LoggerContext CONTEXT;
 private static final java.util.concurrent.ConcurrentMap CONTEXT_MAP;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 public void JndiContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 private String getContextName();
 public org.apache.logging.log4j.core.LoggerContext locateContext(String, Object, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public org.apache.logging.log4j.core.LoggerContext removeContext(String);
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$ShortestFirst.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$ShortestFirst implements java.util.Comparator {
 void CommandLine$Help$ShortestFirst();
 public int compare(String, String);
 public static String[] sort(String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$IExceptionHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$IExceptionHandler {
 public abstract transient java.util.List handleException(CommandLine$ParameterException, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine {
 public static final String VERSION = 2.0.3;
 private final CommandLine$Tracer tracer;
 private final CommandLine$Interpreter interpreter;
 private String commandName;
 private boolean overwrittenOptionsAllowed;
 private boolean unmatchedArgumentsAllowed;
 private final java.util.List unmatchedArguments;
 private CommandLine parent;
 private boolean usageHelpRequested;
 private boolean versionHelpRequested;
 private final java.util.List versionLines;
 public void CommandLine(Object);
 public CommandLine addSubcommand(String, Object);
 public java.util.Map getSubcommands();
 public CommandLine getParent();
 public Object getCommand();
 public boolean isUsageHelpRequested();
 public boolean isVersionHelpRequested();
 public boolean isOverwrittenOptionsAllowed();
 public CommandLine setOverwrittenOptionsAllowed(boolean);
 public boolean isUnmatchedArgumentsAllowed();
 public CommandLine setUnmatchedArgumentsAllowed(boolean);
 public java.util.List getUnmatchedArguments();
 public static transient Object populateCommand(Object, String[]);
 public transient java.util.List parse(String[]);
 public static boolean printHelpIfRequested(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
 private static Object execute(CommandLine);
 public transient java.util.List parseWithHandler(CommandLine$IParseResultHandler, java.io.PrintStream, String[]);
 public transient java.util.List parseWithHandlers(CommandLine$IParseResultHandler, java.io.PrintStream, CommandLine$Help$Ansi, CommandLine$IExceptionHandler, String[]);
 public static void usage(Object, java.io.PrintStream);
 public static void usage(Object, java.io.PrintStream, CommandLine$Help$Ansi);
 public static void usage(Object, java.io.PrintStream, CommandLine$Help$ColorScheme);
 public void usage(java.io.PrintStream);
 public void usage(java.io.PrintStream, CommandLine$Help$Ansi);
 public void usage(java.io.PrintStream, CommandLine$Help$ColorScheme);
 public void printVersionHelp(java.io.PrintStream);
 public void printVersionHelp(java.io.PrintStream, CommandLine$Help$Ansi);
 public transient void printVersionHelp(java.io.PrintStream, CommandLine$Help$Ansi, Object[]);
 public static transient Object call(java.util.concurrent.Callable, java.io.PrintStream, String[]);
 public static transient Object call(java.util.concurrent.Callable, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
 public static transient void run(Runnable, java.io.PrintStream, String[]);
 public static transient void run(Runnable, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
 public CommandLine registerConverter(Class, CommandLine$ITypeConverter);
 public String getSeparator();
 public CommandLine setSeparator(String);
 public String getCommandName();
 public CommandLine setCommandName(String);
 private static boolean empty(String);
 private static boolean empty(Object[]);
 private static boolean empty(CommandLine$Help$Ansi$Text);
 private static String str(String[], int);
 private static boolean isBoolean(Class);
 private static CommandLine toCommandLine(Object);
 private static boolean isMultiValue(reflect.Field);
 private static boolean isMultiValue(Class);
 private static Class[] getTypeAttribute(reflect.Field);
 static void init(Class, java.util.List, java.util.Map, java.util.Map, java.util.List);
 static void validatePositionalParameters(java.util.List);
 private static java.util.Stack reverse(java.util.Stack);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Option.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Option extends annotation.Annotation {
 public abstract String[] names();
 public abstract boolean required();
 public abstract boolean help();
 public abstract boolean usageHelp();
 public abstract boolean versionHelp();
 public abstract String[] description();
 public abstract String arity();
 public abstract String paramLabel();
 public abstract Class[] type();
 public abstract String split();
 public abstract boolean hidden();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$MinimalParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$MinimalParameterRenderer implements CommandLine$Help$IParameterRenderer {
 void CommandLine$Help$MinimalParameterRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ShortConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ShortConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ShortConverter();
 public Short convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Text.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Ansi$Text implements Cloneable {
 private final int maxLength;
 private int from;
 private int length;
 private StringBuilder plain;
 private java.util.List sections;
 public void CommandLine$Help$Ansi$Text(CommandLine$Help$Ansi, int);
 public void CommandLine$Help$Ansi$Text(CommandLine$Help$Ansi, String);
 private void addStyledSection(int, int, String, String);
 public Object clone();
 public CommandLine$Help$Ansi$Text[] splitLines();
 public CommandLine$Help$Ansi$Text substring(int);
 public CommandLine$Help$Ansi$Text substring(int, int);
 public CommandLine$Help$Ansi$Text append(String);
 public CommandLine$Help$Ansi$Text append(CommandLine$Help$Ansi$Text);
 public void getStyledChars(int, int, CommandLine$Help$Ansi$Text, int);
 public String plainString();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private CommandLine$Help$Ansi$StyledSection findSectionContaining(int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharsetConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharsetConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharsetConverter();
 public java.nio.charset.Charset convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultParameterRenderer implements CommandLine$Help$IParameterRenderer {
 public String requiredMarker;
 void CommandLine$Help$DefaultParameterRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn {
 private void CommandLine$BuiltIn();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$LongConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$LongConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$LongConverter();
 public Long convert(String);
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationFactory.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationFactory {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static SslConfiguration sslConfiguration;
 private static final String trustStorelocation = log4j2.trustStoreLocation;
 private static final String trustStorePassword = log4j2.trustStorePassword;
 private static final String trustStorePasswordFile = log4j2.trustStorePasswordFile;
 private static final String trustStorePasswordEnvVar = log4j2.trustStorePasswordEnvironmentVariable;
 private static final String trustStoreKeyStoreType = log4j2.trustStoreKeyStoreType;
 private static final String trustStoreKeyManagerFactoryAlgorithm = log4j2.trustStoreKeyManagerFactoryAlgorithm;
 private static final String keyStoreLocation = log4j2.keyStoreLocation;
 private static final String keyStorePassword = log4j2.keyStorePassword;
 private static final String keyStorePasswordFile = log4j2.keyStorePasswordFile;
 private static final String keyStorePasswordEnvVar = log4j2.keyStorePasswordEnvironmentVariable;
 private static final String keyStoreType = log4j2.keyStoreType;
 private static final String keyStoreKeyManagerFactoryAlgorithm = log4j2.keyStoreKeyManagerFactoryAlgorithm;
 private static final String verifyHostName = log4j2.sslVerifyHostName;
 public void SslConfigurationFactory();
 public static SslConfiguration getSslConfiguration();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/EnvironmentPasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class EnvironmentPasswordProvider implements PasswordProvider {
 private final String passwordEnvironmentVariable;
 public void EnvironmentPasswordProvider(String);
 public char[] getPassword();
}

org/apache/logging/log4j/core/net/ssl/AbstractKeyStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class AbstractKeyStoreConfiguration extends StoreConfiguration {
 private final java.security.KeyStore keyStore;
 private final String keyStoreType;
 public void AbstractKeyStoreConfiguration(String, PasswordProvider, String) throws StoreConfigurationException;
 public void AbstractKeyStoreConfiguration(String, char[], String) throws StoreConfigurationException;
 public void AbstractKeyStoreConfiguration(String, String, String) throws StoreConfigurationException;
 protected java.security.KeyStore load() throws StoreConfigurationException;
 private java.io.InputStream openInputStream(String);
 public java.security.KeyStore getKeyStore();
 public int hashCode();
 public boolean equals(Object);
 public String getKeyStoreType();
}

org/apache/logging/log4j/core/net/AbstractSocketManager.class

package org.apache.logging.log4j.core.net;
public abstract synchronized class AbstractSocketManager extends org.apache.logging.log4j.core.appender.OutputStreamManager {
 protected final java.net.InetAddress inetAddress;
 protected final String host;
 protected final int port;
 public void AbstractSocketManager(String, java.io.OutputStream, java.net.InetAddress, String, int, org.apache.logging.log4j.core.Layout, boolean, int);
 public java.util.Map getContentFormat();
}

org/apache/logging/log4j/core/net/Facility.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Facility {
 public static final Facility KERN;
 public static final Facility USER;
 public static final Facility MAIL;
 public static final Facility DAEMON;
 public static final Facility AUTH;
 public static final Facility SYSLOG;
 public static final Facility LPR;
 public static final Facility NEWS;
 public static final Facility UUCP;
 public static final Facility CRON;
 public static final Facility AUTHPRIV;
 public static final Facility FTP;
 public static final Facility NTP;
 public static final Facility LOG_AUDIT;
 public static final Facility LOG_ALERT;
 public static final Facility CLOCK;
 public static final Facility LOCAL0;
 public static final Facility LOCAL1;
 public static final Facility LOCAL2;
 public static final Facility LOCAL3;
 public static final Facility LOCAL4;
 public static final Facility LOCAL5;
 public static final Facility LOCAL6;
 public static final Facility LOCAL7;
 private final int code;
 public static Facility[] values();
 public static Facility valueOf(String);
 private void Facility(String, int, int);
 public static Facility toFacility(String);
 public static Facility toFacility(String, Facility);
 public int getCode();
 public boolean isEqual(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatcherFactory.class

package org.apache.logging.log4j.core.util;
public synchronized class WatcherFactory {
 private static org.apache.logging.log4j.Logger LOGGER;
 private static org.apache.logging.log4j.core.config.plugins.util.PluginManager pluginManager;
 private static volatile WatcherFactory factory;
 private final java.util.Map plugins;
 private void WatcherFactory(java.util.List);
 public static WatcherFactory getInstance(java.util.List);
 public Watcher newWatcher(Source, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 public static Watcher instantiate(String, Class, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CyclicBuffer.class

package org.apache.logging.log4j.core.util;
public final synchronized class CyclicBuffer {
 private final Object[] ring;
 private int first;
 private int last;
 private int numElems;
 private final Class clazz;
 public void CyclicBuffer(Class, int) throws IllegalArgumentException;
 private Object[] makeArray(Class, int);
 public synchronized void add(Object);
 public synchronized Object[] removeAll();
 public boolean isEmpty();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$TimeZoneStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$TimeZoneStrategy extends FastDateParser$PatternStrategy {
 private static final String RFC_822_TIME_ZONE = [+-]\d{4};
 private static final String GMT_OPTION = GMT[+-]\d{1,2}:\d{2};
 private final java.util.Locale locale;
 private final java.util.Map tzNames;
 private static final int ID = 0;
 void FastDateParser$TimeZoneStrategy(java.util.Locale);
 void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDatePrinter implements DatePrinter, java.io.Serializable {
 private static final long serialVersionUID = 1;
 public static final int FULL = 0;
 public static final int LONG = 1;
 public static final int MEDIUM = 2;
 public static final int SHORT = 3;
 private final String mPattern;
 private final java.util.TimeZone mTimeZone;
 private final java.util.Locale mLocale;
 private transient FastDatePrinter$Rule[] mRules;
 private transient int mMaxLengthEstimate;
 private static final int MAX_DIGITS = 10;
 private static final java.util.concurrent.ConcurrentMap cTimeZoneDisplayCache;
 protected void FastDatePrinter(String, java.util.TimeZone, java.util.Locale);
 private void init();
 protected java.util.List parsePattern();
 protected String parseToken(String, int[]);
 protected FastDatePrinter$NumberRule selectNumberRule(int, int);
 public StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 String format(Object);
 public String format(long);
 private String applyRulesToString(java.util.Calendar);
 private java.util.Calendar newCalendar();
 public String format(java.util.Date);
 public String format(java.util.Calendar);
 public Appendable format(long, Appendable);
 public Appendable format(java.util.Date, Appendable);
 public Appendable format(java.util.Calendar, Appendable);
 protected StringBuffer applyRules(java.util.Calendar, StringBuffer);
 private Appendable applyRules(java.util.Calendar, Appendable);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public int getMaxLengthEstimate();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private static void appendDigits(Appendable, int) throws java.io.IOException;
 private static void appendFullDigits(Appendable, int, int) throws java.io.IOException;
 static String getTimeZoneDisplay(java.util.TimeZone, boolean, int, java.util.Locale);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$StrategyParser.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$StrategyParser {
 private final java.util.Calendar definingCalendar;
 private int currentIdx;
 void FastDateParser$StrategyParser(FastDateParser, java.util.Calendar);
 FastDateParser$StrategyAndWidth getNextStrategy();
 private FastDateParser$StrategyAndWidth letterPattern(char);
 private FastDateParser$StrategyAndWidth literal();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$5.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$5 extends FastDateParser$NumberStrategy {
 void FastDateParser$5(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$1.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$1 extends FastDateParser$NumberStrategy {
 void FastDateParser$1(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateFormat$1.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateFormat$1 extends FormatCache {
 void FastDateFormat$1();
 protected FastDateFormat createInstance(String, java.util.TimeZone, java.util.Locale);
}

org/apache/logging/log4j/core/util/PasswordDecryptor.class

package org.apache.logging.log4j.core.util;
public abstract interface PasswordDecryptor {
 public abstract String decryptPassword(String);
}

org/apache/logging/log4j/core/util/Closer.class

package org.apache.logging.log4j.core.util;
public final synchronized class Closer {
 private void Closer();
 public static boolean close(AutoCloseable) throws Exception;
 public static boolean closeSilently(AutoCloseable);
}

org/apache/logging/log4j/core/util/WatchManager.class

package org.apache.logging.log4j.core.util;
public synchronized class WatchManager extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static org.apache.logging.log4j.Logger logger;
 private final java.util.concurrent.ConcurrentMap watchers;
 private int intervalSeconds;
 private java.util.concurrent.ScheduledFuture future;
 private final org.apache.logging.log4j.core.config.ConfigurationScheduler scheduler;
 private final java.util.List eventServiceList;
 private final java.util.UUID id;
 public void WatchManager(org.apache.logging.log4j.core.config.ConfigurationScheduler);
 public void checkFiles();
 public java.util.Map getConfigurationWatchers();
 private java.util.List getEventServices();
 public java.util.UUID getId();
 public int getIntervalSeconds();
 public java.util.Map getWatchers();
 public boolean hasEventListeners();
 private String millisToString(long);
 public void reset();
 public void reset(java.io.File);
 public void reset(Source);
 public void setIntervalSeconds(int);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String toString();
 public void unwatch(Source);
 public void unwatchFile(java.io.File);
 public void watch(Source, Watcher);
 public void watchFile(java.io.File, FileWatcher);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Watcher.class

package org.apache.logging.log4j.core.util;
public abstract interface Watcher {
 public static final String CATEGORY = Watcher;
 public static final String ELEMENT_TYPE = watcher;
 public abstract java.util.List getListeners();
 public abstract void modified();
 public abstract boolean isModified();
 public abstract long getLastModified();
 public abstract void watching(Source);
 public abstract Source getSource();
 public abstract Watcher newWatcher(org.apache.logging.log4j.core.config.Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/util/ExecutorServices.class

package org.apache.logging.log4j.core.util;
public synchronized class ExecutorServices {
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void ExecutorServices();
 public static boolean shutdown(java.util.concurrent.ExecutorService, long, java.util.concurrent.TimeUnit, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/AuthorizationProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface AuthorizationProvider {
 public abstract void addAuthorization(java.net.URLConnection);
}

org/apache/logging/log4j/core/util/ShutdownCallbackRegistry.class

package org.apache.logging.log4j.core.util;
public abstract interface ShutdownCallbackRegistry {
 public static final String SHUTDOWN_CALLBACK_REGISTRY = log4j.shutdownCallbackRegistry;
 public static final String SHUTDOWN_HOOK_ENABLED = log4j.shutdownHookEnabled;
 public static final org.apache.logging.log4j.Marker SHUTDOWN_HOOK_MARKER;
 public abstract Cancellable addShutdownCallback(Runnable);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DummyNanoClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class DummyNanoClock implements NanoClock {
 private final long fixedNanoTime;
 public void DummyNanoClock();
 public void DummyNanoClock(long);
 public long nanoTime();
}

org/apache/logging/log4j/core/config/LoggerConfig$RootLogger.class

package org.apache.logging.log4j.core.config;
public synchronized class LoggerConfig$RootLogger extends LoggerConfig {
 public void LoggerConfig$RootLogger();
 public static LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, AppenderRef[], Property[], Configuration, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginElementVisitor extends AbstractPluginVisitor {
 public void PluginElementVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private org.apache.logging.log4j.core.config.Node findNamedNode(String, Iterable);
}

org/apache/logging/log4j/core/config/plugins/util/PluginRegistry.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginRegistry {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile PluginRegistry INSTANCE;
 private static final Object INSTANCE_LOCK;
 private final java.util.concurrent.atomic.AtomicReference pluginsByCategoryRef;
 private final java.util.concurrent.ConcurrentMap pluginsByCategoryByBundleId;
 private final java.util.concurrent.ConcurrentMap pluginsByCategoryByPackage;
 private void PluginRegistry();
 public static PluginRegistry getInstance();
 public void clear();
 public java.util.Map getPluginsByCategoryByBundleId();
 public java.util.Map loadFromMainClassLoader();
 public void clearBundlePlugins(long);
 public java.util.Map loadFromBundle(long, ClassLoader);
 private java.util.Map decodeCacheFiles(ClassLoader);
 public java.util.Map loadFromPackage(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/PluginManager.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginManager {
 private static final java.util.concurrent.CopyOnWriteArrayList PACKAGES;
 private static final String LOG4J_PACKAGES = org.apache.logging.log4j.core;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private java.util.Map plugins;
 private final String category;
 public void PluginManager(String);
 public static void main(String[]);
 public static void addPackage(String);
 public static void addPackages(java.util.Collection);
 public PluginType getPluginType(String);
 public java.util.Map getPlugins();
 public void collectPlugins();
 public void collectPlugins(java.util.List);
 private static void mergeByName(java.util.Map, java.util.List);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/PluginConfiguration.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginConfiguration extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/validation/validators/ValidPortValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class ValidPortValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidPort annotation;
 public void ValidPortValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidPort);
 public boolean isValid(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/HexConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class HexConverter {
 public void HexConverter();
 public static byte[] parseHexBinary(String);
}

org/apache/logging/log4j/core/config/plugins/convert/Base64Converter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class Base64Converter {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static reflect.Method method;
 private static Object decoder;
 public void Base64Converter();
 public static byte[] parseBase64Binary(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/Configurator.class

package org.apache.logging.log4j.core.config;
public final synchronized class Configurator {
 private static final String FQCN;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static org.apache.logging.log4j.core.impl.Log4jContextFactory getFactory();
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, ConfigurationSource);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, ConfigurationSource, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, String);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, String, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.net.URI, java.util.Map$Entry);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, ClassLoader, java.util.List, Object);
 public static org.apache.logging.log4j.core.LoggerContext initialize(String, String);
 public static org.apache.logging.log4j.core.LoggerContext initialize(Configuration);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, Configuration);
 public static org.apache.logging.log4j.core.LoggerContext initialize(ClassLoader, Configuration, Object);
 public static void reconfigure(Configuration);
 public static void reconfigure();
 public static void reconfigure(java.net.URI);
 public static void setAllLevels(String, org.apache.logging.log4j.Level);
 private static boolean setLevel(LoggerConfig, org.apache.logging.log4j.Level);
 public static void setLevel(java.util.Map);
 public static void setLevel(String, org.apache.logging.log4j.Level);
 private static boolean setLevel(String, org.apache.logging.log4j.Level, Configuration);
 public static void setRootLevel(org.apache.logging.log4j.Level);
 public static void shutdown(org.apache.logging.log4j.core.LoggerContext);
 public static boolean shutdown(org.apache.logging.log4j.core.LoggerContext, long, java.util.concurrent.TimeUnit);
 private void Configurator();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/composite/DefaultMergeStrategy.class

package org.apache.logging.log4j.core.config.composite;
public synchronized class DefaultMergeStrategy implements MergeStrategy {
 private static final String APPENDERS = appenders;
 private static final String PROPERTIES = properties;
 private static final String LOGGERS = loggers;
 private static final String SCRIPTS = scripts;
 private static final String FILTERS = filters;
 private static final String STATUS = status;
 private static final String NAME = name;
 private static final String REF = ref;
 public void DefaultMergeStrategy();
 public void mergeRootProperties(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.AbstractConfiguration);
 public void mergConfigurations(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
 private org.apache.logging.log4j.core.config.Node getLoggerNode(org.apache.logging.log4j.core.config.Node, String);
 private void updateFilterNode(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
 private boolean isFilterNode(org.apache.logging.log4j.core.config.Node);
 private boolean isSameName(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node);
 private boolean isSameReference(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node);
}

org/apache/logging/log4j/core/config/properties/PropertiesConfiguration.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfiguration extends org.apache.logging.log4j.core.config.builder.impl.BuiltConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 public void PropertiesConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource, org.apache.logging.log4j.core.config.builder.api.Component);
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
}

org/apache/logging/log4j/core/config/CustomLevels.class

package org.apache.logging.log4j.core.config;
public final synchronized class CustomLevels {
 private final java.util.List customLevels;
 private void CustomLevels(CustomLevelConfig[]);
 public static CustomLevels createCustomLevels(CustomLevelConfig[]);
 public java.util.List getCustomLevels();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultKeyValuePairComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultKeyValuePairComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.KeyValuePairComponentBuilder {
 public void DefaultKeyValuePairComponentBuilder(DefaultConfigurationBuilder, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultComponentAndConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultComponentAndConfigurationBuilder extends DefaultComponentBuilder {
 void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String, String, String);
 void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultComponentAndConfigurationBuilder(DefaultConfigurationBuilder, String);
}

org/apache/logging/log4j/core/config/builder/api/PropertyComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface PropertyComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/FilterableComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface FilterableComponentBuilder extends ComponentBuilder {
 public abstract ComponentBuilder add(FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/LoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LoggerComponentBuilder extends LoggableComponentBuilder {
}

org/apache/logging/log4j/core/jmx/RingBufferAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface RingBufferAdminMBean {
 public static final String PATTERN_ASYNC_LOGGER = org.apache.logging.log4j2:type=%s,component=AsyncLoggerRingBuffer;
 public static final String PATTERN_ASYNC_LOGGER_CONFIG = org.apache.logging.log4j2:type=%s,component=Loggers,name=%s,subtype=RingBuffer;
 public abstract long getBufferSize();
 public abstract long getRemainingCapacity();
}

org/apache/logging/log4j/core/jmx/StatusLoggerAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class StatusLoggerAdmin extends javax.management.NotificationBroadcasterSupport implements org.apache.logging.log4j.status.StatusListener, StatusLoggerAdminMBean {
 private final java.util.concurrent.atomic.AtomicLong sequenceNo;
 private final javax.management.ObjectName objectName;
 private final String contextName;
 private org.apache.logging.log4j.Level level;
 public void StatusLoggerAdmin(String, java.util.concurrent.Executor);
 private void removeListeners(String);
 private static javax.management.MBeanNotificationInfo createNotificationInfo();
 public String[] getStatusDataHistory();
 public java.util.List getStatusData();
 public String getLevel();
 public org.apache.logging.log4j.Level getStatusLevel();
 public void setLevel(String);
 public String getContextName();
 public void log(org.apache.logging.log4j.status.StatusData);
 public javax.management.ObjectName getObjectName();
 private long nextSeqNo();
 private long nowMillis();
 public void close() throws java.io.IOException;
}

org/apache/logging/log4j/core/jmx/AsyncAppenderAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface AsyncAppenderAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=AsyncAppenders,name=%s;
 public abstract String getName();
 public abstract String getLayout();
 public abstract boolean isIgnoreExceptions();
 public abstract String getErrorHandler();
 public abstract String getFilter();
 public abstract String[] getAppenderRefs();
 public abstract boolean isIncludeLocation();
 public abstract boolean isBlocking();
 public abstract String getErrorRef();
 public abstract int getQueueCapacity();
 public abstract int getQueueRemainingCapacity();
}

org/apache/logging/log4j/core/jmx/StatusLoggerAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface StatusLoggerAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=StatusLogger;
 public static final String NOTIF_TYPE_DATA = com.apache.logging.log4j.core.jmx.statuslogger.data;
 public static final String NOTIF_TYPE_MESSAGE = com.apache.logging.log4j.core.jmx.statuslogger.message;
 public abstract javax.management.ObjectName getObjectName();
 public abstract java.util.List getStatusData();
 public abstract String[] getStatusDataHistory();
 public abstract String getLevel();
 public abstract void setLevel(String);
 public abstract String getContextName();
}

org/apache/logging/log4j/core/jmx/AppenderAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class AppenderAdmin implements AppenderAdminMBean {
 private final String contextName;
 private final org.apache.logging.log4j.core.Appender appender;
 private final javax.management.ObjectName objectName;
 public void AppenderAdmin(String, org.apache.logging.log4j.core.Appender);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLayout();
 public boolean isIgnoreExceptions();
 public String getErrorHandler();
 public String getFilter();
}

org/apache/logging/log4j/core/layout/YamlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class YamlLayout extends AbstractJacksonLayout {
 private static final String DEFAULT_FOOTER = ;
 private static final String DEFAULT_HEADER = ;
 static final String CONTENT_TYPE = application/yaml;
 protected void YamlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 private void YamlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static AbstractJacksonLayout createLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 public static YamlLayout$Builder newBuilder();
 public static AbstractJacksonLayout createDefaultLayout();
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$ResolvableKeyValuePair.class

package org.apache.logging.log4j.core.layout;
public synchronized class AbstractJacksonLayout$ResolvableKeyValuePair {
 static final AbstractJacksonLayout$ResolvableKeyValuePair[] EMPTY_ARRAY;
 final String key;
 final String value;
 final boolean valueNeedsLookup;
 void AbstractJacksonLayout$ResolvableKeyValuePair(org.apache.logging.log4j.core.util.KeyValuePair);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/YamlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class YamlLayout$1 {
}

org/apache/logging/log4j/core/layout/CsvLogEventLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class CsvLogEventLayout extends AbstractCsvLayout {
 public static CsvLogEventLayout createDefaultLayout();
 public static CsvLogEventLayout createLayout(org.apache.commons.csv.CSVFormat);
 public static CsvLogEventLayout createLayout(org.apache.logging.log4j.core.config.Configuration, String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String, java.nio.charset.Charset, String, String);
 protected void CsvLogEventLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/AbstractStringLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractStringLayout$Builder extends AbstractLayout$Builder {
 private java.nio.charset.Charset charset;
 private AbstractStringLayout$Serializer footerSerializer;
 private AbstractStringLayout$Serializer headerSerializer;
 public void AbstractStringLayout$Builder();
 public java.nio.charset.Charset getCharset();
 public AbstractStringLayout$Serializer getFooterSerializer();
 public AbstractStringLayout$Serializer getHeaderSerializer();
 public AbstractStringLayout$Builder setCharset(java.nio.charset.Charset);
 public AbstractStringLayout$Builder setFooterSerializer(AbstractStringLayout$Serializer);
 public AbstractStringLayout$Builder setHeaderSerializer(AbstractStringLayout$Serializer);
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternFormatterPatternSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternFormatterPatternSerializer implements PatternLayout$PatternSerializer {
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] formatters;
 private void PatternLayout$PatternFormatterPatternSerializer(org.apache.logging.log4j.core.pattern.PatternFormatter[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$3.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$3 {
 void GelfLayout$CompressionType$3(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class MarkerPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void MarkerPatternSelector$Builder();
 public MarkerPatternSelector build();
 public MarkerPatternSelector$Builder setProperties(PatternMatch[]);
 public MarkerPatternSelector$Builder setDefaultPattern(String);
 public MarkerPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public MarkerPatternSelector$Builder setDisableAnsi(boolean);
 public MarkerPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public MarkerPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/layout/JsonLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class JsonLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean propertiesAsList;
 private boolean objectMessageAsJsonObject;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 public void JsonLayout$Builder();
 public JsonLayout build();
 public boolean isPropertiesAsList();
 public JsonLayout$Builder setPropertiesAsList(boolean);
 public boolean getObjectMessageAsJsonObject();
 public JsonLayout$Builder setObjectMessageAsJsonObject(boolean);
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public JsonLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
}

org/apache/logging/log4j/core/async/RingBufferLogEvent.class

package org.apache.logging.log4j.core.async;
public synchronized class RingBufferLogEvent implements org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.message.ReusableMessage, CharSequence, org.apache.logging.log4j.message.ParameterVisitable {
 public static final RingBufferLogEvent$Factory FACTORY;
 private static final long serialVersionUID = 8462119088943934758;
 private static final org.apache.logging.log4j.message.Message EMPTY;
 private boolean populated;
 private int threadPriority;
 private long threadId;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private long nanoTime;
 private short parameterCount;
 private boolean includeLocation;
 private boolean endOfBatch;
 private org.apache.logging.log4j.Level level;
 private String threadName;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private String messageFormat;
 private StringBuilder messageText;
 private Object[] parameters;
 private transient Throwable thrown;
 private org.apache.logging.log4j.core.impl.ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.Marker marker;
 private String fqcn;
 private StackTraceElement location;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private transient AsyncLogger asyncLogger;
 public void RingBufferLogEvent();
 public void setValues(AsyncLogger, String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, org.apache.logging.log4j.util.StringMap, org.apache.logging.log4j.ThreadContext$ContextStack, long, String, int, StackTraceElement, org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 private void initTime(org.apache.logging.log4j.core.util.Clock);
 public org.apache.logging.log4j.core.LogEvent toImmutable();
 private void setMessage(org.apache.logging.log4j.message.Message);
 private StringBuilder getMessageTextForWriting();
 public void execute(boolean);
 public boolean isPopulated();
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public String getLoggerFqcn();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.message.Message getMessage();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(org.apache.logging.log4j.message.ParameterConsumer, Object);
 public org.apache.logging.log4j.message.Message memento();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 public Throwable getThrown();
 public org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 void setContextData(org.apache.logging.log4j.util.StringMap);
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public StackTraceElement getSource();
 public long getTimeMillis();
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public long getNanoTime();
 public void clear();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 public org.apache.logging.log4j.core.LogEvent createMemento();
 public void initializeBuilder(org.apache.logging.log4j.core.impl.Log4jLogEvent$Builder);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public abstract interface AsyncQueueFullPolicy {
 public abstract EventRoute getRoute(long, org.apache.logging.log4j.Level);
}

org/apache/logging/log4j/core/async/DefaultAsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public synchronized class DefaultAsyncQueueFullPolicy implements AsyncQueueFullPolicy {
 public void DefaultAsyncQueueFullPolicy();
 public EventRoute getRoute(long, org.apache.logging.log4j.Level);
}

org/apache/logging/log4j/core/lookup/StrMatcher$CharMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$CharMatcher extends StrMatcher {
 private final char ch;
 void StrMatcher$CharMatcher(char);
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/EnvironmentLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class EnvironmentLookup extends AbstractLookup {
 public void EnvironmentLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/PropertiesLookup.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class PropertiesLookup implements StrLookup {
 private final java.util.Map properties;
 public void PropertiesLookup(java.util.Map);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
 public String toString();
}

org/apache/logging/log4j/core/LoggerContext$1.class

package org.apache.logging.log4j.core;
synchronized class LoggerContext$1 implements Runnable {
 void LoggerContext$1(LoggerContext, long);
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/script/ScriptFile.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptFile extends AbstractScript {
 private final java.nio.file.Path filePath;
 private final boolean isWatched;
 public void ScriptFile(String, java.nio.file.Path, String, boolean, String);
 public java.nio.file.Path getPath();
 public boolean isWatched();
 public static ScriptFile createScript(String, String, String, Boolean, java.nio.charset.Charset);
 public String toString();
}

org/apache/logging/log4j/core/ContextDataInjector.class

package org.apache.logging.log4j.core;
public abstract interface ContextDataInjector {
 public abstract org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/time/PreciseClock.class

package org.apache.logging.log4j.core.time;
public abstract interface PreciseClock extends org.apache.logging.log4j.core.util.Clock {
 public abstract void init(MutableInstant);
}

org/apache/logging/log4j/core/filter/LevelMatchFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class LevelMatchFilter$1 {
}

org/apache/logging/log4j/core/filter/StructuredDataFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class StructuredDataFilter extends MapFilter {
 private static final int MAX_BUFFER_SIZE = 2048;
 private static ThreadLocal threadLocalStringBuilder;
 private void StructuredDataFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 protected org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.message.StructuredDataMessage);
 private StringBuilder getValue(org.apache.logging.log4j.message.StructuredDataMessage, String);
 private StringBuilder getStringBuilder();
 private StringBuilder appendOrNull(String, StringBuilder);
 private boolean listContainsValue(java.util.List, StringBuilder);
 public static StructuredDataFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/ThresholdFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class ThresholdFilter extends AbstractFilter {
 private final org.apache.logging.log4j.Level level;
 private void ThresholdFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.Level getLevel();
 public String toString();
 public static ThresholdFilter createFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/StringMatchFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class StringMatchFilter extends AbstractFilter {
 public static final String ATTR_MATCH = match;
 private final String text;
 private void StringMatchFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(String);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static StringMatchFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/StyleConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class StyleConverter extends LogEventPatternConverter implements AnsiConverter {
 private final java.util.List patternFormatters;
 private final boolean noAnsi;
 private final String style;
 private final String defaultStyle;
 private void StyleConverter(java.util.List, String, boolean);
 public static StyleConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean handlesThrowable();
 public String toString();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$Noop.class

package org.apache.logging.log4j.core.pattern;
final synchronized class SimpleLiteralPatternConverter$Noop extends SimpleLiteralPatternConverter {
 private static final SimpleLiteralPatternConverter$Noop INSTANCE;
 private void SimpleLiteralPatternConverter$Noop();
 void format(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class NamePatternConverter extends LogEventPatternConverter {
 private final NameAbbreviator abbreviator;
 protected void NamePatternConverter(String, String, String[]);
 protected final void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MethodLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MethodLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final MethodLocationPatternConverter INSTANCE;
 private void MethodLocationPatternConverter();
 public static MethodLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LiteralPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LiteralPatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private final String literal;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final boolean substitute;
 public void LiteralPatternConverter(org.apache.logging.log4j.core.config.Configuration, String, boolean);
 static boolean containsSubstitutionSequence(String);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public transient void format(StringBuilder, Object[]);
 public String getLiteral();
 public boolean isVariable();
 public String toString();
}

org/apache/logging/log4j/core/pattern/ConverterKeys.class

package org.apache.logging.log4j.core.pattern;
public abstract interface ConverterKeys extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class EncodingPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/EqualsReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EqualsReplacementConverter extends EqualsBaseReplacementConverter {
 public static EqualsReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void EqualsReplacementConverter(java.util.List, String, String, PatternParser);
 protected boolean equals(String, StringBuilder, int, int);
}

org/apache/logging/log4j/core/pattern/AbstractPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class AbstractPatternConverter implements PatternConverter {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final String name;
 private final String style;
 protected void AbstractPatternConverter(String, String);
 public final String getName();
 public String getStyleClass(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Magenta.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Magenta extends AbstractStyleNameConverter {
 protected static final String NAME = magenta;
 public void AbstractStyleNameConverter$Magenta(java.util.List, String);
 public static AbstractStyleNameConverter$Magenta newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Blue.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Blue extends AbstractStyleNameConverter {
 protected static final String NAME = blue;
 public void AbstractStyleNameConverter$Blue(java.util.List, String);
 public static AbstractStyleNameConverter$Blue newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/jackson/Initializers.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers {
 void Initializers();
}

org/apache/logging/log4j/core/jackson/Log4jXmlModule.class

package org.apache.logging.log4j.core.jackson;
final synchronized class Log4jXmlModule extends com.fasterxml.jackson.dataformat.xml.JacksonXmlModule {
 private static final long serialVersionUID = 1;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 void Log4jXmlModule(boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/ThrowableProxyWithoutStacktraceMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyWithoutStacktraceMixIn {
 private ThrowableProxyWithoutStacktraceMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyWithoutStacktraceMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/Log4jStackTraceElementDeserializer.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class Log4jStackTraceElementDeserializer extends com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer {
 private static final long serialVersionUID = 1;
 public void Log4jStackTraceElementDeserializer();
 public StackTraceElement deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Initializers$SetupContextInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SetupContextInitializer {
 void Initializers$SetupContextInitializer();
 void setupModule(com.fasterxml.jackson.databind.Module$SetupContext, boolean, boolean);
}

META-INF/DEPENDENCIES

// --
// Transitive dependencies of this project determined from the
// maven pom organized by organization.
// --

Apache Log4j Core

From: 'an unknown organization'
 - Disruptor Framework (http://lmax-exchange.github.com/disruptor) com.lmax:disruptor:jar:3.4.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - JavaBeans Activation Framework (JAF) (http://java.sun.com/products/javabeans/jaf/index.jsp) javax.activation:activation:jar:1.1
 License: Common Development and Distribution License (CDDL) v1.0 (https://glassfish.dev.java.net/public/CDDLv1.0.html)
 - Apache Kafka (http://kafka.apache.org) org.apache.kafka:kafka-clients:jar:1.1.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Java Concurrency Tools Core Library (https://github.com/JCTools) org.jctools:jctools-core:jar:1.2.1
 License: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - LZ4 and xxHash (https://github.com/lz4/lz4-java) org.lz4:lz4-java:jar:1.4.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - SnakeYAML (http://www.snakeyaml.org) org.yaml:snakeyaml:bundle:1.27
 License: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - JeroMQ (https://github.com/zeromq/jeromq) org.zeromq:jeromq:jar:0.4.3
 License: Mozilla Public License version 2.0 (https://www.mozilla.org/en-US/MPL/2.0)
 - org.zeromq:jnacl (https://github.com/trevorbernard/jnacl) org.zeromq:jnacl:jar:0.1.0
 License: The BSD 2-Clause License (http://opensource.org/licenses/bsd-license.php)

From: 'Conversant Engineering' (http://engineering.conversantmedia.com)
 - com.conversantmedia:disruptor (https://github.com/conversant/disruptor) com.conversantmedia:disruptor:jar:1.2.15
 License: The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Eclipse Foundation' (https://www.eclipse.org)
 - JavaBeans Activation Framework API jar (https://github.com/eclipse-ee4j/jaf/jakarta.activation-api) jakarta.activation:jakarta.activation-api:jar:1.2.1
 License: EDL 1.0 (http://www.eclipse.org/org/documents/edl-v10.php)
 - jakarta.xml.bind-api (https://github.com/eclipse-ee4j/jaxb-api/jakarta.xml.bind-api) jakarta.xml.bind:jakarta.xml.bind-api:jar:2.3.2
 License: Eclipse Distribution License - v 1.0 (http://www.eclipse.org/org/documents/edl-v10.php)

From: 'FasterXML' (http://fasterxml.com)
 - Woodstox (https://github.com/FasterXML/woodstox) com.fasterxml.woodstox:woodstox-core:bundle:6.2.6
 License: The Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'FasterXML' (http://fasterxml.com/)
 - Jackson-annotations (http://github.com/FasterXML/jackson) com.fasterxml.jackson.core:jackson-annotations:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-core (https://github.com/FasterXML/jackson-core) com.fasterxml.jackson.core:jackson-core:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - jackson-databind (http://github.com/FasterXML/jackson) com.fasterxml.jackson.core:jackson-databind:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-dataformat-XML (https://github.com/FasterXML/jackson-dataformat-xml) com.fasterxml.jackson.dataformat:jackson-dataformat-xml:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson-dataformat-YAML (https://github.com/FasterXML/jackson-dataformats-text) com.fasterxml.jackson.dataformat:jackson-dataformat-yaml:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
 - Jackson module: JAXB Annotations (https://github.com/FasterXML/jackson-modules-base) com.fasterxml.jackson.module:jackson-module-jaxb-annotations:bundle:2.12.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'fasterxml.com' (http://fasterxml.com)
 - Stax2 API (http://github.com/FasterXML/stax2-api) org.codehaus.woodstox:stax2-api:bundle:4.2.1
 License: The BSD License (http://www.opensource.org/licenses/bsd-license.php)

From: 'FuseSource, Corp.' (http://fusesource.com/)
 - jansi (http://fusesource.github.io/jansi) org.fusesource.jansi:jansi:jar:2.3.4
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'Oracle' (http://www.oracle.com)
 - JavaMail API (http://javaee.github.io/javamail/javax.mail) com.sun.mail:javax.mail:jar:1.6.2
 License: CDDL/GPLv2+CE (https://javaee.github.io/javamail/LICENSE)

From: 'QOS.ch' (http://www.qos.ch)
 - SLF4J API Module (http://www.slf4j.org) org.slf4j:slf4j-api:jar:1.7.25
 License: MIT License (http://www.opensource.org/licenses/mit-license.php)

From: 'The Apache Software Foundation' (https://www.apache.org/)
 - Apache Commons Compress (https://commons.apache.org/proper/commons-compress/) org.apache.commons:commons-compress:jar:1.21
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)
 - Apache Commons CSV (https://commons.apache.org/proper/commons-csv/) org.apache.commons:commons-csv:jar:1.9.0
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)
 - Apache Log4j API (https://logging.apache.org/log4j/2.x/log4j-api/) org.apache.logging.log4j:log4j-api:jar:2.17.1
 License: Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt)

From: 'xerial.org'
 - snappy-java (https://github.com/xerial/snappy-java) org.xerial.snappy:snappy-java:jar:1.1.7.1
 License: The Apache Software License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)

META-INF/services/org.apache.logging.log4j.core.util.ContextDataProvider

org.apache.logging.log4j.core.impl.ThreadContextDataProvider

META-INF/services/javax.annotation.processing.Processor

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.
#
org.apache.logging.log4j.core.config.plugins.processor.PluginProcessor

org/apache/logging/log4j/core/appender/RandomAccessFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$FactoryData extends ConfigurationFactoryData {
 private final boolean append;
 private final boolean immediateFlush;
 private final int bufferSize;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 public void RandomAccessFileManager$FactoryData(boolean, boolean, int, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/RolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverStrategy {
 public abstract RolloverDescription rollover(RollingFileManager) throws SecurityException;
}

org/apache/logging/log4j/core/appender/rolling/action/AbstractPathAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract synchronized class AbstractPathAction extends AbstractAction {
 private final String basePathString;
 private final java.util.Set options;
 private final int maxDepth;
 private final java.util.List pathConditions;
 private final org.apache.logging.log4j.core.lookup.StrSubstitutor subst;
 protected void AbstractPathAction(String, boolean, int, PathCondition[], org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public boolean execute() throws java.io.IOException;
 public boolean execute(java.nio.file.FileVisitor) throws java.io.IOException;
 protected abstract java.nio.file.FileVisitor createFileVisitor(java.nio.file.Path, java.util.List);
 public java.nio.file.Path getBasePath();
 public String getBasePathString();
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 public java.util.Set getOptions();
 public boolean isFollowSymbolicLinks();
 public int getMaxDepth();
 public java.util.List getPathConditions();
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAccumulatedFileCount.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAccumulatedFileCount implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final int threshold;
 private int count;
 private final PathCondition[] nestedConditions;
 private transient void IfAccumulatedFileCount(int, PathCondition[]);
 public int getThresholdCount();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAccumulatedFileCount createFileCountCondition(int, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$4.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$4 {
 void FileExtension$4(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/CountingNoOpAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class CountingNoOpAppender extends AbstractAppender {
 private final java.util.concurrent.atomic.AtomicLong total;
 public void CountingNoOpAppender(String, org.apache.logging.log4j.core.Layout);
 private void CountingNoOpAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Property[]);
 public long getCount();
 public void append(org.apache.logging.log4j.core.LogEvent);
 public static CountingNoOpAppender createAppender(String);
}

org/apache/logging/log4j/core/appender/WriterAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class WriterAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean follow;
 private java.io.Writer target;
 public void WriterAppender$Builder();
 public WriterAppender build();
 public WriterAppender$Builder setFollow(boolean);
 public WriterAppender$Builder setTarget(java.io.Writer);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$1 {
}

org/apache/logging/log4j/core/appender/SocketAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class SocketAppender$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AppenderSet.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderSet {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final java.util.Map nodeMap;
 public static AppenderSet$Builder newBuilder();
 private void AppenderSet(org.apache.logging.log4j.core.config.Configuration, java.util.Map);
 public org.apache.logging.log4j.core.Appender createAppender(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractAppender$Builder extends org.apache.logging.log4j.core.filter.AbstractFilterable$Builder {
 private boolean ignoreExceptions;
 private org.apache.logging.log4j.core.Layout layout;
 private String name;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void AbstractAppender$Builder();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public org.apache.logging.log4j.core.Layout getLayout();
 public String getName();
 public org.apache.logging.log4j.core.Layout getOrCreateLayout();
 public org.apache.logging.log4j.core.Layout getOrCreateLayout(java.nio.charset.Charset);
 public boolean isIgnoreExceptions();
 public AbstractAppender$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractAppender$Builder setIgnoreExceptions(boolean);
 public AbstractAppender$Builder setLayout(org.apache.logging.log4j.core.Layout);
 public AbstractAppender$Builder setName(String);
 public AbstractAppender$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AbstractAppender$Builder withIgnoreExceptions(boolean);
 public AbstractAppender$Builder withLayout(org.apache.logging.log4j.core.Layout);
 public AbstractAppender$Builder withName(String);
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class ColumnConfig$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String name;
 private String pattern;
 private String literal;
 private boolean isEventTimestamp;
 private boolean isUnicode;
 private boolean isClob;
 public void ColumnConfig$Builder();
 public ColumnConfig build();
 public ColumnConfig$Builder setClob(boolean);
 public ColumnConfig$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ColumnConfig$Builder setEventTimestamp(boolean);
 public ColumnConfig$Builder setLiteral(String);
 public ColumnConfig$Builder setName(String);
 public ColumnConfig$Builder setPattern(String);
 public ColumnConfig$Builder setUnicode(boolean);
}

org/apache/logging/log4j/core/appender/db/jdbc/ConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public abstract interface ConnectionSource extends org.apache.logging.log4j.core.LifeCycle {
 public abstract java.sql.Connection getConnection() throws java.sql.SQLException;
 public abstract String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/FactoryMethodConnectionSource$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class FactoryMethodConnectionSource$1 implements javax.sql.DataSource {
 void FactoryMethodConnectionSource$1(reflect.Method);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public java.sql.Connection getConnection(String, String) throws java.sql.SQLException;
 public int getLoginTimeout() throws java.sql.SQLException;
 public java.io.PrintWriter getLogWriter() throws java.sql.SQLException;
 public java.util.logging.Logger getParentLogger();
 public boolean isWrapperFor(Class) throws java.sql.SQLException;
 public void setLoginTimeout(int) throws java.sql.SQLException;
 public void setLogWriter(java.io.PrintWriter) throws java.sql.SQLException;
 public Object unwrap(Class) throws java.sql.SQLException;
}

org/apache/logging/log4j/core/appender/routing/PurgePolicy.class

package org.apache.logging.log4j.core.appender.routing;
public abstract interface PurgePolicy {
 public abstract void purge();
 public abstract void update(String, org.apache.logging.log4j.core.LogEvent);
 public abstract void initialize(RoutingAppender);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlConnection.class

package org.apache.logging.log4j.core.appender.nosql;
public abstract interface NoSqlConnection extends java.io.Closeable {
 public abstract NoSqlObject createObject();
 public abstract NoSqlObject[] createList(int);
 public abstract void insertObject(NoSqlObject);
 public abstract void close();
 public abstract boolean isClosed();
}

org/apache/logging/log4j/core/appender/nosql/DefaultNoSqlObject.class

package org.apache.logging.log4j.core.appender.nosql;
public synchronized class DefaultNoSqlObject implements NoSqlObject {
 private final java.util.Map map;
 public void DefaultNoSqlObject();
 public void set(String, Object);
 public void set(String, NoSqlObject);
 public void set(String, Object[]);
 public void set(String, NoSqlObject[]);
 public java.util.Map unwrap();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager$FactoryData.class

package org.apache.logging.log4j.core.appender.nosql;
final synchronized class NoSqlDatabaseManager$FactoryData extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager$AbstractFactoryData {
 private final NoSqlProvider provider;
 protected void NoSqlDatabaseManager$FactoryData(int, NoSqlProvider);
}

org/apache/logging/log4j/core/appender/nosql/NoSqlDatabaseManager.class

package org.apache.logging.log4j.core.appender.nosql;
public final synchronized class NoSqlDatabaseManager extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager {
 private static final NoSqlDatabaseManager$NoSQLDatabaseManagerFactory FACTORY;
 private final NoSqlProvider provider;
 private NoSqlConnection connection;
 private void NoSqlDatabaseManager(String, int, NoSqlProvider);
 protected void startupInternal();
 protected boolean shutdownInternal();
 protected void connectAndStart();
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 private void setFields(org.apache.logging.log4j.message.MapMessage, NoSqlObject);
 private void setFields(org.apache.logging.log4j.core.LogEvent, NoSqlObject);
 private NoSqlObject buildMarkerEntity(org.apache.logging.log4j.Marker);
 protected boolean commitAndClose();
 private NoSqlObject[] convertStackTrace(StackTraceElement[]);
 private NoSqlObject convertStackTraceElement(StackTraceElement);
 public static NoSqlDatabaseManager getNoSqlDatabaseManager(String, int, NoSqlProvider);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/FileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class FileAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/JmsAppender.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private volatile JmsManager manager;
 public static JmsAppender$Builder newBuilder();
 protected void JmsAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], JmsManager) throws javax.jms.JMSException;
 protected void JmsAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, JmsManager) throws javax.jms.JMSException;
 public void append(org.apache.logging.log4j.core.LogEvent);
 public JmsManager getManager();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$JeroMqConfiguration.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$JeroMqConfiguration {
 private final long affinity;
 private final long backlog;
 private final boolean delayAttachOnConnect;
 private final byte[] identity;
 private final boolean ipv4Only;
 private final long linger;
 private final long maxMsgSize;
 private final long rcvHwm;
 private final long receiveBufferSize;
 private final int receiveTimeOut;
 private final long reconnectIVL;
 private final long reconnectIVLMax;
 private final long sendBufferSize;
 private final int sendTimeOut;
 private final long sndHwm;
 private final int tcpKeepAlive;
 private final long tcpKeepAliveCount;
 private final long tcpKeepAliveIdle;
 private final long tcpKeepAliveInterval;
 private final boolean xpubVerbose;
 private final java.util.List endpoints;
 private void JeroMqManager$JeroMqConfiguration(long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, java.util.List);
 public String toString();
}

org/apache/logging/log4j/core/impl/DefaultLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class DefaultLogEventFactory implements LogEventFactory, LocationAwareLogEventFactory {
 private static final DefaultLogEventFactory instance;
 public void DefaultLogEventFactory();
 public static DefaultLogEventFactory getInstance();
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/MutableLogEvent.class

package org.apache.logging.log4j.core.impl;
public synchronized class MutableLogEvent implements org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.message.ReusableMessage, org.apache.logging.log4j.message.ParameterVisitable {
 private static final org.apache.logging.log4j.message.Message EMPTY;
 private int threadPriority;
 private long threadId;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private long nanoTime;
 private short parameterCount;
 private boolean includeLocation;
 private boolean endOfBatch;
 private org.apache.logging.log4j.Level level;
 private String threadName;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private String messageFormat;
 private StringBuilder messageText;
 private Object[] parameters;
 private Throwable thrown;
 private ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.Marker marker;
 private String loggerFqcn;
 private StackTraceElement source;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 transient boolean reserved;
 public void MutableLogEvent();
 public void MutableLogEvent(StringBuilder, Object[]);
 public Log4jLogEvent toImmutable();
 public void initFrom(org.apache.logging.log4j.core.LogEvent);
 public void clear();
 public String getLoggerFqcn();
 public void setLoggerFqcn(String);
 public org.apache.logging.log4j.Marker getMarker();
 public void setMarker(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.Level getLevel();
 public void setLevel(org.apache.logging.log4j.Level);
 public String getLoggerName();
 public void setLoggerName(String);
 public org.apache.logging.log4j.message.Message getMessage();
 public void setMessage(org.apache.logging.log4j.message.Message);
 private StringBuilder getMessageTextForWriting();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public void forEachParameter(org.apache.logging.log4j.message.ParameterConsumer, Object);
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public org.apache.logging.log4j.message.Message memento();
 public Throwable getThrown();
 public void setThrown(Throwable);
 void initTime(org.apache.logging.log4j.core.util.Clock, org.apache.logging.log4j.core.util.NanoClock);
 public long getTimeMillis();
 public void setTimeMillis(long);
 public org.apache.logging.log4j.core.time.Instant getInstant();
 public ThrowableProxy getThrownProxy();
 public void setSource(StackTraceElement);
 public StackTraceElement getSource();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public void setContextData(org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public void setContextStack(org.apache.logging.log4j.ThreadContext$ContextStack);
 public long getThreadId();
 public void setThreadId(long);
 public String getThreadName();
 public void setThreadName(String);
 public int getThreadPriority();
 public void setThreadPriority(int);
 public boolean isIncludeLocation();
 public void setIncludeLocation(boolean);
 public boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 public long getNanoTime();
 public void setNanoTime(long);
 protected Object writeReplace();
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public Log4jLogEvent createMemento();
 public void initializeBuilder(Log4jLogEvent$Builder);
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$1.class

package org.apache.logging.log4j.core.impl;
synchronized class Log4jLogEvent$1 {
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ParameterIndexGapException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ParameterIndexGapException extends CommandLine$InitializationException {
 private static final long serialVersionUID = -1520981133257618319;
 public void CommandLine$ParameterIndexGapException(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$UnmatchedArgumentException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$UnmatchedArgumentException extends CommandLine$ParameterException {
 private static final long serialVersionUID = -8700426380701452440;
 public void CommandLine$UnmatchedArgumentException(CommandLine, String);
 public void CommandLine$UnmatchedArgumentException(CommandLine, java.util.Stack);
 public void CommandLine$UnmatchedArgumentException(CommandLine, java.util.List);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ParameterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ParameterException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 1477112829129763139;
 private final CommandLine commandLine;
 public void CommandLine$ParameterException(CommandLine, String);
 public void CommandLine$ParameterException(CommandLine, String, Exception);
 public CommandLine getCommandLine();
 private static CommandLine$ParameterException create(CommandLine, Exception, String, int, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$PathConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$PathConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$PathConverter();
 public java.nio.file.Path convert(String);
}

org/apache/logging/log4j/core/tools/ExtendedLoggerGenerator.class

package org.apache.logging.log4j.core.tools;
public synchronized class ExtendedLoggerGenerator {
 public void ExtendedLoggerGenerator();
 public static void main(String[]);
}

org/apache/logging/log4j/core/tools/Generate$ExtendedLogger.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate$ExtendedLogger {
 public static void main(String[]);
 private void Generate$ExtendedLogger();
}

org/apache/logging/log4j/core/net/SmtpManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$1 {
}

org/apache/logging/log4j/core/net/SmtpManager.class

package org.apache.logging.log4j.core.net;
public synchronized class SmtpManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 private static final SmtpManager$SMTPManagerFactory FACTORY;
 private final javax.mail.Session session;
 private final org.apache.logging.log4j.core.util.CyclicBuffer buffer;
 private volatile javax.mail.internet.MimeMessage message;
 private final SmtpManager$FactoryData data;
 private static javax.mail.internet.MimeMessage createMimeMessage(SmtpManager$FactoryData, javax.mail.Session, org.apache.logging.log4j.core.LogEvent) throws javax.mail.MessagingException;
 protected void SmtpManager(String, javax.mail.Session, javax.mail.internet.MimeMessage, SmtpManager$FactoryData);
 public void add(org.apache.logging.log4j.core.LogEvent);
 public static SmtpManager getSmtpManager(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String, String, String, int, String, String, boolean, String, int, ssl.SslConfiguration);
 static String createManagerName(String, String, String, String, String, String, String, String, int, String, boolean, String);
 public void sendEvents(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent);
 org.apache.logging.log4j.core.LogEvent[] removeAllBufferedEvents();
 protected byte[] formatContentToBytes(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout) throws java.io.IOException;
 private void writeContent(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout, java.io.ByteArrayOutputStream) throws java.io.IOException;
 protected void writeHeader(org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected void writeBuffer(org.apache.logging.log4j.core.LogEvent[], org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected void writeFooter(org.apache.logging.log4j.core.Layout, java.io.OutputStream) throws java.io.IOException;
 protected String getEncoding(byte[], String);
 protected byte[] encodeContentToBytes(byte[], String) throws javax.mail.MessagingException, java.io.IOException;
 protected void encodeContent(byte[], String, java.io.ByteArrayOutputStream) throws javax.mail.MessagingException, java.io.IOException;
 protected javax.mail.internet.InternetHeaders getHeaders(String, String);
 protected javax.mail.internet.MimeMultipart getMimeMultipart(byte[], javax.mail.internet.InternetHeaders) throws javax.mail.MessagingException;
 protected void sendMultipartMessage(javax.mail.internet.MimeMessage, javax.mail.internet.MimeMultipart) throws javax.mail.MessagingException;
 protected void sendMultipartMessage(javax.mail.internet.MimeMessage, javax.mail.internet.MimeMultipart, String) throws javax.mail.MessagingException;
 private synchronized void connect(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SmtpManager$SMTPManagerFactory$1.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$SMTPManagerFactory$1 extends javax.mail.Authenticator {
 private final javax.mail.PasswordAuthentication passwordAuthentication;
 void SmtpManager$SMTPManagerFactory$1(SmtpManager$SMTPManagerFactory, String, String);
 protected javax.mail.PasswordAuthentication getPasswordAuthentication();
}

org/apache/logging/log4j/core/net/SmtpManager$SMTPManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$SMTPManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void SmtpManager$SMTPManagerFactory();
 public SmtpManager createManager(String, SmtpManager$FactoryData);
 private javax.mail.Authenticator buildAuthenticator(String, String);
}

org/apache/logging/log4j/core/net/DatagramSocketManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$FactoryData {
 private final String host;
 private final int port;
 private final org.apache.logging.log4j.core.Layout layout;
 private final int bufferSize;
 public void DatagramSocketManager$FactoryData(String, int, org.apache.logging.log4j.core.Layout, int);
}

org/apache/logging/log4j/core/util/ObjectArrayIterator.class

package org.apache.logging.log4j.core.util;
public synchronized class ObjectArrayIterator implements java.util.Iterator {
 final Object[] array;
 final int startIndex;
 final int endIndex;
 int index;
 public transient void ObjectArrayIterator(Object[]);
 public void ObjectArrayIterator(Object[], int);
 public void ObjectArrayIterator(Object[], int, int);
 public boolean hasNext();
 public Object next();
 public void remove();
 public Object[] getArray();
 public int getStartIndex();
 public int getEndIndex();
 public void reset();
}

org/apache/logging/log4j/core/util/datetime/DatePrinter.class

package org.apache.logging.log4j.core.util.datetime;
public abstract interface DatePrinter {
 public abstract String format(long);
 public abstract String format(java.util.Date);
 public abstract String format(java.util.Calendar);
 public abstract Appendable format(long, Appendable);
 public abstract Appendable format(java.util.Date, Appendable);
 public abstract Appendable format(java.util.Calendar, Appendable);
 public abstract String getPattern();
 public abstract java.util.TimeZone getTimeZone();
 public abstract java.util.Locale getLocale();
 public abstract StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$NumberRule.class

package org.apache.logging.log4j.core.util.datetime;
abstract interface FastDatePrinter$NumberRule extends FastDatePrinter$Rule {
 public abstract void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$CaseInsensitiveTextStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$CaseInsensitiveTextStrategy extends FastDateParser$PatternStrategy {
 private final int field;
 final java.util.Locale locale;
 private final java.util.Map lKeyValues;
 void FastDateParser$CaseInsensitiveTextStrategy(int, java.util.Calendar, java.util.Locale);
 void setCalendar(FastDateParser, java.util.Calendar, String);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneDisplayKey.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneDisplayKey {
 private final java.util.TimeZone mTimeZone;
 private final int mStyle;
 private final java.util.Locale mLocale;
 void FastDatePrinter$TimeZoneDisplayKey(java.util.TimeZone, boolean, int, java.util.Locale);
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$TimeZoneStrategy$TzInfo.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$TimeZoneStrategy$TzInfo {
 java.util.TimeZone zone;
 int dstOffset;
 void FastDateParser$TimeZoneStrategy$TzInfo(java.util.TimeZone, boolean);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitYearField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitYearField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$TwoDigitYearField INSTANCE;
 void FastDatePrinter$TwoDigitYearField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TextField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TextField implements FastDatePrinter$Rule {
 private final int mField;
 private final String[] mValues;
 void FastDatePrinter$TextField(int, String[]);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$ISO8601TimeZoneStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$ISO8601TimeZoneStrategy extends FastDateParser$PatternStrategy {
 private static final FastDateParser$Strategy ISO_8601_1_STRATEGY;
 private static final FastDateParser$Strategy ISO_8601_2_STRATEGY;
 private static final FastDateParser$Strategy ISO_8601_3_STRATEGY;
 void FastDateParser$ISO8601TimeZoneStrategy(String);
 void setCalendar(FastDateParser, java.util.Calendar, String);
 static FastDateParser$Strategy getStrategy(int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/KeyValuePair.class

package org.apache.logging.log4j.core.util;
public final synchronized class KeyValuePair {
 public static final KeyValuePair[] EMPTY_ARRAY;
 private final String key;
 private final String value;
 public void KeyValuePair(String, String);
 public String getKey();
 public String getValue();
 public String toString();
 public static KeyValuePair$Builder newBuilder();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Loader.class

package org.apache.logging.log4j.core.util;
public final synchronized class Loader {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String TSTR = Caught Exception while in Loader.getResource. This may be innocuous.;
 private void Loader();
 public static ClassLoader getClassLoader();
 public static ClassLoader getThreadContextClassLoader();
 public static ClassLoader getClassLoader(Class, Class);
 public static java.net.URL getResource(String, ClassLoader);
 public static java.io.InputStream getResourceAsStream(String, ClassLoader);
 private static boolean isChild(ClassLoader, ClassLoader);
 public static Class initializeClass(String, ClassLoader) throws ClassNotFoundException;
 public static Class loadClass(String, ClassLoader) throws ClassNotFoundException;
 public static Class loadSystemClass(String) throws ClassNotFoundException;
 public static Object newInstanceOf(String) throws ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, reflect.InvocationTargetException;
 public static Object newCheckedInstanceOf(String, Class) throws ClassNotFoundException, NoSuchMethodException, IllegalAccessException, reflect.InvocationTargetException, InstantiationException;
 public static Object newCheckedInstanceOfProperty(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 public static boolean isClassAvailable(String);
 public static boolean isJansiAvailable();
 public static Class loadClass(String) throws ClassNotFoundException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatchManager$1.class

package org.apache.logging.log4j.core.util;
synchronized class WatchManager$1 {
}

org/apache/logging/log4j/core/util/CoarseCachedClock$1.class

package org.apache.logging.log4j.core.util;
synchronized class CoarseCachedClock$1 extends Log4jThread {
 void CoarseCachedClock$1(CoarseCachedClock, String);
 public void run();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginCache.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginCache {
 private final java.util.Map categories;
 public void PluginCache();
 public java.util.Map getAllCategories();
 public java.util.Map getCategory(String);
 public void writeCache(java.io.OutputStream) throws java.io.IOException;
 public void loadCacheFiles(java.util.Enumeration) throws java.io.IOException;
 public int size();
}

org/apache/logging/log4j/core/config/plugins/validation/validators/RequiredValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class RequiredValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.Required annotation;
 public void RequiredValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.Required);
 public boolean isValid(String, Object);
 private boolean err(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$IntegerConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$IntegerConverter implements TypeConverter {
 public void TypeConverters$IntegerConverter();
 public Integer convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BooleanConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BooleanConverter implements TypeConverter {
 public void TypeConverters$BooleanConverter();
 public Boolean convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharacterConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharacterConverter implements TypeConverter {
 public void TypeConverters$CharacterConverter();
 public Character convert(String);
}

org/apache/logging/log4j/core/config/OrderComparator.class

package org.apache.logging.log4j.core.config;
public synchronized class OrderComparator implements java.util.Comparator, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private static final java.util.Comparator INSTANCE;
 public void OrderComparator();
 public static java.util.Comparator getInstance();
 public int compare(Class, Class);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/HttpWatcher.class

package org.apache.logging.log4j.core.config;
public synchronized class HttpWatcher extends org.apache.logging.log4j.core.util.AbstractWatcher {
 private org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private java.net.URL url;
 private volatile long lastModifiedMillis;
 private static final int NOT_MODIFIED = 304;
 private static final int OK = 200;
 private static final int BUF_SIZE = 1024;
 private static final String HTTP = http;
 private static final String HTTPS = https;
 public void HttpWatcher(Configuration, Reconfigurable, java.util.List, long);
 public long getLastModified();
 public boolean isModified();
 public void watching(org.apache.logging.log4j.core.util.Source);
 public org.apache.logging.log4j.core.util.Watcher newWatcher(Reconfigurable, java.util.List, long);
 private boolean refreshConfiguration();
 private byte[] readStream(java.io.InputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/config/composite/MergeStrategy.class

package org.apache.logging.log4j.core.config.composite;
public abstract interface MergeStrategy {
 public abstract void mergeRootProperties(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.AbstractConfiguration);
 public abstract void mergConfigurations(org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.config.plugins.util.PluginManager);
}

org/apache/logging/log4j/core/config/composite/CompositeConfiguration.class

package org.apache.logging.log4j.core.config.composite;
public synchronized class CompositeConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 public static final String MERGE_STRATEGY_PROPERTY = log4j.mergeStrategy;
 private static final String[] VERBOSE_CLASSES;
 private final java.util.List configurations;
 private MergeStrategy mergeStrategy;
 public void CompositeConfiguration(java.util.List);
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private void staffChildConfiguration(org.apache.logging.log4j.core.config.AbstractConfiguration);
 private void printNodes(String, org.apache.logging.log4j.core.config.Node, StringBuilder);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/CronScheduledFuture.class

package org.apache.logging.log4j.core.config;
public synchronized class CronScheduledFuture implements java.util.concurrent.ScheduledFuture {
 private volatile CronScheduledFuture$FutureData futureData;
 public void CronScheduledFuture(java.util.concurrent.ScheduledFuture, java.util.Date);
 public java.util.Date getFireTime();
 void reset(java.util.concurrent.ScheduledFuture, java.util.Date);
 public long getDelay(java.util.concurrent.TimeUnit);
 public int compareTo(java.util.concurrent.Delayed);
 public boolean cancel(boolean);
 public boolean isCancelled();
 public boolean isDone();
 public Object get() throws InterruptedException, java.util.concurrent.ExecutionException;
 public Object get(long, java.util.concurrent.TimeUnit) throws InterruptedException, java.util.concurrent.ExecutionException, java.util.concurrent.TimeoutException;
}

org/apache/logging/log4j/core/config/ScriptsPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class ScriptsPlugin {
 private void ScriptsPlugin();
 public static org.apache.logging.log4j.core.script.AbstractScript[] createScripts(org.apache.logging.log4j.core.script.AbstractScript[]);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultScriptFileComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultScriptFileComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder {
 public void DefaultScriptFileComponentBuilder(DefaultConfigurationBuilder, String, String);
 public DefaultScriptFileComponentBuilder addLanguage(String);
 public DefaultScriptFileComponentBuilder addIsWatched(boolean);
 public DefaultScriptFileComponentBuilder addIsWatched(String);
 public DefaultScriptFileComponentBuilder addCharset(String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultFilterComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder {
 public void DefaultFilterComponentBuilder(DefaultConfigurationBuilder, String, String, String);
}

org/apache/logging/log4j/core/config/AppendersPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class AppendersPlugin {
 private void AppendersPlugin();
 public static java.util.concurrent.ConcurrentMap createAppenders(org.apache.logging.log4j.core.Appender[]);
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$2.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$2 {
 void LoggerConfig$LoggerConfigPredicate$2(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate.class

package org.apache.logging.log4j.core.config;
public abstract synchronized enum LoggerConfig$LoggerConfigPredicate {
 public static final LoggerConfig$LoggerConfigPredicate ALL;
 public static final LoggerConfig$LoggerConfigPredicate ASYNCHRONOUS_ONLY;
 public static final LoggerConfig$LoggerConfigPredicate SYNCHRONOUS_ONLY;
 public static LoggerConfig$LoggerConfigPredicate[] values();
 public static LoggerConfig$LoggerConfigPredicate valueOf(String);
 private void LoggerConfig$LoggerConfigPredicate(String, int);
 abstract boolean allow(LoggerConfig);
 static void <clinit>();
}

org/apache/logging/log4j/core/jmx/LoggerContextAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class LoggerContextAdmin extends javax.management.NotificationBroadcasterSupport implements LoggerContextAdminMBean, java.beans.PropertyChangeListener {
 private static final int PAGE = 4096;
 private static final int TEXT_BUFFER = 65536;
 private static final int BUFFER_SIZE = 2048;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final java.util.concurrent.atomic.AtomicLong sequenceNo;
 private final javax.management.ObjectName objectName;
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 public void LoggerContextAdmin(org.apache.logging.log4j.core.LoggerContext, java.util.concurrent.Executor);
 private static javax.management.MBeanNotificationInfo createNotificationInfo();
 public String getStatus();
 public String getName();
 private org.apache.logging.log4j.core.config.Configuration getConfig();
 public String getConfigLocationUri();
 public void setConfigLocationUri(String) throws java.net.URISyntaxException, java.io.IOException;
 public void propertyChange(java.beans.PropertyChangeEvent);
 public String getConfigText() throws java.io.IOException;
 public String getConfigText(String) throws java.io.IOException;
 private String readContents(java.io.InputStream, java.nio.charset.Charset) throws java.io.IOException;
 public void setConfigText(String, String);
 public String getConfigName();
 public String getConfigClassName();
 public String getConfigFilter();
 public java.util.Map getConfigProperties();
 public javax.management.ObjectName getObjectName();
 private long nextSeqNo();
 private long now();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSerializerWithReplacement.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternSerializerWithReplacement implements AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
 private final PatternLayout$PatternSerializer delegate;
 private final org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private void PatternLayout$PatternSerializerWithReplacement(PatternLayout$PatternSerializer, org.apache.logging.log4j.core.pattern.RegexReplacement);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/JacksonFactory$Log4jXmlPrettyPrinter.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$Log4jXmlPrettyPrinter extends com.fasterxml.jackson.dataformat.xml.util.DefaultXmlPrettyPrinter {
 private static final long serialVersionUID = 1;
 void JacksonFactory$Log4jXmlPrettyPrinter(int);
 public void writePrologLinefeed(org.codehaus.stax2.XMLStreamWriter2) throws javax.xml.stream.XMLStreamException;
 public com.fasterxml.jackson.dataformat.xml.util.DefaultXmlPrettyPrinter createInstance();
}

org/apache/logging/log4j/core/layout/JsonLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class JsonLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout.class

package org.apache.logging.log4j.core.layout;
abstract synchronized class AbstractJacksonLayout extends AbstractStringLayout {
 protected static final String DEFAULT_EOL =

;
 protected static final String COMPACT_EOL = ;
 protected final String eol;
 protected final com.fasterxml.jackson.databind.ObjectWriter objectWriter;
 protected final boolean compact;
 protected final boolean complete;
 protected final boolean includeNullDelimiter;
 protected final AbstractJacksonLayout$ResolvableKeyValuePair[] additionalFields;
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer);
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer, boolean);
 protected void AbstractJacksonLayout(org.apache.logging.log4j.core.config.Configuration, com.fasterxml.jackson.databind.ObjectWriter, java.nio.charset.Charset, boolean, boolean, boolean, String, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 protected static boolean valueNeedsLookup(String);
 private static AbstractJacksonLayout$ResolvableKeyValuePair[] prepareAdditionalFields(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private static org.apache.logging.log4j.core.LogEvent convertMutableToLog4jEvent(org.apache.logging.log4j.core.LogEvent);
 protected Object wrapLogEvent(org.apache.logging.log4j.core.LogEvent);
 private java.util.Map resolveAdditionalFields(org.apache.logging.log4j.core.LogEvent);
 public void toSerializable(org.apache.logging.log4j.core.LogEvent, java.io.Writer) throws com.fasterxml.jackson.core.JsonGenerationException, com.fasterxml.jackson.databind.JsonMappingException, java.io.IOException;
}

org/apache/logging/log4j/core/layout/YamlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class YamlLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void YamlLayout$Builder();
 public YamlLayout build();
}

org/apache/logging/log4j/core/layout/GelfLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class GelfLayout$Builder extends AbstractStringLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String host;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 private GelfLayout$CompressionType compressionType;
 private int compressionThreshold;
 private boolean includeStacktrace;
 private boolean includeThreadContext;
 private boolean includeNullDelimiter;
 private boolean includeNewLineDelimiter;
 private String threadContextIncludes;
 private String threadContextExcludes;
 private String mapMessageIncludes;
 private String mapMessageExcludes;
 private boolean includeMapMessage;
 private boolean omitEmptyFields;
 private String messagePattern;
 private String threadContextPrefix;
 private String mapPrefix;
 private PatternSelector patternSelector;
 public void GelfLayout$Builder();
 public GelfLayout build();
 private internal.ListChecker createChecker(String, String);
 public String getHost();
 public GelfLayout$CompressionType getCompressionType();
 public int getCompressionThreshold();
 public boolean isIncludeStacktrace();
 public boolean isIncludeThreadContext();
 public boolean isIncludeNullDelimiter();
 public boolean isIncludeNewLineDelimiter();
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public GelfLayout$Builder setHost(String);
 public GelfLayout$Builder setCompressionType(GelfLayout$CompressionType);
 public GelfLayout$Builder setCompressionThreshold(int);
 public GelfLayout$Builder setIncludeStacktrace(boolean);
 public GelfLayout$Builder setIncludeThreadContext(boolean);
 public GelfLayout$Builder setIncludeNullDelimiter(boolean);
 public GelfLayout$Builder setIncludeNewLineDelimiter(boolean);
 public GelfLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
 public GelfLayout$Builder setMessagePattern(String);
 public GelfLayout$Builder setPatternSelector(PatternSelector);
 public GelfLayout$Builder setMdcIncludes(String);
 public GelfLayout$Builder setMdcExcludes(String);
 public GelfLayout$Builder setIncludeMapMessage(boolean);
 public GelfLayout$Builder setMapMessageIncludes(String);
 public GelfLayout$Builder setMapMessageExcludes(String);
 public GelfLayout$Builder setThreadContextPrefix(String);
 public GelfLayout$Builder setMapPrefix(String);
}

org/apache/logging/log4j/core/layout/MessageLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class MessageLayout extends AbstractLayout {
 public void MessageLayout();
 public void MessageLayout(org.apache.logging.log4j.core.config.Configuration, byte[], byte[]);
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.message.Message toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String getContentType();
 public static org.apache.logging.log4j.core.Layout createLayout();
}

org/apache/logging/log4j/core/layout/SyslogLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class SyslogLayout$Builder extends AbstractStringLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.net.Facility facility;
 private boolean includeNewLine;
 private String escapeNL;
 public void SyslogLayout$Builder();
 public SyslogLayout build();
 public org.apache.logging.log4j.core.net.Facility getFacility();
 public boolean isIncludeNewLine();
 public String getEscapeNL();
 public SyslogLayout$Builder setFacility(org.apache.logging.log4j.core.net.Facility);
 public SyslogLayout$Builder setIncludeNewLine(boolean);
 public SyslogLayout$Builder setEscapeNL(String);
}

org/apache/logging/log4j/core/layout/JacksonFactory$JSON.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$JSON extends JacksonFactory {
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 private final boolean objectMessageAsJsonObject;
 public void JacksonFactory$JSON(boolean, boolean, boolean, boolean);
 protected String getPropertNameForContextMap();
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/GelfLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class GelfLayout extends AbstractStringLayout {
 private static final char C = 44;
 private static final int COMPRESSION_THRESHOLD = 1024;
 private static final char Q = 34;
 private static final String QC = ",;
 private static final String QU = "_;
 private final org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 private final int compressionThreshold;
 private final GelfLayout$CompressionType compressionType;
 private final String host;
 private final boolean includeStacktrace;
 private final boolean includeThreadContext;
 private final boolean includeMapMessage;
 private final boolean includeNullDelimiter;
 private final boolean includeNewLineDelimiter;
 private final boolean omitEmptyFields;
 private final PatternLayout layout;
 private final GelfLayout$FieldWriter mdcWriter;
 private final GelfLayout$FieldWriter mapWriter;
 private static final ThreadLocal messageStringBuilder;
 private static final ThreadLocal timestampStringBuilder;
 public void GelfLayout(String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean);
 private void GelfLayout(org.apache.logging.log4j.core.config.Configuration, String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean, boolean, boolean, boolean, boolean, boolean, internal.ListChecker, internal.ListChecker, PatternLayout, String, String);
 public String toString();
 public static GelfLayout createLayout(String, org.apache.logging.log4j.core.util.KeyValuePair[], GelfLayout$CompressionType, int, boolean);
 public static GelfLayout$Builder newBuilder();
 public java.util.Map getContentFormat();
 public String getContentType();
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 public boolean requiresLocation();
 private byte[] compress(byte[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 private StringBuilder toText(org.apache.logging.log4j.core.LogEvent, StringBuilder, boolean);
 private static boolean valueNeedsLookup(String);
 private static StringBuilder getMessageStringBuilder();
 private static CharSequence toNullSafeString(CharSequence);
 static CharSequence formatTimestamp(long);
 private static StringBuilder getTimestampStringBuilder();
 private int formatLevel(org.apache.logging.log4j.Level);
 static CharSequence formatThrowable(Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String pattern;
 private PatternSelector patternSelector;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.pattern.RegexReplacement regexReplacement;
 private java.nio.charset.Charset charset;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private String header;
 private String footer;
 private void PatternLayout$Builder();
 private boolean useAnsiEscapeCodes();
 public PatternLayout$Builder withPattern(String);
 public PatternLayout$Builder withPatternSelector(PatternSelector);
 public PatternLayout$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PatternLayout$Builder withRegexReplacement(org.apache.logging.log4j.core.pattern.RegexReplacement);
 public PatternLayout$Builder withCharset(java.nio.charset.Charset);
 public PatternLayout$Builder withAlwaysWriteExceptions(boolean);
 public PatternLayout$Builder withDisableAnsi(boolean);
 public PatternLayout$Builder withNoConsoleNoAnsi(boolean);
 public PatternLayout$Builder withHeader(String);
 public PatternLayout$Builder withFooter(String);
 public PatternLayout build();
}

org/apache/logging/log4j/core/async/RingBufferLogEvent$Factory.class

package org.apache.logging.log4j.core.async;
synchronized class RingBufferLogEvent$Factory implements com.lmax.disruptor.EventFactory {
 private void RingBufferLogEvent$Factory();
 public RingBufferLogEvent newInstance();
}

org/apache/logging/log4j/core/async/DiscardingAsyncQueueFullPolicy.class

package org.apache.logging.log4j.core.async;
public synchronized class DiscardingAsyncQueueFullPolicy extends DefaultAsyncQueueFullPolicy {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.Level thresholdLevel;
 private final java.util.concurrent.atomic.AtomicLong discardCount;
 public void DiscardingAsyncQueueFullPolicy(org.apache.logging.log4j.Level);
 public EventRoute getRoute(long, org.apache.logging.log4j.Level);
 public static long getDiscardCount(AsyncQueueFullPolicy);
 public org.apache.logging.log4j.Level getThresholdLevel();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDisruptor extends org.apache.logging.log4j.core.AbstractLifeCycle implements AsyncLoggerConfigDelegate {
 private static final int MAX_DRAIN_ATTEMPTS_BEFORE_SHUTDOWN = 200;
 private static final int SLEEP_MILLIS_BETWEEN_DRAIN_ATTEMPTS = 50;
 private static final com.lmax.disruptor.EventFactory FACTORY;
 private static final com.lmax.disruptor.EventFactory MUTABLE_FACTORY;
 private static final com.lmax.disruptor.EventTranslatorTwoArg TRANSLATOR;
 private static final com.lmax.disruptor.EventTranslatorTwoArg MUTABLE_TRANSLATOR;
 private int ringBufferSize;
 private AsyncQueueFullPolicy asyncQueueFullPolicy;
 private Boolean mutable;
 private volatile com.lmax.disruptor.dsl.Disruptor disruptor;
 private long backgroundThreadId;
 private com.lmax.disruptor.EventFactory factory;
 private com.lmax.disruptor.EventTranslatorTwoArg translator;
 private volatile boolean alreadyLoggedWarning;
 private final Object queueFullEnqueueLock;
 public void AsyncLoggerConfigDisruptor();
 public void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
 public synchronized void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private static boolean hasBacklog(com.lmax.disruptor.dsl.Disruptor);
 public EventRoute getEventRoute(org.apache.logging.log4j.Level);
 private int remainingDisruptorCapacity();
 private boolean hasLog4jBeenShutDown(com.lmax.disruptor.dsl.Disruptor);
 public void enqueueEvent(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private org.apache.logging.log4j.core.LogEvent prepareEvent(org.apache.logging.log4j.core.LogEvent);
 private void showWarningAboutCustomLogEventWithReusableMessage(org.apache.logging.log4j.core.LogEvent);
 private void enqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private boolean synchronizeEnqueueWhenQueueFull();
 public boolean tryEnqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 private org.apache.logging.log4j.core.LogEvent ensureImmutable(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/DisruptorBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class DisruptorBlockingQueueFactory implements BlockingQueueFactory {
 private final com.conversantmedia.util.concurrent.SpinPolicy spinPolicy;
 private void DisruptorBlockingQueueFactory(com.conversantmedia.util.concurrent.SpinPolicy);
 public java.util.concurrent.BlockingQueue create(int);
 public static DisruptorBlockingQueueFactory createFactory(com.conversantmedia.util.concurrent.SpinPolicy);
}

org/apache/logging/log4j/core/async/AbstractAsyncExceptionHandler.class

package org.apache.logging.log4j.core.async;
abstract synchronized class AbstractAsyncExceptionHandler implements com.lmax.disruptor.ExceptionHandler {
 void AbstractAsyncExceptionHandler();
 public void handleEventException(Throwable, long, Object);
 public void handleOnStartException(Throwable);
 public void handleOnShutdownException(Throwable);
}

org/apache/logging/log4j/core/async/EventRoute.class

package org.apache.logging.log4j.core.async;
public abstract synchronized enum EventRoute {
 public static final EventRoute ENQUEUE;
 public static final EventRoute SYNCHRONOUS;
 public static final EventRoute DISCARD;
 public static EventRoute[] values();
 public static EventRoute valueOf(String);
 private void EventRoute(String, int);
 public abstract void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public abstract void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/EventLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class EventLookup extends AbstractLookup {
 public void EventLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/AbstractConfigurationAwareLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class AbstractConfigurationAwareLookup extends AbstractLookup implements org.apache.logging.log4j.core.config.ConfigurationAware {
 protected org.apache.logging.log4j.core.config.Configuration configuration;
 public void AbstractConfigurationAwareLookup();
 public void setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/lookup/SystemPropertiesLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class SystemPropertiesLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void SystemPropertiesLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher$CharSetMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$CharSetMatcher extends StrMatcher {
 private final char[] chars;
 void StrMatcher$CharSetMatcher(char[]);
 public int isMatch(char[], int, int, int);
}

org/apache/logging/log4j/core/lookup/LowerLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class LowerLookup implements StrLookup {
 public void LowerLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/MapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MapLookup implements StrLookup {
 private final java.util.Map map;
 public void MapLookup();
 public void MapLookup(java.util.Map);
 static java.util.Map initMap(String[], java.util.Map);
 static java.util.HashMap newMap(int);
 public static transient void setMainArguments(String[]);
 static java.util.Map toMap(java.util.List);
 static java.util.Map toMap(String[]);
 protected java.util.Map getMap();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
}

org/apache/logging/log4j/core/ErrorHandler.class

package org.apache.logging.log4j.core;
public abstract interface ErrorHandler {
 public abstract void error(String);
 public abstract void error(String, Throwable);
 public abstract void error(String, LogEvent, Throwable);
}

org/apache/logging/log4j/core/script/ScriptRef.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptRef extends AbstractScript {
 private final ScriptManager scriptManager;
 public void ScriptRef(String, ScriptManager);
 public String getLanguage();
 public String getScriptText();
 public static ScriptRef createReference(String, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/Filter.class

package org.apache.logging.log4j.core;
public abstract interface Filter extends LifeCycle {
 public static final Filter[] EMPTY_ARRAY;
 public static final String ELEMENT_TYPE = filter;
 public abstract Filter$Result getOnMismatch();
 public abstract Filter$Result getOnMatch();
 public abstract transient Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract Filter$Result filter(Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract Filter$Result filter(LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/BurstFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class BurstFilter$1 {
}

org/apache/logging/log4j/core/filter/BurstFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class BurstFilter extends AbstractFilter {
 private static final long NANOS_IN_SECONDS = 1000000000;
 private static final int DEFAULT_RATE = 10;
 private static final int DEFAULT_RATE_MULTIPLE = 100;
 private static final int HASH_SHIFT = 32;
 private final org.apache.logging.log4j.Level level;
 private final long burstInterval;
 private final java.util.concurrent.DelayQueue history;
 private final java.util.Queue available;
 static BurstFilter$LogDelay createLogDelay(long);
 private void BurstFilter(org.apache.logging.log4j.Level, float, long, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public int getAvailable();
 public void clear();
 public String toString();
 public static BurstFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/RootThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RootThrowablePatternConverter extends ThrowablePatternConverter {
 private void RootThrowablePatternConverter(org.apache.logging.log4j.core.config.Configuration, String[]);
 public static RootThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/PatternParser$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class PatternParser$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/RepeatPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RepeatPatternConverter extends LogEventPatternConverter {
 private final String result;
 public static RepeatPatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void RepeatPatternConverter(String);
 public void format(Object, StringBuilder);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void format(StringBuilder);
}

org/apache/logging/log4j/core/pattern/MaxLengthConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MaxLengthConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final int maxLength;
 public static MaxLengthConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void MaxLengthConverter(java.util.List, int);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NanoTimePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NanoTimePatternConverter extends LogEventPatternConverter {
 private void NanoTimePatternConverter(String[]);
 public static NanoTimePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy$1.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy$1 {
 void NameAbbreviator$MaxElementAbbreviator$Strategy$1(String, int, int);
 void abbreviate(int, String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$FormattedMessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$FormattedMessagePatternConverter extends MessagePatternConverter {
 private final String[] formats;
 void MessagePatternConverter$FormattedMessagePatternConverter(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$Formatter.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized class DatePatternConverter$Formatter {
 long previousTime;
 int nanos;
 private void DatePatternConverter$Formatter();
 abstract String format(org.apache.logging.log4j.core.time.Instant);
 abstract void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/jackson/MarkerMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class MarkerMixIn implements org.apache.logging.log4j.Marker {
 private static final long serialVersionUID = 1;
 void MarkerMixIn(String);
 public abstract String getName();
 public abstract org.apache.logging.log4j.Marker[] getParents();
}

org/apache/logging/log4j/core/jackson/Log4jJsonModule.class

package org.apache.logging.log4j.core.jackson;
synchronized class Log4jJsonModule extends com.fasterxml.jackson.databind.module.SimpleModule {
 private static final long serialVersionUID = 1;
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 private final boolean objectMessageAsJsonObject;
 void Log4jJsonModule(boolean, boolean, boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/MutableThreadContextStackDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class MutableThreadContextStackDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void MutableThreadContextStackDeserializer$1(MutableThreadContextStackDeserializer);
}

org/apache/logging/log4j/core/jackson/ExtendedStackTraceElementMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ExtendedStackTraceElementMixIn implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 public void ExtendedStackTraceElementMixIn(String, String, String, int, boolean, String, String);
 public abstract String getClassName();
 public abstract boolean getExact();
 public abstract org.apache.logging.log4j.core.impl.ExtendedClassInfo getExtraClassInfo();
 public abstract String getFileName();
 public abstract int getLineNumber();
 public abstract String getLocation();
 public abstract String getMethodName();
 abstract StackTraceElement getStackTraceElement();
 public abstract String getVersion();
 public abstract boolean isNativeMethod();
}

org/apache/logging/log4j/core/jackson/Initializers$SimpleModuleInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SimpleModuleInitializer {
 void Initializers$SimpleModuleInitializer();
 void initialize(com.fasterxml.jackson.databind.module.SimpleModule, boolean);
}

org/apache/logging/log4j/core/jackson/LogEventWithContextListMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LogEventWithContextListMixIn implements org.apache.logging.log4j.core.LogEvent {
 private static final long serialVersionUID = 1;
 void LogEventWithContextListMixIn();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerFqcn();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract StackTraceElement getSource();
 public abstract long getThreadId();
 public abstract String getThreadName();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy getThrownProxy();
 public abstract long getTimeMillis();
 public abstract org.apache.logging.log4j.core.time.Instant getInstant();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
}

org/apache/logging/log4j/core/appender/FileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class FileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private boolean locking;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void FileAppender$Builder();
 public FileAppender build();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public FileAppender$Builder withAdvertise(boolean);
 public FileAppender$Builder withAdvertiseUri(String);
 public FileAppender$Builder withAppend(boolean);
 public FileAppender$Builder withFileName(String);
 public FileAppender$Builder withCreateOnDemand(boolean);
 public FileAppender$Builder withLocking(boolean);
 public FileAppender$Builder withFilePermissions(String);
 public FileAppender$Builder withFileOwner(String);
 public FileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class MapRewritePolicy implements RewritePolicy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map map;
 private final MapRewritePolicy$Mode mode;
 private void MapRewritePolicy(java.util.Map, MapRewritePolicy$Mode);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static MapRewritePolicy createPolicy(String, org.apache.logging.log4j.core.util.KeyValuePair[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$MemoryMappedFileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$MemoryMappedFileManagerFactory implements ManagerFactory {
 private void MemoryMappedFileManager$MemoryMappedFileManagerFactory();
 public MemoryMappedFileManager createManager(String, MemoryMappedFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class TimeBasedTriggeringPolicy$1 {
}

org/apache/logging/log4j/core/appender/rolling/SizeBasedTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class SizeBasedTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final long MAX_FILE_SIZE = 10485760;
 private final long maxFileSize;
 private RollingFileManager manager;
 protected void SizeBasedTriggeringPolicy();
 protected void SizeBasedTriggeringPolicy(long);
 public long getMaxFileSize();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static SizeBasedTriggeringPolicy createPolicy(String);
}

org/apache/logging/log4j/core/appender/rolling/action/PathSorter.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface PathSorter extends java.util.Comparator {
}

org/apache/logging/log4j/core/appender/rolling/action/IfLastModified.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfLastModified implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private final Duration age;
 private final PathCondition[] nestedConditions;
 private void IfLastModified(Duration, PathCondition[]);
 public Duration getAge();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfLastModified createAgeCondition(Duration, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAccumulatedFileSize.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAccumulatedFileSize implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final long thresholdBytes;
 private long accumulatedSize;
 private final PathCondition[] nestedConditions;
 private transient void IfAccumulatedFileSize(long, PathCondition[]);
 public long getThresholdBytes();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAccumulatedFileSize createFileSizeCondition(String, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathCondition.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract interface PathCondition {
 public static final PathCondition[] EMPTY_ARRAY;
 public static transient PathCondition[] copy(PathCondition[]);
 public abstract void beforeFileTreeWalk();
 public abstract boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PosixViewAttributeAction$1.class

package org.apache.logging.log4j.core.appender.rolling.action;
synchronized class PosixViewAttributeAction$1 extends java.nio.file.SimpleFileVisitor {
 void PosixViewAttributeAction$1(PosixViewAttributeAction, java.util.List, java.nio.file.Path);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/rolling/action/DeletingVisitor.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class DeletingVisitor extends java.nio.file.SimpleFileVisitor {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.nio.file.Path basePath;
 private final boolean testMode;
 private final java.util.List pathConditions;
 public void DeletingVisitor(java.nio.file.Path, java.util.List, boolean);
 public java.nio.file.FileVisitResult visitFile(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes) throws java.io.IOException;
 public java.nio.file.FileVisitResult visitFileFailed(java.nio.file.Path, java.io.IOException) throws java.io.IOException;
 protected void delete(java.nio.file.Path) throws java.io.IOException;
 public boolean isTestMode();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$1 {
}

org/apache/logging/log4j/core/appender/rolling/TriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface TriggeringPolicy {
 public abstract void initialize(RollingFileManager);
 public abstract boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/RollingRandomAccessFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RollingRandomAccessFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private String filePattern;
 private boolean append;
 private rolling.TriggeringPolicy policy;
 private rolling.RolloverStrategy strategy;
 private boolean advertise;
 private String advertiseURI;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void RollingRandomAccessFileAppender$Builder();
 public RollingRandomAccessFileAppender build();
 public RollingRandomAccessFileAppender$Builder withFileName(String);
 public RollingRandomAccessFileAppender$Builder withFilePattern(String);
 public RollingRandomAccessFileAppender$Builder withAppend(boolean);
 public RollingRandomAccessFileAppender$Builder withPolicy(rolling.TriggeringPolicy);
 public RollingRandomAccessFileAppender$Builder withStrategy(rolling.RolloverStrategy);
 public RollingRandomAccessFileAppender$Builder withAdvertise(boolean);
 public RollingRandomAccessFileAppender$Builder withAdvertiseURI(String);
 public RollingRandomAccessFileAppender$Builder withFilePermissions(String);
 public RollingRandomAccessFileAppender$Builder withFileOwner(String);
 public RollingRandomAccessFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/SyslogAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class SyslogAppender extends SocketAppender {
 protected static final String RFC5424 = RFC5424;
 protected void SyslogAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.net.AbstractSocketManager, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 protected void SyslogAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.net.AbstractSocketManager, org.apache.logging.log4j.core.net.Advertiser);
 public static SyslogAppender createAppender(String, int, String, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, int, boolean, String, boolean, boolean, org.apache.logging.log4j.core.net.Facility, String, int, boolean, String, String, String, boolean, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, String, org.apache.logging.log4j.core.layout.LoggerFields[], boolean);
 public static SyslogAppender$Builder newSyslogAppenderBuilder();
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RandomAccessFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private boolean advertise;
 private String advertiseURI;
 public void RandomAccessFileAppender$Builder();
 public RandomAccessFileAppender build();
 public RandomAccessFileAppender$Builder setFileName(String);
 public RandomAccessFileAppender$Builder setAppend(boolean);
 public RandomAccessFileAppender$Builder setAdvertise(boolean);
 public RandomAccessFileAppender$Builder setAdvertiseURI(String);
}

org/apache/logging/log4j/core/appender/ConfigurationFactoryData.class

package org.apache.logging.log4j.core.appender;
public synchronized class ConfigurationFactoryData {
 public final org.apache.logging.log4j.core.config.Configuration configuration;
 public void ConfigurationFactoryData(org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class ConsoleAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private ConsoleAppender$Target target;
 private boolean follow;
 private boolean direct;
 public void ConsoleAppender$Builder();
 public ConsoleAppender$Builder setTarget(ConsoleAppender$Target);
 public ConsoleAppender$Builder setFollow(boolean);
 public ConsoleAppender$Builder setDirect(boolean);
 public ConsoleAppender build();
}

org/apache/logging/log4j/core/appender/DefaultErrorHandler.class

package org.apache.logging.log4j.core.appender;
public synchronized class DefaultErrorHandler implements org.apache.logging.log4j.core.ErrorHandler {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int MAX_EXCEPTION_COUNT = 3;
 private static final long EXCEPTION_INTERVAL_NANOS;
 private int exceptionCount;
 private long lastExceptionInstantNanos;
 private final org.apache.logging.log4j.core.Appender appender;
 public void DefaultErrorHandler(org.apache.logging.log4j.core.Appender);
 public void error(String);
 public void error(String, Throwable);
 public void error(String, org.apache.logging.log4j.core.LogEvent, Throwable);
 private boolean acquirePermit();
 public org.apache.logging.log4j.core.Appender getAppender();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class JdbcDatabaseManager extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager {
 private static final JdbcDatabaseManager$JdbcDatabaseManagerFactory INSTANCE;
 private final java.util.List columnConfigs;
 private final String sqlStatement;
 private final JdbcDatabaseManager$FactoryData factoryData;
 private volatile java.sql.Connection connection;
 private volatile java.sql.PreparedStatement statement;
 private volatile JdbcDatabaseManager$Reconnector reconnector;
 private volatile boolean isBatchSupported;
 private volatile java.util.Map columnMetaData;
 private static void appendColumnName(int, String, StringBuilder);
 private static void appendColumnNames(String, JdbcDatabaseManager$FactoryData, StringBuilder);
 private static JdbcDatabaseManager$JdbcDatabaseManagerFactory getFactory();
 public static JdbcDatabaseManager getJDBCDatabaseManager(String, int, ConnectionSource, String, ColumnConfig[]);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[]);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long);
 public static JdbcDatabaseManager getManager(String, int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long, boolean);
 private void JdbcDatabaseManager(String, String, java.util.List, JdbcDatabaseManager$FactoryData);
 private void checkConnection();
 protected void closeResources(boolean);
 protected boolean commitAndClose();
 private boolean commitAndCloseAll();
 private void connectAndPrepare() throws java.sql.SQLException;
 protected void connectAndStart();
 private JdbcDatabaseManager$Reconnector createReconnector();
 private String createSqlSelect();
 private String fieldsToString();
 public ConnectionSource getConnectionSource();
 public String getSqlStatement();
 public String getTableName();
 private void initColumnMetaData() throws java.sql.SQLException;
 private boolean isClosed(java.sql.Statement) throws java.sql.SQLException;
 private boolean isClosed(java.sql.Connection) throws java.sql.SQLException;
 private void reconnectOn(Exception);
 private void setFields(org.apache.logging.log4j.message.MapMessage) throws java.sql.SQLException;
 private void setStatementObject(int, String, Object) throws java.sql.SQLException;
 protected boolean shutdownInternal();
 protected void startupInternal() throws Exception;
 private Object truncate(String, Object);
 protected void writeInternal(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 protected void writeThrough(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/routing/IdlePurgePolicy.class

package org.apache.logging.log4j.core.appender.routing;
public synchronized class IdlePurgePolicy extends org.apache.logging.log4j.core.AbstractLifeCycle implements PurgePolicy, Runnable {
 private final long timeToLive;
 private final long checkInterval;
 private final java.util.concurrent.ConcurrentMap appendersUsage;
 private RoutingAppender routingAppender;
 private final org.apache.logging.log4j.core.config.ConfigurationScheduler scheduler;
 private volatile java.util.concurrent.ScheduledFuture future;
 public void IdlePurgePolicy(long, long, org.apache.logging.log4j.core.config.ConfigurationScheduler);
 public void initialize(RoutingAppender);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void purge();
 public void update(String, org.apache.logging.log4j.core.LogEvent);
 public void run();
 private void scheduleNext();
 public static PurgePolicy createPurgePolicy(String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/appender/AsyncAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class AsyncAppender$Builder extends org.apache.logging.log4j.core.filter.AbstractFilterable$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private String errorRef;
 private boolean blocking;
 private long shutdownTimeout;
 private int bufferSize;
 private String name;
 private boolean includeLocation;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private boolean ignoreExceptions;
 private org.apache.logging.log4j.core.async.BlockingQueueFactory blockingQueueFactory;
 public void AsyncAppender$Builder();
 public AsyncAppender$Builder setAppenderRefs(org.apache.logging.log4j.core.config.AppenderRef[]);
 public AsyncAppender$Builder setErrorRef(String);
 public AsyncAppender$Builder setBlocking(boolean);
 public AsyncAppender$Builder setShutdownTimeout(long);
 public AsyncAppender$Builder setBufferSize(int);
 public AsyncAppender$Builder setName(String);
 public AsyncAppender$Builder setIncludeLocation(boolean);
 public AsyncAppender$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public AsyncAppender$Builder setIgnoreExceptions(boolean);
 public AsyncAppender$Builder setBlockingQueueFactory(org.apache.logging.log4j.core.async.BlockingQueueFactory);
 public AsyncAppender build();
}

org/apache/logging/log4j/core/appender/mom/JmsManager$JmsManagerFactory.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$JmsManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JmsManager$JmsManagerFactory();
 public JmsManager createManager(String, JmsManager$JmsManagerConfiguration);
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class KafkaManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 public static final String DEFAULT_TIMEOUT_MILLIS = 30000;
 static KafkaProducerFactory producerFactory;
 private final java.util.Properties config;
 private org.apache.kafka.clients.producer.Producer producer;
 private final int timeoutMillis;
 private final String topic;
 private final String key;
 private final boolean syncSend;
 private static final KafkaManager$KafkaManagerFactory factory;
 public void KafkaManager(org.apache.logging.log4j.core.LoggerContext, String, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 private void closeProducer(long, java.util.concurrent.TimeUnit);
 public void send(byte[]) throws java.util.concurrent.ExecutionException, InterruptedException, java.util.concurrent.TimeoutException;
 public void startup();
 public String getTopic();
 public static KafkaManager getManager(org.apache.logging.log4j.core.LoggerContext, String, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$1.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$1 {
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
public synchronized class JeroMqManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 public static final String SYS_PROPERTY_ENABLE_SHUTDOWN_HOOK = log4j.jeromq.enableShutdownHook;
 public static final String SYS_PROPERTY_IO_THREADS = log4j.jeromq.ioThreads;
 private static final JeroMqManager$JeroMqManagerFactory FACTORY;
 private static final org.zeromq.ZMQ$Context CONTEXT;
 private static final org.apache.logging.log4j.core.util.Cancellable SHUTDOWN_HOOK;
 private final org.zeromq.ZMQ$Socket publisher;
 private void JeroMqManager(String, JeroMqManager$JeroMqConfiguration);
 public boolean send(byte[]);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public static JeroMqManager getJeroMqManager(String, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, java.util.List);
 public static org.zeromq.ZMQ$Context getContext();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LocationAware.class

package org.apache.logging.log4j.core.impl;
public abstract interface LocationAware {
 public abstract boolean requiresLocation();
}

org/apache/logging/log4j/core/impl/MementoMessage.class

package org.apache.logging.log4j.core.impl;
public final synchronized class MementoMessage implements org.apache.logging.log4j.message.Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private final String formattedMessage;
 private final String format;
 private final Object[] parameters;
 public void MementoMessage(String, String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public String toString();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$Builder.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jLogEvent$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String loggerFqcn;
 private org.apache.logging.log4j.Marker marker;
 private org.apache.logging.log4j.Level level;
 private String loggerName;
 private org.apache.logging.log4j.message.Message message;
 private Throwable thrown;
 private final org.apache.logging.log4j.core.time.MutableInstant instant;
 private ThrowableProxy thrownProxy;
 private org.apache.logging.log4j.util.StringMap contextData;
 private org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private long threadId;
 private String threadName;
 private int threadPriority;
 private StackTraceElement source;
 private boolean includeLocation;
 private boolean endOfBatch;
 private long nanoTime;
 public void Log4jLogEvent$Builder();
 public void Log4jLogEvent$Builder(org.apache.logging.log4j.core.LogEvent);
 public Log4jLogEvent$Builder setLevel(org.apache.logging.log4j.Level);
 public Log4jLogEvent$Builder setLoggerFqcn(String);
 public Log4jLogEvent$Builder setLoggerName(String);
 public Log4jLogEvent$Builder setMarker(org.apache.logging.log4j.Marker);
 public Log4jLogEvent$Builder setMessage(org.apache.logging.log4j.message.Message);
 public Log4jLogEvent$Builder setThrown(Throwable);
 public Log4jLogEvent$Builder setTimeMillis(long);
 public Log4jLogEvent$Builder setInstant(org.apache.logging.log4j.core.time.Instant);
 public Log4jLogEvent$Builder setThrownProxy(ThrowableProxy);
 public Log4jLogEvent$Builder setContextMap(java.util.Map);
 public Log4jLogEvent$Builder setContextData(org.apache.logging.log4j.util.StringMap);
 public Log4jLogEvent$Builder setContextStack(org.apache.logging.log4j.ThreadContext$ContextStack);
 public Log4jLogEvent$Builder setThreadId(long);
 public Log4jLogEvent$Builder setThreadName(String);
 public Log4jLogEvent$Builder setThreadPriority(int);
 public Log4jLogEvent$Builder setSource(StackTraceElement);
 public Log4jLogEvent$Builder setIncludeLocation(boolean);
 public Log4jLogEvent$Builder setEndOfBatch(boolean);
 public Log4jLogEvent$Builder setNanoTime(long);
 public Log4jLogEvent build();
 private void initTimeFields();
}

org/apache/logging/log4j/core/impl/ContextDataInjectorFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class ContextDataInjectorFactory {
 public void ContextDataInjectorFactory();
 public static org.apache.logging.log4j.core.ContextDataInjector createInjector();
 private static org.apache.logging.log4j.core.ContextDataInjector createDefaultInjector();
}

org/apache/logging/log4j/core/selector/ContextSelector.class

package org.apache.logging.log4j.core.selector;
public abstract interface ContextSelector {
 public static final long DEFAULT_STOP_TIMEOUT = 50;
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public abstract org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean);
 public abstract org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI);
 public abstract java.util.List getLoggerContexts();
 public abstract void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
}

org/apache/logging/log4j/core/tools/Generate$Type$1.class

package org.apache.logging.log4j.core.tools;
final synchronized enum Generate$Type$1 {
 void Generate$Type$1(String, int);
 String imports();
 String declaration();
 String constructor();
 Class generator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$TypeConversionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$TypeConversionException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 4251973913816346114;
 public void CommandLine$TypeConversionException(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$SortByOptionArityAndNameAlphabetically.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$SortByOptionArityAndNameAlphabetically extends CommandLine$Help$SortByShortestOptionNameAlphabetically {
 void CommandLine$Help$SortByOptionArityAndNameAlphabetically();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ByteConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ByteConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ByteConverter();
 public Byte convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ISO8601DateConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ISO8601DateConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ISO8601DateConverter();
 public java.util.Date convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$DoubleConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$DoubleConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$DoubleConverter();
 public Double convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Tracer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Tracer {
 CommandLine$TraceLevel level;
 java.io.PrintStream stream;
 private void CommandLine$Tracer();
 transient void warn(String, Object[]);
 transient void info(String, Object[]);
 transient void debug(String, Object[]);
 boolean isWarn();
 boolean isInfo();
 boolean isDebug();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MissingTypeConverterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MissingTypeConverterException extends CommandLine$ParameterException {
 private static final long serialVersionUID = -6050931703233083760;
 public void CommandLine$MissingTypeConverterException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$SortByShortestOptionNameAlphabetically.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$SortByShortestOptionNameAlphabetically implements java.util.Comparator {
 void CommandLine$Help$SortByShortestOptionNameAlphabetically();
 public int compare(reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/net/ssl/LaxHostnameVerifier.class

package org.apache.logging.log4j.core.net.ssl;
public final synchronized class LaxHostnameVerifier implements javax.net.ssl.HostnameVerifier {
 public static final javax.net.ssl.HostnameVerifier INSTANCE;
 private void LaxHostnameVerifier();
 public boolean verify(String, javax.net.ssl.SSLSession);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/ssl/KeyStoreConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class KeyStoreConfiguration extends AbstractKeyStoreConfiguration {
 private final String keyManagerFactoryAlgorithm;
 public void KeyStoreConfiguration(String, PasswordProvider, String, String) throws StoreConfigurationException;
 public void KeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public void KeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, char[], String, String, String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, char[], String, String) throws StoreConfigurationException;
 public static KeyStoreConfiguration createKeyStoreConfiguration(String, String, String, String) throws StoreConfigurationException;
 public javax.net.ssl.KeyManagerFactory initKeyManagerFactory() throws java.security.NoSuchAlgorithmException, java.security.UnrecoverableKeyException, java.security.KeyStoreException;
 public int hashCode();
 public boolean equals(Object);
 public String getKeyManagerFactoryAlgorithm();
}

org/apache/logging/log4j/core/net/ssl/StoreConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class StoreConfigurationException extends Exception {
 private static final long serialVersionUID = 1;
 public void StoreConfigurationException(Exception);
 public void StoreConfigurationException(String);
 public void StoreConfigurationException(String, Exception);
}

org/apache/logging/log4j/core/net/JndiManager.class

package org.apache.logging.log4j.core.net;
public synchronized class JndiManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 private static final JndiManager$JndiManagerFactory FACTORY;
 private static final String PREFIX = log4j2.enableJndi;
 private static final String JAVA_SCHEME = java;
 private static final boolean JNDI_CONTEXT_SELECTOR_ENABLED;
 private static final boolean JNDI_JDBC_ENABLED;
 private static final boolean JNDI_JMS_ENABLED;
 private static final boolean JNDI_LOOKUP_ENABLED;
 private final javax.naming.InitialContext context;
 private static boolean isJndiEnabled(String);
 public static boolean isJndiEnabled();
 public static boolean isJndiContextSelectorEnabled();
 public static boolean isJndiJdbcEnabled();
 public static boolean isJndiJmsEnabled();
 public static boolean isJndiLookupEnabled();
 private void JndiManager(String, javax.naming.InitialContext);
 public static JndiManager getDefaultManager();
 public static JndiManager getDefaultManager(String);
 public static JndiManager getJndiManager(String, String, String, String, String, java.util.Properties);
 public static JndiManager getJndiManager(java.util.Properties);
 private static String createManagerName();
 public static java.util.Properties createProperties(String, String, String, String, String, java.util.Properties);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 public Object lookup(String) throws javax.naming.NamingException;
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/MulticastDnsAdvertiser.class

package org.apache.logging.log4j.core.net;
public synchronized class MulticastDnsAdvertiser implements Advertiser {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final int MAX_LENGTH = 255;
 private static final int DEFAULT_PORT = 4555;
 private static Object jmDNS;
 private static Class jmDNSClass;
 private static Class serviceInfoClass;
 public void MulticastDnsAdvertiser();
 public Object advertise(java.util.Map);
 public void unadvertise(Object);
 private static Object createJmDnsVersion1();
 private static Object createJmDnsVersion3();
 private static Object buildServiceInfoVersion1(String, int, String, java.util.Map);
 private static Object buildServiceInfoVersion3(String, int, String, java.util.Map);
 private static Object initializeJmDns();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SocketAddress.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketAddress {
 private final java.net.InetSocketAddress socketAddress;
 public static SocketAddress getLoopback();
 private void SocketAddress(java.net.InetAddress, int);
 public java.net.InetSocketAddress getSocketAddress();
 public int getPort();
 public java.net.InetAddress getAddress();
 public String getHostName();
 public static SocketAddress$Builder newBuilder();
 public String toString();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$DayInWeekField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$DayInWeekField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$DayInWeekField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 void FastDatePrinter$TwoDigitNumberField(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$UnpaddedMonthField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$UnpaddedMonthField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$UnpaddedMonthField INSTANCE;
 void FastDatePrinter$UnpaddedMonthField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$Strategy.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FastDateParser$Strategy {
 private void FastDateParser$Strategy();
 boolean isNumber();
 abstract boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
}

org/apache/logging/log4j/core/util/ArrayUtils.class

package org.apache.logging.log4j.core.util;
public synchronized class ArrayUtils {
 public void ArrayUtils();
 public static boolean isEmpty(byte[]);
 public static int getLength(Object);
 private static Object remove(Object, int);
 public static Object[] remove(Object[], int);
}

org/apache/logging/log4j/core/util/NullOutputStream.class

package org.apache.logging.log4j.core.util;
public synchronized class NullOutputStream extends java.io.OutputStream {
 private static final NullOutputStream INSTANCE;
 public static final NullOutputStream NULL_OUTPUT_STREAM;
 public static NullOutputStream getInstance();
 private void NullOutputStream();
 public void write(byte[], int, int);
 public void write(int);
 public void write(byte[]) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DefaultShutdownCallbackRegistry.class

package org.apache.logging.log4j.core.util;
public synchronized class DefaultShutdownCallbackRegistry implements ShutdownCallbackRegistry, org.apache.logging.log4j.core.LifeCycle2, Runnable {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.concurrent.atomic.AtomicReference state;
 private final java.util.concurrent.ThreadFactory threadFactory;
 private final java.util.Collection hooks;
 private ref.Reference shutdownHookRef;
 public void DefaultShutdownCallbackRegistry();
 protected void DefaultShutdownCallbackRegistry(java.util.concurrent.ThreadFactory);
 public void run();
 public Cancellable addShutdownCallback(Runnable);
 public void initialize();
 public void start();
 private void addShutdownHook(Thread);
 public void stop();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private void removeShutdownHook();
 public org.apache.logging.log4j.core.LifeCycle$State getState();
 public boolean isStarted();
 public boolean isStopped();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/UuidUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class UuidUtil {
 private static final long[] EMPTY_LONG_ARRAY;
 public static final String UUID_SEQUENCE = org.apache.logging.log4j.uuidSequence;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String ASSIGNED_SEQUENCES = org.apache.logging.log4j.assignedSequences;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private static final long TYPE1 = 4096;
 private static final byte VARIANT = -128;
 private static final int SEQUENCE_MASK = 16383;
 private static final long NUM_100NS_INTERVALS_SINCE_UUID_EPOCH = 122192928000000000;
 private static final long INITIAL_UUID_SEQNO;
 private static final long LOW_MASK = 4294967295;
 private static final long MID_MASK = 281470681743360;
 private static final long HIGH_MASK = 1152640029630136320;
 private static final int NODE_SIZE = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_4 = 32;
 private static final int SHIFT_6 = 48;
 private static final int HUNDRED_NANOS_PER_MILLI = 10000;
 private static final long LEAST;
 private void UuidUtil();
 static long initialize(byte[]);
 public static java.util.UUID getTimeBasedUuid();
 static void <clinit>();
}

org/apache/logging/log4j/core/AbstractLogEvent.class

package org.apache.logging.log4j.core;
public abstract synchronized class AbstractLogEvent implements LogEvent {
 private static final long serialVersionUID = 1;
 private volatile time.MutableInstant instant;
 public void AbstractLogEvent();
 public LogEvent toImmutable();
 public org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public java.util.Map getContextMap();
 public org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public org.apache.logging.log4j.Level getLevel();
 public String getLoggerFqcn();
 public String getLoggerName();
 public org.apache.logging.log4j.Marker getMarker();
 public org.apache.logging.log4j.message.Message getMessage();
 public StackTraceElement getSource();
 public long getThreadId();
 public String getThreadName();
 public int getThreadPriority();
 public Throwable getThrown();
 public impl.ThrowableProxy getThrownProxy();
 public long getTimeMillis();
 public time.Instant getInstant();
 protected final time.MutableInstant getMutableInstant();
 public boolean isEndOfBatch();
 public boolean isIncludeLocation();
 public void setEndOfBatch(boolean);
 public void setIncludeLocation(boolean);
 public long getNanoTime();
}

org/apache/logging/log4j/core/config/arbiters/SelectArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SelectArbiter {
 public void SelectArbiter();
 public Arbiter evaluateConditions(java.util.List);
 public static SelectArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/DefaultArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class DefaultArbiter implements Arbiter {
 public void DefaultArbiter();
 public boolean isCondition();
 public static DefaultArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/plugins/PluginFactory.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginFactory extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/PluginBuilderFactory.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginBuilderFactory extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/util/PluginType.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginType {
 private final org.apache.logging.log4j.core.config.plugins.processor.PluginEntry pluginEntry;
 private final Class pluginClass;
 private final String elementName;
 public void PluginType(org.apache.logging.log4j.core.config.plugins.processor.PluginEntry, Class, String);
 public Class getPluginClass();
 public String getElementName();
 public String getKey();
 public boolean isObjectPrintable();
 public boolean isDeferChildren();
 public String getCategory();
 public String toString();
}

org/apache/logging/log4j/core/config/plugins/util/PluginBuilder.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class PluginBuilder implements org.apache.logging.log4j.core.util.Builder {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final PluginType pluginType;
 private final Class clazz;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.config.Node node;
 private org.apache.logging.log4j.core.LogEvent event;
 public void PluginBuilder(PluginType);
 public PluginBuilder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public PluginBuilder withConfigurationNode(org.apache.logging.log4j.core.config.Node);
 public PluginBuilder forLogEvent(org.apache.logging.log4j.core.LogEvent);
 public Object build();
 private void verify();
 private static org.apache.logging.log4j.core.util.Builder createBuilder(Class) throws reflect.InvocationTargetException, IllegalAccessException;
 private void injectFields(org.apache.logging.log4j.core.util.Builder) throws IllegalAccessException;
 private static String simpleName(Object);
 private static reflect.Method findFactoryMethod(Class);
 private Object[] generateParameters(reflect.Method);
 private static transient String[] extractPluginAliases(annotation.Annotation[]);
 private void checkForRemainingAttributes();
 private void verifyNodeChildrenUsed();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$1.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$1 {
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UriConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UriConverter implements TypeConverter {
 public void TypeConverters$UriConverter();
 public java.net.URI convert(String) throws java.net.URISyntaxException;
}

org/apache/logging/log4j/core/config/DefaultConfiguration.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultConfiguration extends AbstractConfiguration {
 public static final String DEFAULT_NAME = Default;
 public static final String DEFAULT_LEVEL = org.apache.logging.log4j.level;
 public static final String DEFAULT_PATTERN = %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n;
 public void DefaultConfiguration();
 protected void doConfigure();
}

org/apache/logging/log4j/core/config/ConfigurationFactory.class

package org.apache.logging.log4j.core.config;
public abstract synchronized class ConfigurationFactory extends builder.api.ConfigurationBuilderFactory {
 public static final String CONFIGURATION_FACTORY_PROPERTY = log4j.configurationFactory;
 public static final String CONFIGURATION_FILE_PROPERTY = log4j.configurationFile;
 public static final String LOG4J1_CONFIGURATION_FILE_PROPERTY = log4j.configuration;
 public static final String LOG4J1_EXPERIMENTAL = log4j1.compatibility;
 public static final String AUTHORIZATION_PROVIDER = log4j2.authorizationProvider;
 public static final String CATEGORY = ConfigurationFactory;
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected static final String TEST_PREFIX = log4j2-test;
 protected static final String DEFAULT_PREFIX = log4j2;
 protected static final String LOG4J1_VERSION = 1;
 protected static final String LOG4J2_VERSION = 2;
 private static final String CLASS_LOADER_SCHEME = classloader;
 private static final String CLASS_PATH_SCHEME = classpath;
 private static final String OVERRIDE_PARAM = override;
 private static volatile java.util.List factories;
 private static ConfigurationFactory configFactory;
 protected final org.apache.logging.log4j.core.lookup.StrSubstitutor substitutor;
 private static final java.util.concurrent.locks.Lock LOCK;
 private static final String HTTPS = https;
 private static final String HTTP = http;
 private static volatile org.apache.logging.log4j.core.util.AuthorizationProvider authorizationProvider;
 public void ConfigurationFactory();
 public static ConfigurationFactory getInstance();
 public static org.apache.logging.log4j.core.util.AuthorizationProvider authorizationProvider(org.apache.logging.log4j.util.PropertiesUtil);
 public static org.apache.logging.log4j.core.util.AuthorizationProvider getAuthorizationProvider();
 private static void addFactory(java.util.Collection, String);
 private static void addFactory(java.util.Collection, Class);
 public static void setConfigurationFactory(ConfigurationFactory);
 public static void resetConfigurationFactory();
 public static void removeConfigurationFactory(ConfigurationFactory);
 protected abstract String[] getSupportedTypes();
 protected String getTestPrefix();
 protected String getDefaultPrefix();
 protected String getVersion();
 protected boolean isActive();
 public abstract Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, ConfigurationSource);
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI);
 public Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, String, java.net.URI, ClassLoader);
 static boolean isClassLoaderUri(java.net.URI);
 static String extractClassLoaderUriPath(java.net.URI);
 protected ConfigurationSource getInputFromString(String, ClassLoader);
 static java.util.List getFactories();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/ConfigurationScheduler.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationScheduler extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String SIMPLE_NAME;
 private static final int MAX_SCHEDULED_ITEMS = 5;
 private volatile java.util.concurrent.ScheduledExecutorService executorService;
 private int scheduledItems;
 private final String name;
 public void ConfigurationScheduler();
 public void ConfigurationScheduler(String);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public boolean isExecutorServiceSet();
 public void incrementScheduledItems();
 public void decrementScheduledItems();
 public java.util.concurrent.ScheduledFuture schedule(java.util.concurrent.Callable, long, java.util.concurrent.TimeUnit);
 public java.util.concurrent.ScheduledFuture schedule(Runnable, long, java.util.concurrent.TimeUnit);
 public CronScheduledFuture scheduleWithCron(org.apache.logging.log4j.core.util.CronExpression, Runnable);
 public CronScheduledFuture scheduleWithCron(org.apache.logging.log4j.core.util.CronExpression, java.util.Date, Runnable);
 public java.util.concurrent.ScheduledFuture scheduleAtFixedRate(Runnable, long, long, java.util.concurrent.TimeUnit);
 public java.util.concurrent.ScheduledFuture scheduleWithFixedDelay(Runnable, long, long, java.util.concurrent.TimeUnit);
 public long nextFireInterval(java.util.Date);
 private java.util.concurrent.ScheduledExecutorService getExecutorService();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultAppenderComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultAppenderComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder {
 public void DefaultAppenderComponentBuilder(DefaultConfigurationBuilder, String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/ConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ConfigurationBuilder extends org.apache.logging.log4j.core.util.Builder {
 public abstract ConfigurationBuilder add(ScriptComponentBuilder);
 public abstract ConfigurationBuilder add(ScriptFileComponentBuilder);
 public abstract ConfigurationBuilder add(AppenderComponentBuilder);
 public abstract ConfigurationBuilder add(CustomLevelComponentBuilder);
 public abstract ConfigurationBuilder add(FilterComponentBuilder);
 public abstract ConfigurationBuilder add(LoggerComponentBuilder);
 public abstract ConfigurationBuilder add(RootLoggerComponentBuilder);
 public abstract ConfigurationBuilder addProperty(String, String);
 public abstract ScriptComponentBuilder newScript(String, String, String);
 public abstract ScriptFileComponentBuilder newScriptFile(String);
 public abstract ScriptFileComponentBuilder newScriptFile(String, String);
 public abstract AppenderComponentBuilder newAppender(String, String);
 public abstract AppenderRefComponentBuilder newAppenderRef(String);
 public abstract LoggerComponentBuilder newAsyncLogger(String);
 public abstract LoggerComponentBuilder newAsyncLogger(String, boolean);
 public abstract LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level);
 public abstract LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level, boolean);
 public abstract LoggerComponentBuilder newAsyncLogger(String, String);
 public abstract LoggerComponentBuilder newAsyncLogger(String, String, boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger();
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level, boolean);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(String);
 public abstract RootLoggerComponentBuilder newAsyncRootLogger(String, boolean);
 public abstract ComponentBuilder newComponent(String);
 public abstract ComponentBuilder newComponent(String, String);
 public abstract ComponentBuilder newComponent(String, String, String);
 public abstract PropertyComponentBuilder newProperty(String, String);
 public abstract KeyValuePairComponentBuilder newKeyValuePair(String, String);
 public abstract CustomLevelComponentBuilder newCustomLevel(String, int);
 public abstract FilterComponentBuilder newFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public abstract FilterComponentBuilder newFilter(String, String, String);
 public abstract LayoutComponentBuilder newLayout(String);
 public abstract LoggerComponentBuilder newLogger(String);
 public abstract LoggerComponentBuilder newLogger(String, boolean);
 public abstract LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level);
 public abstract LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level, boolean);
 public abstract LoggerComponentBuilder newLogger(String, String);
 public abstract LoggerComponentBuilder newLogger(String, String, boolean);
 public abstract RootLoggerComponentBuilder newRootLogger();
 public abstract RootLoggerComponentBuilder newRootLogger(boolean);
 public abstract RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level);
 public abstract RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level, boolean);
 public abstract RootLoggerComponentBuilder newRootLogger(String);
 public abstract RootLoggerComponentBuilder newRootLogger(String, boolean);
 public abstract ConfigurationBuilder setAdvertiser(String);
 public abstract ConfigurationBuilder setConfigurationName(String);
 public abstract ConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public abstract ConfigurationBuilder setMonitorInterval(String);
 public abstract ConfigurationBuilder setPackages(String);
 public abstract ConfigurationBuilder setShutdownHook(String);
 public abstract ConfigurationBuilder setShutdownTimeout(long, java.util.concurrent.TimeUnit);
 public abstract ConfigurationBuilder setStatusLevel(org.apache.logging.log4j.Level);
 public abstract ConfigurationBuilder setVerbosity(String);
 public abstract ConfigurationBuilder setDestination(String);
 public abstract void setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public abstract ConfigurationBuilder addRootProperty(String, String);
 public abstract org.apache.logging.log4j.core.config.Configuration build(boolean);
 public abstract void writeXmlConfiguration(java.io.OutputStream) throws java.io.IOException;
 public abstract String toXmlConfiguration();
}

org/apache/logging/log4j/core/jmx/ContextSelectorAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class ContextSelectorAdmin implements ContextSelectorAdminMBean {
 private final javax.management.ObjectName objectName;
 private final org.apache.logging.log4j.core.selector.ContextSelector selector;
 public void ContextSelectorAdmin(String, org.apache.logging.log4j.core.selector.ContextSelector);
 public javax.management.ObjectName getObjectName();
 public String getImplementationClassName();
}

org/apache/logging/log4j/core/jmx/Server.class

package org.apache.logging.log4j.core.jmx;
public final synchronized class Server {
 private static final String CONTEXT_NAME_ALL = *;
 public static final String DOMAIN = org.apache.logging.log4j2;
 private static final String PROPERTY_DISABLE_JMX = log4j2.disable.jmx;
 private static final String PROPERTY_ASYNC_NOTIF = log4j2.jmx.notify.async;
 private static final String THREAD_NAME_PREFIX = jmx.notif;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 static final java.util.concurrent.Executor executor;
 private void Server();
 private static java.util.concurrent.ExecutorService createExecutor();
 public static String escape(String);
 private static boolean isJmxDisabled();
 public static void reregisterMBeansAfterReconfigure();
 public static void reregisterMBeansAfterReconfigure(javax.management.MBeanServer);
 public static void unregisterMBeans();
 public static void unregisterMBeans(javax.management.MBeanServer);
 private static org.apache.logging.log4j.core.selector.ContextSelector getContextSelector();
 public static void unregisterLoggerContext(String);
 public static void unregisterLoggerContext(String, javax.management.MBeanServer);
 private static void registerStatusLogger(String, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void registerContextSelector(String, org.apache.logging.log4j.core.selector.ContextSelector, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void unregisterStatusLogger(String, javax.management.MBeanServer);
 private static void unregisterContextSelector(String, javax.management.MBeanServer);
 private static void unregisterLoggerConfigs(String, javax.management.MBeanServer);
 private static void unregisterContexts(javax.management.MBeanServer);
 private static void unregisterAppenders(String, javax.management.MBeanServer);
 private static void unregisterAsyncAppenders(String, javax.management.MBeanServer);
 private static void unregisterAsyncLoggerRingBufferAdmins(String, javax.management.MBeanServer);
 private static void unregisterAsyncLoggerConfigRingBufferAdmins(String, javax.management.MBeanServer);
 private static void unregisterAllMatching(String, javax.management.MBeanServer);
 private static void registerLoggerConfigs(org.apache.logging.log4j.core.LoggerContext, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void registerAppenders(org.apache.logging.log4j.core.LoggerContext, javax.management.MBeanServer, java.util.concurrent.Executor) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 private static void register(javax.management.MBeanServer, Object, javax.management.ObjectName) throws javax.management.InstanceAlreadyExistsException, javax.management.MBeanRegistrationException, javax.management.NotCompliantMBeanException;
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternMatch$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class PatternMatch$Builder implements org.apache.logging.log4j.core.util.Builder, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private String key;
 private String pattern;
 public void PatternMatch$Builder();
 public PatternMatch$Builder setKey(String);
 public PatternMatch$Builder setPattern(String);
 public PatternMatch build();
 protected Object readResolve() throws java.io.ObjectStreamException;
}

org/apache/logging/log4j/core/layout/JacksonFactory$YAML.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$YAML extends JacksonFactory {
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 public void JacksonFactory$YAML(boolean, boolean);
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForContextMap();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/CsvParameterLayout.class

package org.apache.logging.log4j.core.layout;
public synchronized class CsvParameterLayout extends AbstractCsvLayout {
 public static AbstractCsvLayout createDefaultLayout();
 public static AbstractCsvLayout createLayout(org.apache.commons.csv.CSVFormat);
 public static AbstractCsvLayout createLayout(org.apache.logging.log4j.core.config.Configuration, String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String, java.nio.charset.Charset, String, String);
 public void CsvParameterLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/internal/ListChecker$NoopChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class ListChecker$NoopChecker implements ListChecker {
 public void ListChecker$NoopChecker();
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/AbstractStringLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractStringLayout extends AbstractLayout implements org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.impl.LocationAware {
 protected static final int DEFAULT_STRING_BUILDER_SIZE = 1024;
 protected static final int MAX_STRING_BUILDER_SIZE;
 private static final ThreadLocal threadLocal;
 private Encoder textEncoder;
 private final java.nio.charset.Charset charset;
 private final AbstractStringLayout$Serializer footerSerializer;
 private final AbstractStringLayout$Serializer headerSerializer;
 public boolean requiresLocation();
 protected static StringBuilder getStringBuilder();
 private static int size(String, int);
 protected static void trimToMaxSize(StringBuilder);
 protected void AbstractStringLayout(java.nio.charset.Charset);
 protected void AbstractStringLayout(java.nio.charset.Charset, byte[], byte[]);
 protected void AbstractStringLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, AbstractStringLayout$Serializer, AbstractStringLayout$Serializer);
 protected byte[] getBytes(String);
 public java.nio.charset.Charset getCharset();
 public String getContentType();
 public byte[] getFooter();
 public AbstractStringLayout$Serializer getFooterSerializer();
 public byte[] getHeader();
 public AbstractStringLayout$Serializer getHeaderSerializer();
 private org.apache.logging.log4j.core.impl.DefaultLogEventFactory getLogEventFactory();
 protected Encoder getStringBuilderEncoder();
 protected byte[] serializeToBytes(AbstractStringLayout$Serializer, byte[]);
 protected String serializeToString(AbstractStringLayout$Serializer);
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy$1.class

package org.apache.logging.log4j.core.async;
final synchronized enum ThreadNameCachingStrategy$1 {
 void ThreadNameCachingStrategy$1(String, int);
 public String getThreadName();
}

org/apache/logging/log4j/core/async/AsyncLoggerContextSelector.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerContextSelector extends org.apache.logging.log4j.core.selector.ClassLoaderContextSelector {
 public void AsyncLoggerContextSelector();
 public static boolean isSelected();
 protected org.apache.logging.log4j.core.LoggerContext createContext(String, java.net.URI);
 protected String toContextMapKey(ClassLoader);
 protected String defaultContextName();
}

org/apache/logging/log4j/core/async/AsyncLogger.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLogger extends org.apache.logging.log4j.core.Logger implements com.lmax.disruptor.EventTranslatorVararg {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final org.apache.logging.log4j.core.ContextDataInjector CONTEXT_DATA_INJECTOR;
 private static final ThreadNameCachingStrategy THREAD_NAME_CACHING_STRATEGY;
 private final ThreadLocal threadLocalTranslator;
 private final AsyncLoggerDisruptor loggerDisruptor;
 private volatile boolean includeLocation;
 private volatile org.apache.logging.log4j.core.util.NanoClock nanoClock;
 private final AsyncLogger$TranslatorType threadLocalTranslatorType;
 private final AsyncLogger$TranslatorType varargTranslatorType;
 public void AsyncLogger(org.apache.logging.log4j.core.LoggerContext, String, org.apache.logging.log4j.message.MessageFactory, AsyncLoggerDisruptor);
 protected void updateConfiguration(org.apache.logging.log4j.core.config.Configuration);
 org.apache.logging.log4j.core.util.NanoClock getNanoClock();
 private RingBufferLogEventTranslator getCachedTranslator();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 private AsyncLogger$TranslatorType getTranslatorType();
 private boolean isReused(org.apache.logging.log4j.message.Message);
 private void logWithThreadLocalTranslator(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logWithThreadLocalTranslator(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void publish(RingBufferLogEventTranslator);
 private void handleRingBufferFull(RingBufferLogEventTranslator);
 private void initTranslator(RingBufferLogEventTranslator, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void initTranslator(RingBufferLogEventTranslator, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void initTranslatorThreadValues(RingBufferLogEventTranslator);
 private StackTraceElement calcLocationIfRequested(String);
 private void logWithVarargTranslator(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logWithVarargTranslator(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public transient void translateTo(RingBufferLogEvent, long, Object[]);
 void logMessageInCurrentThread(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void handleRingBufferFull(StackTraceElement, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void actualAsyncLog(RingBufferLogEvent);
 private void onPropertiesPresent(RingBufferLogEvent, java.util.List);
 private static org.apache.logging.log4j.util.StringMap getContextData(RingBufferLogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerDisruptor.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerDisruptor extends org.apache.logging.log4j.core.AbstractLifeCycle {
 private static final int SLEEP_MILLIS_BETWEEN_DRAIN_ATTEMPTS = 50;
 private static final int MAX_DRAIN_ATTEMPTS_BEFORE_SHUTDOWN = 200;
 private final Object queueFullEnqueueLock;
 private volatile com.lmax.disruptor.dsl.Disruptor disruptor;
 private String contextName;
 private boolean useThreadLocalTranslator;
 private long backgroundThreadId;
 private AsyncQueueFullPolicy asyncQueueFullPolicy;
 private int ringBufferSize;
 void AsyncLoggerDisruptor(String);
 public String getContextName();
 public void setContextName(String);
 com.lmax.disruptor.dsl.Disruptor getDisruptor();
 public synchronized void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 private static boolean hasBacklog(com.lmax.disruptor.dsl.Disruptor);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String);
 EventRoute getEventRoute(org.apache.logging.log4j.Level);
 private int remainingDisruptorCapacity();
 private boolean hasLog4jBeenShutDown(com.lmax.disruptor.dsl.Disruptor);
 boolean tryPublish(RingBufferLogEventTranslator);
 void enqueueLogMessageWhenQueueFull(RingBufferLogEventTranslator);
 void enqueueLogMessageWhenQueueFull(com.lmax.disruptor.EventTranslatorVararg, AsyncLogger, StackTraceElement, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private boolean synchronizeEnqueueWhenQueueFull();
 private void logWarningOnNpeFromDisruptorPublish(RingBufferLogEventTranslator);
 private void logWarningOnNpeFromDisruptorPublish(org.apache.logging.log4j.Level, String, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isUseThreadLocals();
 public void setUseThreadLocals(boolean);
}

org/apache/logging/log4j/core/LifeCycle$State.class

package org.apache.logging.log4j.core;
public final synchronized enum LifeCycle$State {
 public static final LifeCycle$State INITIALIZING;
 public static final LifeCycle$State INITIALIZED;
 public static final LifeCycle$State STARTING;
 public static final LifeCycle$State STARTED;
 public static final LifeCycle$State STOPPING;
 public static final LifeCycle$State STOPPED;
 public static LifeCycle$State[] values();
 public static LifeCycle$State valueOf(String);
 private void LifeCycle$State(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/DateLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class DateLookup implements StrLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void DateLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 private String formatDate(long, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/message/ExtendedThreadInformation.class

package org.apache.logging.log4j.core.message;
synchronized class ExtendedThreadInformation implements org.apache.logging.log4j.message.ThreadInformation {
 private final management.ThreadInfo threadInfo;
 void ExtendedThreadInformation(management.ThreadInfo);
 public void printThreadInfo(StringBuilder);
 public void printStack(StringBuilder, StackTraceElement[]);
 private void formatLock(StringBuilder, management.LockInfo);
 private void formatState(StringBuilder, management.ThreadInfo);
}

org/apache/logging/log4j/core/LifeCycle.class

package org.apache.logging.log4j.core;
public abstract interface LifeCycle {
 public abstract LifeCycle$State getState();
 public abstract void initialize();
 public abstract void start();
 public abstract void stop();
 public abstract boolean isStarted();
 public abstract boolean isStopped();
}

org/apache/logging/log4j/core/Logger$LoggerProxy.class

package org.apache.logging.log4j.core;
public synchronized class Logger$LoggerProxy implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final String name;
 private final org.apache.logging.log4j.message.MessageFactory messageFactory;
 public void Logger$LoggerProxy(String, org.apache.logging.log4j.message.MessageFactory);
 protected Object readResolve() throws java.io.ObjectStreamException;
}

org/apache/logging/log4j/core/LoggerContext.class

package org.apache.logging.log4j.core;
public synchronized class LoggerContext extends AbstractLifeCycle implements org.apache.logging.log4j.spi.LoggerContext, AutoCloseable, org.apache.logging.log4j.spi.Terminable, config.ConfigurationListener, org.apache.logging.log4j.spi.LoggerContextShutdownEnabled {
 public static final String PROPERTY_CONFIG = config;
 private static final config.Configuration NULL_CONFIGURATION;
 private final org.apache.logging.log4j.spi.LoggerRegistry loggerRegistry;
 private final java.util.concurrent.CopyOnWriteArrayList propertyChangeListeners;
 private volatile java.util.List listeners;
 private volatile config.Configuration configuration;
 private static final String EXTERNAL_CONTEXT_KEY = __EXTERNAL_CONTEXT_KEY__;
 private java.util.concurrent.ConcurrentMap externalMap;
 private String contextName;
 private volatile java.net.URI configLocation;
 private util.Cancellable shutdownCallback;
 private final java.util.concurrent.locks.Lock configLock;
 public void LoggerContext(String);
 public void LoggerContext(String, Object);
 public void LoggerContext(String, Object, java.net.URI);
 public void LoggerContext(String, Object, String);
 public void addShutdownListener(org.apache.logging.log4j.spi.LoggerContextShutdownAware);
 public java.util.List getListeners();
 public static LoggerContext getContext();
 public static LoggerContext getContext(boolean);
 public static LoggerContext getContext(ClassLoader, boolean, java.net.URI);
 public void start();
 public void start(config.Configuration);
 private void setUpShutdownHook();
 public void close();
 public void terminate();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public String getName();
 public Logger getRootLogger();
 public void setName(String);
 public Object getObject(String);
 public Object putObject(String, Object);
 public Object putObjectIfAbsent(String, Object);
 public Object removeObject(String);
 public boolean removeObject(String, Object);
 public void setExternalContext(Object);
 public Object getExternalContext();
 public Logger getLogger(String);
 public java.util.Collection getLoggers();
 public Logger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public config.Configuration getConfiguration();
 public void addFilter(Filter);
 public void removeFilter(Filter);
 public config.Configuration setConfiguration(config.Configuration);
 private void firePropertyChangeEvent(java.beans.PropertyChangeEvent);
 public void addPropertyChangeListener(java.beans.PropertyChangeListener);
 public void removePropertyChangeListener(java.beans.PropertyChangeListener);
 public java.net.URI getConfigLocation();
 public void setConfigLocation(java.net.URI);
 private void reconfigure(java.net.URI);
 public void reconfigure();
 public void reconfigure(config.Configuration);
 public void updateLoggers();
 public void updateLoggers(config.Configuration);
 public synchronized void onChange(config.Reconfigurable);
 private void initApiModule();
 protected Logger newInstance(LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/TimeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class TimeFilter extends AbstractFilter {
 private static final org.apache.logging.log4j.core.util.Clock CLOCK;
 private static final java.time.format.DateTimeFormatter FORMATTER;
 private static final long HOUR_MS = 3600000;
 private static final long DAY_MS = 86400000;
 private volatile long start;
 private final java.time.LocalTime startTime;
 private volatile long end;
 private final java.time.LocalTime endTime;
 private final long duration;
 private final java.time.ZoneId timeZone;
 void TimeFilter(java.time.LocalTime, java.time.LocalTime, java.time.ZoneId, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result, java.time.LocalDate);
 private void TimeFilter(java.time.LocalTime, java.time.LocalTime, java.time.ZoneId, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private synchronized void adjustTimes(long);
 org.apache.logging.log4j.core.Filter$Result filter(long);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static TimeFilter createFilter(String, String, String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private static java.time.LocalTime parseTimestamp(String, java.time.LocalTime);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/TextRenderer.class

package org.apache.logging.log4j.core.pattern;
public abstract interface TextRenderer {
 public abstract void render(String, StringBuilder, String);
 public abstract void render(StringBuilder, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ThreadNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadNamePatternConverter extends LogEventPatternConverter {
 private static final ThreadNamePatternConverter INSTANCE;
 private void ThreadNamePatternConverter();
 public static ThreadNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$PatternFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$PatternFormatter extends DatePatternConverter$Formatter {
 private final org.apache.logging.log4j.core.util.datetime.FastDateFormat fastDateFormat;
 private final StringBuilder cachedBuffer;
 void DatePatternConverter$PatternFormatter(org.apache.logging.log4j.core.util.datetime.FastDateFormat);
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Cyan.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Cyan extends AbstractStyleNameConverter {
 protected static final String NAME = cyan;
 public void AbstractStyleNameConverter$Cyan(java.util.List, String);
 public static AbstractStyleNameConverter$Cyan newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/ThreadIdPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadIdPatternConverter extends LogEventPatternConverter {
 private static final ThreadIdPatternConverter INSTANCE;
 private void ThreadIdPatternConverter();
 public static ThreadIdPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AnsiEscape.class

package org.apache.logging.log4j.core.pattern;
public final synchronized enum AnsiEscape {
 public static final AnsiEscape CSI;
 public static final AnsiEscape SUFFIX;
 public static final AnsiEscape SEPARATOR;
 public static final AnsiEscape NORMAL;
 public static final AnsiEscape BRIGHT;
 public static final AnsiEscape DIM;
 public static final AnsiEscape UNDERLINE;
 public static final AnsiEscape BLINK;
 public static final AnsiEscape REVERSE;
 public static final AnsiEscape HIDDEN;
 public static final AnsiEscape BLACK;
 public static final AnsiEscape FG_BLACK;
 public static final AnsiEscape RED;
 public static final AnsiEscape FG_RED;
 public static final AnsiEscape GREEN;
 public static final AnsiEscape FG_GREEN;
 public static final AnsiEscape YELLOW;
 public static final AnsiEscape FG_YELLOW;
 public static final AnsiEscape BLUE;
 public static final AnsiEscape FG_BLUE;
 public static final AnsiEscape MAGENTA;
 public static final AnsiEscape FG_MAGENTA;
 public static final AnsiEscape CYAN;
 public static final AnsiEscape FG_CYAN;
 public static final AnsiEscape WHITE;
 public static final AnsiEscape FG_WHITE;
 public static final AnsiEscape DEFAULT;
 public static final AnsiEscape FG_DEFAULT;
 public static final AnsiEscape BG_BLACK;
 public static final AnsiEscape BG_RED;
 public static final AnsiEscape BG_GREEN;
 public static final AnsiEscape BG_YELLOW;
 public static final AnsiEscape BG_BLUE;
 public static final AnsiEscape BG_MAGENTA;
 public static final AnsiEscape BG_CYAN;
 public static final AnsiEscape BG_WHITE;
 private static final String DEFAULT_STYLE;
 private final String code;
 public static AnsiEscape[] values();
 public static AnsiEscape valueOf(String);
 private void AnsiEscape(String, int, String);
 public static String getDefaultStyle();
 public String getCode();
 public static java.util.Map createMap(String, String[]);
 public static java.util.Map createMap(String[], String[]);
 public static transient String createSequence(String[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/HtmlTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class HtmlTextRenderer implements TextRenderer {
 public void HtmlTextRenderer(String[]);
 public void render(String, StringBuilder, String);
 public void render(StringBuilder, StringBuilder);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class MessagePatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/ClassNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ClassNamePatternConverter extends NamePatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final String NA = ?;
 private void ClassNamePatternConverter(String[]);
 public static ClassNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$4.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$4 {
 void EncodingPatternConverter$EscapeFormat$4(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class LevelPatternConverter extends LogEventPatternConverter {
 private static final String OPTION_LENGTH = length;
 private static final String OPTION_LOWER = lowerCase;
 private static final LevelPatternConverter INSTANCE;
 private void LevelPatternConverter();
 public static LevelPatternConverter newInstance(String[]);
 private static String left(org.apache.logging.log4j.Level, int);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public String getStyleClass(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntryDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ListOfMapEntryDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ListOfMapEntryDeserializer();
 public java.util.Map deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/ObjectMessageSerializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class ObjectMessageSerializer extends com.fasterxml.jackson.databind.ser.std.StdScalarSerializer {
 private static final long serialVersionUID = 1;
 void ObjectMessageSerializer();
 public void serialize(org.apache.logging.log4j.message.ObjectMessage, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

Log4j-config.xsd

org/apache/logging/log4j/core/appender/AppenderSet$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class AppenderSet$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Node node;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 public void AppenderSet$Builder();
 public AppenderSet build();
 public org.apache.logging.log4j.core.config.Node getNode();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public AppenderSet$Builder withNode(org.apache.logging.log4j.core.config.Node);
 public AppenderSet$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public String toString();
}

org/apache/logging/log4j/core/appender/rewrite/LoggerNameLevelRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public synchronized class LoggerNameLevelRewritePolicy implements RewritePolicy {
 private final String loggerName;
 private final java.util.Map map;
 public static LoggerNameLevelRewritePolicy createPolicy(String, org.apache.logging.log4j.core.util.KeyValuePair[]);
 private static org.apache.logging.log4j.Level getLevel(String);
 private void LoggerNameLevelRewritePolicy(String, java.util.Map);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/HttpAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class HttpAppender$Builder extends AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private java.net.URL url;
 private String method;
 private int connectTimeoutMillis;
 private int readTimeoutMillis;
 private org.apache.logging.log4j.core.config.Property[] headers;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private boolean verifyHostname;
 public void HttpAppender$Builder();
 public HttpAppender build();
 public java.net.URL getUrl();
 public String getMethod();
 public int getConnectTimeoutMillis();
 public int getReadTimeoutMillis();
 public org.apache.logging.log4j.core.config.Property[] getHeaders();
 public org.apache.logging.log4j.core.net.ssl.SslConfiguration getSslConfiguration();
 public boolean isVerifyHostname();
 public HttpAppender$Builder setUrl(java.net.URL);
 public HttpAppender$Builder setMethod(String);
 public HttpAppender$Builder setConnectTimeoutMillis(int);
 public HttpAppender$Builder setReadTimeoutMillis(int);
 public HttpAppender$Builder setHeaders(org.apache.logging.log4j.core.config.Property[]);
 public HttpAppender$Builder setSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public HttpAppender$Builder setVerifyHostname(boolean);
}

org/apache/logging/log4j/core/appender/rolling/action/GzCompressAction$ConfigurableLevelGZIPOutputStream.class

package org.apache.logging.log4j.core.appender.rolling.action;
final synchronized class GzCompressAction$ConfigurableLevelGZIPOutputStream extends java.util.zip.GZIPOutputStream {
 void GzCompressAction$ConfigurableLevelGZIPOutputStream(java.io.OutputStream, int, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/rolling/action/FileRenameAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class FileRenameAction extends AbstractAction {
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean renameEmptyFiles;
 public void FileRenameAction(java.io.File, java.io.File, boolean);
 public boolean execute();
 public java.io.File getDestination();
 public java.io.File getSource();
 public boolean isRenameEmptyFiles();
 public static boolean execute(java.io.File, java.io.File, boolean);
 private static boolean moveFile(java.nio.file.Path, java.nio.file.Path) throws java.io.IOException;
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAny.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAny implements PathCondition {
 private final PathCondition[] components;
 private transient void IfAny(PathCondition[]);
 public PathCondition[] getDeleteFilters();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfAny createOrCondition(PathCondition[]);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$EmptyQueue.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$EmptyQueue extends java.util.concurrent.ArrayBlockingQueue {
 private static final long serialVersionUID = 1;
 void RollingFileManager$EmptyQueue();
 public int remainingCapacity();
 public boolean add(Runnable);
 public void put(Runnable) throws InterruptedException;
 public boolean offer(Runnable, long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public boolean addAll(java.util.Collection);
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy$CronTrigger.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class CronTriggeringPolicy$CronTrigger implements Runnable {
 private void CronTriggeringPolicy$CronTrigger(CronTriggeringPolicy);
 public void run();
}

org/apache/logging/log4j/core/appender/rolling/AbstractRolloverStrategy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized class AbstractRolloverStrategy implements RolloverStrategy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 public static final java.util.regex.Pattern PATTERN_COUNTER;
 protected final org.apache.logging.log4j.core.lookup.StrSubstitutor strSubstitutor;
 protected void AbstractRolloverStrategy(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public org.apache.logging.log4j.core.lookup.StrSubstitutor getStrSubstitutor();
 protected action.Action merge(action.Action, java.util.List, boolean);
 protected int suffixLength(String);
 protected java.util.SortedMap getEligibleFiles(RollingFileManager);
 protected java.util.SortedMap getEligibleFiles(RollingFileManager, boolean);
 protected java.util.SortedMap getEligibleFiles(String, String);
 protected java.util.SortedMap getEligibleFiles(String, String, boolean);
 protected java.util.SortedMap getEligibleFiles(String, String, String, boolean);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AsyncAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class AsyncAppender extends AbstractAppender {
 private static final int DEFAULT_QUEUE_SIZE = 1024;
 private final java.util.concurrent.BlockingQueue queue;
 private final int queueSize;
 private final boolean blocking;
 private final long shutdownTimeout;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final org.apache.logging.log4j.core.config.AppenderRef[] appenderRefs;
 private final String errorRef;
 private final boolean includeLocation;
 private org.apache.logging.log4j.core.config.AppenderControl errorAppender;
 private AsyncAppenderEventDispatcher dispatcher;
 private org.apache.logging.log4j.core.async.AsyncQueueFullPolicy asyncQueueFullPolicy;
 private void AsyncAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.AppenderRef[], String, int, boolean, boolean, long, org.apache.logging.log4j.core.config.Configuration, boolean, org.apache.logging.log4j.core.async.BlockingQueueFactory, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private boolean transfer(org.apache.logging.log4j.core.LogEvent);
 public void logMessageInCurrentThread(org.apache.logging.log4j.core.LogEvent);
 public void logMessageInBackgroundThread(org.apache.logging.log4j.core.LogEvent);
 private boolean handleInterruptedException(org.apache.logging.log4j.core.LogEvent);
 private void logToErrorAppenderIfNecessary(boolean, org.apache.logging.log4j.core.LogEvent);
 public static AsyncAppender createAppender(org.apache.logging.log4j.core.config.AppenderRef[], String, boolean, long, int, String, boolean, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Configuration, boolean);
 public static AsyncAppender$Builder newBuilder();
 public String[] getAppenderRefStrings();
 public boolean isIncludeLocation();
 public boolean isBlocking();
 public String getErrorRef();
 public int getQueueCapacity();
 public int getQueueRemainingCapacity();
 public int getQueueSize();
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$OutputStreamManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$OutputStreamManagerFactory implements ManagerFactory {
 private void OutputStreamAppender$OutputStreamManagerFactory();
 public OutputStreamManager createManager(String, OutputStreamAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/AbstractWriterAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractWriterAppender extends AbstractAppender {
 protected final boolean immediateFlush;
 private final WriterManager manager;
 private final java.util.concurrent.locks.ReadWriteLock readWriteLock;
 private final java.util.concurrent.locks.Lock readLock;
 protected void AbstractWriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, boolean, boolean, org.apache.logging.log4j.core.config.Property[], WriterManager);
 protected void AbstractWriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, boolean, boolean, WriterManager);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public WriterManager getManager();
 public org.apache.logging.log4j.core.StringLayout getStringLayout();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/db/ColumnMapping$1.class

package org.apache.logging.log4j.core.appender.db;
synchronized class ColumnMapping$1 {
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class ColumnConfig$1 {
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractDriverManagerConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class AbstractDriverManagerConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String actualConnectionString;
 private final String connectionString;
 private final String driverClassName;
 private final char[] password;
 private final org.apache.logging.log4j.core.config.Property[] properties;
 private final char[] userName;
 public static org.apache.logging.log4j.Logger getLogger();
 public void AbstractDriverManagerConnectionSource(String, String, String, char[], char[], org.apache.logging.log4j.core.config.Property[]);
 public String getActualConnectionString();
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String getConnectionString();
 public String getDriverClassName();
 public char[] getPassword();
 public org.apache.logging.log4j.core.config.Property[] getProperties();
 public char[] getUserName();
 protected void loadDriver() throws java.sql.SQLException;
 protected void loadDriver(String) throws java.sql.SQLException;
 protected java.util.Properties toProperties(org.apache.logging.log4j.core.config.Property[]);
 public String toString();
 protected String toString(char[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/DriverManagerConnectionSource$Builder.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public synchronized class DriverManagerConnectionSource$Builder extends AbstractDriverManagerConnectionSource$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void DriverManagerConnectionSource$Builder();
 public DriverManagerConnectionSource build();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$Reconnector.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private volatile boolean shutdown;
 private void JdbcDatabaseManager$Reconnector(JdbcDatabaseManager);
 public void latch();
 void reconnect() throws java.sql.SQLException;
 public void run();
 public void shutdown();
 public String toString();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class RoutingAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 public static final String STATIC_VARIABLES_KEY = staticVariables;
 private static final String DEFAULT_KEY = ROUTING_APPENDER_DEFAULT;
 private final Routes routes;
 private Route defaultRoute;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final java.util.concurrent.ConcurrentMap createdAppenders;
 private final java.util.Map createdAppendersUnmodifiableView;
 private final java.util.concurrent.ConcurrentMap referencedAppenders;
 private final org.apache.logging.log4j.core.appender.rewrite.RewritePolicy rewritePolicy;
 private final PurgePolicy purgePolicy;
 private final org.apache.logging.log4j.core.script.AbstractScript defaultRouteScript;
 private final java.util.concurrent.ConcurrentMap scriptStaticVariables;
 public static RoutingAppender$Builder newBuilder();
 private void RoutingAppender(String, org.apache.logging.log4j.core.Filter, boolean, Routes, org.apache.logging.log4j.core.appender.rewrite.RewritePolicy, org.apache.logging.log4j.core.config.Configuration, PurgePolicy, org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void updatePurgePolicy(String, org.apache.logging.log4j.core.LogEvent);
 private synchronized RoutingAppender$RouteAppenderControl getControl(String, org.apache.logging.log4j.core.LogEvent);
 private RoutingAppender$RouteAppenderControl getAppender(String);
 private org.apache.logging.log4j.core.Appender createAppender(Route, org.apache.logging.log4j.core.LogEvent);
 public java.util.Map getAppenders();
 public void deleteAppender(String);
 public static RoutingAppender createAppender(String, String, Routes, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.appender.rewrite.RewritePolicy, PurgePolicy, org.apache.logging.log4j.core.Filter);
 public Route getDefaultRoute();
 public org.apache.logging.log4j.core.script.AbstractScript getDefaultRouteScript();
 public PurgePolicy getPurgePolicy();
 public org.apache.logging.log4j.core.appender.rewrite.RewritePolicy getRewritePolicy();
 public Routes getRoutes();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public java.util.concurrent.ConcurrentMap getScriptStaticVariables();
}

org/apache/logging/log4j/core/appender/routing/Routes.class

package org.apache.logging.log4j.core.appender.routing;
public final synchronized class Routes {
 private static final String LOG_EVENT_KEY = logEvent;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final String pattern;
 private final org.apache.logging.log4j.core.script.AbstractScript patternScript;
 private final Route[] routes;
 public static transient Routes createRoutes(String, Route[]);
 public static Routes$Builder newBuilder();
 private transient void Routes(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.script.AbstractScript, String, Route[]);
 public String getPattern(org.apache.logging.log4j.core.LogEvent, java.util.concurrent.ConcurrentMap);
 public org.apache.logging.log4j.core.script.AbstractScript getPatternScript();
 public Route getRoute(String);
 public Route[] getRoutes();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender.class

package org.apache.logging.log4j.core.appender.nosql;
public final synchronized class NoSqlAppender extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseAppender {
 private final String description;
 public static NoSqlAppender createAppender(String, String, org.apache.logging.log4j.core.Filter, String, NoSqlProvider);
 public static NoSqlAppender$Builder newBuilder();
 private void NoSqlAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], NoSqlDatabaseManager);
 public String toString();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$SystemOutStream.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$SystemOutStream extends java.io.OutputStream {
 public void ConsoleAppender$SystemOutStream();
 public void close();
 public void flush();
 public void write(byte[]) throws java.io.IOException;
 public void write(byte[], int, int) throws java.io.IOException;
 public void write(int) throws java.io.IOException;
}

org/apache/logging/log4j/core/appender/mom/JmsManager.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsManager extends org.apache.logging.log4j.core.appender.AbstractManager {
 static final JmsManager$JmsManagerFactory FACTORY;
 private final JmsManager$JmsManagerConfiguration configuration;
 private volatile JmsManager$Reconnector reconnector;
 private volatile org.apache.logging.log4j.core.net.JndiManager jndiManager;
 private volatile javax.jms.Connection connection;
 private volatile javax.jms.Session session;
 private volatile javax.jms.Destination destination;
 private volatile javax.jms.MessageProducer messageProducer;
 public static JmsManager getJmsManager(String, java.util.Properties, String, String, String, char[], boolean, long);
 private void JmsManager(String, JmsManager$JmsManagerConfiguration);
 private boolean closeConnection();
 private boolean closeJndiManager();
 private boolean closeMessageProducer();
 private boolean closeSession();
 private javax.jms.Connection createConnection(org.apache.logging.log4j.core.net.JndiManager) throws javax.naming.NamingException, javax.jms.JMSException;
 private javax.jms.Destination createDestination(org.apache.logging.log4j.core.net.JndiManager) throws javax.naming.NamingException;
 public javax.jms.Message createMessage(java.io.Serializable) throws javax.jms.JMSException;
 private void createMessageAndSend(org.apache.logging.log4j.core.LogEvent, java.io.Serializable) throws javax.jms.JMSException;
 public javax.jms.MessageConsumer createMessageConsumer() throws javax.jms.JMSException;
 public javax.jms.MessageProducer createMessageProducer(javax.jms.Session, javax.jms.Destination) throws javax.jms.JMSException;
 private JmsManager$Reconnector createReconnector();
 private javax.jms.Session createSession(javax.jms.Connection) throws javax.jms.JMSException;
 public JmsManager$JmsManagerConfiguration getJmsManagerConfiguration();
 org.apache.logging.log4j.core.net.JndiManager getJndiManager();
 Object lookup(String) throws javax.naming.NamingException;
 private javax.jms.MapMessage map(org.apache.logging.log4j.message.MapMessage, javax.jms.MapMessage);
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 void send(org.apache.logging.log4j.core.LogEvent, java.io.Serializable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/mom/kafka/DefaultKafkaProducerFactory.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class DefaultKafkaProducerFactory implements KafkaProducerFactory {
 public void DefaultKafkaProducerFactory();
 public org.apache.kafka.clients.producer.Producer newKafkaProducer(java.util.Properties);
}

org/apache/logging/log4j/core/appender/mom/JmsManager$JmsManagerConfiguration.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsManager$JmsManagerConfiguration {
 private final java.util.Properties jndiProperties;
 private final String connectionFactoryName;
 private final String destinationName;
 private final String userName;
 private final char[] password;
 private final boolean immediateFail;
 private final boolean retry;
 private final long reconnectIntervalMillis;
 void JmsManager$JmsManagerConfiguration(java.util.Properties, String, String, String, char[], boolean, long);
 public String getConnectionFactoryName();
 public String getDestinationName();
 public org.apache.logging.log4j.core.net.JndiManager getJndiManager();
 public java.util.Properties getJndiProperties();
 public char[] getPassword();
 public long getReconnectIntervalMillis();
 public String getUserName();
 public boolean isImmediateFail();
 public boolean isRetry();
 public String toString();
}

org/apache/logging/log4j/core/impl/ExtendedClassInfo.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ExtendedClassInfo implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final boolean exact;
 private final String location;
 private final String version;
 public void ExtendedClassInfo(boolean, String, String);
 public boolean equals(Object);
 public boolean getExact();
 public String getLocation();
 public String getVersion();
 public int hashCode();
 public void renderOn(StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 public String toString();
}

org/apache/logging/log4j/core/impl/Log4jContextFactory.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jContextFactory implements org.apache.logging.log4j.spi.LoggerContextFactory, org.apache.logging.log4j.core.util.ShutdownCallbackRegistry {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private static final boolean SHUTDOWN_HOOK_ENABLED;
 private final org.apache.logging.log4j.core.selector.ContextSelector selector;
 private final org.apache.logging.log4j.core.util.ShutdownCallbackRegistry shutdownCallbackRegistry;
 public void Log4jContextFactory();
 public void Log4jContextFactory(org.apache.logging.log4j.core.selector.ContextSelector);
 public void Log4jContextFactory(org.apache.logging.log4j.core.util.ShutdownCallbackRegistry);
 public void Log4jContextFactory(org.apache.logging.log4j.core.selector.ContextSelector, org.apache.logging.log4j.core.util.ShutdownCallbackRegistry);
 private static org.apache.logging.log4j.core.selector.ContextSelector createContextSelector();
 private static org.apache.logging.log4j.core.util.ShutdownCallbackRegistry createShutdownCallbackRegistry();
 private void initializeShutdownCallbackRegistry();
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, org.apache.logging.log4j.core.config.Configuration);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, java.util.Map$Entry, boolean, java.net.URI, String);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, Object, boolean, java.util.List, String);
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.selector.ContextSelector getSelector();
 public org.apache.logging.log4j.core.util.ShutdownCallbackRegistry getShutdownCallbackRegistry();
 public void removeContext(org.apache.logging.log4j.spi.LoggerContext);
 public boolean isClassLoaderDependent();
 public org.apache.logging.log4j.core.util.Cancellable addShutdownCallback(Runnable);
 public boolean isShutdownHookEnabled();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/BasicContextSelector.class

package org.apache.logging.log4j.core.selector;
public synchronized class BasicContextSelector implements ContextSelector {
 private static final org.apache.logging.log4j.core.LoggerContext CONTEXT;
 public void BasicContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public org.apache.logging.log4j.core.LoggerContext locateContext(String, String);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/CoreContextSelectors.class

package org.apache.logging.log4j.core.selector;
public synchronized class CoreContextSelectors {
 public static final Class[] CLASSES;
 public void CoreContextSelectors();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/BasicCommandLineArguments.class

package org.apache.logging.log4j.core.tools;
public synchronized class BasicCommandLineArguments {
 private boolean help;
 public void BasicCommandLineArguments();
 public boolean isHelp();
 public void setHelp(boolean);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultOptionRenderer implements CommandLine$Help$IOptionRenderer {
 public String requiredMarker;
 public Object command;
 private String sep;
 private boolean showDefault;
 void CommandLine$Help$DefaultOptionRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
 private Object createDefaultValue(reflect.Field);
 private CommandLine$Help$Ansi$Text createLongOptionText(reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme, String);
 private CommandLine$Help$Ansi$Text[][] renderDescriptionLines(CommandLine$Option, CommandLine$Help$ColorScheme, String, String, CommandLine$Help$Ansi$Text, Object);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$URLConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$URLConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$URLConverter();
 public java.net.URL convert(String) throws java.net.MalformedURLException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$URIConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$URIConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$URIConverter();
 public java.net.URI convert(String) throws java.net.URISyntaxException;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$TextTable$Cell.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$TextTable$Cell {
 public final int column;
 public final int row;
 public void CommandLine$Help$TextTable$Cell(int, int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$FloatConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$FloatConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$FloatConverter();
 public Float convert(String);
}

org/apache/logging/log4j/core/net/ssl/MemoryPasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class MemoryPasswordProvider implements PasswordProvider {
 private final char[] password;
 public void MemoryPasswordProvider(char[]);
 public char[] getPassword();
 public void clearSecrets();
}

org/apache/logging/log4j/core/net/SocketPerformancePreferences.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketPerformancePreferences implements org.apache.logging.log4j.core.util.Builder, Cloneable {
 private int bandwidth;
 private int connectionTime;
 private int latency;
 public void SocketPerformancePreferences();
 public static SocketPerformancePreferences newBuilder();
 public void apply(java.net.Socket);
 public SocketPerformancePreferences build();
 public int getBandwidth();
 public int getConnectionTime();
 public int getLatency();
 public void setBandwidth(int);
 public void setConnectionTime(int);
 public void setLatency(int);
 public String toString();
}

org/apache/logging/log4j/core/net/SocketAddress$Builder.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketAddress$Builder implements org.apache.logging.log4j.core.util.Builder {
 private java.net.InetAddress host;
 private int port;
 public void SocketAddress$Builder();
 public SocketAddress$Builder setHost(java.net.InetAddress);
 public SocketAddress$Builder setPort(int);
 public SocketAddress build();
}

org/apache/logging/log4j/core/net/TcpSocketManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class TcpSocketManager$FactoryData {
 protected final String host;
 protected final int port;
 protected final int connectTimeoutMillis;
 protected final int reconnectDelayMillis;
 protected final boolean immediateFail;
 protected final org.apache.logging.log4j.core.Layout layout;
 protected final int bufferSize;
 protected final SocketOptions socketOptions;
 public void TcpSocketManager$FactoryData(String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public String toString();
}

org/apache/logging/log4j/core/net/DatagramSocketManager$DatagramSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$DatagramSocketManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void DatagramSocketManager$DatagramSocketManagerFactory();
 public DatagramSocketManager createManager(String, DatagramSocketManager$FactoryData);
}

org/apache/logging/log4j/core/util/Constants.class

package org.apache.logging.log4j.core.util;
public final synchronized class Constants {
 public static final String LOG4J_LOG_EVENT_FACTORY = Log4jLogEventFactory;
 public static final String LOG4J_CONTEXT_SELECTOR = Log4jContextSelector;
 public static final String LOG4J_DEFAULT_STATUS_LEVEL = Log4jDefaultStatusLevel;
 public static final String JNDI_CONTEXT_NAME = java:comp/env/log4j/context-name;
 public static final int MILLIS_IN_SECONDS = 1000;
 public static final boolean FORMAT_MESSAGES_IN_BACKGROUND;
 public static final boolean FORMAT_MESSAGES_PATTERN_DISABLE_LOOKUPS;
 public static final boolean IS_WEB_APP;
 public static final boolean ENABLE_THREADLOCALS;
 public static final boolean ENABLE_DIRECT_ENCODERS;
 public static final int INITIAL_REUSABLE_MESSAGE_SIZE;
 public static final int MAX_REUSABLE_MESSAGE_SIZE;
 public static final int ENCODER_CHAR_BUFFER_SIZE;
 public static final int ENCODER_BYTE_BUFFER_SIZE;
 private static int size(String, int);
 private void Constants();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat$FixedFormat.class

package org.apache.logging.log4j.core.util.datetime;
public final synchronized enum FixedDateFormat$FixedFormat {
 public static final FixedDateFormat$FixedFormat ABSOLUTE;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_MICROS;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_NANOS;
 public static final FixedDateFormat$FixedFormat ABSOLUTE_PERIOD;
 public static final FixedDateFormat$FixedFormat COMPACT;
 public static final FixedDateFormat$FixedFormat DATE;
 public static final FixedDateFormat$FixedFormat DATE_PERIOD;
 public static final FixedDateFormat$FixedFormat DEFAULT;
 public static final FixedDateFormat$FixedFormat DEFAULT_MICROS;
 public static final FixedDateFormat$FixedFormat DEFAULT_NANOS;
 public static final FixedDateFormat$FixedFormat DEFAULT_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601_BASIC;
 public static final FixedDateFormat$FixedFormat ISO8601_BASIC_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HH;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HHMM;
 public static final FixedDateFormat$FixedFormat ISO8601_OFFSET_DATE_TIME_HHCMM;
 public static final FixedDateFormat$FixedFormat ISO8601_PERIOD;
 public static final FixedDateFormat$FixedFormat ISO8601_PERIOD_MICROS;
 public static final FixedDateFormat$FixedFormat US_MONTH_DAY_YEAR2_TIME;
 public static final FixedDateFormat$FixedFormat US_MONTH_DAY_YEAR4_TIME;
 private static final String DEFAULT_SECOND_FRACTION_PATTERN = SSS;
 private static final int MILLI_FRACTION_DIGITS;
 private static final char SECOND_FRACTION_PATTERN = 110;
 private final String pattern;
 private final String datePattern;
 private final int escapeCount;
 private final char timeSeparatorChar;
 private final int timeSeparatorLength;
 private final char millisSeparatorChar;
 private final int millisSeparatorLength;
 private final int secondFractionDigits;
 private final FixedDateFormat$FixedTimeZoneFormat fixedTimeZoneFormat;
 private static final int[] EMPTY_RANGE;
 public static FixedDateFormat$FixedFormat[] values();
 public static FixedDateFormat$FixedFormat valueOf(String);
 private void FixedDateFormat$FixedFormat(String, int, String, String, int, char, int, char, int, int, FixedDateFormat$FixedTimeZoneFormat);
 public String getPattern();
 public String getDatePattern();
 public static FixedDateFormat$FixedFormat lookup(String);
 static FixedDateFormat$FixedFormat lookupIgnoringNanos(String);
 private static int[] nanoRange(String);
 public int getLength();
 public int getDatePatternLength();
 public FastDateFormat getFastDateFormat();
 public FastDateFormat getFastDateFormat(java.util.TimeZone);
 public int getSecondFractionDigits();
 public FixedDateFormat$FixedTimeZoneFormat getFixedTimeZoneFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$StrategyAndWidth.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$StrategyAndWidth {
 final FastDateParser$Strategy strategy;
 final int width;
 void FastDateParser$StrategyAndWidth(FastDateParser$Strategy, int);
 int getMaxWidth(java.util.ListIterator);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwoDigitMonthField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwoDigitMonthField implements FastDatePrinter$NumberRule {
 static final FastDatePrinter$TwoDigitMonthField INSTANCE;
 void FastDatePrinter$TwoDigitMonthField();
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneNumberRule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneNumberRule implements FastDatePrinter$Rule {
 static final FastDatePrinter$TimeZoneNumberRule INSTANCE_COLON;
 static final FastDatePrinter$TimeZoneNumberRule INSTANCE_NO_COLON;
 final boolean mColon;
 void FastDatePrinter$TimeZoneNumberRule(boolean);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Booleans.class

package org.apache.logging.log4j.core.util;
public final synchronized class Booleans {
 private void Booleans();
 public static boolean parseBoolean(String, boolean);
}

org/apache/logging/log4j/core/util/Builder.class

package org.apache.logging.log4j.core.util;
public abstract interface Builder {
 public abstract Object build();
}

org/apache/logging/log4j/core/util/WatchManager$LocalUUID.class

package org.apache.logging.log4j.core.util;
synchronized class WatchManager$LocalUUID {
 private static final long LOW_MASK = 4294967295;
 private static final long MID_MASK = 281470681743360;
 private static final long HIGH_MASK = 1152640029630136320;
 private static final int NODE_SIZE = 8;
 private static final int SHIFT_2 = 16;
 private static final int SHIFT_4 = 32;
 private static final int SHIFT_6 = 48;
 private static final int HUNDRED_NANOS_PER_MILLI = 10000;
 private static final long NUM_100NS_INTERVALS_SINCE_UUID_EPOCH = 122192928000000000;
 private static final java.util.concurrent.atomic.AtomicInteger COUNT;
 private static final long TYPE1 = 4096;
 private static final byte VARIANT = -128;
 private static final int SEQUENCE_MASK = 16383;
 private void WatchManager$LocalUUID();
 public static java.util.UUID get();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ContextDataProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface ContextDataProvider {
 public abstract java.util.Map supplyContextData();
 public org.apache.logging.log4j.util.StringMap supplyStringMap();
}

org/apache/logging/log4j/core/util/SecretKeyProvider.class

package org.apache.logging.log4j.core.util;
public abstract interface SecretKeyProvider {
 public abstract javax.crypto.SecretKey getSecretKey();
}

org/apache/logging/log4j/core/util/Log4jThread.class

package org.apache.logging.log4j.core.util;
public synchronized class Log4jThread extends Thread {
 static final String PREFIX = Log4j2-;
 private static final java.util.concurrent.atomic.AtomicLong threadInitNumber;
 private static long nextThreadNum();
 private static String toThreadName(Object);
 public void Log4jThread();
 public void Log4jThread(Runnable);
 public void Log4jThread(Runnable, String);
 public void Log4jThread(String);
 public void Log4jThread(ThreadGroup, Runnable);
 public void Log4jThread(ThreadGroup, Runnable, String);
 public void Log4jThread(ThreadGroup, Runnable, String, long);
 public void Log4jThread(ThreadGroup, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/AbstractLifeCycle.class

package org.apache.logging.log4j.core;
public synchronized class AbstractLifeCycle implements LifeCycle2 {
 public static final int DEFAULT_STOP_TIMEOUT = 0;
 public static final java.util.concurrent.TimeUnit DEFAULT_STOP_TIMEUNIT;
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private volatile LifeCycle$State state;
 public void AbstractLifeCycle();
 protected static org.apache.logging.log4j.Logger getStatusLogger();
 protected boolean equalsImpl(Object);
 public LifeCycle$State getState();
 protected int hashCodeImpl();
 public boolean isInitialized();
 public boolean isStarted();
 public boolean isStarting();
 public boolean isStopped();
 public boolean isStopping();
 protected void setStarted();
 protected void setStarting();
 protected void setState(LifeCycle$State);
 protected void setStopped();
 protected void setStopping();
 public void initialize();
 public void start();
 public void stop();
 protected boolean stop(java.util.concurrent.Future);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/ConfigurationFileWatcher.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationFileWatcher extends org.apache.logging.log4j.core.util.AbstractWatcher implements org.apache.logging.log4j.core.util.FileWatcher {
 private java.io.File file;
 private long lastModifiedMillis;
 public void ConfigurationFileWatcher(Configuration, Reconfigurable, java.util.List, long);
 public long getLastModified();
 public void fileModified(java.io.File);
 public void watching(org.apache.logging.log4j.core.util.Source);
 public boolean isModified();
 public org.apache.logging.log4j.core.util.Watcher newWatcher(Reconfigurable, java.util.List, long);
}

org/apache/logging/log4j/core/config/AppenderRef.class

package org.apache.logging.log4j.core.config;
public final synchronized class AppenderRef {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String ref;
 private final org.apache.logging.log4j.Level level;
 private final org.apache.logging.log4j.core.Filter filter;
 private void AppenderRef(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 public String getRef();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.core.Filter getFilter();
 public String toString();
 public static AppenderRef createAppenderRef(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ScriptArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.AbstractConfiguration configuration;
 private org.apache.logging.log4j.core.config.Node node;
 public void ScriptArbiter$Builder();
 public ScriptArbiter$Builder setConfiguration(org.apache.logging.log4j.core.config.AbstractConfiguration);
 public ScriptArbiter$Builder setNode(org.apache.logging.log4j.core.config.Node);
 public ScriptArbiter$Builder asBuilder();
 public ScriptArbiter build();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/ResolverUtil$Test.class

package org.apache.logging.log4j.core.config.plugins.util;
public abstract interface ResolverUtil$Test {
 public abstract boolean matches(Class);
 public abstract boolean matches(java.net.URI);
 public abstract boolean doesMatchClass();
 public abstract boolean doesMatchResource();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharsetConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharsetConverter implements TypeConverter {
 public void TypeConverters$CharsetConverter();
 public java.nio.charset.Charset convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BigDecimalConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BigDecimalConverter implements TypeConverter {
 public void TypeConverters$BigDecimalConverter();
 public java.math.BigDecimal convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ShortConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ShortConverter implements TypeConverter {
 public void TypeConverters$ShortConverter();
 public Short convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/DateTypeConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public final synchronized class DateTypeConverter {
 private static final java.util.Map CONSTRUCTORS;
 public static java.util.Date fromMillis(long, Class);
 private void DateTypeConverter();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UrlConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UrlConverter implements TypeConverter {
 public void TypeConverters$UrlConverter();
 public java.net.URL convert(String) throws java.net.MalformedURLException;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CronExpressionConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CronExpressionConverter implements TypeConverter {
 public void TypeConverters$CronExpressionConverter();
 public org.apache.logging.log4j.core.util.CronExpression convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$PatternConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$PatternConverter implements TypeConverter {
 public void TypeConverters$PatternConverter();
 public java.util.regex.Pattern convert(String);
}

org/apache/logging/log4j/core/config/Order.class

package org.apache.logging.log4j.core.config;
public abstract interface Order extends annotation.Annotation {
 public abstract int value();
}

org/apache/logging/log4j/core/config/status/StatusConfiguration.class

package org.apache.logging.log4j.core.config.status;
public synchronized class StatusConfiguration {
 private static final java.io.PrintStream DEFAULT_STREAM;
 private static final org.apache.logging.log4j.Level DEFAULT_STATUS;
 private static final StatusConfiguration$Verbosity DEFAULT_VERBOSITY;
 private final java.util.Collection errorMessages;
 private final org.apache.logging.log4j.status.StatusLogger logger;
 private volatile boolean initialized;
 private java.io.PrintStream destination;
 private org.apache.logging.log4j.Level status;
 private StatusConfiguration$Verbosity verbosity;
 private String[] verboseClasses;
 public void StatusConfiguration();
 public void error(String);
 public StatusConfiguration withDestination(String);
 private java.io.PrintStream parseStreamName(String) throws java.net.URISyntaxException, java.io.FileNotFoundException;
 public StatusConfiguration withStatus(String);
 public StatusConfiguration withStatus(org.apache.logging.log4j.Level);
 public StatusConfiguration withVerbosity(String);
 public transient StatusConfiguration withVerboseClasses(String[]);
 public void initialize();
 private boolean configureExistingStatusConsoleListener();
 private void registerNewStatusConsoleListener();
 private void migrateSavedLogMessages();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfigurationFactory.class

package org.apache.logging.log4j.core.config.xml;
public synchronized class XmlConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 public static final String[] SUFFIXES;
 public void XmlConfigurationFactory();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/json/JsonConfiguration$Status.class

package org.apache.logging.log4j.core.config.json;
synchronized class JsonConfiguration$Status {
 private final com.fasterxml.jackson.databind.JsonNode node;
 private final String name;
 private final JsonConfiguration$ErrorType errorType;
 public void JsonConfiguration$Status(String, com.fasterxml.jackson.databind.JsonNode, JsonConfiguration$ErrorType);
 public String toString();
}

org/apache/logging/log4j/core/config/properties/PropertiesConfigurationFactory.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 public void PropertiesConfigurationFactory();
 protected String[] getSupportedTypes();
 public PropertiesConfiguration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
}

org/apache/logging/log4j/core/config/ConfigurationListener.class

package org.apache.logging.log4j.core.config;
public abstract interface ConfigurationListener {
 public abstract void onChange(Reconfigurable);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultRootLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultRootLoggerComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder {
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, boolean);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultRootLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultLayoutComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultLayoutComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder {
 public void DefaultLayoutComponentBuilder(DefaultConfigurationBuilder, String);
}

org/apache/logging/log4j/core/config/builder/api/CustomLevelComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface CustomLevelComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/KeyValuePairComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface KeyValuePairComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/Component.class

package org.apache.logging.log4j.core.config.builder.api;
public synchronized class Component {
 private final java.util.Map attributes;
 private final java.util.List components;
 private final String pluginType;
 private final String value;
 public void Component(String);
 public void Component(String, String);
 public void Component(String, String, String);
 public void Component();
 public String addAttribute(String, String);
 public void addComponent(Component);
 public java.util.Map getAttributes();
 public java.util.List getComponents();
 public String getPluginType();
 public String getValue();
}

org/apache/logging/log4j/core/config/Node.class

package org.apache.logging.log4j.core.config;
public synchronized class Node {
 public static final String CATEGORY = Core;
 private Node parent;
 private final String name;
 private String value;
 private final plugins.util.PluginType type;
 private final java.util.Map attributes;
 private final java.util.List children;
 private Object object;
 public void Node(Node, String, plugins.util.PluginType);
 public void Node();
 public void Node(Node);
 public void setParent(Node);
 public java.util.Map getAttributes();
 public java.util.List getChildren();
 public boolean hasChildren();
 public String getValue();
 public void setValue(String);
 public Node getParent();
 public String getName();
 public boolean isRoot();
 public void setObject(Object);
 public Object getObject();
 public Object getObject(Class);
 public boolean isInstanceOf(Class);
 public plugins.util.PluginType getType();
 public String toString();
}

org/apache/logging/log4j/core/jmx/LoggerContextAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface LoggerContextAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s;
 public static final String NOTIF_TYPE_RECONFIGURED = com.apache.logging.log4j.core.jmx.config.reconfigured;
 public abstract javax.management.ObjectName getObjectName();
 public abstract String getStatus();
 public abstract String getName();
 public abstract String getConfigLocationUri();
 public abstract void setConfigLocationUri(String) throws java.net.URISyntaxException, java.io.IOException;
 public abstract String getConfigText() throws java.io.IOException;
 public abstract String getConfigText(String) throws java.io.IOException;
 public abstract void setConfigText(String, String);
 public abstract String getConfigName();
 public abstract String getConfigClassName();
 public abstract String getConfigFilter();
 public abstract java.util.Map getConfigProperties();
}

org/apache/logging/log4j/core/jmx/LoggerConfigAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class LoggerConfigAdmin implements LoggerConfigAdminMBean {
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 private final org.apache.logging.log4j.core.config.LoggerConfig loggerConfig;
 private final javax.management.ObjectName objectName;
 public void LoggerConfigAdmin(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.LoggerConfig);
 public javax.management.ObjectName getObjectName();
 public String getName();
 public String getLevel();
 public void setLevel(String);
 public boolean isAdditive();
 public void setAdditive(boolean);
 public boolean isIncludeLocation();
 public String getFilter();
 public String[] getAppenderRefs();
}

org/apache/logging/log4j/core/layout/PatternMatch.class

package org.apache.logging.log4j.core.layout;
public final synchronized class PatternMatch {
 private final String key;
 private final String pattern;
 public void PatternMatch(String, String);
 public String getKey();
 public String getPattern();
 public String toString();
 public static PatternMatch$Builder newBuilder();
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/layout/HtmlLayout$FontSize.class

package org.apache.logging.log4j.core.layout;
public final synchronized enum HtmlLayout$FontSize {
 public static final HtmlLayout$FontSize SMALLER;
 public static final HtmlLayout$FontSize XXSMALL;
 public static final HtmlLayout$FontSize XSMALL;
 public static final HtmlLayout$FontSize SMALL;
 public static final HtmlLayout$FontSize MEDIUM;
 public static final HtmlLayout$FontSize LARGE;
 public static final HtmlLayout$FontSize XLARGE;
 public static final HtmlLayout$FontSize XXLARGE;
 public static final HtmlLayout$FontSize LARGER;
 private final String size;
 public static HtmlLayout$FontSize[] values();
 public static HtmlLayout$FontSize valueOf(String);
 private void HtmlLayout$FontSize(String, int, String);
 public String getFontSize();
 public static HtmlLayout$FontSize getFontSize(String);
 public HtmlLayout$FontSize larger();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/XmlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class XmlLayout$Builder extends AbstractJacksonLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void XmlLayout$Builder();
 public XmlLayout build();
}

org/apache/logging/log4j/core/layout/internal/IncludeChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class IncludeChecker implements ListChecker {
 private final java.util.List list;
 public void IncludeChecker(java.util.List);
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/XmlLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class XmlLayout extends AbstractJacksonLayout {
 private static final String ROOT_TAG = Events;
 protected void XmlLayout(boolean, boolean, boolean, boolean, java.nio.charset.Charset, boolean);
 private void XmlLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[]);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static XmlLayout createLayout(boolean, boolean, boolean, boolean, java.nio.charset.Charset, boolean);
 public static XmlLayout$Builder newBuilder();
 public static XmlLayout createDefaultLayout();
}

org/apache/logging/log4j/core/layout/XmlLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class XmlLayout$1 {
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractJacksonLayout$Builder extends AbstractStringLayout$Builder {
 private boolean eventEol;
 private String endOfLine;
 private boolean compact;
 private boolean complete;
 private boolean locationInfo;
 private boolean properties;
 private boolean includeStacktrace;
 private boolean stacktraceAsString;
 private boolean includeNullDelimiter;
 private boolean includeTimeMillis;
 private org.apache.logging.log4j.core.util.KeyValuePair[] additionalFields;
 public void AbstractJacksonLayout$Builder();
 protected String toStringOrNull(byte[]);
 public boolean getEventEol();
 public String getEndOfLine();
 public boolean isCompact();
 public boolean isComplete();
 public boolean isLocationInfo();
 public boolean isProperties();
 public boolean isIncludeStacktrace();
 public boolean isStacktraceAsString();
 public boolean isIncludeNullDelimiter();
 public boolean isIncludeTimeMillis();
 public org.apache.logging.log4j.core.util.KeyValuePair[] getAdditionalFields();
 public AbstractJacksonLayout$Builder setEventEol(boolean);
 public AbstractJacksonLayout$Builder setEndOfLine(String);
 public AbstractJacksonLayout$Builder setCompact(boolean);
 public AbstractJacksonLayout$Builder setComplete(boolean);
 public AbstractJacksonLayout$Builder setLocationInfo(boolean);
 public AbstractJacksonLayout$Builder setProperties(boolean);
 public AbstractJacksonLayout$Builder setIncludeStacktrace(boolean);
 public AbstractJacksonLayout$Builder setStacktraceAsString(boolean);
 public AbstractJacksonLayout$Builder setIncludeNullDelimiter(boolean);
 public AbstractJacksonLayout$Builder setIncludeTimeMillis(boolean);
 public AbstractJacksonLayout$Builder setAdditionalFields(org.apache.logging.log4j.core.util.KeyValuePair[]);
}

org/apache/logging/log4j/core/layout/HtmlLayout$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class HtmlLayout$Builder implements org.apache.logging.log4j.core.util.Builder {
 private boolean locationInfo;
 private String title;
 private String contentType;
 private java.nio.charset.Charset charset;
 private HtmlLayout$FontSize fontSize;
 private String fontName;
 private String datePattern;
 private String timezone;
 private void HtmlLayout$Builder();
 public HtmlLayout$Builder withLocationInfo(boolean);
 public HtmlLayout$Builder withTitle(String);
 public HtmlLayout$Builder withContentType(String);
 public HtmlLayout$Builder withCharset(java.nio.charset.Charset);
 public HtmlLayout$Builder withFontSize(HtmlLayout$FontSize);
 public HtmlLayout$Builder withFontName(String);
 public HtmlLayout$Builder setDatePattern(String);
 public HtmlLayout$Builder setTimezone(String);
 public HtmlLayout build();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSelectorSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$PatternSelectorSerializer implements AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
 private final PatternSelector patternSelector;
 private final org.apache.logging.log4j.core.pattern.RegexReplacement replace;
 private void PatternLayout$PatternSelectorSerializer(PatternSelector, org.apache.logging.log4j.core.pattern.RegexReplacement);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/osgi/BundleContextSelector.class

package org.apache.logging.log4j.core.osgi;
public synchronized class BundleContextSelector extends org.apache.logging.log4j.core.selector.ClassLoaderContextSelector {
 public void BundleContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 private org.apache.logging.log4j.core.LoggerContext getLoggerContext(org.osgi.framework.Bundle);
 private void removeLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 private static boolean hasContext(org.osgi.framework.Bundle);
 private static org.apache.logging.log4j.core.LoggerContext locateContext(org.osgi.framework.Bundle, java.net.URI);
}

org/apache/logging/log4j/core/async/AsyncLoggerDefaultExceptionHandler.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerDefaultExceptionHandler extends AbstractAsyncExceptionHandler {
 public void AsyncLoggerDefaultExceptionHandler();
}

org/apache/logging/log4j/core/async/AsyncLoggerDisruptor$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerDisruptor$1 extends org.apache.logging.log4j.core.util.Log4jThreadFactory {
 void AsyncLoggerDisruptor$1(AsyncLoggerDisruptor, String, boolean, int);
 public Thread newThread(Runnable);
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$Idle.class

package org.apache.logging.log4j.core.async;
abstract interface JCToolsBlockingQueueFactory$Idle {
 public abstract int idle(int);
}

org/apache/logging/log4j/core/async/AsyncLoggerContext.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerContext extends org.apache.logging.log4j.core.LoggerContext {
 private final AsyncLoggerDisruptor loggerDisruptor;
 public void AsyncLoggerContext(String);
 public void AsyncLoggerContext(String, Object);
 public void AsyncLoggerContext(String, Object, java.net.URI);
 public void AsyncLoggerContext(String, Object, String);
 protected org.apache.logging.log4j.core.Logger newInstance(org.apache.logging.log4j.core.LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 public void setName(String);
 public void start();
 public void start(org.apache.logging.log4j.core.config.Configuration);
 private void maybeStartHelper(org.apache.logging.log4j.core.config.Configuration);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin();
 public void setUseThreadLocals(boolean);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDelegate.class

package org.apache.logging.log4j.core.async;
public abstract interface AsyncLoggerConfigDelegate {
 public abstract org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String, String);
 public abstract EventRoute getEventRoute(org.apache.logging.log4j.Level);
 public abstract void enqueueEvent(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 public abstract boolean tryEnqueue(org.apache.logging.log4j.core.LogEvent, AsyncLoggerConfig);
 public abstract void setLogEventFactory(org.apache.logging.log4j.core.impl.LogEventFactory);
}

org/apache/logging/log4j/core/lookup/UpperLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class UpperLookup implements StrLookup {
 public void UpperLookup();
 public String lookup(String);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/parser/JsonLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class JsonLogEventParser extends AbstractJacksonLogEventParser {
 public void JsonLogEventParser();
}

org/apache/logging/log4j/core/script/ScriptManager$ThreadLocalScriptRunner.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$ThreadLocalScriptRunner extends ScriptManager$AbstractScriptRunner {
 private final AbstractScript script;
 private final ThreadLocal runners;
 public void ScriptManager$ThreadLocalScriptRunner(ScriptManager, AbstractScript);
 public Object execute(javax.script.Bindings);
 public AbstractScript getScript();
 public javax.script.ScriptEngine getScriptEngine();
}

org/apache/logging/log4j/core/script/Script.class

package org.apache.logging.log4j.core.script;
public synchronized class Script extends AbstractScript {
 private static final String ATTR_LANGUAGE = language;
 private static final String ATTR_SCRIPT_TEXT = scriptText;
 static final String PLUGIN_NAME = Script;
 public void Script(String, String, String);
 public static Script createScript(String, String, String);
 public String toString();
}

org/apache/logging/log4j/core/script/ScriptManager$ScriptRunner.class

package org.apache.logging.log4j.core.script;
abstract interface ScriptManager$ScriptRunner {
 public abstract javax.script.Bindings createBindings();
 public abstract Object execute(javax.script.Bindings);
 public abstract AbstractScript getScript();
 public abstract javax.script.ScriptEngine getScriptEngine();
}

org/apache/logging/log4j/core/DefaultLoggerContextAccessor.class

package org.apache.logging.log4j.core;
public synchronized class DefaultLoggerContextAccessor implements LoggerContextAccessor {
 public static DefaultLoggerContextAccessor INSTANCE;
 public void DefaultLoggerContextAccessor();
 public LoggerContext getLoggerContext();
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/DenyAllFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class DenyAllFilter extends AbstractFilter {
 private void DenyAllFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static DenyAllFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/filter/ThreadContextMapFilter.class

package org.apache.logging.log4j.core.filter;
public synchronized class ThreadContextMapFilter extends MapFilter {
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 private final String key;
 private final String value;
 private final boolean useMap;
 public void ThreadContextMapFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private org.apache.logging.log4j.core.Filter$Result filter();
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public static ThreadContextMapFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/AbstractFilterable$Builder.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilterable$Builder {
 private org.apache.logging.log4j.core.Filter filter;
 private org.apache.logging.log4j.core.config.Property[] propertyArray;
 public void AbstractFilterable$Builder();
 public AbstractFilterable$Builder asBuilder();
 public org.apache.logging.log4j.core.Filter getFilter();
 public org.apache.logging.log4j.core.config.Property[] getPropertyArray();
 public AbstractFilterable$Builder setFilter(org.apache.logging.log4j.core.Filter);
 public AbstractFilterable$Builder setPropertyArray(org.apache.logging.log4j.core.config.Property[]);
 public AbstractFilterable$Builder withFilter(org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/filter/BurstFilter$LogDelay.class

package org.apache.logging.log4j.core.filter;
synchronized class BurstFilter$LogDelay implements java.util.concurrent.Delayed {
 private long expireTime;
 void BurstFilter$LogDelay(long);
 public void setDelay(long);
 public long getDelay(java.util.concurrent.TimeUnit);
 public int compareTo(java.util.concurrent.Delayed);
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class NameAbbreviator {
 private static final NameAbbreviator DEFAULT;
 public void NameAbbreviator();
 public static NameAbbreviator getAbbreviator(String);
 public static NameAbbreviator getDefaultAbbreviator();
 public abstract void abbreviate(String, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ThreadPriorityPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ThreadPriorityPatternConverter extends LogEventPatternConverter {
 private static final ThreadPriorityPatternConverter INSTANCE;
 private void ThreadPriorityPatternConverter();
 public static ThreadPriorityPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MdcPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MdcPatternConverter extends LogEventPatternConverter {
 private final String key;
 private final String[] keys;
 private final boolean full;
 private static final org.apache.logging.log4j.util.TriConsumer WRITE_KEY_VALUES_INTO;
 private void MdcPatternConverter(String[]);
 public static MdcPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private static void appendFully(org.apache.logging.log4j.util.ReadOnlyStringMap, StringBuilder);
 private static void appendSelectedKeys(String[], org.apache.logging.log4j.util.ReadOnlyStringMap, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$UnixMillisFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$UnixMillisFormatter extends DatePatternConverter$Formatter {
 private void DatePatternConverter$UnixMillisFormatter();
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class AbstractStyleNameConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final String style;
 protected void AbstractStyleNameConverter(String, java.util.List, String);
 protected static AbstractStyleNameConverter newInstance(Class, String, org.apache.logging.log4j.core.config.Configuration, String[]);
 private static java.util.List toPatternFormatterList(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class DatePatternConverter extends LogEventPatternConverter implements ArrayPatternConverter {
 private static final String UNIX_FORMAT = UNIX;
 private static final String UNIX_MILLIS_FORMAT = UNIX_MILLIS;
 private final String[] options;
 private final ThreadLocal threadLocalMutableInstant;
 private final ThreadLocal threadLocalFormatter;
 private final java.util.concurrent.atomic.AtomicReference cachedTime;
 private final DatePatternConverter$Formatter formatter;
 private void DatePatternConverter(String[]);
 private DatePatternConverter$CachedTime fromEpochMillis(long);
 private DatePatternConverter$Formatter createFormatter(String[]);
 public static DatePatternConverter newInstance(String[]);
 private static DatePatternConverter$Formatter createFixedFormatter(org.apache.logging.log4j.core.util.datetime.FixedDateFormat);
 private static DatePatternConverter$Formatter createNonFixedFormatter(String[]);
 public void format(java.util.Date, StringBuilder);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(long, StringBuilder);
 private org.apache.logging.log4j.core.time.MutableInstant getMutableInstant();
 public void format(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 private void formatWithoutAllocation(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 private DatePatternConverter$Formatter getThreadLocalFormatter();
 private void formatWithoutThreadLocals(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public void format(Object, StringBuilder);
 public transient void format(StringBuilder, Object[]);
 public String getPattern();
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$LevelMapLevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class LevelPatternConverter$LevelMapLevelPatternConverter extends LevelPatternConverter {
 private final java.util.Map levelMap;
 private void LevelPatternConverter$LevelMapLevelPatternConverter(java.util.Map);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$SimpleLevelPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class LevelPatternConverter$SimpleLevelPatternConverter extends LevelPatternConverter {
 private void LevelPatternConverter$SimpleLevelPatternConverter();
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized enum EncodingPatternConverter$EscapeFormat {
 public static final EncodingPatternConverter$EscapeFormat HTML;
 public static final EncodingPatternConverter$EscapeFormat JSON;
 public static final EncodingPatternConverter$EscapeFormat CRLF;
 public static final EncodingPatternConverter$EscapeFormat XML;
 public static EncodingPatternConverter$EscapeFormat[] values();
 public static EncodingPatternConverter$EscapeFormat valueOf(String);
 private void EncodingPatternConverter$EscapeFormat(String, int);
 abstract void escape(StringBuilder, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class ThrowablePatternConverter extends LogEventPatternConverter {
 protected final java.util.List formatters;
 private String rawOption;
 private final boolean subShortOption;
 private final boolean nonStandardLineSeparator;
 protected final org.apache.logging.log4j.core.impl.ThrowableFormatOptions options;
 protected void ThrowablePatternConverter(String, String, String[]);
 protected void ThrowablePatternConverter(String, String, String[], org.apache.logging.log4j.core.config.Configuration);
 public static ThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void formatSubShortOption(Throwable, String, StringBuilder);
 private void formatOption(Throwable, String, StringBuilder);
 public boolean handlesThrowable();
 protected String getSuffix(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.impl.ThrowableFormatOptions getOptions();
}

org/apache/logging/log4j/core/pattern/FileDatePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FileDatePatternConverter {
 private void FileDatePatternConverter();
 public static PatternConverter newInstance(String[]);
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$Black.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$Black extends AbstractStyleNameConverter {
 protected static final String NAME = black;
 public void AbstractStyleNameConverter$Black(java.util.List, String);
 public static AbstractStyleNameConverter$Black newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/LogEventPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class LogEventPatternConverter extends AbstractPatternConverter {
 protected void LogEventPatternConverter(String, String);
 public abstract void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public boolean handlesThrowable();
 public boolean isVariable();
}

org/apache/logging/log4j/core/jackson/Initializers$SetupContextJsonInitializer.class

package org.apache.logging.log4j.core.jackson;
synchronized class Initializers$SetupContextJsonInitializer {
 void Initializers$SetupContextJsonInitializer();
 void setupModule(com.fasterxml.jackson.databind.Module$SetupContext, boolean, boolean);
}

org/apache/logging/log4j/core/jackson/ContextDataDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ContextDataDeserializer();
 public org.apache.logging.log4j.util.StringMap deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jYamlModule.class

package org.apache.logging.log4j.core.jackson;
final synchronized class Log4jYamlModule extends com.fasterxml.jackson.databind.module.SimpleModule {
 private static final long serialVersionUID = 1;
 private final boolean encodeThreadContextAsList;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 void Log4jYamlModule(boolean, boolean, boolean);
 public void setupModule(com.fasterxml.jackson.databind.Module$SetupContext);
}

org/apache/logging/log4j/core/jackson/LevelMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class LevelMixIn {
 void LevelMixIn();
 public static org.apache.logging.log4j.Level getLevel(String);
 public abstract String name();
}

org/apache/logging/log4j/core/appender/NullAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class NullAppender extends AbstractAppender {
 public static final String PLUGIN_NAME = Null;
 public static NullAppender createAppender(String);
 private void NullAppender(String);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/rewrite/PropertiesRewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public final synchronized class PropertiesRewritePolicy implements RewritePolicy {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map properties;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private void PropertiesRewritePolicy(org.apache.logging.log4j.core.config.Configuration, java.util.List);
 public org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static PropertiesRewritePolicy createPolicy(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized enum ConsoleAppender$Target {
 public static final ConsoleAppender$Target SYSTEM_OUT;
 public static final ConsoleAppender$Target SYSTEM_ERR;
 public static ConsoleAppender$Target[] values();
 public static ConsoleAppender$Target valueOf(String);
 private void ConsoleAppender$Target(String, int);
 public abstract java.nio.charset.Charset getDefaultCharset();
 protected java.nio.charset.Charset getCharset(String, java.nio.charset.Charset);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/AbstractTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized class AbstractTriggeringPolicy extends org.apache.logging.log4j.core.AbstractLifeCycle implements TriggeringPolicy {
 public void AbstractTriggeringPolicy();
}

org/apache/logging/log4j/core/appender/rolling/CronTriggeringPolicy$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class CronTriggeringPolicy$1 {
}

org/apache/logging/log4j/core/appender/rolling/action/AbstractAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public abstract synchronized class AbstractAction implements Action {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private boolean complete;
 private boolean interrupted;
 protected void AbstractAction();
 public abstract boolean execute() throws java.io.IOException;
 public synchronized void run();
 public synchronized void close();
 public boolean isComplete();
 public boolean isInterrupted();
 protected void reportException(Exception);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract synchronized enum FileExtension {
 public static final FileExtension ZIP;
 public static final FileExtension GZ;
 public static final FileExtension BZIP2;
 public static final FileExtension DEFLATE;
 public static final FileExtension PACK200;
 public static final FileExtension XZ;
 private final String extension;
 public static FileExtension[] values();
 public static FileExtension valueOf(String);
 public static FileExtension lookup(String);
 public static FileExtension lookupForFile(String);
 private void FileExtension(String, int, String);
 abstract action.Action createCompressAction(String, String, boolean, int);
 String getExtension();
 boolean isExtensionFor(String);
 int length();
 java.io.File source(String);
 java.io.File target(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$FactoryData extends org.apache.logging.log4j.core.appender.ConfigurationFactoryData {
 private final String fileName;
 private final String pattern;
 private final boolean append;
 private final boolean bufferedIO;
 private final int bufferSize;
 private final boolean immediateFlush;
 private final boolean createOnDemand;
 private final TriggeringPolicy policy;
 private final RolloverStrategy strategy;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void RollingFileManager$FactoryData(String, String, boolean, boolean, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, int, boolean, boolean, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public TriggeringPolicy getTriggeringPolicy();
 public RolloverStrategy getRolloverStrategy();
 public String getPattern();
 public String toString();
}

org/apache/logging/log4j/core/appender/WriterAppender$WriterManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$WriterManagerFactory implements ManagerFactory {
 private void WriterAppender$WriterManagerFactory();
 public WriterManager createManager(String, WriterAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/SocketAppender.class

package org.apache.logging.log4j.core.appender;
public synchronized class SocketAppender extends AbstractOutputStreamAppender {
 private final Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 public static SocketAppender$Builder newBuilder();
 protected void SocketAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.net.AbstractSocketManager, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 protected void SocketAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.net.AbstractSocketManager, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public static SocketAppender createAppender(String, int, org.apache.logging.log4j.core.net.Protocol, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, int, boolean, String, boolean, boolean, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, boolean, org.apache.logging.log4j.core.config.Configuration);
 public static SocketAppender createAppender(String, String, String, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, org.apache.logging.log4j.core.config.Configuration);
 protected static org.apache.logging.log4j.core.net.AbstractSocketManager createSocketManager(String, org.apache.logging.log4j.core.net.Protocol, String, int, int, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, boolean, org.apache.logging.log4j.core.Layout, int);
 protected static org.apache.logging.log4j.core.net.AbstractSocketManager createSocketManager(String, org.apache.logging.log4j.core.net.Protocol, String, int, int, org.apache.logging.log4j.core.net.ssl.SslConfiguration, int, boolean, org.apache.logging.log4j.core.Layout, int, org.apache.logging.log4j.core.net.SocketOptions);
 protected void directEncodeEvent(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/AbstractAppender.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractAppender extends org.apache.logging.log4j.core.filter.AbstractFilterable implements org.apache.logging.log4j.core.Appender, org.apache.logging.log4j.core.impl.LocationAware {
 private final String name;
 private final boolean ignoreExceptions;
 private final org.apache.logging.log4j.core.Layout layout;
 private org.apache.logging.log4j.core.ErrorHandler handler;
 public static int parseInt(String, int);
 public boolean requiresLocation();
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout);
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean);
 protected void AbstractAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[]);
 public void error(String);
 public void error(String, org.apache.logging.log4j.core.LogEvent, Throwable);
 public void error(String, Throwable);
 public org.apache.logging.log4j.core.ErrorHandler getHandler();
 public org.apache.logging.log4j.core.Layout getLayout();
 public String getName();
 public boolean ignoreExceptions();
 public void setHandler(org.apache.logging.log4j.core.ErrorHandler);
 protected java.io.Serializable toSerializable(org.apache.logging.log4j.core.LogEvent);
 public String toString();
}

org/apache/logging/log4j/core/appender/FileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$FactoryData extends ConfigurationFactoryData {
 private final boolean append;
 private final boolean locking;
 private final boolean bufferedIo;
 private final int bufferSize;
 private final boolean createOnDemand;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 private final String filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 public void FileManager$FactoryData(boolean, boolean, boolean, int, boolean, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileManager$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileManager$FactoryData {
 private final boolean append;
 private final boolean immediateFlush;
 private final int regionLength;
 private final String advertiseURI;
 private final org.apache.logging.log4j.core.Layout layout;
 public void MemoryMappedFileManager$FactoryData(boolean, boolean, int, String, org.apache.logging.log4j.core.Layout);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$FactoryData.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$FactoryData extends org.apache.logging.log4j.core.appender.db.AbstractDatabaseManager$AbstractFactoryData {
 private final ConnectionSource connectionSource;
 private final String tableName;
 private final ColumnConfig[] columnConfigs;
 private final org.apache.logging.log4j.core.appender.db.ColumnMapping[] columnMappings;
 private final boolean immediateFail;
 private final boolean retry;
 private final long reconnectIntervalMillis;
 private final boolean truncateStrings;
 protected void JdbcDatabaseManager$FactoryData(int, org.apache.logging.log4j.core.Layout, ConnectionSource, String, ColumnConfig[], org.apache.logging.log4j.core.appender.db.ColumnMapping[], boolean, long, boolean);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcAppender$1.class

package org.apache.logging.log4j.core.appender.db.jdbc;
synchronized class JdbcAppender$1 {
}

org/apache/logging/log4j/core/appender/AppenderSet$1.class

package org.apache.logging.log4j.core.appender;
synchronized class AppenderSet$1 {
}

org/apache/logging/log4j/core/appender/RandomAccessFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileAppender$1 {
}

org/apache/logging/log4j/core/appender/ScriptAppenderSelector$Builder.class

package org.apache.logging.log4j.core.appender;
public final synchronized class ScriptAppenderSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private AppenderSet appenderSet;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private String name;
 private org.apache.logging.log4j.core.script.AbstractScript script;
 public void ScriptAppenderSelector$Builder();
 public org.apache.logging.log4j.core.Appender build();
 public AppenderSet getAppenderSet();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public String getName();
 public org.apache.logging.log4j.core.script.AbstractScript getScript();
 public ScriptAppenderSelector$Builder withAppenderNodeSet(AppenderSet);
 public ScriptAppenderSelector$Builder withConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ScriptAppenderSelector$Builder withName(String);
 public ScriptAppenderSelector$Builder withScript(org.apache.logging.log4j.core.script.AbstractScript);
}

org/apache/logging/log4j/core/appender/mom/JmsAppender$Builder.class

package org.apache.logging.log4j.core.appender.mom;
public synchronized class JmsAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final int DEFAULT_RECONNECT_INTERVAL_MILLIS = 5000;
 private String factoryName;
 private String providerUrl;
 private String urlPkgPrefixes;
 private String securityPrincipalName;
 private String securityCredentials;
 private String factoryBindingName;
 private String destinationBindingName;
 private String userName;
 private char[] password;
 private long reconnectIntervalMillis;
 private boolean immediateFail;
 private JmsManager jmsManager;
 private void JmsAppender$Builder();
 public JmsAppender build();
 public JmsAppender$Builder setDestinationBindingName(String);
 public JmsAppender$Builder setFactoryBindingName(String);
 public JmsAppender$Builder setFactoryName(String);
 public JmsAppender$Builder setImmediateFail(boolean);
 public JmsAppender$Builder setJmsManager(JmsManager);
 public JmsAppender$Builder setPassword(char[]);
 public JmsAppender$Builder setPassword(String);
 public JmsAppender$Builder setProviderUrl(String);
 public JmsAppender$Builder setReconnectIntervalMillis(long);
 public JmsAppender$Builder setSecurityCredentials(String);
 public JmsAppender$Builder setSecurityPrincipalName(String);
 public JmsAppender$Builder setUrlPkgPrefixes(String);
 public JmsAppender$Builder setUsername(String);
 public JmsAppender$Builder setUserName(String);
 public String toString();
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqManager$JeroMqManagerFactory.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
synchronized class JeroMqManager$JeroMqManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JeroMqManager$JeroMqManagerFactory();
 public JeroMqManager createManager(String, JeroMqManager$JeroMqConfiguration);
}

org/apache/logging/log4j/core/impl/ThrowableProxyRenderer.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyRenderer {
 private static final String TAB = 	;
 private static final String CAUSED_BY_LABEL = Caused by: ;
 private static final String SUPPRESSED_LABEL = Suppressed: ;
 private static final String WRAPPED_BY_LABEL = Wrapped by: ;
 private void ThrowableProxyRenderer();
 static void formatWrapper(StringBuilder, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatCause(StringBuilder, String, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatThrowableProxy(StringBuilder, String, String, ThrowableProxy, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatSuppressed(StringBuilder, String, ThrowableProxy[], java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatElements(StringBuilder, String, int, StackTraceElement[], ExtendedStackTraceElement[], java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void renderSuffix(String, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 private static void appendSuppressedCount(StringBuilder, String, int, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void formatEntry(ExtendedStackTraceElement, StringBuilder, String, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static boolean ignoreElement(StackTraceElement, java.util.List);
 static void formatExtendedStackTraceTo(ThrowableProxy, StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 static void formatCauseStackTrace(ThrowableProxy, StringBuilder, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String, String);
 private static void renderOn(ThrowableProxy, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper.class

package org.apache.logging.log4j.core.impl;
synchronized class ThrowableProxyHelper {
 private void ThrowableProxyHelper();
 static ExtendedStackTraceElement[] toExtendedStackTrace(ThrowableProxy, java.util.Stack, java.util.Map, StackTraceElement[], StackTraceElement[]);
 static ThrowableProxy[] toSuppressedProxies(Throwable, java.util.Set);
 private static ThrowableProxyHelper$CacheEntry toCacheEntry(Class, boolean);
 private static Class loadClass(ClassLoader, String);
 private static Class loadClass(String);
}

org/apache/logging/log4j/core/impl/ExtendedStackTraceElement.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ExtendedStackTraceElement implements java.io.Serializable {
 static final ExtendedStackTraceElement[] EMPTY_ARRAY;
 private static final long serialVersionUID = -2171069569241280505;
 private final ExtendedClassInfo extraClassInfo;
 private final StackTraceElement stackTraceElement;
 public void ExtendedStackTraceElement(StackTraceElement, ExtendedClassInfo);
 public void ExtendedStackTraceElement(String, String, String, int, boolean, String, String);
 public boolean equals(Object);
 public String getClassName();
 public boolean getExact();
 public ExtendedClassInfo getExtraClassInfo();
 public String getFileName();
 public int getLineNumber();
 public String getLocation();
 public String getMethodName();
 public StackTraceElement getStackTraceElement();
 public String getVersion();
 public int hashCode();
 public boolean isNativeMethod();
 void renderOn(StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 private void render(StackTraceElement, StringBuilder, org.apache.logging.log4j.core.pattern.TextRenderer);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/selector/NamedContextSelector.class

package org.apache.logging.log4j.core.selector;
public abstract interface NamedContextSelector extends ContextSelector {
 public abstract org.apache.logging.log4j.core.LoggerContext locateContext(String, Object, java.net.URI);
 public abstract org.apache.logging.log4j.core.LoggerContext removeContext(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$InetAddressConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$InetAddressConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$InetAddressConverter();
 public java.net.InetAddress convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$1.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized class CommandLine$Help$1 implements CommandLine$Help$IParamLabelRenderer {
 void CommandLine$Help$1();
 public CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 public String separator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharacterConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharacterConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharacterConverter();
 public Character convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Assert.class

package org.apache.logging.log4j.core.tools.picocli;
final synchronized class CommandLine$Assert {
 static Object notNull(Object, String);
 private void CommandLine$Assert();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$FileConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$FileConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$FileConverter();
 public java.io.File convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$ISO8601TimeConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$ISO8601TimeConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$ISO8601TimeConverter();
 public java.sql.Time convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Interpreter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Interpreter {
 private final java.util.Map commands;
 private final java.util.Map converterRegistry;
 private final java.util.Map optionName2Field;
 private final java.util.Map singleCharOption2Field;
 private final java.util.List requiredFields;
 private final java.util.List positionalParametersFields;
 private final Object command;
 private boolean isHelpRequested;
 private String separator;
 private int position;
 void CommandLine$Interpreter(CommandLine, Object);
 transient java.util.List parse(String[]);
 private void parse(java.util.List, java.util.Stack, String[]);
 private void processArguments(java.util.List, java.util.Stack, java.util.Collection, java.util.Set, String[]) throws Exception;
 private boolean resemblesOption(String);
 private void handleUnmatchedArguments(String);
 private void handleUnmatchedArguments(java.util.Stack);
 private void processRemainderAsPositionalParameters(java.util.Collection, java.util.Set, java.util.Stack) throws Exception;
 private void processPositionalParameter(java.util.Collection, java.util.Set, java.util.Stack) throws Exception;
 private void processStandaloneOption(java.util.Collection, java.util.Set, String, java.util.Stack, boolean) throws Exception;
 private void processClusteredShortOptions(java.util.Collection, java.util.Set, String, java.util.Stack) throws Exception;
 private int applyOption(reflect.Field, Class, CommandLine$Range, boolean, java.util.Stack, java.util.Set, String) throws Exception;
 private int applyValueToSingleValuedField(reflect.Field, CommandLine$Range, java.util.Stack, Class, java.util.Set, String) throws Exception;
 private int applyValuesToMapField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private void consumeMapArguments(reflect.Field, CommandLine$Range, java.util.Stack, Class[], CommandLine$ITypeConverter, CommandLine$ITypeConverter, java.util.Map, String) throws Exception;
 private void consumeOneMapArgument(reflect.Field, CommandLine$Range, java.util.Stack, Class[], CommandLine$ITypeConverter, CommandLine$ITypeConverter, java.util.Map, int, String) throws Exception;
 private void checkMaxArityExceeded(CommandLine$Range, int, reflect.Field, String[]);
 private int applyValuesToArrayField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private int applyValuesToCollectionField(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, String) throws Exception;
 private java.util.List consumeArguments(reflect.Field, Class, CommandLine$Range, java.util.Stack, Class, int, String) throws Exception;
 private int consumeOneArgument(reflect.Field, CommandLine$Range, java.util.Stack, Class, java.util.List, int, int, String) throws Exception;
 private String splitRegex(reflect.Field);
 private String[] split(String, reflect.Field);
 private boolean isOption(String);
 private Object tryConvert(reflect.Field, int, CommandLine$ITypeConverter, String, Class) throws Exception;
 private String optionDescription(String, reflect.Field, int);
 private boolean isAnyHelpRequested();
 private void updateHelpRequested(reflect.Field);
 private boolean is(reflect.Field, String, boolean);
 private java.util.Collection createCollection(Class) throws Exception;
 private java.util.Map createMap(Class) throws Exception;
 private CommandLine$ITypeConverter getTypeConverter(Class, reflect.Field);
 private void assertNoMissingParameters(reflect.Field, int, java.util.Stack);
 private String trim(String);
 private String unquote(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IParamLabelRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IParamLabelRenderer {
 public abstract CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 public abstract String separator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IParameterRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IParameterRenderer {
 public abstract CommandLine$Help$Ansi$Text[][] render(CommandLine$Parameters, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/net/TcpSocketManager$HostResolver.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager$HostResolver {
 public void TcpSocketManager$HostResolver();
 public java.util.List resolveHost(String, int) throws java.net.UnknownHostException;
}

org/apache/logging/log4j/core/net/ssl/SslConfiguration.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfiguration {
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final KeyStoreConfiguration keyStoreConfig;
 private final TrustStoreConfiguration trustStoreConfig;
 private final javax.net.ssl.SSLContext sslContext;
 private final String protocol;
 private final boolean verifyHostName;
 private void SslConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration, boolean);
 public void clearSecrets();
 public javax.net.ssl.SSLSocketFactory getSslSocketFactory();
 public javax.net.ssl.SSLServerSocketFactory getSslServerSocketFactory();
 private javax.net.ssl.SSLContext createSslContext();
 private javax.net.ssl.SSLContext createSslContextWithTrustStoreFailure();
 private javax.net.ssl.SSLContext createSslContextWithKeyStoreFailure();
 private javax.net.ssl.SSLContext createSslContextBasedOnConfiguration() throws KeyStoreConfigurationException, TrustStoreConfigurationException;
 private javax.net.ssl.SSLContext createSslContextWithDefaultKeyManagerFactory() throws TrustStoreConfigurationException;
 private javax.net.ssl.SSLContext createSslContextWithDefaultTrustManagerFactory() throws KeyStoreConfigurationException;
 private javax.net.ssl.SSLContext createDefaultSslContext();
 private javax.net.ssl.SSLContext createSslContext(boolean, boolean) throws KeyStoreConfigurationException, TrustStoreConfigurationException;
 private javax.net.ssl.TrustManagerFactory loadTrustManagerFactory() throws TrustStoreConfigurationException;
 private javax.net.ssl.KeyManagerFactory loadKeyManagerFactory() throws KeyStoreConfigurationException;
 public static SslConfiguration createSSLConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration);
 public static SslConfiguration createSSLConfiguration(String, KeyStoreConfiguration, TrustStoreConfiguration, boolean);
 public int hashCode();
 public boolean equals(Object);
 public KeyStoreConfiguration getKeyStoreConfig();
 public TrustStoreConfiguration getTrustStoreConfig();
 public javax.net.ssl.SSLContext getSslContext();
 public String getProtocol();
 public boolean isVerifyHostName();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/Advertiser.class

package org.apache.logging.log4j.core.net;
public abstract interface Advertiser {
 public abstract Object advertise(java.util.Map);
 public abstract void unadvertise(Object);
}

org/apache/logging/log4j/core/net/SocketAddress$1.class

package org.apache.logging.log4j.core.net;
synchronized class SocketAddress$1 {
}

org/apache/logging/log4j/core/net/TcpSocketManager$TcpSocketManagerFactory.class

package org.apache.logging.log4j.core.net;
public synchronized class TcpSocketManager$TcpSocketManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 static TcpSocketManager$HostResolver resolver;
 protected void TcpSocketManager$TcpSocketManagerFactory();
 public TcpSocketManager createManager(String, TcpSocketManager$FactoryData);
 TcpSocketManager createManager(String, java.io.OutputStream, java.net.Socket, java.net.InetAddress, TcpSocketManager$FactoryData);
 java.net.Socket createSocket(TcpSocketManager$FactoryData) throws java.io.IOException;
 protected String errorMessage(TcpSocketManager$FactoryData, java.util.List);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/Format.class

package org.apache.logging.log4j.core.util.datetime;
public abstract synchronized class Format {
 public void Format();
 public final String format(Object);
 public abstract StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 public abstract Object parseObject(String, java.text.ParsePosition);
 public Object parseObject(String) throws java.text.ParseException;
}

org/apache/logging/log4j/core/util/datetime/FormatCache.class

package org.apache.logging.log4j.core.util.datetime;
abstract synchronized class FormatCache {
 static final int NONE = -1;
 private final java.util.concurrent.ConcurrentMap cInstanceCache;
 private static final java.util.concurrent.ConcurrentMap cDateTimeInstanceCache;
 void FormatCache();
 public Format getInstance();
 public Format getInstance(String, java.util.TimeZone, java.util.Locale);
 protected abstract Format createInstance(String, java.util.TimeZone, java.util.Locale);
 private Format getDateTimeInstance(Integer, Integer, java.util.TimeZone, java.util.Locale);
 Format getDateTimeInstance(int, int, java.util.TimeZone, java.util.Locale);
 Format getDateInstance(int, java.util.TimeZone, java.util.Locale);
 Format getTimeInstance(int, java.util.TimeZone, java.util.Locale);
 static String getPatternForStyle(Integer, Integer, java.util.Locale);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FixedDateFormat$FixedTimeZoneFormat.class

package org.apache.logging.log4j.core.util.datetime;
public final synchronized enum FixedDateFormat$FixedTimeZoneFormat {
 public static final FixedDateFormat$FixedTimeZoneFormat HH;
 public static final FixedDateFormat$FixedTimeZoneFormat HHMM;
 public static final FixedDateFormat$FixedTimeZoneFormat HHCMM;
 private final char timeSeparatorChar;
 private final int timeSeparatorCharLen;
 private final boolean useMinutes;
 private final int length;
 public static FixedDateFormat$FixedTimeZoneFormat[] values();
 public static FixedDateFormat$FixedTimeZoneFormat valueOf(String);
 private void FixedDateFormat$FixedTimeZoneFormat(String, int);
 private void FixedDateFormat$FixedTimeZoneFormat(String, int, char, boolean, int);
 public int getLength();
 private int write(int, char[], int);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$Iso8601_Rule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$Iso8601_Rule implements FastDatePrinter$Rule {
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS;
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS_MINUTES;
 static final FastDatePrinter$Iso8601_Rule ISO8601_HOURS_COLON_MINUTES;
 final int length;
 static FastDatePrinter$Iso8601_Rule getRule(int);
 void FastDatePrinter$Iso8601_Rule(int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$CopyQuotedStrategy.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDateParser$CopyQuotedStrategy extends FastDateParser$Strategy {
 private final String formatField;
 void FastDateParser$CopyQuotedStrategy(String);
 boolean isNumber();
 boolean parse(FastDateParser, java.util.Calendar, String, java.text.ParsePosition, int);
}

org/apache/logging/log4j/core/util/CloseShieldWriter.class

package org.apache.logging.log4j.core.util;
public synchronized class CloseShieldWriter extends java.io.Writer {
 private final java.io.Writer delegate;
 public void CloseShieldWriter(java.io.Writer);
 public void close() throws java.io.IOException;
 public void flush() throws java.io.IOException;
 public void write(char[], int, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/Cancellable.class

package org.apache.logging.log4j.core.util;
public abstract interface Cancellable extends Runnable {
 public abstract void cancel();
}

org/apache/logging/log4j/core/util/StringBuilderWriter.class

package org.apache.logging.log4j.core.util;
public synchronized class StringBuilderWriter extends java.io.Writer implements java.io.Serializable {
 private static final long serialVersionUID = -146927496096066153;
 private final StringBuilder builder;
 public void StringBuilderWriter();
 public void StringBuilderWriter(int);
 public void StringBuilderWriter(StringBuilder);
 public java.io.Writer append(char);
 public java.io.Writer append(CharSequence);
 public java.io.Writer append(CharSequence, int, int);
 public void close();
 public void flush();
 public void write(String);
 public void write(char[], int, int);
 public StringBuilder getBuilder();
 public String toString();
}

org/apache/logging/log4j/core/Logger$PrivateConfig.class

package org.apache.logging.log4j.core;
public synchronized class Logger$PrivateConfig {
 public final config.LoggerConfig loggerConfig;
 public final config.Configuration config;
 private final org.apache.logging.log4j.Level loggerConfigLevel;
 private final int intLevel;
 private final Logger logger;
 private final boolean requiresLocation;
 public void Logger$PrivateConfig(Logger, config.Configuration, Logger);
 public void Logger$PrivateConfig(Logger, Logger$PrivateConfig, org.apache.logging.log4j.Level);
 public void Logger$PrivateConfig(Logger, Logger$PrivateConfig, config.LoggerConfig);
 public void logEvent(LogEvent);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 transient boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 boolean filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public String toString();
}

org/apache/logging/log4j/core/config/Property.class

package org.apache.logging.log4j.core.config;
public final synchronized class Property {
 public static final Property[] EMPTY_ARRAY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String name;
 private final String value;
 private final boolean valueNeedsLookup;
 private void Property(String, String);
 public String getName();
 public String getValue();
 public boolean isValueNeedsLookup();
 public static Property createProperty(String, String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ClassArbiter implements Arbiter {
 private final String className;
 private void ClassArbiter(String);
 public boolean isCondition();
 public static SystemPropertyArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/DefaultArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class DefaultArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void DefaultArbiter$Builder();
 public DefaultArbiter$Builder asBuilder();
 public DefaultArbiter build();
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class SystemPropertyArbiter$1 {
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginNodeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginNodeVisitor extends AbstractPluginVisitor {
 public void PluginNodeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public abstract interface PluginVisitor {
 public abstract PluginVisitor setAnnotation(annotation.Annotation);
 public abstract transient PluginVisitor setAliases(String[]);
 public abstract PluginVisitor setConversionType(Class);
 public abstract PluginVisitor setStrSubstitutor(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public abstract PluginVisitor setMember(reflect.Member);
 public abstract Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginEntry.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginEntry implements java.io.Serializable {
 private static final long serialVersionUID = 1;
 private String key;
 private String className;
 private String name;
 private boolean printable;
 private boolean defer;
 private transient String category;
 public void PluginEntry();
 public String getKey();
 public void setKey(String);
 public String getClassName();
 public void setClassName(String);
 public String getName();
 public void setName(String);
 public boolean isPrintable();
 public void setPrintable(boolean);
 public boolean isDefer();
 public void setDefer(boolean);
 public String getCategory();
 public void setCategory(String);
 public String toString();
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$PluginAliasesElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$PluginAliasesElementVisitor extends javax.lang.model.util.SimpleElementVisitor7 {
 private final javax.lang.model.util.Elements elements;
 private void PluginProcessor$PluginAliasesElementVisitor(javax.lang.model.util.Elements);
 public java.util.Collection visitType(javax.lang.model.element.TypeElement, org.apache.logging.log4j.core.config.plugins.Plugin);
}

org/apache/logging/log4j/core/config/plugins/PluginAttribute.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginAttribute extends annotation.Annotation {
 public abstract boolean defaultBoolean();
 public abstract byte defaultByte();
 public abstract char defaultChar();
 public abstract Class defaultClass();
 public abstract double defaultDouble();
 public abstract float defaultFloat();
 public abstract int defaultInt();
 public abstract long defaultLong();
 public abstract short defaultShort();
 public abstract String defaultString();
 public abstract String value();
 public abstract boolean sensitive();
}

org/apache/logging/log4j/core/config/plugins/PluginNode.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginNode extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters.class

package org.apache.logging.log4j.core.config.plugins.convert;
public final synchronized class TypeConverters {
 public static final String CATEGORY = TypeConverter;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void TypeConverters();
 public static Object convert(String, Class, Object);
 private static Object parseDefaultValue(TypeConverter, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ByteArrayConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ByteArrayConverter implements TypeConverter {
 private static final String PREFIX_0x = 0x;
 private static final String PREFIX_BASE64 = Base64:;
 public void TypeConverters$ByteArrayConverter();
 public byte[] convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$CharArrayConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$CharArrayConverter implements TypeConverter {
 public void TypeConverters$CharArrayConverter();
 public char[] convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ClassConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ClassConverter implements TypeConverter {
 public void TypeConverters$ClassConverter();
 public Class convert(String) throws ClassNotFoundException;
}

org/apache/logging/log4j/core/config/plugins/convert/EnumConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class EnumConverter implements TypeConverter {
 private final Class clazz;
 public void EnumConverter(Class);
 public Enum convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$ByteConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$ByteConverter implements TypeConverter {
 public void TypeConverters$ByteConverter();
 public Byte convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverterRegistry.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverterRegistry {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile TypeConverterRegistry INSTANCE;
 private static final Object INSTANCE_LOCK;
 private final java.util.concurrent.ConcurrentMap registry;
 public static TypeConverterRegistry getInstance();
 public TypeConverter findCompatibleConverter(reflect.Type);
 private void TypeConverterRegistry();
 private void loadKnownTypeConverters(java.util.Collection);
 private TypeConverter registerConverter(reflect.Type, TypeConverter);
 private static reflect.Type getTypeConverterSupportedType(Class);
 private void registerPrimitiveTypes();
 private void registerTypeAlias(reflect.Type, reflect.Type);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/PropertiesPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class PropertiesPlugin {
 private void PropertiesPlugin();
 public static org.apache.logging.log4j.core.lookup.StrLookup configureSubstitutor(Property[], Configuration);
}

org/apache/logging/log4j/core/config/Scheduled.class

package org.apache.logging.log4j.core.config;
public abstract interface Scheduled extends annotation.Annotation {
}

org/apache/logging/log4j/core/config/json/JsonConfiguration$ErrorType.class

package org.apache.logging.log4j.core.config.json;
final synchronized enum JsonConfiguration$ErrorType {
 public static final JsonConfiguration$ErrorType CLASS_NOT_FOUND;
 public static JsonConfiguration$ErrorType[] values();
 public static JsonConfiguration$ErrorType valueOf(String);
 private void JsonConfiguration$ErrorType(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/properties/PropertiesConfigurationBuilder.class

package org.apache.logging.log4j.core.config.properties;
public synchronized class PropertiesConfigurationBuilder extends org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilderFactory implements org.apache.logging.log4j.core.util.Builder {
 private static final String ADVERTISER_KEY = advertiser;
 private static final String STATUS_KEY = status;
 private static final String SHUTDOWN_HOOK = shutdownHook;
 private static final String SHUTDOWN_TIMEOUT = shutdownTimeout;
 private static final String VERBOSE = verbose;
 private static final String DEST = dest;
 private static final String PACKAGES = packages;
 private static final String CONFIG_NAME = name;
 private static final String MONITOR_INTERVAL = monitorInterval;
 private static final String CONFIG_TYPE = type;
 private final org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder builder;
 private org.apache.logging.log4j.core.LoggerContext loggerContext;
 private java.util.Properties rootProperties;
 public void PropertiesConfigurationBuilder();
 public PropertiesConfigurationBuilder setRootProperties(java.util.Properties);
 public PropertiesConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public PropertiesConfiguration build();
 private org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder createScript(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder createScriptFile(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder createAppender(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder createFilter(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder createAppenderRef(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder createLogger(String, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder createRootLogger(java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder createLayout(String, java.util.Properties);
 private static org.apache.logging.log4j.core.config.builder.api.ComponentBuilder createComponent(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder, String, java.util.Properties);
 private static org.apache.logging.log4j.core.config.builder.api.ComponentBuilder processRemainingProperties(org.apache.logging.log4j.core.config.builder.api.ComponentBuilder, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.FilterableComponentBuilder addFiltersToComponent(org.apache.logging.log4j.core.config.builder.api.FilterableComponentBuilder, java.util.Properties);
 private org.apache.logging.log4j.core.config.builder.api.LoggableComponentBuilder addLoggersToComponent(org.apache.logging.log4j.core.config.builder.api.LoggableComponentBuilder, java.util.Properties);
 public PropertiesConfigurationBuilder setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/config/builder/api/AppenderRefComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface AppenderRefComponentBuilder extends FilterableComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/ScriptFileComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ScriptFileComponentBuilder extends ComponentBuilder {
 public abstract ScriptFileComponentBuilder addLanguage(String);
 public abstract ScriptFileComponentBuilder addIsWatched(boolean);
 public abstract ScriptFileComponentBuilder addIsWatched(String);
 public abstract ScriptFileComponentBuilder addCharset(String);
}

org/apache/logging/log4j/core/jmx/AppenderAdminMBean.class

package org.apache.logging.log4j.core.jmx;
public abstract interface AppenderAdminMBean {
 public static final String PATTERN = org.apache.logging.log4j2:type=%s,component=Appenders,name=%s;
 public abstract String getName();
 public abstract String getLayout();
 public abstract boolean isIgnoreExceptions();
 public abstract String getErrorHandler();
 public abstract String getFilter();
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized enum GelfLayout$CompressionType {
 public static final GelfLayout$CompressionType GZIP;
 public static final GelfLayout$CompressionType ZLIB;
 public static final GelfLayout$CompressionType OFF;
 public static GelfLayout$CompressionType[] values();
 public static GelfLayout$CompressionType valueOf(String);
 private void GelfLayout$CompressionType(String, int);
 public abstract java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/LevelPatternSelector.class

package org.apache.logging.log4j.core.layout;
public synchronized class LevelPatternSelector implements PatternSelector, org.apache.logging.log4j.core.impl.LocationAware {
 private final java.util.Map formatterMap;
 private final java.util.Map patternMap;
 private final org.apache.logging.log4j.core.pattern.PatternFormatter[] defaultFormatters;
 private final String defaultPattern;
 private static org.apache.logging.log4j.Logger LOGGER;
 private final boolean requiresLocation;
 public void LevelPatternSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 private void LevelPatternSelector(PatternMatch[], String, boolean, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public boolean requiresLocation();
 public org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
 public static LevelPatternSelector$Builder newBuilder();
 public static LevelPatternSelector createSelector(PatternMatch[], String, boolean, boolean, org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/ByteBufferDestination.class

package org.apache.logging.log4j.core.layout;
public abstract interface ByteBufferDestination {
 public abstract java.nio.ByteBuffer getByteBuffer();
 public abstract java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 public abstract void writeBytes(java.nio.ByteBuffer);
 public abstract void writeBytes(byte[], int, int);
}

org/apache/logging/log4j/core/layout/GelfLayout$CompressionType$1.class

package org.apache.logging.log4j.core.layout;
final synchronized enum GelfLayout$CompressionType$1 {
 void GelfLayout$CompressionType$1(String, int);
 public java.util.zip.DeflaterOutputStream createDeflaterOutputStream(java.io.OutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/core/layout/AbstractCsvLayout.class

package org.apache.logging.log4j.core.layout;
public abstract synchronized class AbstractCsvLayout extends AbstractStringLayout {
 protected static final String DEFAULT_CHARSET = UTF-8;
 protected static final String DEFAULT_FORMAT = Default;
 private static final String CONTENT_TYPE = text/csv;
 private final org.apache.commons.csv.CSVFormat format;
 protected static org.apache.commons.csv.CSVFormat createFormat(String, Character, Character, Character, org.apache.commons.csv.QuoteMode, String, String);
 private static boolean isNotNul(Character);
 protected void AbstractCsvLayout(org.apache.logging.log4j.core.config.Configuration, java.nio.charset.Charset, org.apache.commons.csv.CSVFormat, String, String);
 public String getContentType();
 public org.apache.commons.csv.CSVFormat getFormat();
}

org/apache/logging/log4j/core/layout/PatternLayout$NoFormatPatternSerializer.class

package org.apache.logging.log4j.core.layout;
final synchronized class PatternLayout$NoFormatPatternSerializer implements PatternLayout$PatternSerializer {
 private final org.apache.logging.log4j.core.pattern.LogEventPatternConverter[] converters;
 private void PatternLayout$NoFormatPatternSerializer(org.apache.logging.log4j.core.pattern.PatternFormatter[]);
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public StringBuilder toSerializable(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 public String toString();
}

org/apache/logging/log4j/core/layout/PatternLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class PatternLayout$1 {
}

org/apache/logging/log4j/core/layout/GelfLayout$1.class

package org.apache.logging.log4j.core.layout;
synchronized class GelfLayout$1 {
}

org/apache/logging/log4j/core/layout/LoggerFields.class

package org.apache.logging.log4j.core.layout;
public final synchronized class LoggerFields {
 private final java.util.Map map;
 private final String sdId;
 private final String enterpriseId;
 private final boolean discardIfAllFieldsAreEmpty;
 private void LoggerFields(java.util.Map, String, String, boolean);
 public java.util.Map getMap();
 public String toString();
 public static LoggerFields createLoggerFields(org.apache.logging.log4j.core.util.KeyValuePair[], String, String, boolean);
 public org.apache.logging.log4j.message.StructuredDataId getSdId();
 public boolean getDiscardIfAllFieldsAreEmpty();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerConfigDisruptor$1 extends org.apache.logging.log4j.core.util.Log4jThreadFactory {
 void AsyncLoggerConfigDisruptor$1(AsyncLoggerConfigDisruptor, String, boolean, int);
 public Thread newThread(Runnable);
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig$RootLogger.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfig$RootLogger extends org.apache.logging.log4j.core.config.LoggerConfig {
 public void AsyncLoggerConfig$RootLogger();
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, org.apache.logging.log4j.Level, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
}

org/apache/logging/log4j/core/lookup/JavaLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class JavaLookup extends AbstractLookup {
 private final SystemPropertiesLookup spLookup;
 public void JavaLookup();
 public String getHardware();
 public String getLocale();
 public String getOperatingSystem();
 public String getRuntime();
 private String getSystemProperty(String);
 private String getSystemProperty(String, String);
 public String getVirtualMachine();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/lookup/StrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public synchronized class StrSubstitutor implements org.apache.logging.log4j.core.config.ConfigurationAware {
 public static final char DEFAULT_ESCAPE = 36;
 public static final StrMatcher DEFAULT_PREFIX;
 public static final StrMatcher DEFAULT_SUFFIX;
 public static final String DEFAULT_VALUE_DELIMITER_STRING = :-;
 public static final StrMatcher DEFAULT_VALUE_DELIMITER;
 public static final String ESCAPE_DELIMITER_STRING = :\-;
 public static final StrMatcher DEFAULT_VALUE_ESCAPE_DELIMITER;
 private static final int BUF_SIZE = 256;
 private char escapeChar;
 private StrMatcher prefixMatcher;
 private StrMatcher suffixMatcher;
 private String valueDelimiterString;
 private StrMatcher valueDelimiterMatcher;
 private StrMatcher valueEscapeDelimiterMatcher;
 private StrLookup variableResolver;
 private boolean enableSubstitutionInVariables;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private boolean recursiveEvaluationAllowed;
 public void StrSubstitutor();
 public void StrSubstitutor(java.util.Map);
 public void StrSubstitutor(java.util.Map, String, String);
 public void StrSubstitutor(java.util.Map, String, String, char);
 public void StrSubstitutor(java.util.Map, String, String, char, String);
 public void StrSubstitutor(java.util.Properties);
 public void StrSubstitutor(StrLookup);
 public void StrSubstitutor(StrLookup, String, String, char);
 public void StrSubstitutor(StrLookup, String, String, char, String);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char, StrMatcher);
 public void StrSubstitutor(StrLookup, StrMatcher, StrMatcher, char, StrMatcher, StrMatcher);
 void StrSubstitutor(StrSubstitutor);
 public static String replace(Object, java.util.Map);
 public static String replace(Object, java.util.Map, String, String);
 public static String replace(Object, java.util.Properties);
 private static java.util.Map toTypeSafeMap(java.util.Properties);
 private static String handleFailedReplacement(String, Throwable);
 public String replace(String);
 public String replace(org.apache.logging.log4j.core.LogEvent, String);
 public String replace(String, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, String, int, int);
 public String replace(char[]);
 public String replace(org.apache.logging.log4j.core.LogEvent, char[]);
 public String replace(char[], int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, char[], int, int);
 public String replace(StringBuffer);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuffer);
 public String replace(StringBuffer, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuffer, int, int);
 public String replace(StringBuilder);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public String replace(StringBuilder, int, int);
 public String replace(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 public String replace(Object);
 public String replace(org.apache.logging.log4j.core.LogEvent, Object);
 public boolean replaceIn(StringBuffer);
 public boolean replaceIn(StringBuffer, int, int);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuffer, int, int);
 public boolean replaceIn(StringBuilder);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean replaceIn(StringBuilder, int, int);
 public boolean replaceIn(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 protected boolean substitute(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int);
 private int substitute(org.apache.logging.log4j.core.LogEvent, StringBuilder, int, int, java.util.List);
 private boolean isCyclicSubstitution(String, java.util.List);
 protected String resolveVariable(org.apache.logging.log4j.core.LogEvent, String, StringBuilder, int, int);
 public char getEscapeChar();
 public void setEscapeChar(char);
 public StrMatcher getVariablePrefixMatcher();
 public StrSubstitutor setVariablePrefixMatcher(StrMatcher);
 public StrSubstitutor setVariablePrefix(char);
 public StrSubstitutor setVariablePrefix(String);
 public StrMatcher getVariableSuffixMatcher();
 public StrSubstitutor setVariableSuffixMatcher(StrMatcher);
 public StrSubstitutor setVariableSuffix(char);
 public StrSubstitutor setVariableSuffix(String);
 public StrMatcher getValueDelimiterMatcher();
 public StrSubstitutor setValueDelimiterMatcher(StrMatcher);
 public StrSubstitutor setValueDelimiter(char);
 public StrSubstitutor setValueDelimiter(String);
 public StrLookup getVariableResolver();
 public void setVariableResolver(StrLookup);
 public boolean isEnableSubstitutionInVariables();
 public void setEnableSubstitutionInVariables(boolean);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 private char[] getChars(StringBuilder);
 public void appendWithSeparators(StringBuilder, Iterable, String);
 public String toString();
 public void setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/ParseException.class

package org.apache.logging.log4j.core.parser;
public synchronized class ParseException extends Exception {
 private static final long serialVersionUID = -2739649998196663857;
 public void ParseException(String);
 public void ParseException(String, Throwable);
 public void ParseException(Throwable);
}

org/apache/logging/log4j/core/parser/AbstractJacksonLogEventParser.class

package org.apache.logging.log4j.core.parser;
synchronized class AbstractJacksonLogEventParser implements TextLogEventParser {
 private final com.fasterxml.jackson.databind.ObjectReader objectReader;
 void AbstractJacksonLogEventParser(com.fasterxml.jackson.databind.ObjectMapper);
 public org.apache.logging.log4j.core.LogEvent parseFrom(String) throws ParseException;
 public org.apache.logging.log4j.core.LogEvent parseFrom(byte[]) throws ParseException;
 public org.apache.logging.log4j.core.LogEvent parseFrom(byte[], int, int) throws ParseException;
}

org/apache/logging/log4j/core/script/ScriptManager$ThreadLocalScriptRunner$1.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$ThreadLocalScriptRunner$1 extends ThreadLocal {
 void ScriptManager$ThreadLocalScriptRunner$1(ScriptManager$ThreadLocalScriptRunner);
 protected ScriptManager$MainScriptRunner initialValue();
}

org/apache/logging/log4j/core/script/ScriptManager.class

package org.apache.logging.log4j.core.script;
public synchronized class ScriptManager implements org.apache.logging.log4j.core.util.FileWatcher, java.io.Serializable {
 private static final long serialVersionUID = -2534169384971965196;
 private static final String KEY_THREADING = THREADING;
 private static final org.apache.logging.log4j.Logger logger;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private final javax.script.ScriptEngineManager manager;
 private final java.util.concurrent.ConcurrentMap scriptRunners;
 private final String languages;
 private final org.apache.logging.log4j.core.util.WatchManager watchManager;
 public void ScriptManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.util.WatchManager);
 public void addScript(AbstractScript);
 public javax.script.Bindings createBindings(AbstractScript);
 public AbstractScript getScript(String);
 public void fileModified(java.io.File);
 public Object execute(String, javax.script.Bindings);
 private ScriptManager$ScriptRunner getScriptRunner(AbstractScript);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class NoMarkerFilter$1 {
}

org/apache/logging/log4j/core/filter/CompositeFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class CompositeFilter extends org.apache.logging.log4j.core.AbstractLifeCycle implements Iterable, org.apache.logging.log4j.core.Filter {
 private final org.apache.logging.log4j.core.Filter[] filters;
 private void CompositeFilter();
 private void CompositeFilter(org.apache.logging.log4j.core.Filter[]);
 public CompositeFilter addFilter(org.apache.logging.log4j.core.Filter);
 public CompositeFilter removeFilter(org.apache.logging.log4j.core.Filter);
 public java.util.Iterator iterator();
 public java.util.List getFilters();
 public org.apache.logging.log4j.core.Filter[] getFiltersArray();
 public boolean isEmpty();
 public int size();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 public org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static CompositeFilter createFilters(org.apache.logging.log4j.core.Filter[]);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$FixedFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$FixedFormatter extends DatePatternConverter$Formatter {
 private final org.apache.logging.log4j.core.util.datetime.FixedDateFormat fixedDateFormat;
 private final char[] cachedBuffer;
 private int length;
 void DatePatternConverter$FixedFormatter(org.apache.logging.log4j.core.util.datetime.FixedDateFormat);
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
 public String toPattern();
}

org/apache/logging/log4j/core/pattern/PatternFormatter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class PatternFormatter {
 public static final PatternFormatter[] EMPTY_ARRAY;
 private final LogEventPatternConverter converter;
 private final FormattingInfo field;
 private final boolean skipFormattingInfo;
 public void PatternFormatter(LogEventPatternConverter, FormattingInfo);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 private void formatWithInfo(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public LogEventPatternConverter getConverter();
 public FormattingInfo getFormattingInfo();
 public boolean handlesThrowable();
 public boolean requiresLocation();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$NOPAbbreviator.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$NOPAbbreviator extends NameAbbreviator {
 public void NameAbbreviator$NOPAbbreviator();
 public void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy.class

package org.apache.logging.log4j.core.pattern;
abstract synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy {
 public static final NameAbbreviator$MaxElementAbbreviator$Strategy DROP;
 public static final NameAbbreviator$MaxElementAbbreviator$Strategy RETAIN;
 final int minCount;
 public static NameAbbreviator$MaxElementAbbreviator$Strategy[] values();
 public static NameAbbreviator$MaxElementAbbreviator$Strategy valueOf(String);
 private void NameAbbreviator$MaxElementAbbreviator$Strategy(String, int, int);
 abstract void abbreviate(int, String, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$PatternAbbreviatorFragment.class

package org.apache.logging.log4j.core.pattern;
final synchronized class NameAbbreviator$PatternAbbreviatorFragment {
 private final int charCount;
 private final char ellipsis;
 void NameAbbreviator$PatternAbbreviatorFragment(int, char);
 int abbreviate(String, int, StringBuilder);
}

org/apache/logging/log4j/core/pattern/RegexReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class RegexReplacementConverter extends LogEventPatternConverter {
 private final java.util.regex.Pattern pattern;
 private final String substitution;
 private final java.util.List formatters;
 private void RegexReplacementConverter(java.util.List, java.util.regex.Pattern, String);
 public static RegexReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/SequenceNumberPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class SequenceNumberPatternConverter extends LogEventPatternConverter {
 private static final java.util.concurrent.atomic.AtomicLong SEQUENCE;
 private static final SequenceNumberPatternConverter INSTANCE;
 private void SequenceNumberPatternConverter();
 public static SequenceNumberPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/FileLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FileLocationPatternConverter extends LogEventPatternConverter {
 private static final FileLocationPatternConverter INSTANCE;
 private void FileLocationPatternConverter();
 public static FileLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/SimpleLiteralPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class SimpleLiteralPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$3.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$3 {
 void EncodingPatternConverter$EscapeFormat$3(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$RenderingPatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$RenderingPatternConverter extends MessagePatternConverter {
 private final MessagePatternConverter delegate;
 private final TextRenderer textRenderer;
 void MessagePatternConverter$RenderingPatternConverter(MessagePatternConverter, TextRenderer);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/JAnsiTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class JAnsiTextRenderer implements TextRenderer {
 public static final java.util.Map DefaultExceptionStyleMap;
 static final java.util.Map DefaultMessageStyleMap;
 private static final java.util.Map PrefedinedStyleMaps;
 private final String beginToken;
 private final int beginTokenLen;
 private final String endToken;
 private final int endTokenLen;
 private final java.util.Map styleMap;
 private static transient void put(java.util.Map, String, org.fusesource.jansi.AnsiRenderer$Code[]);
 public void JAnsiTextRenderer(String[], java.util.Map);
 public java.util.Map getStyleMap();
 private void render(org.fusesource.jansi.Ansi, org.fusesource.jansi.AnsiRenderer$Code);
 private transient void render(org.fusesource.jansi.Ansi, org.fusesource.jansi.AnsiRenderer$Code[]);
 private transient String render(String, String[]);
 public void render(String, StringBuilder, String) throws IllegalArgumentException;
 public void render(StringBuilder, StringBuilder) throws IllegalArgumentException;
 private org.fusesource.jansi.AnsiRenderer$Code toCode(String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/IntegerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class IntegerPatternConverter extends AbstractPatternConverter implements ArrayPatternConverter {
 private static final IntegerPatternConverter INSTANCE;
 private void IntegerPatternConverter();
 public static IntegerPatternConverter newInstance(String[]);
 public transient void format(StringBuilder, Object[]);
 public void format(Object, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LineLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LineLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final LineLocationPatternConverter INSTANCE;
 private void LineLocationPatternConverter();
 public static LineLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/LogEventListener.class

package org.apache.logging.log4j.core;
public synchronized class LogEventListener implements java.util.EventListener {
 protected static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private final LoggerContext context;
 protected void LogEventListener();
 public void log(LogEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ThrowableProxyMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class ThrowableProxyMixIn {
 private ThrowableProxyMixIn causeProxy;
 private int commonElementCount;
 private org.apache.logging.log4j.core.impl.ExtendedStackTraceElement[] extendedStackTrace;
 private String localizedMessage;
 private String message;
 private String name;
 private transient Throwable throwable;
 void ThrowableProxyMixIn();
 public abstract String getCauseStackTraceAsString();
 public abstract String getExtendedStackTraceAsString();
 public abstract StackTraceElement[] getStackTrace();
 public abstract org.apache.logging.log4j.core.impl.ThrowableProxy[] getSuppressedProxies();
 public abstract String getSuppressedStackTrace();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntrySerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ListOfMapEntrySerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 protected void ListOfMapEntrySerializer();
 public void serialize(java.util.Map, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

org/apache/logging/log4j/core/jackson/StackTraceElementMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class StackTraceElementMixIn {
 void StackTraceElementMixIn(String, String, String, int);
 abstract String getClassName();
 abstract String getFileName();
 abstract int getLineNumber();
 abstract String getMethodName();
}

org/apache/logging/log4j/core/jackson/InstantMixIn.class

package org.apache.logging.log4j.core.jackson;
abstract synchronized class InstantMixIn {
 void InstantMixIn(long, int);
 abstract long getEpochSecond();
 abstract int getNanoOfSecond();
}

org/apache/logging/log4j/core/jackson/ListOfMapEntryDeserializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ListOfMapEntryDeserializer$1 extends com.fasterxml.jackson.core.type.TypeReference {
 void ListOfMapEntryDeserializer$1(ListOfMapEntryDeserializer);
}

org/apache/logging/log4j/core/jackson/XmlConstants.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class XmlConstants {
 public static final String ELT_CAUSE = Cause;
 public static final String ELT_CONTEXT_MAP = ContextMap;
 public static final String ELT_CONTEXT_STACK = ContextStack;
 public static final String ELT_CONTEXT_STACK_ITEM = ContextStackItem;
 public static final String ELT_EVENT = Event;
 public static final String ELT_EXTENDED_STACK_TRACE = ExtendedStackTrace;
 public static final String ELT_EXTENDED_STACK_TRACE_ITEM = ExtendedStackTraceItem;
 public static final String ELT_TIME_MILLIS = TimeMillis;
 public static final String ELT_INSTANT = Instant;
 public static final String ELT_MARKER = Marker;
 public static final String ELT_MESSAGE = Message;
 public static final String ELT_PARENTS = Parents;
 public static final String ELT_SOURCE = Source;
 public static final String ELT_SUPPRESSED = Suppressed;
 public static final String ELT_SUPPRESSED_ITEM = SuppressedItem;
 public static final String ELT_THROWN = Thrown;
 public static final String XML_NAMESPACE = http://logging.apache.org/log4j/2.0/events;
 public void XmlConstants();
}

org/apache/logging/log4j/core/jackson/SimpleMessageDeserializer.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class SimpleMessageDeserializer extends com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer {
 private static final long serialVersionUID = 1;
 void SimpleMessageDeserializer();
 public org.apache.logging.log4j.message.SimpleMessage deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jXmlObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jXmlObjectMapper extends com.fasterxml.jackson.dataformat.xml.XmlMapper {
 private static final long serialVersionUID = 1;
 public void Log4jXmlObjectMapper();
 public void Log4jXmlObjectMapper(boolean, boolean);
}

META-INF/org/apache/logging/log4j/core/config/plugins/Log4j2Plugins.dat

META-INF/maven/org.apache.logging.log4j/log4j-core/pom.xml

 4.0.0

 org.apache.logging.log4j
 log4j
 2.17.1
 ../

 log4j-core
 jar
 Apache Log4j Core
 The Apache Log4j Implementation

 ${basedir}/..
 Core Documentation
 /core
 true

 org.apache.logging.log4j
 log4j-api

 org.osgi
 org.osgi.core
 provided

 com.lmax
 disruptor
 true

 com.conversantmedia
 disruptor
 true

 org.jctools
 jctools-core
 true

 com.fasterxml.jackson.core
 jackson-core
 true

 com.fasterxml.jackson.core
 jackson-databind
 true

 com.fasterxml.jackson.dataformat
 jackson-dataformat-yaml
 true

 com.fasterxml.jackson.dataformat
 jackson-dataformat-xml
 true

 com.fasterxml.woodstox
 woodstox-core
 ${woodstox.version}
 true

 org.fusesource.jansi
 jansi
 true

 com.sun.mail
 javax.mail
 true

 org.jboss.spec.javax.jms
 jboss-jms-api_1.1_spec
 provided
 true

 org.apache.kafka
 kafka-clients
 true

 org.zeromq
 jeromq
 true

 org.apache.commons
 commons-compress
 true

 org.apache.commons
 commons-csv
 true

 org.slf4j
 slf4j-api
 true

 org.apache.logging.log4j
 log4j-api
 test-jar
 test

 org.tukaani
 xz
 test

 org.jmdns
 jmdns
 3.5.7
 test

 log4j
 log4j
 1.2.17
 test

 org.slf4j
 slf4j-ext
 test

 org.junit.vintage
 junit-vintage-engine

 org.junit.jupiter
 junit-jupiter-engine

 org.junit.jupiter
 junit-jupiter-params

 org.hamcrest
 hamcrest
 test

 org.mockito
 mockito-core

 org.mockito
 mockito-junit-jupiter

 org.hsqldb
 hsqldb
 test

 com.h2database
 h2
 test

 org.springframework
 spring-test
 test

 org.apache.activemq
 activemq-broker
 test

 org.apache.geronimo.specs
 geronimo-jms_1.1_spec

 commons-logging
 commons-logging
 test

 ch.qos.logback
 logback-core
 test

 ch.qos.logback
 logback-classic
 test

 org.eclipse.tycho
 org.eclipse.osgi
 test

 org.apache.felix
 org.apache.felix.framework
 test

 org.codehaus.plexus
 plexus-utils
 test

 org.apache.maven
 maven-core
 test

 net.javacrumbs.json-unit
 json-unit
 test

 org.xmlunit
 xmlunit-core
 test

 org.xmlunit
 xmlunit-matchers
 test

 commons-io
 commons-io
 test

 commons-codec
 commons-codec
 test

 org.apache.commons
 commons-lang3
 test

 org.apache-extras.beanshell
 bsh
 test

 org.codehaus.groovy
 groovy-jsr223
 test

 org.codehaus.groovy
 groovy-dateutil
 test

 com.github.tomakehurst
 wiremock
 test

 com.google.code.java-allocation-instrumenter
 java-allocation-instrumenter
 test

 org.hdrhistogram
 HdrHistogram
 test

 org.awaitility
 awaitility
 test

 org.zapodot
 embedded-ldap-junit
 test

 org.apache.maven.plugins
 maven-dependency-plugin
 3.0.2

 unpack-classes
 prepare-package

 unpack

 org.apache.logging.log4j
 log4j-core-java9
 ${project.version}
 zip
 false

 **/*.class
 **/*.java
 ${project.build.directory}
 false
 true

 org.codehaus.mojo
 build-helper-maven-plugin
 1.7

 add-source
 generate-sources

 add-source

 ${project.build.directory}/log4j-core-java9

 maven-compiler-plugin

 default-compile

 module-info.java

 none

 process-plugins

 compile

 process-classes

 module-info.java

 only

 maven-surefire-plugin

 org.apache.logging.log4j.categories.PerformanceTests

 *

 org.apache.maven.plugins
 maven-failsafe-plugin

 true

 org.apache.maven.plugins
 maven-jar-plugin

 default-jar

 jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}
 org.apache.logging.log4j.core
 true

 default

 test-jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}

 org.apache.felix
 maven-bundle-plugin

 org.apache.logging.log4j.core

 org.apache.logging.log4j.core.*

 sun.reflect;resolution:=optional,
 *

 org.apache.logging.log4j.core.osgi.Activator

 org.apache.maven.plugins
 maven-changes-plugin
 ${changes.plugin.version}

 changes-report

 %URL%/show_bug.cgi?id=%ISSUE%
 true

 org.apache.maven.plugins
 maven-checkstyle-plugin
 ${checkstyle.plugin.version}

 ${log4jParentDir}/checkstyle.xml
 ${log4jParentDir}/checkstyle-suppressions.xml
 false
 basedir=${basedir}
 licensedir=${log4jParentDir}/checkstyle-header.txt

 org.apache.maven.plugins
 maven-javadoc-plugin
 ${javadoc.plugin.version}

 false
 <p align="center">Copyright © {inceptionYear}-{currentYear} {organizationName}. All Rights Reserved.

 Apache Logging, Apache Log4j, Log4j, Apache, the Apache feather logo, the Apache Logging project logo,
 and the Apache Log4j logo are trademarks of The Apache Software Foundation.</p>

 false
 true

 http://docs.oracle.com/javaee/6/api/
 http://www.osgi.org/javadoc/r4v43/core/
 https://commons.apache.org/proper/commons-lang/javadocs/api-release/

 Core API
 org.apache.logging.log4j.core

 Configuration
 org.apache.logging.log4j.core.config*:org.apache.logging.log4j.core.selector

 Core Plugins
 org.apache.logging.log4j.core.appender*:org.apache.logging.log4j.core.filter:org.apache.logging.log4j.core.layout:org.apache.logging.log4j.core.lookup:org.apache.logging.log4j.core.pattern:org.apache.logging.log4j.core.script

 Tools
 org.apache.logging.log4j.core.net*:org.apache.logging.log4j.core.tools

 Internals
 org.apache.logging.log4j.core.async:org.apache.logging.log4j.core.impl:org.apache.logging.log4j.core.util*:org.apache.logging.log4j.core.osgi:org.apache.logging.log4j.core.jackson:org.apache.logging.log4j.core.jmx

 non-aggregate

 javadoc

 com.github.spotbugs
 spotbugs-maven-plugin

 org.apache.maven.plugins
 maven-jxr-plugin
 ${jxr.plugin.version}

 non-aggregate

 jxr

 aggregate

 aggregate

 org.apache.maven.plugins
 maven-pmd-plugin
 ${pmd.plugin.version}

 ${maven.compiler.target}

org/apache/logging/log4j/core/appender/FileManager$FileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$FileManagerFactory implements ManagerFactory {
 private void FileManager$FileManagerFactory();
 public FileManager createManager(String, FileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/ScriptAppenderSelector.class

package org.apache.logging.log4j.core.appender;
public synchronized class ScriptAppenderSelector extends AbstractAppender {
 public static ScriptAppenderSelector$Builder newBuilder();
 private void ScriptAppenderSelector(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Property[]);
 public void append(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$ConsoleManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class ConsoleAppender$ConsoleManagerFactory implements ManagerFactory {
 private void ConsoleAppender$ConsoleManagerFactory();
 public OutputStreamManager createManager(String, ConsoleAppender$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/OnStartupTriggeringPolicy.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class OnStartupTriggeringPolicy extends AbstractTriggeringPolicy {
 private static final long JVM_START_TIME;
 private final long minSize;
 private void OnStartupTriggeringPolicy(long);
 private static long initStartTime();
 public void initialize(RollingFileManager);
 public boolean isTriggeringEvent(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static OnStartupTriggeringPolicy createPolicy(long);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathSortByModificationTime.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PathSortByModificationTime implements PathSorter, java.io.Serializable {
 private static final long serialVersionUID = 1;
 private final boolean recentFirst;
 private final int multiplier;
 public void PathSortByModificationTime(boolean);
 public static PathSorter createSorter(boolean);
 public boolean isRecentFirst();
 public int compare(PathWithAttributes, PathWithAttributes);
}

org/apache/logging/log4j/core/appender/rolling/action/IfFileName.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfFileName implements PathCondition {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.nio.file.PathMatcher pathMatcher;
 private final String syntaxAndPattern;
 private final PathCondition[] nestedConditions;
 private transient void IfFileName(String, String, PathCondition[]);
 static String createSyntaxAndPatternString(String, String);
 public String getSyntaxAndPattern();
 public java.util.List getNestedConditions();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static transient IfFileName createNameCondition(String, String, PathCondition[]);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/Duration.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class Duration implements java.io.Serializable, Comparable {
 private static final long serialVersionUID = -3756810052716342061;
 public static final Duration ZERO;
 private static final int HOURS_PER_DAY = 24;
 private static final int MINUTES_PER_HOUR = 60;
 private static final int SECONDS_PER_MINUTE = 60;
 private static final int SECONDS_PER_HOUR = 3600;
 private static final int SECONDS_PER_DAY = 86400;
 private static final java.util.regex.Pattern PATTERN;
 private final long seconds;
 private void Duration(long);
 public static Duration parse(CharSequence);
 private static long parseNumber(CharSequence, String, int, String);
 private static Duration create(long, long, long, long);
 private static Duration create(long);
 public long toMillis();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public int compareTo(Duration);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$5.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$5 {
 void FileExtension$5(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$1.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$1 {
 void FileExtension$1(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/rolling/DefaultRolloverStrategy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DefaultRolloverStrategy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String max;
 private String min;
 private String fileIndex;
 private String compressionLevelStr;
 private action.Action[] customActions;
 private boolean stopCustomActionsOnError;
 private String tempCompressedFilePattern;
 private org.apache.logging.log4j.core.config.Configuration config;
 public void DefaultRolloverStrategy$Builder();
 public DefaultRolloverStrategy build();
 public String getMax();
 public DefaultRolloverStrategy$Builder withMax(String);
 public String getMin();
 public DefaultRolloverStrategy$Builder withMin(String);
 public String getFileIndex();
 public DefaultRolloverStrategy$Builder withFileIndex(String);
 public String getCompressionLevelStr();
 public DefaultRolloverStrategy$Builder withCompressionLevelStr(String);
 public action.Action[] getCustomActions();
 public DefaultRolloverStrategy$Builder withCustomActions(action.Action[]);
 public boolean isStopCustomActionsOnError();
 public DefaultRolloverStrategy$Builder withStopCustomActionsOnError(boolean);
 public String getTempCompressedFilePattern();
 public DefaultRolloverStrategy$Builder withTempCompressedFilePattern(String);
 public org.apache.logging.log4j.core.config.Configuration getConfig();
 public DefaultRolloverStrategy$Builder withConfig(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/FailoverAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FailoverAppender extends AbstractAppender {
 private static final int DEFAULT_INTERVAL_SECONDS = 60;
 private final String primaryRef;
 private final String[] failovers;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private org.apache.logging.log4j.core.config.AppenderControl primary;
 private final java.util.List failoverAppenders;
 private final long intervalNanos;
 private volatile long nextCheckNanos;
 private void FailoverAppender(String, org.apache.logging.log4j.core.Filter, String, String[], int, org.apache.logging.log4j.core.config.Configuration, boolean, org.apache.logging.log4j.core.config.Property[]);
 public void start();
 public void append(org.apache.logging.log4j.core.LogEvent);
 private void callAppender(org.apache.logging.log4j.core.LogEvent);
 private void failover(org.apache.logging.log4j.core.LogEvent, Exception);
 public String toString();
 public static FailoverAppender createAppender(String, String, String[], String, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter, String);
}

org/apache/logging/log4j/core/appender/FileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class FileManager extends OutputStreamManager {
 private static final FileManager$FileManagerFactory FACTORY;
 private final boolean isAppend;
 private final boolean createOnDemand;
 private final boolean isLocking;
 private final String advertiseURI;
 private final int bufferSize;
 private final java.util.Set filePermissions;
 private final String fileOwner;
 private final String fileGroup;
 private final boolean attributeViewEnabled;
 protected void FileManager(String, java.io.OutputStream, boolean, boolean, String, org.apache.logging.log4j.core.Layout, int, boolean);
 protected void FileManager(String, java.io.OutputStream, boolean, boolean, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void FileManager(org.apache.logging.log4j.core.LoggerContext, String, java.io.OutputStream, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void FileManager(org.apache.logging.log4j.core.LoggerContext, String, java.io.OutputStream, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean, java.nio.ByteBuffer);
 public static FileManager getFileManager(String, boolean, boolean, boolean, boolean, String, org.apache.logging.log4j.core.Layout, int, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 protected java.io.OutputStream createOutputStream() throws java.io.IOException;
 protected void createParentDir(java.io.File);
 protected void defineAttributeView(java.nio.file.Path);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 public String getFileName();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public int getBufferSize();
 public java.util.Set getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public boolean isAttributeViewEnabled();
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractManager.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractManager implements AutoCloseable {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final java.util.Map MAP;
 private static final java.util.concurrent.locks.Lock LOCK;
 protected int count;
 private final String name;
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 protected void AbstractManager(org.apache.logging.log4j.core.LoggerContext, String);
 public void close();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public static AbstractManager getManager(String, ManagerFactory, Object);
 public void updateData(Object);
 public static boolean hasManager(String);
 protected static AbstractManager narrow(Class, AbstractManager);
 protected static org.apache.logging.log4j.status.StatusLogger logger();
 protected boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected int getCount();
 public org.apache.logging.log4j.core.LoggerContext getLoggerContext();
 public void release();
 public String getName();
 public java.util.Map getContentFormat();
 protected void log(org.apache.logging.log4j.Level, String, Throwable);
 protected void logDebug(String, Throwable);
 protected void logError(String, Throwable);
 protected void logWarn(String, Throwable);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/HttpURLConnectionManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class HttpURLConnectionManager extends HttpManager {
 private static final java.nio.charset.Charset CHARSET;
 private final java.net.URL url;
 private final boolean isHttps;
 private final String method;
 private final int connectTimeoutMillis;
 private final int readTimeoutMillis;
 private final org.apache.logging.log4j.core.config.Property[] headers;
 private final org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 private final boolean verifyHostname;
 public void HttpURLConnectionManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.LoggerContext, String, java.net.URL, String, int, int, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.net.ssl.SslConfiguration, boolean);
 public void send(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager$RandomAccessFileManagerFactory.class

package org.apache.logging.log4j.core.appender;
synchronized class RandomAccessFileManager$RandomAccessFileManagerFactory implements ManagerFactory {
 private void RandomAccessFileManager$RandomAccessFileManagerFactory();
 public RandomAccessFileManager createManager(String, RandomAccessFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/OutputStreamAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class OutputStreamAppender$1 {
}

org/apache/logging/log4j/core/appender/RollingFileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class RollingFileAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = RollingFile;
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private final String fileName;
 private final String filePattern;
 private Object advertisement;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private void RollingFileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, rolling.RollingFileManager, String, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public void append(org.apache.logging.log4j.core.LogEvent);
 public String getFileName();
 public String getFilePattern();
 public rolling.TriggeringPolicy getTriggeringPolicy();
 public static RollingFileAppender createAppender(String, String, String, String, String, String, String, rolling.TriggeringPolicy, rolling.RolloverStrategy, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static RollingFileAppender$Builder newBuilder();
}

org/apache/logging/log4j/core/appender/FileManager$1.class

package org.apache.logging.log4j.core.appender;
synchronized class FileManager$1 {
}

org/apache/logging/log4j/core/appender/db/AbstractDatabaseAppender.class

package org.apache.logging.log4j.core.appender.db;
public abstract synchronized class AbstractDatabaseAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 public static final int DEFAULT_RECONNECT_INTERVAL_MILLIS = 5000;
 private final java.util.concurrent.locks.ReadWriteLock lock;
 private final java.util.concurrent.locks.Lock readLock;
 private final java.util.concurrent.locks.Lock writeLock;
 private AbstractDatabaseManager manager;
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, boolean, AbstractDatabaseManager);
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, org.apache.logging.log4j.core.config.Property[], AbstractDatabaseManager);
 protected void AbstractDatabaseAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, AbstractDatabaseManager);
 public final void append(org.apache.logging.log4j.core.LogEvent);
 public final org.apache.logging.log4j.core.Layout getLayout();
 public final AbstractDatabaseManager getManager();
 protected final void replaceManager(AbstractDatabaseManager);
 public final void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$JdbcDatabaseManagerFactory.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$JdbcDatabaseManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private static final char PARAMETER_MARKER = 63;
 private void JdbcDatabaseManager$JdbcDatabaseManagerFactory();
 public JdbcDatabaseManager createManager(String, JdbcDatabaseManager$FactoryData);
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target$2.class

package org.apache.logging.log4j.core.appender;
final synchronized enum ConsoleAppender$Target$2 {
 void ConsoleAppender$Target$2(String, int);
 public java.nio.charset.Charset getDefaultCharset();
}

org/apache/logging/log4j/core/appender/FileAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FileAppender extends AbstractOutputStreamAppender {
 public static final String PLUGIN_NAME = File;
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private final String fileName;
 private final org.apache.logging.log4j.core.net.Advertiser advertiser;
 private final Object advertisement;
 public static FileAppender createAppender(String, String, String, String, String, String, String, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, String, String, org.apache.logging.log4j.core.config.Configuration);
 public static FileAppender$Builder newBuilder();
 private void FileAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, FileManager, String, boolean, boolean, org.apache.logging.log4j.core.net.Advertiser, org.apache.logging.log4j.core.config.Property[]);
 public String getFileName();
 public boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/appender/RollingFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class RollingFileAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/JmsManager$Reconnector.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private volatile boolean shutdown;
 private final Object owner;
 private void JmsManager$Reconnector(JmsManager, Object);
 public void latch();
 void reconnect() throws javax.naming.NamingException, javax.jms.JMSException;
 public void run();
 public void shutdown();
}

org/apache/logging/log4j/core/appender/mom/JmsAppender$1.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsAppender$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaManager$FactoryData.class

package org.apache.logging.log4j.core.appender.mom.kafka;
synchronized class KafkaManager$FactoryData {
 private final org.apache.logging.log4j.core.LoggerContext loggerContext;
 private final String topic;
 private final boolean syncSend;
 private final org.apache.logging.log4j.core.config.Property[] properties;
 private final String key;
 public void KafkaManager$FactoryData(org.apache.logging.log4j.core.LoggerContext, String, boolean, org.apache.logging.log4j.core.config.Property[], String);
}

org/apache/logging/log4j/core/impl/ThreadContextDataProvider.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataProvider implements org.apache.logging.log4j.core.util.ContextDataProvider {
 public void ThreadContextDataProvider();
 public java.util.Map supplyContextData();
 public org.apache.logging.log4j.util.StringMap supplyStringMap();
}

org/apache/logging/log4j/core/impl/Log4jLogEvent$LogEventProxy.class

package org.apache.logging.log4j.core.impl;
synchronized class Log4jLogEvent$LogEventProxy implements java.io.Serializable {
 private static final long serialVersionUID = -8634075037355293699;
 private final String loggerFQCN;
 private final org.apache.logging.log4j.Marker marker;
 private final org.apache.logging.log4j.Level level;
 private final String loggerName;
 private final transient org.apache.logging.log4j.message.Message message;
 private java.rmi.MarshalledObject marshalledMessage;
 private String messageString;
 private final long timeMillis;
 private final int nanoOfMillisecond;
 private final transient Throwable thrown;
 private final ThrowableProxy thrownProxy;
 private final org.apache.logging.log4j.util.StringMap contextData;
 private final org.apache.logging.log4j.ThreadContext$ContextStack contextStack;
 private final long threadId;
 private final String threadName;
 private final int threadPriority;
 private final StackTraceElement source;
 private final boolean isLocationRequired;
 private final boolean isEndOfBatch;
 private final transient long nanoTime;
 public void Log4jLogEvent$LogEventProxy(Log4jLogEvent, boolean);
 public void Log4jLogEvent$LogEventProxy(org.apache.logging.log4j.core.LogEvent, boolean);
 private static org.apache.logging.log4j.message.Message memento(org.apache.logging.log4j.message.ReusableMessage);
 private static org.apache.logging.log4j.util.StringMap memento(org.apache.logging.log4j.util.ReadOnlyStringMap);
 private static java.rmi.MarshalledObject marshall(org.apache.logging.log4j.message.Message);
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 protected Object readResolve();
 private org.apache.logging.log4j.message.Message message();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForCopyOnWriteThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForCopyOnWriteThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForCopyOnWriteThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/Log4jProvider.class

package org.apache.logging.log4j.core.impl;
public synchronized class Log4jProvider extends org.apache.logging.log4j.spi.Provider {
 public void Log4jProvider();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForDefaultThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForDefaultThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForDefaultThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 private static JdkMapAdapterStringMap frozenStringMap(java.util.Map);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/ThrowableProxyHelper$CacheEntry.class

package org.apache.logging.log4j.core.impl;
final synchronized class ThrowableProxyHelper$CacheEntry {
 private final ExtendedClassInfo element;
 private final ClassLoader loader;
 private void ThrowableProxyHelper$CacheEntry(ExtendedClassInfo, ClassLoader);
}

org/apache/logging/log4j/core/tools/Generate$LevelInfo.class

package org.apache.logging.log4j.core.tools;
synchronized class Generate$LevelInfo {
 final String name;
 final int intLevel;
 void Generate$LevelInfo(String);
 public static java.util.List parse(java.util.List, Class);
}

org/apache/logging/log4j/core/tools/Generate$Type.class

package org.apache.logging.log4j.core.tools;
abstract synchronized enum Generate$Type {
 public static final Generate$Type CUSTOM;
 public static final Generate$Type EXTEND;
 public static Generate$Type[] values();
 public static Generate$Type valueOf(String);
 private void Generate$Type(String, int);
 abstract String imports();
 abstract String declaration();
 abstract String constructor();
 abstract Class generator();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate$CustomLogger.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate$CustomLogger {
 public static void main(String[]);
 private void Generate$CustomLogger();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$MissingParameterException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$MissingParameterException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 5075678535706338753;
 public void CommandLine$MissingParameterException(CommandLine, String);
 private static CommandLine$MissingParameterException create(CommandLine, java.util.Collection, String);
 private static String describe(reflect.Field, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BigIntegerConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BigIntegerConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BigIntegerConverter();
 public java.math.BigInteger convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Command.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Command extends annotation.Annotation {
 public abstract String name();
 public abstract Class[] subcommands();
 public abstract String separator();
 public abstract String[] version();
 public abstract String headerHeading();
 public abstract String[] header();
 public abstract String synopsisHeading();
 public abstract boolean abbreviateSynopsis();
 public abstract String[] customSynopsis();
 public abstract String descriptionHeading();
 public abstract String[] description();
 public abstract String parameterListHeading();
 public abstract String optionListHeading();
 public abstract boolean sortOptions();
 public abstract char requiredOptionMarker();
 public abstract boolean showDefaultValues();
 public abstract String commandListHeading();
 public abstract String footerHeading();
 public abstract String[] footer();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$DefaultParamLabelRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$DefaultParamLabelRenderer implements CommandLine$Help$IParamLabelRenderer {
 public final String separator;
 public void CommandLine$Help$DefaultParamLabelRenderer(String);
 public String separator();
 public CommandLine$Help$Ansi$Text renderParameterLabel(reflect.Field, CommandLine$Help$Ansi, java.util.List);
 private static String renderParameterName(reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$ColorScheme.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$ColorScheme {
 public final java.util.List commandStyles;
 public final java.util.List optionStyles;
 public final java.util.List parameterStyles;
 public final java.util.List optionParamStyles;
 private final CommandLine$Help$Ansi ansi;
 public void CommandLine$Help$ColorScheme();
 public void CommandLine$Help$ColorScheme(CommandLine$Help$Ansi);
 public transient CommandLine$Help$ColorScheme commands(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme options(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme parameters(CommandLine$Help$Ansi$IStyle[]);
 public transient CommandLine$Help$ColorScheme optionParams(CommandLine$Help$Ansi$IStyle[]);
 public CommandLine$Help$Ansi$Text commandText(String);
 public CommandLine$Help$Ansi$Text optionText(String);
 public CommandLine$Help$Ansi$Text parameterText(String);
 public CommandLine$Help$Ansi$Text optionParamText(String);
 public CommandLine$Help$ColorScheme applySystemProperties();
 private void replace(java.util.List, String);
 private transient CommandLine$Help$ColorScheme addAll(java.util.List, CommandLine$Help$Ansi$IStyle[]);
 public CommandLine$Help$Ansi ansi();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ITypeConverter.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$ITypeConverter {
 public abstract Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$MinimalOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$MinimalOptionRenderer implements CommandLine$Help$IOptionRenderer {
 void CommandLine$Help$MinimalOptionRenderer();
 public CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$PicocliException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$PicocliException extends RuntimeException {
 private static final long serialVersionUID = -2574128880125050818;
 public void CommandLine$PicocliException(String);
 public void CommandLine$PicocliException(String, Exception);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$1.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Column$Overflow.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Column$Overflow {
 public static final CommandLine$Help$Column$Overflow TRUNCATE;
 public static final CommandLine$Help$Column$Overflow SPAN;
 public static final CommandLine$Help$Column$Overflow WRAP;
 public static CommandLine$Help$Column$Overflow[] values();
 public static CommandLine$Help$Column$Overflow valueOf(String);
 private void CommandLine$Help$Column$Overflow(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$UUIDConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$UUIDConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$UUIDConverter();
 public java.util.UUID convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Ansi {
 public static final CommandLine$Help$Ansi AUTO;
 public static final CommandLine$Help$Ansi ON;
 public static final CommandLine$Help$Ansi OFF;
 static CommandLine$Help$Ansi$Text EMPTY_TEXT;
 static final boolean isWindows;
 static final boolean isXterm;
 static final boolean ISATTY;
 public static CommandLine$Help$Ansi[] values();
 public static CommandLine$Help$Ansi valueOf(String);
 private void CommandLine$Help$Ansi(String, int);
 static final boolean calcTTY();
 private static boolean ansiPossible();
 public boolean enabled();
 public CommandLine$Help$Ansi$Text apply(String, java.util.List);
 private static Object[] reverse(Object[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate.class

package org.apache.logging.log4j.core.tools;
public final synchronized class Generate {
 static final String PACKAGE_DECLARATION = package %s;%n%n;
 static final String FQCN_FIELD = private static final String FQCN = %s.class.getName();%n;
 static final String LEVEL_FIELD = private static final Level %s = Level.forName("%s", %d);%n;
 static final String FACTORY_METHODS = %n /**%n * Returns a custom Logger with the name of the calling class.%n * %n * @return The custom Logger for the calling class.%n */%n public static CLASSNAME create() {%n final Logger wrapped = LogManager.getLogger();%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified name of the Class as%n * the Logger name.%n * %n * @param loggerName The Class whose name should be used as the Logger name.%n * If null it will default to the calling class.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Class<?> loggerName) {%n final Logger wrapped = LogManager.getLogger(loggerName);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified name of the Class as%n * the Logger name.%n * %n * @param loggerName The Class whose name should be used as the Logger name.%n * If null it will default to the calling class.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Class<?> loggerName, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(loggerName, messageFactory);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified class name of the value%n * as the Logger name.%n * %n * @param value The value whose class name should be used as the Logger%n * name. If null the name of the calling class will be used as%n * the logger name.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Object value) {%n final Logger wrapped = LogManager.getLogger(value);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger using the fully qualified class name of the value%n * as the Logger name.%n * %n * @param value The value whose class name should be used as the Logger%n * name. If null the name of the calling class will be used as%n * the logger name.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final Object value, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(value, messageFactory);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger with the specified name.%n * %n * @param name The logger name. If null the name of the calling class will%n * be used.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final String name) {%n final Logger wrapped = LogManager.getLogger(name);%n return new CLASSNAME(wrapped);%n }%n%n /**%n * Returns a custom Logger with the specified name.%n * %n * @param name The logger name. If null the name of the calling class will%n * be used.%n * @param messageFactory The message factory is used only when creating a%n * logger, subsequent use does not change the logger but will log%n * a warning if mismatched.%n * @return The custom Logger.%n */%n public static CLASSNAME create(final String name, final MessageFactory messageFactory) {%n final Logger wrapped = LogManager.getLogger(name, messageFactory);%n return new CLASSNAME(wrapped);%n }%n;
 static final String METHODS = %n /**%n * Logs a message with the specific Marker at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param msg the message string to be logged%n */%n public void methodName(final Marker marker, final Message msg) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msg, (Throwable) null);%n }%n%n /**%n * Logs a message with the specific Marker at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param msg the message string to be logged%n * @param t A Throwable or null.%n */%n public void methodName(final Marker marker, final Message msg, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msg, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message object to log.%n */%n public void methodName(final Marker marker, final Object message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message CharSequence with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message CharSequence to log.%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final CharSequence message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Marker marker, final Object message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the CharSequence to log.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final CharSequence message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message object to log.%n */%n public void methodName(final Marker marker, final String message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param params parameters to the message.%n * @see #getMessageFactory()%n */%n public void methodName(final Marker marker, final String message, final Object... params) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, params);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7, p8);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @param p9 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final Marker marker, final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8, final Object p9) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param marker the marker data specific to this log statement%n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Marker marker, final String message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, t);%n }%n%n /**%n * Logs the specified Message at the {@code CUSTOM_LEVEL} level.%n * %n * @param msg the message string to be logged%n */%n public void methodName(final Message msg) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msg, (Throwable) null);%n }%n%n /**%n * Logs the specified Message at the {@code CUSTOM_LEVEL} level.%n * %n * @param msg the message string to be logged%n * @param t A Throwable or null.%n */%n public void methodName(final Message msg, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msg, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message object to log.%n */%n public void methodName(final Object message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final Object message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message CharSequence with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message CharSequence to log.%n * @since Log4j-2.6%n */%n public void methodName(final CharSequence message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a CharSequence at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the CharSequence to log.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.6%n */%n public void methodName(final CharSequence message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message object with the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message object to log.%n */%n public void methodName(final String message) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param params parameters to the message.%n * @see #getMessageFactory()%n */%n public void methodName(final String message, final Object... params) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, params);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7, p8);%n }%n%n /**%n * Logs a message with parameters at the {@code CUSTOM_LEVEL} level.%n * %n * @param message the message to log; the format depends on the message factory.%n * @param p0 parameter to the message.%n * @param p1 parameter to the message.%n * @param p2 parameter to the message.%n * @param p3 parameter to the message.%n * @param p4 parameter to the message.%n * @param p5 parameter to the message.%n * @param p6 parameter to the message.%n * @param p7 parameter to the message.%n * @param p8 parameter to the message.%n * @param p9 parameter to the message.%n * @see #getMessageFactory()%n * @since Log4j-2.6%n */%n public void methodName(final String message, final Object p0, final Object p1, final Object p2,%n final Object p3, final Object p4, final Object p5, final Object p6,%n final Object p7, final Object p8, final Object p9) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);%n }%n%n /**%n * Logs a message at the {@code CUSTOM_LEVEL} level including the stack trace of%n * the {@link Throwable} {@code t} passed as parameter.%n * %n * @param message the message to log.%n * @param t the exception to log, including its stack trace.%n */%n public void methodName(final String message, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the {@code CUSTOM_LEVEL}level.%n *%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @since Log4j-2.4%n */%n public void methodName(final Supplier<?> msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) including the stack trace of the {@link Throwable} <code>t</code> passed as parameter.%n *%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.4%n */%n public void methodName(final Supplier<?> msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level with the specified Marker.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final Supplier<?> msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message with parameters which are only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level.%n *%n * @param marker the marker data specific to this log statement%n * @param message the message to log; the format depends on the message factory.%n * @param paramSuppliers An array of functions, which when called, produce the desired log message parameters.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final String message, final Supplier<?>... paramSuppliers) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, message, paramSuppliers);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) with the specified Marker and including the stack trace of the {@link Throwable}%n * <code>t</code> passed as parameter.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message;%n * the format depends on the message factory.%n * @param t A Throwable or null.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final Supplier<?> msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, t);%n }%n%n /**%n * Logs a message with parameters which are only to be constructed if the logging level is%n * the {@code CUSTOM_LEVEL} level.%n *%n * @param message the message to log; the format depends on the message factory.%n * @param paramSuppliers An array of functions, which when called, produce the desired log message parameters.%n * @since Log4j-2.4%n */%n public void methodName(final String message, final Supplier<?>... paramSuppliers) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, message, paramSuppliers);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level with the specified Marker. The {@code MessageSupplier} may or may%n * not use the {@link MessageFactory} to construct the {@code Message}.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final MessageSupplier msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) with the specified Marker and including the stack trace of the {@link Throwable}%n * <code>t</code> passed as parameter. The {@code MessageSupplier} may or may not use the%n * {@link MessageFactory} to construct the {@code Message}.%n *%n * @param marker the marker data specific to this log statement%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @param t A Throwable or null.%n * @since Log4j-2.4%n */%n public void methodName(final Marker marker, final MessageSupplier msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, marker, msgSupplier, t);%n }%n%n /**%n * Logs a message which is only to be constructed if the logging level is the%n * {@code CUSTOM_LEVEL} level. The {@code MessageSupplier} may or may not use the%n * {@link MessageFactory} to construct the {@code Message}.%n *%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @since Log4j-2.4%n */%n public void methodName(final MessageSupplier msgSupplier) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, (Throwable) null);%n }%n%n /**%n * Logs a message (only to be constructed if the logging level is the {@code CUSTOM_LEVEL}%n * level) including the stack trace of the {@link Throwable} <code>t</code> passed as parameter.%n * The {@code MessageSupplier} may or may not use the {@link MessageFactory} to construct the%n * {@code Message}.%n *%n * @param msgSupplier A function, which when called, produces the desired log message.%n * @param t the exception to log, including its stack trace.%n * @since Log4j-2.4%n */%n public void methodName(final MessageSupplier msgSupplier, final Throwable t) {%n logger.logIfEnabled(FQCN, CUSTOM_LEVEL, null, msgSupplier, t);%n }%n;
 private void Generate();
 private static void generate(String[], Generate$Type);
 static void generate(String[], Generate$Type, java.io.PrintStream);
 static boolean validate(String[]);
 private static void usage(java.io.PrintStream, Class);
 static String generateSource(String, java.util.List, Generate$Type);
 static String javadocDescription(java.util.List);
 static String camelCase(String);
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationDefaults.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationDefaults {
 public static final String KEYSTORE_TYPE = JKS;
 public static final String PROTOCOL = SSL;
 public void SslConfigurationDefaults();
}

org/apache/logging/log4j/core/net/SslSocketManager$SslFactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class SslSocketManager$SslFactoryData extends TcpSocketManager$FactoryData {
 protected ssl.SslConfiguration sslConfiguration;
 public void SslSocketManager$SslFactoryData(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public String toString();
}

org/apache/logging/log4j/core/net/Severity.class

package org.apache.logging.log4j.core.net;
public final synchronized enum Severity {
 public static final Severity EMERG;
 public static final Severity ALERT;
 public static final Severity CRITICAL;
 public static final Severity ERROR;
 public static final Severity WARNING;
 public static final Severity NOTICE;
 public static final Severity INFO;
 public static final Severity DEBUG;
 private final int code;
 public static Severity[] values();
 public static Severity valueOf(String);
 private void Severity(String, int, int);
 public int getCode();
 public boolean isEqual(String);
 public static Severity getSeverity(org.apache.logging.log4j.Level);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/DatagramSocketManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class DatagramSocketManager$1 {
}

org/apache/logging/log4j/core/net/Severity$1.class

package org.apache.logging.log4j.core.net;
synchronized class Severity$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SmtpManager$FactoryData.class

package org.apache.logging.log4j.core.net;
synchronized class SmtpManager$FactoryData {
 private final String to;
 private final String cc;
 private final String bcc;
 private final String from;
 private final String replyto;
 private final org.apache.logging.log4j.core.layout.AbstractStringLayout$Serializer subject;
 private final String protocol;
 private final String host;
 private final int port;
 private final String username;
 private final String password;
 private final boolean isDebug;
 private final int numElements;
 private final ssl.SslConfiguration sslConfiguration;
 public void SmtpManager$FactoryData(String, String, String, String, String, org.apache.logging.log4j.core.layout.AbstractStringLayout$Serializer, String, String, int, String, String, boolean, int, ssl.SslConfiguration);
}

org/apache/logging/log4j/core/net/DatagramSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class DatagramSocketManager extends AbstractSocketManager {
 private static final DatagramSocketManager$DatagramSocketManagerFactory FACTORY;
 protected void DatagramSocketManager(String, java.io.OutputStream, java.net.InetAddress, String, int, org.apache.logging.log4j.core.Layout, int);
 public static DatagramSocketManager getSocketManager(String, int, org.apache.logging.log4j.core.Layout, int);
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/net/SocketOptions.class

package org.apache.logging.log4j.core.net;
public synchronized class SocketOptions implements org.apache.logging.log4j.core.util.Builder, Cloneable {
 private Boolean keepAlive;
 private Boolean oobInline;
 private SocketPerformancePreferences performancePreferences;
 private Integer receiveBufferSize;
 private Boolean reuseAddress;
 private Rfc1349TrafficClass rfc1349TrafficClass;
 private Integer sendBufferSize;
 private Integer soLinger;
 private Integer soTimeout;
 private Boolean tcpNoDelay;
 private Integer trafficClass;
 public void SocketOptions();
 public static SocketOptions newBuilder();
 public void apply(java.net.Socket) throws java.net.SocketException;
 public SocketOptions build();
 public Integer getActualTrafficClass();
 public SocketPerformancePreferences getPerformancePreferences();
 public Integer getReceiveBufferSize();
 public Rfc1349TrafficClass getRfc1349TrafficClass();
 public Integer getSendBufferSize();
 public Integer getSoLinger();
 public Integer getSoTimeout();
 public Integer getTrafficClass();
 public Boolean isKeepAlive();
 public Boolean isOobInline();
 public Boolean isReuseAddress();
 public Boolean isTcpNoDelay();
 public SocketOptions setKeepAlive(boolean);
 public SocketOptions setOobInline(boolean);
 public SocketOptions setPerformancePreferences(SocketPerformancePreferences);
 public SocketOptions setReceiveBufferSize(int);
 public SocketOptions setReuseAddress(boolean);
 public SocketOptions setRfc1349TrafficClass(Rfc1349TrafficClass);
 public SocketOptions setSendBufferSize(int);
 public SocketOptions setSoLinger(int);
 public SocketOptions setSoTimeout(int);
 public SocketOptions setTcpNoDelay(boolean);
 public SocketOptions setTrafficClass(int);
 public String toString();
}

org/apache/logging/log4j/core/util/Log4jThreadFactory.class

package org.apache.logging.log4j.core.util;
public synchronized class Log4jThreadFactory implements java.util.concurrent.ThreadFactory {
 private static final String PREFIX = TF-;
 private static final java.util.concurrent.atomic.AtomicInteger FACTORY_NUMBER;
 private static final java.util.concurrent.atomic.AtomicInteger THREAD_NUMBER;
 private final boolean daemon;
 private final ThreadGroup group;
 private final int priority;
 private final String threadNamePrefix;
 public static Log4jThreadFactory createDaemonThreadFactory(String);
 public static Log4jThreadFactory createThreadFactory(String);
 public void Log4jThreadFactory(String, boolean, int);
 public Thread newThread(Runnable);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemMillisClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemMillisClock implements Clock {
 public void SystemMillisClock();
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/util/datetime/FastDateFormat.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDateFormat extends Format implements DateParser, DatePrinter {
 private static final long serialVersionUID = 2;
 public static final int FULL = 0;
 public static final int LONG = 1;
 public static final int MEDIUM = 2;
 public static final int SHORT = 3;
 private static final FormatCache cache;
 private final FastDatePrinter printer;
 private final FastDateParser parser;
 public static FastDateFormat getInstance();
 public static FastDateFormat getInstance(String);
 public static FastDateFormat getInstance(String, java.util.TimeZone);
 public static FastDateFormat getInstance(String, java.util.Locale);
 public static FastDateFormat getInstance(String, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getDateInstance(int);
 public static FastDateFormat getDateInstance(int, java.util.Locale);
 public static FastDateFormat getDateInstance(int, java.util.TimeZone);
 public static FastDateFormat getDateInstance(int, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getTimeInstance(int);
 public static FastDateFormat getTimeInstance(int, java.util.Locale);
 public static FastDateFormat getTimeInstance(int, java.util.TimeZone);
 public static FastDateFormat getTimeInstance(int, java.util.TimeZone, java.util.Locale);
 public static FastDateFormat getDateTimeInstance(int, int);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.Locale);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.TimeZone);
 public static FastDateFormat getDateTimeInstance(int, int, java.util.TimeZone, java.util.Locale);
 protected void FastDateFormat(String, java.util.TimeZone, java.util.Locale);
 protected void FastDateFormat(String, java.util.TimeZone, java.util.Locale, java.util.Date);
 public StringBuilder format(Object, StringBuilder, java.text.FieldPosition);
 public String format(long);
 public String format(java.util.Date);
 public String format(java.util.Calendar);
 public Appendable format(long, Appendable);
 public Appendable format(java.util.Date, Appendable);
 public Appendable format(java.util.Calendar, Appendable);
 public java.util.Date parse(String) throws java.text.ParseException;
 public java.util.Date parse(String, java.text.ParsePosition);
 public boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 public Object parseObject(String, java.text.ParsePosition);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public int getMaxLengthEstimate();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TwentyFourHourField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TwentyFourHourField implements FastDatePrinter$NumberRule {
 private final FastDatePrinter$NumberRule mRule;
 void FastDatePrinter$TwentyFourHourField(FastDatePrinter$NumberRule);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/OptionConverter.class

package org.apache.logging.log4j.core.util;
public final synchronized class OptionConverter {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int ONE_K = 1024;
 private void OptionConverter();
 public static String[] concatenateArrays(String[], String[]);
 public static String convertSpecialChars(String);
 public static Object instantiateByKey(java.util.Properties, String, Class, Object);
 public static boolean toBoolean(String, boolean);
 public static int toInt(String, int);
 public static org.apache.logging.log4j.Level toLevel(String, org.apache.logging.log4j.Level);
 public static long toFileSize(String, long);
 public static String findAndSubst(String, java.util.Properties);
 public static Object instantiateByClassName(String, Class, Object);
 public static String substVars(String, java.util.Properties) throws IllegalArgumentException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Transform.class

package org.apache.logging.log4j.core.util;
public final synchronized class Transform {
 private static final String CDATA_START = <![CDATA[;
 private static final String CDATA_END =]]>;
 private static final String CDATA_PSEUDO_END =]]>;
 private static final String CDATA_EMBEDED_END =]]>]]><![CDATA[;
 private static final int CDATA_END_LEN;
 private void Transform();
 public static String escapeHtmlTags(String);
 public static void appendEscapingCData(StringBuilder, String);
 public static String escapeJsonControlCharacters(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemNanoClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemNanoClock implements NanoClock {
 public void SystemNanoClock();
 public long nanoTime();
}

org/apache/logging/log4j/core/util/FileUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class FileUtils {
 private static final String PROTOCOL_FILE = file;
 private static final String JBOSS_FILE = vfsfile;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void FileUtils();
 public static java.io.File fileFromUri(java.net.URI);
 public static boolean isFile(java.net.URL);
 public static String getFileExtension(java.io.File);
 public static void mkdir(java.io.File, boolean) throws java.io.IOException;
 public static void makeParentDirs(java.io.File) throws java.io.IOException;
 public static void defineFilePosixAttributeView(java.nio.file.Path, java.util.Set, String, String) throws java.io.IOException;
 public static boolean isFilePosixAttributeViewSupported();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/Throwables.class

package org.apache.logging.log4j.core.util;
public final synchronized class Throwables {
 private void Throwables();
 public static Throwable getRootCause(Throwable);
 public static java.util.List toStringList(Throwable);
 public static void rethrow(Throwable);
 private static void rethrow0(Throwable) throws Throwable;
}

org/apache/logging/log4j/core/util/AbstractWatcher.class

package org.apache.logging.log4j.core.util;
public abstract synchronized class AbstractWatcher implements Watcher {
 private final org.apache.logging.log4j.core.config.Reconfigurable reconfigurable;
 private final java.util.List configurationListeners;
 private final Log4jThreadFactory threadFactory;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private Source source;
 public void AbstractWatcher(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Reconfigurable, java.util.List);
 public java.util.List getListeners();
 public void modified();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public abstract long getLastModified();
 public abstract boolean isModified();
 public void watching(Source);
 public Source getSource();
}

org/apache/logging/log4j/core/config/LockingReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class LockingReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private final LoggerConfig loggerConfig;
 private final java.util.concurrent.locks.ReadWriteLock reconfigureLock;
 private volatile boolean isStopping;
 public void LockingReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 private boolean beforeLogEvent();
 public void afterLogEvent();
 public void beforeStopAppenders();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ClassArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final String ATTR_CLASS_NAME = className;
 private String className;
 public void ClassArbiter$Builder();
 public ClassArbiter$Builder setClassName(String);
 public ClassArbiter$Builder asBuilder();
 public ClassArbiter build();
}

org/apache/logging/log4j/core/config/plugins/PluginBuilderAttribute.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginBuilderAttribute extends annotation.Annotation {
 public abstract String value();
 public abstract boolean sensitive();
}

org/apache/logging/log4j/core/config/plugins/util/PluginUtil.class

package org.apache.logging.log4j.core.config.plugins.util;
public final synchronized class PluginUtil {
 private void PluginUtil();
 public static java.util.Map collectPluginsByCategory(String);
 public static java.util.Map collectPluginsByCategoryAndPackage(String, java.util.List);
 public static Object instantiatePlugin(Class);
 public static reflect.Method findPluginFactoryMethod(Class);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor$PluginElementVisitor.class

package org.apache.logging.log4j.core.config.plugins.processor;
synchronized class PluginProcessor$PluginElementVisitor extends javax.lang.model.util.SimpleElementVisitor7 {
 private final javax.lang.model.util.Elements elements;
 private void PluginProcessor$PluginElementVisitor(javax.lang.model.util.Elements);
 public PluginEntry visitType(javax.lang.model.element.TypeElement, org.apache.logging.log4j.core.config.plugins.Plugin);
}

org/apache/logging/log4j/core/config/plugins/PluginElement.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginElement extends annotation.Annotation {
 public abstract String value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$BigIntegerConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$BigIntegerConverter implements TypeConverter {
 public void TypeConverters$BigIntegerConverter();
 public java.math.BigInteger convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public abstract interface TypeConverter {
 public abstract Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$SecurityProviderConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$SecurityProviderConverter implements TypeConverter {
 public void TypeConverters$SecurityProviderConverter();
 public java.security.Provider convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$StringConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$StringConverter implements TypeConverter {
 public void TypeConverters$StringConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/config/Reconfigurable.class

package org.apache.logging.log4j.core.config;
public abstract interface Reconfigurable {
 public abstract Configuration reconfigure();
}

org/apache/logging/log4j/core/config/ConfigurationException.class

package org.apache.logging.log4j.core.config;
public synchronized class ConfigurationException extends RuntimeException {
 private static final long serialVersionUID = -2413951820300775294;
 public void ConfigurationException(String);
 public void ConfigurationException(String, Throwable);
 public void ConfigurationException(Throwable);
}

org/apache/logging/log4j/core/config/status/StatusConfiguration$Verbosity.class

package org.apache.logging.log4j.core.config.status;
public final synchronized enum StatusConfiguration$Verbosity {
 public static final StatusConfiguration$Verbosity QUIET;
 public static final StatusConfiguration$Verbosity VERBOSE;
 public static StatusConfiguration$Verbosity[] values();
 public static StatusConfiguration$Verbosity valueOf(String);
 private void StatusConfiguration$Verbosity(String, int);
 public static StatusConfiguration$Verbosity toVerbosity(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration$ErrorType.class

package org.apache.logging.log4j.core.config.xml;
final synchronized enum XmlConfiguration$ErrorType {
 public static final XmlConfiguration$ErrorType CLASS_NOT_FOUND;
 public static XmlConfiguration$ErrorType[] values();
 public static XmlConfiguration$ErrorType valueOf(String);
 private void XmlConfiguration$ErrorType(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/xml/XmlConfiguration$Status.class

package org.apache.logging.log4j.core.config.xml;
synchronized class XmlConfiguration$Status {
 private final org.w3c.dom.Element element;
 private final String name;
 private final XmlConfiguration$ErrorType errorType;
 public void XmlConfiguration$Status(String, org.w3c.dom.Element, XmlConfiguration$ErrorType);
 public String toString();
}

org/apache/logging/log4j/core/config/json/JsonConfigurationFactory.class

package org.apache.logging.log4j.core.config.json;
public synchronized class JsonConfigurationFactory extends org.apache.logging.log4j.core.config.ConfigurationFactory {
 private static final String[] SUFFIXES;
 private static final String[] dependencies;
 private final boolean isActive;
 public void JsonConfigurationFactory();
 protected boolean isActive();
 public org.apache.logging.log4j.core.config.Configuration getConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 public String[] getSupportedTypes();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$LoggerConfigPredicate$1.class

package org.apache.logging.log4j.core.config;
final synchronized enum LoggerConfig$LoggerConfigPredicate$1 {
 void LoggerConfig$LoggerConfigPredicate$1(String, int);
 boolean allow(LoggerConfig);
}

org/apache/logging/log4j/core/config/ConfigurationAware.class

package org.apache.logging.log4j.core.config;
public abstract interface ConfigurationAware {
 public abstract void setConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/ReliabilityStrategyFactory.class

package org.apache.logging.log4j.core.config;
public final synchronized class ReliabilityStrategyFactory {
 private void ReliabilityStrategyFactory();
 public static ReliabilityStrategy getReliabilityStrategy(LoggerConfig);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultLoggerComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder {
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, boolean);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, String);
 public void DefaultLoggerComponentBuilder(DefaultConfigurationBuilder, String, String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultPropertyComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultPropertyComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.PropertyComponentBuilder {
 public void DefaultPropertyComponentBuilder(DefaultConfigurationBuilder, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultConfigurationBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
public synchronized class DefaultConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder {
 private static final String INDENT = ;
 private final org.apache.logging.log4j.core.config.builder.api.Component root;
 private org.apache.logging.log4j.core.config.builder.api.Component loggers;
 private org.apache.logging.log4j.core.config.builder.api.Component appenders;
 private org.apache.logging.log4j.core.config.builder.api.Component filters;
 private org.apache.logging.log4j.core.config.builder.api.Component properties;
 private org.apache.logging.log4j.core.config.builder.api.Component customLevels;
 private org.apache.logging.log4j.core.config.builder.api.Component scripts;
 private final Class clazz;
 private org.apache.logging.log4j.core.config.ConfigurationSource source;
 private int monitorInterval;
 private org.apache.logging.log4j.Level level;
 private String verbosity;
 private String destination;
 private String packages;
 private String shutdownFlag;
 private long shutdownTimeoutMillis;
 private String advertiser;
 private org.apache.logging.log4j.core.LoggerContext loggerContext;
 private String name;
 public static void formatXml(javax.xml.transform.Source, javax.xml.transform.Result) throws javax.xml.transform.TransformerConfigurationException, javax.xml.transform.TransformerFactoryConfigurationError, javax.xml.transform.TransformerException;
 public void DefaultConfigurationBuilder();
 public void DefaultConfigurationBuilder(Class);
 protected org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.Component, org.apache.logging.log4j.core.config.builder.api.ComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder add(org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder addProperty(String, String);
 public BuiltConfiguration build();
 public BuiltConfiguration build(boolean);
 private String formatXml(String) throws javax.xml.transform.TransformerConfigurationException, javax.xml.transform.TransformerException, javax.xml.transform.TransformerFactoryConfigurationError;
 public void writeXmlConfiguration(java.io.OutputStream) throws java.io.IOException;
 public String toXmlConfiguration();
 private void writeXmlConfiguration(javax.xml.stream.XMLStreamWriter) throws javax.xml.stream.XMLStreamException;
 private void writeXmlSection(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 private void writeXmlComponent(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 private void writeXmlAttributes(javax.xml.stream.XMLStreamWriter, org.apache.logging.log4j.core.config.builder.api.Component) throws javax.xml.stream.XMLStreamException;
 public org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder newScript(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder newScriptFile(String);
 public org.apache.logging.log4j.core.config.builder.api.ScriptFileComponentBuilder newScriptFile(String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderComponentBuilder newAppender(String, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder newAppenderRef(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newAsyncLogger(String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger();
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newAsyncRootLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String, String);
 public org.apache.logging.log4j.core.config.builder.api.ComponentBuilder newComponent(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.PropertyComponentBuilder newProperty(String, String);
 public org.apache.logging.log4j.core.config.builder.api.KeyValuePairComponentBuilder newKeyValuePair(String, String);
 public org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder newCustomLevel(String, int);
 public org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder newFilter(String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder newFilter(String, String, String);
 public org.apache.logging.log4j.core.config.builder.api.LayoutComponentBuilder newLayout(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, String);
 public org.apache.logging.log4j.core.config.builder.api.LoggerComponentBuilder newLogger(String, String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger();
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(org.apache.logging.log4j.Level, boolean);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(String);
 public org.apache.logging.log4j.core.config.builder.api.RootLoggerComponentBuilder newRootLogger(String, boolean);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setAdvertiser(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setConfigurationName(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setConfigurationSource(org.apache.logging.log4j.core.config.ConfigurationSource);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setMonitorInterval(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setPackages(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setShutdownHook(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setShutdownTimeout(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setStatusLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setVerbosity(String);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder setDestination(String);
 public void setLoggerContext(org.apache.logging.log4j.core.LoggerContext);
 public org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilder addRootProperty(String, String);
}

org/apache/logging/log4j/core/layout/JacksonFactory$XML.class

package org.apache.logging.log4j.core.layout;
synchronized class JacksonFactory$XML extends JacksonFactory {
 static final int DEFAULT_INDENT = 1;
 private final boolean includeStacktrace;
 private final boolean stacktraceAsString;
 public void JacksonFactory$XML(boolean, boolean);
 protected String getPropertyNameForTimeMillis();
 protected String getPropertyNameForInstant();
 protected String getPropertNameForContextMap();
 protected String getPropertNameForSource();
 protected String getPropertNameForNanoTime();
 protected com.fasterxml.jackson.core.PrettyPrinter newCompactPrinter();
 protected com.fasterxml.jackson.databind.ObjectMapper newObjectMapper();
 protected com.fasterxml.jackson.core.PrettyPrinter newPrettyPrinter();
}

org/apache/logging/log4j/core/layout/TextEncoderHelper.class

package org.apache.logging.log4j.core.layout;
public synchronized class TextEncoderHelper {
 private void TextEncoderHelper();
 static void encodeTextFallBack(java.nio.charset.Charset, StringBuilder, ByteBufferDestination);
 static void encodeText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, StringBuilder, ByteBufferDestination) throws java.nio.charset.CharacterCodingException;
 private static void writeEncodedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, ByteBufferDestination, java.nio.charset.CoderResult);
 private static void writeChunkedEncodedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void encodeChunkedText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, java.nio.ByteBuffer, StringBuilder, ByteBufferDestination);
 public static void encodeText(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, ByteBufferDestination);
 private static java.nio.ByteBuffer writeAndEncodeAsMuchAsPossible(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, boolean, ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void throwException(java.nio.charset.CoderResult);
 private static java.nio.ByteBuffer encodeAsMuchAsPossible(java.nio.charset.CharsetEncoder, java.nio.CharBuffer, boolean, ByteBufferDestination, java.nio.ByteBuffer);
 private static java.nio.ByteBuffer drainIfByteBufferFull(ByteBufferDestination, java.nio.ByteBuffer, java.nio.charset.CoderResult);
 private static void flushRemainingBytes(java.nio.charset.CharsetEncoder, ByteBufferDestination, java.nio.ByteBuffer);
 static int copy(StringBuilder, int, java.nio.CharBuffer);
}

org/apache/logging/log4j/core/layout/internal/ListChecker.class

package org.apache.logging.log4j.core.layout.internal;
public abstract interface ListChecker {
 public static final ListChecker$NoopChecker NOOP_CHECKER;
 public abstract boolean check(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/internal/ExcludeChecker.class

package org.apache.logging.log4j.core.layout.internal;
public synchronized class ExcludeChecker implements ListChecker {
 private final java.util.List list;
 public void ExcludeChecker(java.util.List);
 public boolean check(String);
 public String toString();
}

org/apache/logging/log4j/core/layout/LockingStringBuilderEncoder.class

package org.apache.logging.log4j.core.layout;
public synchronized class LockingStringBuilderEncoder implements Encoder {
 private final java.nio.charset.Charset charset;
 private final java.nio.charset.CharsetEncoder charsetEncoder;
 private final java.nio.CharBuffer cachedCharBuffer;
 public void LockingStringBuilderEncoder(java.nio.charset.Charset);
 public void LockingStringBuilderEncoder(java.nio.charset.Charset, int);
 private java.nio.CharBuffer getCharBuffer();
 public void encode(StringBuilder, ByteBufferDestination);
 private void logEncodeTextException(Exception, StringBuilder, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/AbstractJacksonLayout$LogEventWithAdditionalFields.class

package org.apache.logging.log4j.core.layout;
public synchronized class AbstractJacksonLayout$LogEventWithAdditionalFields {
 private final Object logEvent;
 private final java.util.Map additionalFields;
 public void AbstractJacksonLayout$LogEventWithAdditionalFields(Object, java.util.Map);
 public Object getLogEvent();
 public java.util.Map getAdditionalFields();
}

org/apache/logging/log4j/core/layout/JsonLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class JsonLayout extends AbstractJacksonLayout {
 private static final String DEFAULT_FOOTER =];
 private static final String DEFAULT_HEADER = [;
 static final String CONTENT_TYPE = application/json;
 protected void JsonLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean);
 private void JsonLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, String, java.nio.charset.Charset, boolean, boolean, boolean, boolean, org.apache.logging.log4j.core.util.KeyValuePair[], boolean);
 public byte[] getHeader();
 public byte[] getFooter();
 public java.util.Map getContentFormat();
 public String getContentType();
 public static JsonLayout createLayout(org.apache.logging.log4j.core.config.Configuration, boolean, boolean, boolean, boolean, boolean, boolean, String, String, java.nio.charset.Charset, boolean);
 public static JsonLayout$Builder newBuilder();
 public static JsonLayout createDefaultLayout();
 public void toSerializable(org.apache.logging.log4j.core.LogEvent, java.io.Writer) throws java.io.IOException;
}

org/apache/logging/log4j/core/Version.class

package org.apache.logging.log4j.core;
public synchronized class Version {
 public void Version();
 public static void main(String[]);
 public static String getProductString();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfig.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfig extends org.apache.logging.log4j.core.config.LoggerConfig {
 private static final ThreadLocal ASYNC_LOGGER_ENTERED;
 private final AsyncLoggerConfigDelegate delegate;
 protected void AsyncLoggerConfig(String, java.util.List, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.Level, boolean, org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, boolean);
 protected void log(org.apache.logging.log4j.core.LogEvent, org.apache.logging.log4j.core.config.LoggerConfig$LoggerConfigPredicate);
 protected void callAppenders(org.apache.logging.log4j.core.LogEvent);
 private void logToAsyncDelegate(org.apache.logging.log4j.core.LogEvent);
 private void handleQueueFull(org.apache.logging.log4j.core.LogEvent);
 private void populateLazilyInitializedFields(org.apache.logging.log4j.core.LogEvent);
 void logInBackgroundThread(org.apache.logging.log4j.core.LogEvent);
 void logToAsyncLoggerConfigsOnCurrentThread(org.apache.logging.log4j.core.LogEvent);
 private String displayName();
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 public org.apache.logging.log4j.core.jmx.RingBufferAdmin createRingBufferAdmin(String);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(String, String, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 public static org.apache.logging.log4j.core.config.LoggerConfig createLogger(boolean, org.apache.logging.log4j.Level, String, String, org.apache.logging.log4j.core.config.AppenderRef[], org.apache.logging.log4j.core.config.Property[], org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter);
 protected static boolean includeLocation(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$Log4jEventWrapper.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncLoggerConfigDisruptor$Log4jEventWrapper {
 private AsyncLoggerConfig loggerConfig;
 private org.apache.logging.log4j.core.LogEvent event;
 public void AsyncLoggerConfigDisruptor$Log4jEventWrapper();
 public void AsyncLoggerConfigDisruptor$Log4jEventWrapper(org.apache.logging.log4j.core.impl.MutableLogEvent);
 public void clear();
 public String toString();
}

org/apache/logging/log4j/core/async/ThreadNameCachingStrategy$2.class

package org.apache.logging.log4j.core.async;
final synchronized enum ThreadNameCachingStrategy$2 {
 void ThreadNameCachingStrategy$2(String, int);
 public String getThreadName();
}

org/apache/logging/log4j/core/async/LinkedTransferQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class LinkedTransferQueueFactory implements BlockingQueueFactory {
 public void LinkedTransferQueueFactory();
 public java.util.concurrent.BlockingQueue create(int);
 public static LinkedTransferQueueFactory createFactory();
}

org/apache/logging/log4j/core/async/AsyncLogger$2.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$2 extends AsyncLogger$TranslatorType {
 void AsyncLogger$2(AsyncLogger);
 void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/ArrayBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class ArrayBlockingQueueFactory implements BlockingQueueFactory {
 public void ArrayBlockingQueueFactory();
 public java.util.concurrent.BlockingQueue create(int);
 public static ArrayBlockingQueueFactory createFactory();
}

org/apache/logging/log4j/core/lookup/AbstractLookup.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class AbstractLookup implements StrLookup {
 public void AbstractLookup();
 public String lookup(String);
}

org/apache/logging/log4j/core/lookup/Log4jLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class Log4jLookup extends AbstractConfigurationAwareLookup {
 public static final String KEY_CONFIG_LOCATION = configLocation;
 public static final String KEY_CONFIG_PARENT_LOCATION = configParentLocation;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void Log4jLookup();
 private static String asPath(java.net.URI);
 private static java.net.URI getParent(java.net.URI) throws java.net.URISyntaxException;
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/parser/XmlLogEventParser.class

package org.apache.logging.log4j.core.parser;
public synchronized class XmlLogEventParser extends AbstractJacksonLogEventParser {
 public void XmlLogEventParser();
}

org/apache/logging/log4j/core/time/MutableInstant.class

package org.apache.logging.log4j.core.time;
public synchronized class MutableInstant implements Instant, java.io.Serializable, java.time.temporal.TemporalAccessor {
 private static final int MILLIS_PER_SECOND = 1000;
 private static final int NANOS_PER_MILLI = 1000000;
 private static final int NANOS_PER_SECOND = 1000000000;
 private long epochSecond;
 private int nanoOfSecond;
 public void MutableInstant();
 public long getEpochSecond();
 public int getNanoOfSecond();
 public long getEpochMillisecond();
 public int getNanoOfMillisecond();
 public void initFrom(Instant);
 public void initFromEpochMilli(long, int);
 private void validateNanoOfMillisecond(int);
 public void initFrom(org.apache.logging.log4j.core.util.Clock);
 public void initFromEpochSecond(long, int);
 private void validateNanoOfSecond(int);
 public static void instantToMillisAndNanos(long, int, long[]);
 public boolean isSupported(java.time.temporal.TemporalField);
 public long getLong(java.time.temporal.TemporalField);
 public java.time.temporal.ValueRange range(java.time.temporal.TemporalField);
 public int get(java.time.temporal.TemporalField);
 public Object query(java.time.temporal.TemporalQuery);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public void formatTo(StringBuilder);
}

org/apache/logging/log4j/core/Core.class

package org.apache.logging.log4j.core;
public synchronized class Core {
 public static final String CATEGORY_NAME = Core;
 public void Core();
}

org/apache/logging/log4j/core/LogEvent.class

package org.apache.logging.log4j.core;
public abstract interface LogEvent extends java.io.Serializable {
 public abstract LogEvent toImmutable();
 public abstract java.util.Map getContextMap();
 public abstract org.apache.logging.log4j.util.ReadOnlyStringMap getContextData();
 public abstract org.apache.logging.log4j.ThreadContext$ContextStack getContextStack();
 public abstract String getLoggerFqcn();
 public abstract org.apache.logging.log4j.Level getLevel();
 public abstract String getLoggerName();
 public abstract org.apache.logging.log4j.Marker getMarker();
 public abstract org.apache.logging.log4j.message.Message getMessage();
 public abstract long getTimeMillis();
 public abstract time.Instant getInstant();
 public abstract StackTraceElement getSource();
 public abstract String getThreadName();
 public abstract long getThreadId();
 public abstract int getThreadPriority();
 public abstract Throwable getThrown();
 public abstract impl.ThrowableProxy getThrownProxy();
 public abstract boolean isEndOfBatch();
 public abstract boolean isIncludeLocation();
 public abstract void setEndOfBatch(boolean);
 public abstract void setIncludeLocation(boolean);
 public abstract long getNanoTime();
}

org/apache/logging/log4j/core/filter/MapFilter.class

package org.apache.logging.log4j.core.filter;
public synchronized class MapFilter extends AbstractFilter {
 private final org.apache.logging.log4j.util.IndexedStringMap map;
 private final boolean isAnd;
 protected void MapFilter(java.util.Map, boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 protected boolean filter(org.apache.logging.log4j.message.MapMessage);
 protected boolean filter(java.util.Map);
 protected boolean filter(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 protected boolean isAnd();
 protected java.util.Map getMap();
 protected org.apache.logging.log4j.util.IndexedReadOnlyStringMap getStringMap();
 public static MapFilter createFilter(org.apache.logging.log4j.core.util.KeyValuePair[], String, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
}

org/apache/logging/log4j/core/filter/DenyAllFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class DenyAllFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 public void DenyAllFilter$Builder();
 public DenyAllFilter build();
}

org/apache/logging/log4j/core/filter/AbstractFilter.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilter extends org.apache.logging.log4j.core.AbstractLifeCycle implements org.apache.logging.log4j.core.Filter {
 protected final org.apache.logging.log4j.core.Filter$Result onMatch;
 protected final org.apache.logging.log4j.core.Filter$Result onMismatch;
 protected void AbstractFilter();
 protected void AbstractFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 protected boolean equalsImpl(Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public final org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public final org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 protected int hashCodeImpl();
 public String toString();
}

org/apache/logging/log4j/core/filter/NoMarkerFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class NoMarkerFilter extends AbstractFilter {
 private void NoMarkerFilter(org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Marker);
 public static NoMarkerFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/filter/DynamicThresholdFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class DynamicThresholdFilter extends AbstractFilter {
 private org.apache.logging.log4j.Level defaultThreshold;
 private final String key;
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 private java.util.Map levelMap;
 public static DynamicThresholdFilter createFilter(String, org.apache.logging.log4j.core.util.KeyValuePair[], org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 private void DynamicThresholdFilter(String, java.util.Map, org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public boolean equals(Object);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.ReadOnlyStringMap);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String getKey();
 public java.util.Map getLevelMap();
 public int hashCode();
 public String toString();
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$UnixFormatter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$UnixFormatter extends DatePatternConverter$Formatter {
 private void DatePatternConverter$UnixFormatter();
 String format(org.apache.logging.log4j.core.time.Instant);
 void formatToBuffer(org.apache.logging.log4j.core.time.Instant, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ArrayPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract interface ArrayPatternConverter extends PatternConverter {
 public abstract transient void format(StringBuilder, Object[]);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EncodingPatternConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final EncodingPatternConverter$EscapeFormat escapeFormat;
 private void EncodingPatternConverter(java.util.List, EncodingPatternConverter$EscapeFormat);
 public boolean handlesThrowable();
 public static EncodingPatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EqualsBaseReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract synchronized class EqualsBaseReplacementConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private final java.util.List substitutionFormatters;
 private final String substitution;
 private final String testString;
 protected void EqualsBaseReplacementConverter(String, String, java.util.List, String, String, PatternParser);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 protected abstract boolean equals(String, StringBuilder, int, int);
 void parseSubstitution(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/LoggerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LoggerPatternConverter extends NamePatternConverter {
 private static final LoggerPatternConverter INSTANCE;
 private void LoggerPatternConverter(String[]);
 public static LoggerPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/LevelPatternConverter$1.class

package org.apache.logging.log4j.core.pattern;
synchronized class LevelPatternConverter$1 {
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public synchronized class MessagePatternConverter extends LogEventPatternConverter {
 private static final String LOOKUPS = lookups;
 private static final String NOLOOKUPS = nolookups;
 private void MessagePatternConverter();
 private static TextRenderer loadMessageRenderer(String[]);
 public static MessagePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private static String[] withoutLookupOptions(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator$Strategy$2.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum NameAbbreviator$MaxElementAbbreviator$Strategy$2 {
 void NameAbbreviator$MaxElementAbbreviator$Strategy$2(String, int, int);
 void abbreviate(int, String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$MaxElementAbbreviator.class

package org.apache.logging.log4j.core.pattern;
synchronized class NameAbbreviator$MaxElementAbbreviator extends NameAbbreviator {
 private final int count;
 private final NameAbbreviator$MaxElementAbbreviator$Strategy strategy;
 public void NameAbbreviator$MaxElementAbbreviator(int, NameAbbreviator$MaxElementAbbreviator$Strategy);
 public void abbreviate(String, StringBuilder);
}

org/apache/logging/log4j/core/pattern/VariablesNotEmptyReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class VariablesNotEmptyReplacementConverter extends LogEventPatternConverter {
 private final java.util.List formatters;
 private void VariablesNotEmptyReplacementConverter(java.util.List);
 public static VariablesNotEmptyReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/jackson/ContextDataSerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataSerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 private static final org.apache.logging.log4j.util.TriConsumer WRITE_STRING_FIELD_INTO;
 protected void ContextDataSerializer();
 public void serialize(org.apache.logging.log4j.util.ReadOnlyStringMap, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
 static void <clinit>();
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListSerializer$1.class

package org.apache.logging.log4j.core.jackson;
synchronized class ContextDataAsEntryListSerializer$1 implements org.apache.logging.log4j.util.BiConsumer {
 int i;
 void ContextDataAsEntryListSerializer$1(ContextDataAsEntryListSerializer, MapEntry[]);
 public void accept(String, Object);
}

META-INF/versions/9/org/apache/logging/log4j/core/util/SystemClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemClock implements Clock, org.apache.logging.log4j.core.time.PreciseClock {
 public void SystemClock();
 public long currentTimeMillis();
 public void init(org.apache.logging.log4j.core.time.MutableInstant);
}

META-INF/NOTICE

Apache Log4j Core
Copyright 1999-2012 Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).

ResolverUtil.java
Copyright 2005-2006 Tim Fennell

org/apache/logging/log4j/core/appender/rewrite/RewritePolicy.class

package org.apache.logging.log4j.core.appender.rewrite;
public abstract interface RewritePolicy {
 public abstract org.apache.logging.log4j.core.LogEvent rewrite(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/appender/OutputStreamManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class OutputStreamManager extends AbstractManager implements org.apache.logging.log4j.core.layout.ByteBufferDestination {
 protected final org.apache.logging.log4j.core.Layout layout;
 protected java.nio.ByteBuffer byteBuffer;
 private volatile java.io.OutputStream outputStream;
 private boolean skipFooter;
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean);
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean, int);
 protected void OutputStreamManager(java.io.OutputStream, String, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 protected void OutputStreamManager(org.apache.logging.log4j.core.LoggerContext, java.io.OutputStream, String, boolean, org.apache.logging.log4j.core.Layout, boolean, java.nio.ByteBuffer);
 public static OutputStreamManager getManager(String, Object, ManagerFactory);
 protected java.io.OutputStream createOutputStream() throws java.io.IOException;
 public void skipFooter(boolean);
 public boolean releaseSub(long, java.util.concurrent.TimeUnit);
 protected void writeHeader(java.io.OutputStream);
 protected void writeFooter();
 public boolean isOpen();
 public boolean hasOutputStream();
 protected java.io.OutputStream getOutputStream() throws java.io.IOException;
 protected void setOutputStream(java.io.OutputStream);
 protected void write(byte[]);
 protected void write(byte[], boolean);
 public void writeBytes(byte[], int, int);
 protected void write(byte[], int, int);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 protected synchronized void flushDestination();
 protected synchronized void flushBuffer(java.nio.ByteBuffer);
 public synchronized void flush();
 protected synchronized boolean closeOutputStream();
 public java.nio.ByteBuffer getByteBuffer();
 public java.nio.ByteBuffer drain(java.nio.ByteBuffer);
 public void writeBytes(java.nio.ByteBuffer);
}

org/apache/logging/log4j/core/appender/rolling/RollingFileManager$1.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingFileManager$1 {
}

org/apache/logging/log4j/core/appender/rolling/RolloverDescription.class

package org.apache.logging.log4j.core.appender.rolling;
public abstract interface RolloverDescription {
 public abstract String getActiveFileName();
 public abstract boolean getAppend();
 public abstract action.Action getSynchronous();
 public abstract action.Action getAsynchronous();
}

org/apache/logging/log4j/core/appender/rolling/TimeBasedTriggeringPolicy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class TimeBasedTriggeringPolicy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private int interval;
 private boolean modulate;
 private int maxRandomDelay;
 public void TimeBasedTriggeringPolicy$Builder();
 public TimeBasedTriggeringPolicy build();
 public int getInterval();
 public boolean isModulate();
 public int getMaxRandomDelay();
 public TimeBasedTriggeringPolicy$Builder withInterval(int);
 public TimeBasedTriggeringPolicy$Builder withModulate(boolean);
 public TimeBasedTriggeringPolicy$Builder withMaxRandomDelay(int);
}

org/apache/logging/log4j/core/appender/rolling/FileSize.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class FileSize {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long KB = 1024;
 private static final long MB = 1048576;
 private static final long GB = 1073741824;
 private static final java.util.regex.Pattern VALUE_PATTERN;
 private void FileSize();
 public static long parse(String, long);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/DirectWriteRolloverStrategy$Builder.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class DirectWriteRolloverStrategy$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String maxFiles;
 private String compressionLevelStr;
 private action.Action[] customActions;
 private boolean stopCustomActionsOnError;
 private String tempCompressedFilePattern;
 private org.apache.logging.log4j.core.config.Configuration config;
 public void DirectWriteRolloverStrategy$Builder();
 public DirectWriteRolloverStrategy build();
 public String getMaxFiles();
 public DirectWriteRolloverStrategy$Builder withMaxFiles(String);
 public String getCompressionLevelStr();
 public DirectWriteRolloverStrategy$Builder withCompressionLevelStr(String);
 public action.Action[] getCustomActions();
 public DirectWriteRolloverStrategy$Builder withCustomActions(action.Action[]);
 public boolean isStopCustomActionsOnError();
 public DirectWriteRolloverStrategy$Builder withStopCustomActionsOnError(boolean);
 public String getTempCompressedFilePattern();
 public DirectWriteRolloverStrategy$Builder withTempCompressedFilePattern(String);
 public org.apache.logging.log4j.core.config.Configuration getConfig();
 public DirectWriteRolloverStrategy$Builder withConfig(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/appender/rolling/PatternProcessor.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class PatternProcessor {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 private static final String KEY = FileConverter;
 private static final char YEAR_CHAR = 121;
 private static final char MONTH_CHAR = 77;
 private static final char[] WEEK_CHARS;
 private static final char[] DAY_CHARS;
 private static final char[] HOUR_CHARS;
 private static final char MINUTE_CHAR = 109;
 private static final char SECOND_CHAR = 115;
 private static final char MILLIS_CHAR = 83;
 private final org.apache.logging.log4j.core.pattern.ArrayPatternConverter[] patternConverters;
 private final org.apache.logging.log4j.core.pattern.FormattingInfo[] patternFields;
 private final FileExtension fileExtension;
 private long prevFileTime;
 private long nextFileTime;
 private long currentFileTime;
 private boolean isTimeBased;
 private RolloverFrequency frequency;
 private final String pattern;
 public String getPattern();
 public String toString();
 public void PatternProcessor(String);
 public void PatternProcessor(String, PatternProcessor);
 public void setTimeBased(boolean);
 public long getCurrentFileTime();
 public void setCurrentFileTime(long);
 public long getPrevFileTime();
 public void setPrevFileTime(long);
 public FileExtension getFileExtension();
 public long getNextTime(long, int, boolean);
 public void updateTime();
 private long debugGetNextTime(long);
 private String format(long);
 private void increment(java.util.Calendar, int, int, boolean);
 public final void formatFileName(StringBuilder, boolean, Object);
 public final void formatFileName(org.apache.logging.log4j.core.lookup.StrSubstitutor, StringBuilder, Object);
 public final void formatFileName(org.apache.logging.log4j.core.lookup.StrSubstitutor, StringBuilder, boolean, Object);
 protected final transient void formatFileName(StringBuilder, Object[]);
 private RolloverFrequency calculateFrequency(String);
 private org.apache.logging.log4j.core.pattern.PatternParser createPatternParser();
 private transient boolean patternContains(String, char[]);
 private boolean patternContains(String, char);
 public RolloverFrequency getFrequency();
 public long getNextFileTime();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class AbstractOutputStreamAppender$Builder extends AbstractAppender$Builder {
 private boolean bufferedIo;
 private int bufferSize;
 private boolean immediateFlush;
 public void AbstractOutputStreamAppender$Builder();
 public int getBufferSize();
 public boolean isBufferedIo();
 public boolean isImmediateFlush();
 public AbstractOutputStreamAppender$Builder withImmediateFlush(boolean);
 public AbstractOutputStreamAppender$Builder withBufferedIo(boolean);
 public AbstractOutputStreamAppender$Builder withBufferSize(int);
}

org/apache/logging/log4j/core/appender/WriterAppender$FactoryData.class

package org.apache.logging.log4j.core.appender;
synchronized class WriterAppender$FactoryData {
 private final org.apache.logging.log4j.core.StringLayout layout;
 private final String name;
 private final java.io.Writer writer;
 public void WriterAppender$FactoryData(java.io.Writer, String, org.apache.logging.log4j.core.StringLayout);
}

org/apache/logging/log4j/core/appender/HttpAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class HttpAppender$1 {
}

org/apache/logging/log4j/core/appender/RollingFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class RollingFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private String filePattern;
 private boolean append;
 private boolean locking;
 private rolling.TriggeringPolicy policy;
 private rolling.RolloverStrategy strategy;
 private boolean advertise;
 private String advertiseUri;
 private boolean createOnDemand;
 private String filePermissions;
 private String fileOwner;
 private String fileGroup;
 public void RollingFileAppender$Builder();
 public RollingFileAppender build();
 public String getAdvertiseUri();
 public String getFileName();
 public boolean isAdvertise();
 public boolean isAppend();
 public boolean isCreateOnDemand();
 public boolean isLocking();
 public String getFilePermissions();
 public String getFileOwner();
 public String getFileGroup();
 public RollingFileAppender$Builder withAdvertise(boolean);
 public RollingFileAppender$Builder withAdvertiseUri(String);
 public RollingFileAppender$Builder withAppend(boolean);
 public RollingFileAppender$Builder withFileName(String);
 public RollingFileAppender$Builder withCreateOnDemand(boolean);
 public RollingFileAppender$Builder withLocking(boolean);
 public String getFilePattern();
 public rolling.TriggeringPolicy getPolicy();
 public rolling.RolloverStrategy getStrategy();
 public RollingFileAppender$Builder withFilePattern(String);
 public RollingFileAppender$Builder withPolicy(rolling.TriggeringPolicy);
 public RollingFileAppender$Builder withStrategy(rolling.RolloverStrategy);
 public RollingFileAppender$Builder withFilePermissions(String);
 public RollingFileAppender$Builder withFileOwner(String);
 public RollingFileAppender$Builder withFileGroup(String);
}

org/apache/logging/log4j/core/appender/WriterAppender.class

package org.apache.logging.log4j.core.appender;
public final synchronized class WriterAppender extends AbstractWriterAppender {
 private static WriterAppender$WriterManagerFactory factory;
 public static WriterAppender createAppender(org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, java.io.Writer, String, boolean, boolean);
 private static WriterManager getManager(java.io.Writer, boolean, org.apache.logging.log4j.core.StringLayout);
 public static WriterAppender$Builder newBuilder();
 private void WriterAppender(String, org.apache.logging.log4j.core.StringLayout, org.apache.logging.log4j.core.Filter, WriterManager, boolean, org.apache.logging.log4j.core.config.Property[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/SocketAppender$AbstractBuilder.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class SocketAppender$AbstractBuilder extends AbstractOutputStreamAppender$Builder {
 private boolean advertise;
 private int connectTimeoutMillis;
 private String host;
 private boolean immediateFail;
 private int port;
 private org.apache.logging.log4j.core.net.Protocol protocol;
 private int reconnectDelayMillis;
 private org.apache.logging.log4j.core.net.SocketOptions socketOptions;
 private org.apache.logging.log4j.core.net.ssl.SslConfiguration sslConfiguration;
 public void SocketAppender$AbstractBuilder();
 public boolean getAdvertise();
 public int getConnectTimeoutMillis();
 public String getHost();
 public int getPort();
 public org.apache.logging.log4j.core.net.Protocol getProtocol();
 public org.apache.logging.log4j.core.net.ssl.SslConfiguration getSslConfiguration();
 public boolean getImmediateFail();
 public SocketAppender$AbstractBuilder withAdvertise(boolean);
 public SocketAppender$AbstractBuilder withConnectTimeoutMillis(int);
 public SocketAppender$AbstractBuilder withHost(String);
 public SocketAppender$AbstractBuilder withImmediateFail(boolean);
 public SocketAppender$AbstractBuilder withPort(int);
 public SocketAppender$AbstractBuilder withProtocol(org.apache.logging.log4j.core.net.Protocol);
 public SocketAppender$AbstractBuilder withReconnectDelayMillis(int);
 public SocketAppender$AbstractBuilder withSocketOptions(org.apache.logging.log4j.core.net.SocketOptions);
 public SocketAppender$AbstractBuilder withSslConfiguration(org.apache.logging.log4j.core.net.ssl.SslConfiguration);
 public int getReconnectDelayMillis();
 public org.apache.logging.log4j.core.net.SocketOptions getSocketOptions();
}

org/apache/logging/log4j/core/appender/db/ColumnMapping$Builder.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class ColumnMapping$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private org.apache.logging.log4j.core.StringLayout layout;
 private String literal;
 private String name;
 private String parameter;
 private String pattern;
 private String source;
 private Class type;
 public void ColumnMapping$Builder();
 public ColumnMapping build();
 public ColumnMapping$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
 public ColumnMapping$Builder setLayout(org.apache.logging.log4j.core.StringLayout);
 public ColumnMapping$Builder setLiteral(String);
 public ColumnMapping$Builder setName(String);
 public ColumnMapping$Builder setParameter(String);
 public ColumnMapping$Builder setPattern(String);
 public ColumnMapping$Builder setSource(String);
 public ColumnMapping$Builder setType(Class);
 public String toString();
}

org/apache/logging/log4j/core/appender/db/jdbc/ColumnConfig.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class ColumnConfig {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final String columnName;
 private final String columnNameKey;
 private final org.apache.logging.log4j.core.layout.PatternLayout layout;
 private final String literalValue;
 private final boolean eventTimestamp;
 private final boolean unicode;
 private final boolean clob;
 public static ColumnConfig createColumnConfig(org.apache.logging.log4j.core.config.Configuration, String, String, String, String, String, String);
 public static ColumnConfig$Builder newBuilder();
 private void ColumnConfig(String, org.apache.logging.log4j.core.layout.PatternLayout, String, boolean, boolean, boolean);
 public String getColumnName();
 public String getColumnNameKey();
 public org.apache.logging.log4j.core.layout.PatternLayout getLayout();
 public String getLiteralValue();
 public boolean isClob();
 public boolean isEventTimestamp();
 public boolean isUnicode();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/DataSourceConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public final synchronized class DataSourceConnectionSource extends AbstractConnectionSource {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final javax.sql.DataSource dataSource;
 private final String description;
 private void DataSourceConnectionSource(String, javax.sql.DataSource);
 public java.sql.Connection getConnection() throws java.sql.SQLException;
 public String toString();
 public static DataSourceConnectionSource createConnectionSource(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/ColumnMapping.class

package org.apache.logging.log4j.core.appender.db;
public synchronized class ColumnMapping {
 public static final ColumnMapping[] EMPTY_ARRAY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.core.StringLayout layout;
 private final String literalValue;
 private final String name;
 private final String nameKey;
 private final String parameter;
 private final String source;
 private final Class type;
 public static ColumnMapping$Builder newBuilder();
 public static String toKey(String);
 private void ColumnMapping(String, String, org.apache.logging.log4j.core.StringLayout, String, String, Class);
 public org.apache.logging.log4j.core.StringLayout getLayout();
 public String getLiteralValue();
 public String getName();
 public String getNameKey();
 public String getParameter();
 public String getSource();
 public Class getType();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/HttpManager.class

package org.apache.logging.log4j.core.appender;
public abstract synchronized class HttpManager extends AbstractManager {
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 protected void HttpManager(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.LoggerContext, String);
 public org.apache.logging.log4j.core.config.Configuration getConfiguration();
 public void startup();
 public abstract void send(org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.LogEvent) throws Exception;
}

org/apache/logging/log4j/core/appender/FailoversPlugin.class

package org.apache.logging.log4j.core.appender;
public final synchronized class FailoversPlugin {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void FailoversPlugin();
 public static transient String[] createFailovers(org.apache.logging.log4j.core.config.AppenderRef[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$CreatedRouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
final synchronized class RoutingAppender$CreatedRouteAppenderControl extends RoutingAppender$RouteAppenderControl {
 private volatile boolean pendingDeletion;
 private final java.util.concurrent.atomic.AtomicInteger depth;
 void RoutingAppender$CreatedRouteAppenderControl(org.apache.logging.log4j.core.Appender);
 void checkout();
 void release();
 void tryStopAppender();
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$1.class

package org.apache.logging.log4j.core.appender.routing;
synchronized class RoutingAppender$1 {
}

org/apache/logging/log4j/core/appender/routing/RoutingAppender$RouteAppenderControl.class

package org.apache.logging.log4j.core.appender.routing;
abstract synchronized class RoutingAppender$RouteAppenderControl extends org.apache.logging.log4j.core.config.AppenderControl {
 void RoutingAppender$RouteAppenderControl(org.apache.logging.log4j.core.Appender);
 abstract void checkout();
 abstract void release();
}

org/apache/logging/log4j/core/appender/routing/Routes$1.class

package org.apache.logging.log4j.core.appender.routing;
synchronized class Routes$1 {
}

org/apache/logging/log4j/core/appender/nosql/NoSqlAppender$Builder.class

package org.apache.logging.log4j.core.appender.nosql;
public synchronized class NoSqlAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private int bufferSize;
 private NoSqlProvider provider;
 public void NoSqlAppender$Builder();
 public NoSqlAppender build();
 public NoSqlAppender$Builder setBufferSize(int);
 public NoSqlAppender$Builder setProvider(NoSqlProvider);
}

org/apache/logging/log4j/core/appender/mom/JmsManager$1.class

package org.apache.logging.log4j.core.appender.mom;
synchronized class JmsManager$1 {
}

org/apache/logging/log4j/core/appender/mom/kafka/KafkaAppender$Builder.class

package org.apache.logging.log4j.core.appender.mom.kafka;
public synchronized class KafkaAppender$Builder extends org.apache.logging.log4j.core.appender.AbstractAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String retryCount;
 private String topic;
 private String key;
 private boolean syncSend;
 public void KafkaAppender$Builder();
 public KafkaAppender build();
 public Integer getRetryCount();
 public String getTopic();
 public boolean isSyncSend();
 public KafkaAppender$Builder setKey(String);
 public KafkaAppender$Builder setSyncSend(boolean);
 public KafkaAppender$Builder setTopic(String);
}

org/apache/logging/log4j/core/appender/mom/jeromq/JeroMqAppender.class

package org.apache.logging.log4j.core.appender.mom.jeromq;
public final synchronized class JeroMqAppender extends org.apache.logging.log4j.core.appender.AbstractAppender {
 private static final int DEFAULT_BACKLOG = 100;
 private static final int DEFAULT_IVL = 100;
 private static final int DEFAULT_RCV_HWM = 1000;
 private static final int DEFAULT_SND_HWM = 1000;
 private final JeroMqManager manager;
 private final java.util.List endpoints;
 private int sendRcFalse;
 private int sendRcTrue;
 private void JeroMqAppender(String, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.Layout, boolean, java.util.List, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean, org.apache.logging.log4j.core.config.Property[]);
 public static JeroMqAppender createAppender(String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Property[], boolean, long, long, boolean, byte[], boolean, long, long, long, long, int, long, long, long, int, long, int, long, long, long, boolean);
 public synchronized void append(org.apache.logging.log4j.core.LogEvent);
 public boolean stop(long, java.util.concurrent.TimeUnit);
 int getSendRcFalse();
 int getSendRcTrue();
 void resetSendRcs();
 public String toString();
}

org/apache/logging/log4j/core/impl/ContextAnchor.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ContextAnchor {
 public static final ThreadLocal THREAD_CONTEXT;
 private void ContextAnchor();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LogEventFactory.class

package org.apache.logging.log4j.core.impl;
public abstract interface LogEventFactory extends LocationAwareLogEventFactory {
 public abstract org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
 public org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
}

org/apache/logging/log4j/core/impl/ThrowableFormatOptions.class

package org.apache.logging.log4j.core.impl;
public final synchronized class ThrowableFormatOptions {
 private static final int DEFAULT_LINES = 2147483647;
 protected static final ThrowableFormatOptions DEFAULT;
 private static final String FULL = full;
 private static final String NONE = none;
 private static final String SHORT = short;
 private final org.apache.logging.log4j.core.pattern.TextRenderer textRenderer;
 private final int lines;
 private final String separator;
 private final String suffix;
 private final java.util.List ignorePackages;
 public static final String CLASS_NAME = short.className;
 public static final String METHOD_NAME = short.methodName;
 public static final String LINE_NUMBER = short.lineNumber;
 public static final String FILE_NAME = short.fileName;
 public static final String MESSAGE = short.message;
 public static final String LOCALIZED_MESSAGE = short.localizedMessage;
 protected void ThrowableFormatOptions(int, String, java.util.List, org.apache.logging.log4j.core.pattern.TextRenderer, String);
 protected void ThrowableFormatOptions(java.util.List);
 protected void ThrowableFormatOptions();
 public int getLines();
 public String getSeparator();
 public org.apache.logging.log4j.core.pattern.TextRenderer getTextRenderer();
 public java.util.List getIgnorePackages();
 public boolean allLines();
 public boolean anyLines();
 public int minLines(int);
 public boolean hasPackages();
 public String toString();
 public static ThrowableFormatOptions newInstance(String[]);
 public String getSuffix();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/Generate$Type$2.class

package org.apache.logging.log4j.core.tools;
final synchronized enum Generate$Type$2 {
 void Generate$Type$2(String, int);
 String imports();
 String declaration();
 String constructor();
 Class generator();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Interpreter$1.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Interpreter$1 implements CommandLine$ITypeConverter {
 void CommandLine$Interpreter$1(CommandLine$Interpreter, Class);
 public Object convert(String) throws Exception;
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$TextTable.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$TextTable {
 public final CommandLine$Help$Column[] columns;
 protected final java.util.List columnValues;
 public int indentWrappedLines;
 private final CommandLine$Help$Ansi ansi;
 public void CommandLine$Help$TextTable(CommandLine$Help$Ansi);
 public transient void CommandLine$Help$TextTable(CommandLine$Help$Ansi, int[]);
 public transient void CommandLine$Help$TextTable(CommandLine$Help$Ansi, CommandLine$Help$Column[]);
 public CommandLine$Help$Ansi$Text textAt(int, int);
 public CommandLine$Help$Ansi$Text cellAt(int, int);
 public int rowCount();
 public void addEmptyRow();
 public transient void addRowValues(String[]);
 public transient void addRowValues(CommandLine$Help$Ansi$Text[]);
 public CommandLine$Help$TextTable$Cell putValue(int, int, CommandLine$Help$Ansi$Text);
 private static int length(CommandLine$Help$Ansi$Text);
 private int copy(java.text.BreakIterator, CommandLine$Help$Ansi$Text, CommandLine$Help$Ansi$Text, int);
 private static int copy(CommandLine$Help$Ansi$Text, CommandLine$Help$Ansi$Text, int);
 public StringBuilder toString(StringBuilder);
 public String toString();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$BigDecimalConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$BigDecimalConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$BigDecimalConverter();
 public java.math.BigDecimal convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$IOptionRenderer.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$IOptionRenderer {
 public abstract CommandLine$Help$Ansi$Text[][] render(CommandLine$Option, reflect.Field, CommandLine$Help$IParamLabelRenderer, CommandLine$Help$ColorScheme);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$OverwrittenOptionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$OverwrittenOptionException extends CommandLine$ParameterException {
 private static final long serialVersionUID = 1338029208271055776;
 public void CommandLine$OverwrittenOptionException(CommandLine, String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Parameters.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Parameters extends annotation.Annotation {
 public abstract String index();
 public abstract String[] description();
 public abstract String arity();
 public abstract String paramLabel();
 public abstract Class[] type();
 public abstract String split();
 public abstract boolean hidden();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$IntegerConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$IntegerConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$IntegerConverter();
 public Integer convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$CharSequenceConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$CharSequenceConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$CharSequenceConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$RunLast.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$RunLast implements CommandLine$IParseResultHandler {
 public void CommandLine$RunLast();
 public java.util.List handleParseResult(java.util.List, java.io.PrintStream, CommandLine$Help$Ansi);
}

org/apache/logging/log4j/core/net/TcpSocketManager$Reconnector.class

package org.apache.logging.log4j.core.net;
synchronized class TcpSocketManager$Reconnector extends org.apache.logging.log4j.core.util.Log4jThread {
 private final java.util.concurrent.CountDownLatch latch;
 private boolean shutdown;
 private final Object owner;
 public void TcpSocketManager$Reconnector(TcpSocketManager, org.apache.logging.log4j.core.appender.OutputStreamManager);
 public void latch();
 public void shutdown();
 public void run();
 void reconnect() throws java.io.IOException;
 private void connect(java.net.InetSocketAddress) throws java.io.IOException;
 public String toString();
}

org/apache/logging/log4j/core/net/ssl/SslConfigurationException.class

package org.apache.logging.log4j.core.net.ssl;
public synchronized class SslConfigurationException extends Exception {
 private static final long serialVersionUID = 1;
 public void SslConfigurationException(Exception);
}

org/apache/logging/log4j/core/net/ssl/FilePasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
synchronized class FilePasswordProvider implements PasswordProvider {
 private final java.nio.file.Path passwordPath;
 public void FilePasswordProvider(String) throws java.nio.file.NoSuchFileException;
 public char[] getPassword();
}

org/apache/logging/log4j/core/net/ssl/PasswordProvider.class

package org.apache.logging.log4j.core.net.ssl;
public abstract interface PasswordProvider {
 public abstract char[] getPassword();
}

org/apache/logging/log4j/core/net/JndiManager$JndiManagerFactory.class

package org.apache.logging.log4j.core.net;
synchronized class JndiManager$JndiManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void JndiManager$JndiManagerFactory();
 public JndiManager createManager(String, java.util.Properties);
}

org/apache/logging/log4j/core/net/UrlConnectionFactory.class

package org.apache.logging.log4j.core.net;
public synchronized class UrlConnectionFactory {
 private static int DEFAULT_TIMEOUT;
 private static int connectTimeoutMillis;
 private static int readTimeoutMillis;
 private static final String JSON = application/json;
 private static final String XML = application/xml;
 private static final String PROPERTIES = text/x-java-properties;
 private static final String TEXT = text/plain;
 private static final String HTTP = http;
 private static final String HTTPS = https;
 public void UrlConnectionFactory();
 public static java.net.HttpURLConnection createConnection(java.net.URL, long, ssl.SslConfiguration) throws java.io.IOException;
 public static java.net.URLConnection createConnection(java.net.URL) throws java.io.IOException;
 private static boolean isXml(String);
 private static boolean isJson(String);
 private static boolean isProperties(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/net/MimeMessageBuilder.class

package org.apache.logging.log4j.core.net;
public synchronized class MimeMessageBuilder implements org.apache.logging.log4j.core.util.Builder {
 private final javax.mail.internet.MimeMessage message;
 public void MimeMessageBuilder(javax.mail.Session);
 public MimeMessageBuilder setFrom(String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setReplyTo(String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setRecipients(javax.mail.Message$RecipientType, String) throws javax.mail.MessagingException;
 public MimeMessageBuilder setSubject(String) throws javax.mail.MessagingException;
 public javax.mail.internet.MimeMessage getMimeMessage();
 public javax.mail.internet.MimeMessage build();
 private static javax.mail.internet.InternetAddress parseAddress(String) throws javax.mail.internet.AddressException;
 private static javax.mail.internet.InternetAddress[] parseAddresses(String) throws javax.mail.internet.AddressException;
}

org/apache/logging/log4j/core/net/JndiManager$1.class

package org.apache.logging.log4j.core.net;
synchronized class JndiManager$1 {
}

org/apache/logging/log4j/core/util/Clock.class

package org.apache.logging.log4j.core.util;
public abstract interface Clock {
 public abstract long currentTimeMillis();
}

org/apache/logging/log4j/core/util/Integers.class

package org.apache.logging.log4j.core.util;
public final synchronized class Integers {
 private static final int BITS_PER_INT = 32;
 private void Integers();
 public static int parseInt(String, int);
 public static int parseInt(String);
 public static int ceilingNextPowerOfTwo(int);
}

org/apache/logging/log4j/core/util/WatchEventService.class

package org.apache.logging.log4j.core.util;
public abstract interface WatchEventService {
 public abstract void subscribe(WatchManager);
 public abstract void unsubscribe(WatchManager);
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$TimeZoneNameRule.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$TimeZoneNameRule implements FastDatePrinter$Rule {
 private final java.util.Locale mLocale;
 private final int mStyle;
 private final String mStandard;
 private final String mDaylight;
 void FastDatePrinter$TimeZoneNameRule(java.util.TimeZone, java.util.Locale, int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser.class

package org.apache.logging.log4j.core.util.datetime;
public synchronized class FastDateParser implements DateParser, java.io.Serializable {
 private static final long serialVersionUID = 3;
 static final java.util.Locale JAPANESE_IMPERIAL;
 private final String pattern;
 private final java.util.TimeZone timeZone;
 private final java.util.Locale locale;
 private final int century;
 private final int startYear;
 private transient java.util.List patterns;
 private static final java.util.Comparator LONGER_FIRST_LOWERCASE;
 private static final java.util.concurrent.ConcurrentMap[] caches;
 private static final FastDateParser$Strategy ABBREVIATED_YEAR_STRATEGY;
 private static final FastDateParser$Strategy NUMBER_MONTH_STRATEGY;
 private static final FastDateParser$Strategy LITERAL_YEAR_STRATEGY;
 private static final FastDateParser$Strategy WEEK_OF_YEAR_STRATEGY;
 private static final FastDateParser$Strategy WEEK_OF_MONTH_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_YEAR_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_MONTH_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_WEEK_STRATEGY;
 private static final FastDateParser$Strategy DAY_OF_WEEK_IN_MONTH_STRATEGY;
 private static final FastDateParser$Strategy HOUR_OF_DAY_STRATEGY;
 private static final FastDateParser$Strategy HOUR24_OF_DAY_STRATEGY;
 private static final FastDateParser$Strategy HOUR12_STRATEGY;
 private static final FastDateParser$Strategy HOUR_STRATEGY;
 private static final FastDateParser$Strategy MINUTE_STRATEGY;
 private static final FastDateParser$Strategy SECOND_STRATEGY;
 private static final FastDateParser$Strategy MILLISECOND_STRATEGY;
 protected void FastDateParser(String, java.util.TimeZone, java.util.Locale);
 protected void FastDateParser(String, java.util.TimeZone, java.util.Locale, java.util.Date);
 private void init(java.util.Calendar);
 private static boolean isFormatLetter(char);
 public String getPattern();
 public java.util.TimeZone getTimeZone();
 public java.util.Locale getLocale();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Object parseObject(String) throws java.text.ParseException;
 public java.util.Date parse(String) throws java.text.ParseException;
 public Object parseObject(String, java.text.ParsePosition);
 public java.util.Date parse(String, java.text.ParsePosition);
 public boolean parse(String, java.text.ParsePosition, java.util.Calendar);
 private static StringBuilder simpleQuote(StringBuilder, String);
 private static java.util.Map appendDisplayNames(java.util.Calendar, java.util.Locale, int, StringBuilder);
 private int adjustYear(int);
 private FastDateParser$Strategy getStrategy(char, int, java.util.Calendar);
 private static java.util.concurrent.ConcurrentMap getCache(int);
 private FastDateParser$Strategy getLocaleSpecificStrategy(int, java.util.Calendar);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/JndiCloser.class

package org.apache.logging.log4j.core.util;
public final synchronized class JndiCloser {
 private void JndiCloser();
 public static void close(javax.naming.Context) throws javax.naming.NamingException;
 public static boolean closeSilently(javax.naming.Context);
}

org/apache/logging/log4j/core/util/NanoClock.class

package org.apache.logging.log4j.core.util;
public abstract interface NanoClock {
 public abstract long nanoTime();
}

org/apache/logging/log4j/core/util/ExtensionLanguageMapping.class

package org.apache.logging.log4j.core.util;
public final synchronized enum ExtensionLanguageMapping {
 public static final ExtensionLanguageMapping JS;
 public static final ExtensionLanguageMapping JAVASCRIPT;
 public static final ExtensionLanguageMapping GVY;
 public static final ExtensionLanguageMapping GROOVY;
 public static final ExtensionLanguageMapping BSH;
 public static final ExtensionLanguageMapping BEANSHELL;
 public static final ExtensionLanguageMapping JY;
 public static final ExtensionLanguageMapping JYTHON;
 public static final ExtensionLanguageMapping FTL;
 public static final ExtensionLanguageMapping FREEMARKER;
 public static final ExtensionLanguageMapping VM;
 public static final ExtensionLanguageMapping VELOCITY;
 public static final ExtensionLanguageMapping AWK;
 public static final ExtensionLanguageMapping EJS;
 public static final ExtensionLanguageMapping TCL;
 public static final ExtensionLanguageMapping HS;
 public static final ExtensionLanguageMapping JELLY;
 public static final ExtensionLanguageMapping JEP;
 public static final ExtensionLanguageMapping JEXL;
 public static final ExtensionLanguageMapping JEXL2;
 public static final ExtensionLanguageMapping RB;
 public static final ExtensionLanguageMapping RUBY;
 public static final ExtensionLanguageMapping JUDO;
 public static final ExtensionLanguageMapping JUDI;
 public static final ExtensionLanguageMapping SCALA;
 public static final ExtensionLanguageMapping CLJ;
 private final String extension;
 private final String language;
 public static ExtensionLanguageMapping[] values();
 public static ExtensionLanguageMapping valueOf(String);
 private void ExtensionLanguageMapping(String, int, String, String);
 public String getExtension();
 public String getLanguage();
 public static ExtensionLanguageMapping getByExtension(String);
 public static java.util.List getByLanguage(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/DefaultShutdownCallbackRegistry$RegisteredCancellable.class

package org.apache.logging.log4j.core.util;
synchronized class DefaultShutdownCallbackRegistry$RegisteredCancellable implements Cancellable {
 private Runnable callback;
 private java.util.Collection registered;
 void DefaultShutdownCallbackRegistry$RegisteredCancellable(Runnable, java.util.Collection);
 public void cancel();
 public void run();
 public String toString();
}

org/apache/logging/log4j/core/util/TypeUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class TypeUtil {
 private void TypeUtil();
 public static java.util.List getAllDeclaredFields(Class);
 public static boolean isAssignable(reflect.Type, reflect.Type);
 private static boolean isParameterizedAssignable(reflect.ParameterizedType, reflect.ParameterizedType);
 private static boolean isWildcardAssignable(reflect.WildcardType, reflect.Type);
 private static reflect.Type[] getEffectiveUpperBounds(reflect.WildcardType);
 private static reflect.Type[] getEffectiveLowerBounds(reflect.WildcardType);
 private static boolean isBoundAssignable(reflect.Type, reflect.Type);
}

org/apache/logging/log4j/core/config/Loggers.class

package org.apache.logging.log4j.core.config;
public synchronized class Loggers {
 private final java.util.concurrent.ConcurrentMap map;
 private final LoggerConfig root;
 public void Loggers(java.util.concurrent.ConcurrentMap, LoggerConfig);
 public java.util.concurrent.ConcurrentMap getMap();
 public LoggerConfig getRoot();
}

org/apache/logging/log4j/core/config/LoggersPlugin.class

package org.apache.logging.log4j.core.config;
public final synchronized class LoggersPlugin {
 private void LoggersPlugin();
 public static Loggers createLoggers(LoggerConfig[]);
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SystemPropertyArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public static final String ATTR_PROPERTY_NAME = propertyName;
 public static final String ATTR_PROPERTY_VALUE = propertyValue;
 private String propertyName;
 private String propertyValue;
 public void SystemPropertyArbiter$Builder();
 public SystemPropertyArbiter$Builder setPropertyName(String);
 public SystemPropertyArbiter$Builder setPropertyValue(String);
 public SystemPropertyArbiter$Builder asBuilder();
 public SystemPropertyArbiter build();
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginBuilderAttributeVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginBuilderAttributeVisitor extends AbstractPluginVisitor {
 public void PluginBuilderAttributeVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/visitors/AbstractPluginVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public abstract synchronized class AbstractPluginVisitor implements PluginVisitor {
 protected static final org.apache.logging.log4j.Logger LOGGER;
 protected final Class clazz;
 protected annotation.Annotation annotation;
 protected String[] aliases;
 protected Class conversionType;
 protected org.apache.logging.log4j.core.lookup.StrSubstitutor substitutor;
 protected reflect.Member member;
 protected void AbstractPluginVisitor(Class);
 public PluginVisitor setAnnotation(annotation.Annotation);
 public transient PluginVisitor setAliases(String[]);
 public PluginVisitor setConversionType(Class);
 public PluginVisitor setStrSubstitutor(org.apache.logging.log4j.core.lookup.StrSubstitutor);
 public PluginVisitor setMember(reflect.Member);
 protected static transient String removeAttributeValue(java.util.Map, String, String[]);
 protected Object convert(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginVisitors.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public final synchronized class PluginVisitors {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private void PluginVisitors();
 public static PluginVisitor findVisitor(Class);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/util/ResolverUtil.class

package org.apache.logging.log4j.core.config.plugins.util;
public synchronized class ResolverUtil {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String VFSZIP = vfszip;
 private static final String VFS = vfs;
 private static final String JAR = jar;
 private static final String BUNDLE_RESOURCE = bundleresource;
 private final java.util.Set classMatches;
 private final java.util.Set resourceMatches;
 private ClassLoader classloader;
 public void ResolverUtil();
 public java.util.Set getClasses();
 public java.util.Set getResources();
 public ClassLoader getClassLoader();
 public void setClassLoader(ClassLoader);
 public transient void find(ResolverUtil$Test, String[]);
 public void findInPackage(ResolverUtil$Test, String);
 String extractPath(java.net.URL) throws java.io.UnsupportedEncodingException, java.net.URISyntaxException;
 private void loadImplementationsInBundle(ResolverUtil$Test, String);
 private void loadImplementationsInDirectory(ResolverUtil$Test, String, java.io.File);
 private boolean isTestApplicable(ResolverUtil$Test, String);
 private void loadImplementationsInJar(ResolverUtil$Test, String, java.net.URL);
 private void loadImplementationsInJar(ResolverUtil$Test, String, java.io.File);
 private void close(java.util.jar.JarInputStream, Object);
 private void loadImplementationsInJar(ResolverUtil$Test, String, String, java.util.jar.JarInputStream);
 protected void addIfMatching(ResolverUtil$Test, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/validation/validators/ValidHostValidator.class

package org.apache.logging.log4j.core.config.plugins.validation.validators;
public synchronized class ValidHostValidator implements org.apache.logging.log4j.core.config.plugins.validation.ConstraintValidator {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidHost annotation;
 public void ValidHostValidator();
 public void initialize(org.apache.logging.log4j.core.config.plugins.validation.constraints.ValidHost);
 public boolean isValid(String, Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/config/plugins/validation/Constraint.class

package org.apache.logging.log4j.core.config.plugins.validation;
public abstract interface Constraint extends annotation.Annotation {
 public abstract Class value();
}

org/apache/logging/log4j/core/config/plugins/validation/ConstraintValidator.class

package org.apache.logging.log4j.core.config.plugins.validation;
public abstract interface ConstraintValidator {
 public abstract void initialize(annotation.Annotation);
 public abstract boolean isValid(String, Object);
}

org/apache/logging/log4j/core/config/plugins/PluginValue.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginValue extends annotation.Annotation {
 public abstract String value();
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$FileConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$FileConverter implements TypeConverter {
 public void TypeConverters$FileConverter();
 public java.io.File convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$LevelConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$LevelConverter implements TypeConverter {
 public void TypeConverters$LevelConverter();
 public org.apache.logging.log4j.Level convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$LongConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$LongConverter implements TypeConverter {
 public void TypeConverters$LongConverter();
 public Long convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$DurationConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$DurationConverter implements TypeConverter {
 public void TypeConverters$DurationConverter();
 public org.apache.logging.log4j.core.appender.rolling.action.Duration convert(String);
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$InetAddressConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$InetAddressConverter implements TypeConverter {
 public void TypeConverters$InetAddressConverter();
 public java.net.InetAddress convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/plugins/convert/TypeConverters$UuidConverter.class

package org.apache.logging.log4j.core.config.plugins.convert;
public synchronized class TypeConverters$UuidConverter implements TypeConverter {
 public void TypeConverters$UuidConverter();
 public java.util.UUID convert(String) throws Exception;
}

org/apache/logging/log4j/core/config/CustomLevelConfig.class

package org.apache.logging.log4j.core.config;
public final synchronized class CustomLevelConfig {
 static final CustomLevelConfig[] EMPTY_ARRAY;
 private final String levelName;
 private final int intLevel;
 private void CustomLevelConfig(String, int);
 public static CustomLevelConfig createLevel(String, int);
 public String getLevelName();
 public int getIntLevel();
 public int hashCode();
 public boolean equals(Object);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/LoggerConfig$1.class

package org.apache.logging.log4j.core.config;
synchronized class LoggerConfig$1 {
}

org/apache/logging/log4j/core/config/builder/impl/DefaultScriptComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultScriptComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.ScriptComponentBuilder {
 public void DefaultScriptComponentBuilder(DefaultConfigurationBuilder, String, String, String);
}

org/apache/logging/log4j/core/config/builder/impl/DefaultAppenderRefComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultAppenderRefComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder {
 public void DefaultAppenderRefComponentBuilder(DefaultConfigurationBuilder, String);
 public org.apache.logging.log4j.core.config.builder.api.AppenderRefComponentBuilder add(org.apache.logging.log4j.core.config.builder.api.FilterComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/FilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface FilterComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/ComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ComponentBuilder extends org.apache.logging.log4j.core.util.Builder {
 public abstract ComponentBuilder addAttribute(String, String);
 public abstract ComponentBuilder addAttribute(String, org.apache.logging.log4j.Level);
 public abstract ComponentBuilder addAttribute(String, Enum);
 public abstract ComponentBuilder addAttribute(String, int);
 public abstract ComponentBuilder addAttribute(String, boolean);
 public abstract ComponentBuilder addAttribute(String, Object);
 public abstract ComponentBuilder addComponent(ComponentBuilder);
 public abstract String getName();
 public abstract ConfigurationBuilder getBuilder();
}

org/apache/logging/log4j/core/config/builder/api/LoggableComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LoggableComponentBuilder extends FilterableComponentBuilder {
 public abstract ComponentBuilder add(AppenderRefComponentBuilder);
}

org/apache/logging/log4j/core/config/builder/api/LayoutComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface LayoutComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/CompositeFilterComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface CompositeFilterComponentBuilder extends FilterableComponentBuilder {
}

org/apache/logging/log4j/core/config/CronScheduledFuture$FutureData.class

package org.apache.logging.log4j.core.config;
synchronized class CronScheduledFuture$FutureData {
 private final java.util.concurrent.ScheduledFuture scheduledFuture;
 private final java.util.Date runDate;
 void CronScheduledFuture$FutureData(CronScheduledFuture, java.util.concurrent.ScheduledFuture, java.util.Date);
}

org/apache/logging/log4j/core/jmx/RingBufferAdmin.class

package org.apache.logging.log4j.core.jmx;
public synchronized class RingBufferAdmin implements RingBufferAdminMBean {
 private final com.lmax.disruptor.RingBuffer ringBuffer;
 private final javax.management.ObjectName objectName;
 public static RingBufferAdmin forAsyncLogger(com.lmax.disruptor.RingBuffer, String);
 public static RingBufferAdmin forAsyncLoggerConfig(com.lmax.disruptor.RingBuffer, String, String);
 protected void RingBufferAdmin(com.lmax.disruptor.RingBuffer, String);
 public long getBufferSize();
 public long getRemainingCapacity();
 public javax.management.ObjectName getObjectName();
}

org/apache/logging/log4j/core/layout/Rfc5424Layout$StructuredDataElement.class

package org.apache.logging.log4j.core.layout;
synchronized class Rfc5424Layout$StructuredDataElement {
 private final java.util.Map fields;
 private final boolean discardIfEmpty;
 private final String prefix;
 public void Rfc5424Layout$StructuredDataElement(Rfc5424Layout, java.util.Map, String, boolean);
 boolean discard();
 void union(java.util.Map);
 java.util.Map getFields();
 String getPrefix();
}

org/apache/logging/log4j/core/layout/SerializedLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class SerializedLayout extends AbstractLayout {
 private static byte[] serializedHeader;
 private void SerializedLayout();
 public byte[] toByteArray(org.apache.logging.log4j.core.LogEvent);
 public org.apache.logging.log4j.core.LogEvent toSerializable(org.apache.logging.log4j.core.LogEvent);
 public static SerializedLayout createLayout();
 public byte[] getHeader();
 public String getContentType();
 static void <clinit>();
}

org/apache/logging/log4j/core/layout/PatternLayout.class

package org.apache.logging.log4j.core.layout;
public final synchronized class PatternLayout extends AbstractStringLayout {
 public static final String DEFAULT_CONVERSION_PATTERN = %m%n;
 public static final String TTCC_CONVERSION_PATTERN = %r [%t] %p %c %notEmpty{%x }- %m%n;
 public static final String SIMPLE_CONVERSION_PATTERN = %d [%t] %p %c - %m%n;
 public static final String KEY = Converter;
 private final String conversionPattern;
 private final PatternSelector patternSelector;
 private final AbstractStringLayout$Serializer eventSerializer;
 private void PatternLayout(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, String, PatternSelector, java.nio.charset.Charset, boolean, boolean, boolean, String, String);
 public static PatternLayout$SerializerBuilder newSerializerBuilder();
 public boolean requiresLocation();
 public static AbstractStringLayout$Serializer createSerializer(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, String, String, PatternSelector, boolean, boolean);
 public String getConversionPattern();
 public java.util.Map getContentFormat();
 public String toSerializable(org.apache.logging.log4j.core.LogEvent);
 public void serialize(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void encode(org.apache.logging.log4j.core.LogEvent, ByteBufferDestination);
 private StringBuilder toText(AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public static org.apache.logging.log4j.core.pattern.PatternParser createPatternParser(org.apache.logging.log4j.core.config.Configuration);
 public String toString();
 public static PatternLayout createLayout(String, PatternSelector, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.pattern.RegexReplacement, java.nio.charset.Charset, boolean, boolean, String, String);
 public static PatternLayout createDefaultLayout();
 public static PatternLayout createDefaultLayout(org.apache.logging.log4j.core.config.Configuration);
 public static PatternLayout$Builder newBuilder();
 public AbstractStringLayout$Serializer getEventSerializer();
}

org/apache/logging/log4j/core/layout/ByteBufferDestinationHelper.class

package org.apache.logging.log4j.core.layout;
public final synchronized class ByteBufferDestinationHelper {
 private void ByteBufferDestinationHelper();
 public static void writeToUnsynchronized(java.nio.ByteBuffer, ByteBufferDestination);
 public static void writeToUnsynchronized(byte[], int, int, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/PatternSelector.class

package org.apache.logging.log4j.core.layout;
public abstract interface PatternSelector {
 public static final String ELEMENT_TYPE = patternSelector;
 public abstract org.apache.logging.log4j.core.pattern.PatternFormatter[] getFormatters(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/layout/ScriptPatternSelector$Builder.class

package org.apache.logging.log4j.core.layout;
public synchronized class ScriptPatternSelector$Builder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.core.script.AbstractScript script;
 private PatternMatch[] properties;
 private String defaultPattern;
 private boolean alwaysWriteExceptions;
 private boolean disableAnsi;
 private boolean noConsoleNoAnsi;
 private org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptPatternSelector$Builder();
 public ScriptPatternSelector build();
 public ScriptPatternSelector$Builder setScript(org.apache.logging.log4j.core.script.AbstractScript);
 public ScriptPatternSelector$Builder setProperties(PatternMatch[]);
 public ScriptPatternSelector$Builder setDefaultPattern(String);
 public ScriptPatternSelector$Builder setAlwaysWriteExceptions(boolean);
 public ScriptPatternSelector$Builder setDisableAnsi(boolean);
 public ScriptPatternSelector$Builder setNoConsoleNoAnsi(boolean);
 public ScriptPatternSelector$Builder setConfiguration(org.apache.logging.log4j.core.config.Configuration);
}

org/apache/logging/log4j/core/osgi/Activator.class

package org.apache.logging.log4j.core.osgi;
public final synchronized class Activator implements org.osgi.framework.BundleActivator, org.osgi.framework.SynchronousBundleListener {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.concurrent.atomic.AtomicReference contextRef;
 org.osgi.framework.ServiceRegistration provideRegistration;
 org.osgi.framework.ServiceRegistration contextDataRegistration;
 public void Activator();
 public void start(org.osgi.framework.BundleContext) throws Exception;
 private static void scanInstalledBundlesForPlugins(org.osgi.framework.BundleContext);
 private static void scanBundleForPlugins(org.osgi.framework.Bundle);
 private static void loadContextProviders(org.osgi.framework.BundleContext);
 private static void stopBundlePlugins(org.osgi.framework.Bundle);
 public void stop(org.osgi.framework.BundleContext) throws Exception;
 public void bundleChanged(org.osgi.framework.BundleEvent);
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler implements com.lmax.disruptor.SequenceReportingEventHandler {
 private static final int NOTIFY_PROGRESS_THRESHOLD = 50;
 private com.lmax.disruptor.Sequence sequenceCallback;
 private int counter;
 private void AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler();
 public void setSequenceCallback(com.lmax.disruptor.Sequence);
 public void onEvent(AsyncLoggerConfigDisruptor$Log4jEventWrapper, long, boolean) throws Exception;
 private void notifyIntermediateProgress(long);
}

org/apache/logging/log4j/core/async/BasicAsyncLoggerContextSelector.class

package org.apache.logging.log4j.core.async;
public synchronized class BasicAsyncLoggerContextSelector implements org.apache.logging.log4j.core.selector.ContextSelector {
 private static final AsyncLoggerContext CONTEXT;
 public void BasicAsyncLoggerContextSelector();
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean);
 public org.apache.logging.log4j.core.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI);
 public void removeContext(org.apache.logging.log4j.core.LoggerContext);
 public boolean isClassLoaderDependent();
 public java.util.List getLoggerContexts();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/AsyncQueueFullPolicyFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class AsyncQueueFullPolicyFactory {
 static final String PROPERTY_NAME_ASYNC_EVENT_ROUTER = log4j2.AsyncQueueFullPolicy;
 static final String PROPERTY_VALUE_DEFAULT_ASYNC_EVENT_ROUTER = Default;
 static final String PROPERTY_VALUE_DISCARDING_ASYNC_EVENT_ROUTER = Discard;
 static final String PROPERTY_NAME_DISCARDING_THRESHOLD_LEVEL = log4j2.DiscardThreshold;
 private static final org.apache.logging.log4j.Logger LOGGER;
 public void AsyncQueueFullPolicyFactory();
 public static AsyncQueueFullPolicy create();
 private static boolean isRouterSelected(String, Class, String);
 private static AsyncQueueFullPolicy createCustomRouter(String);
 private static AsyncQueueFullPolicy createDiscardingAsyncQueueFullPolicy();
 static void <clinit>();
}

org/apache/logging/log4j/core/async/EventRoute$2.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$2 {
 void EventRoute$2(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/async/AsyncLogger$1.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$1 extends AsyncLogger$TranslatorType {
 void AsyncLogger$1(AsyncLogger);
 void log(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 void log(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/async/RingBufferLogEvent$1.class

package org.apache.logging.log4j.core.async;
synchronized class RingBufferLogEvent$1 {
}

org/apache/logging/log4j/core/async/AsyncLogger$3.class

package org.apache.logging.log4j.core.async;
synchronized class AsyncLogger$3 {
 static void <clinit>();
}

org/apache/logging/log4j/core/async/InternalAsyncUtil.class

package org.apache.logging.log4j.core.async;
public synchronized class InternalAsyncUtil {
 public void InternalAsyncUtil();
 public static org.apache.logging.log4j.message.Message makeMessageImmutable(org.apache.logging.log4j.message.Message);
 private static boolean canFormatMessageInBackground(org.apache.logging.log4j.message.Message);
}

org/apache/logging/log4j/core/async/EventRoute$1.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$1 {
 void EventRoute$1(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/lookup/StrMatcher$StringMatcher.class

package org.apache.logging.log4j.core.lookup;
final synchronized class StrMatcher$StringMatcher extends StrMatcher {
 private final char[] chars;
 void StrMatcher$StringMatcher(String);
 public int isMatch(char[], int, int, int);
 public String toString();
}

org/apache/logging/log4j/core/lookup/Interpolator.class

package org.apache.logging.log4j.core.lookup;
public synchronized class Interpolator extends AbstractConfigurationAwareLookup {
 public static final char PREFIX_SEPARATOR = 58;
 private static final String LOOKUP_KEY_WEB = web;
 private static final String LOOKUP_KEY_DOCKER = docker;
 private static final String LOOKUP_KEY_KUBERNETES = kubernetes;
 private static final String LOOKUP_KEY_SPRING = spring;
 private static final String LOOKUP_KEY_JNDI = jndi;
 private static final String LOOKUP_KEY_JVMRUNARGS = jvmrunargs;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final java.util.Map strLookupMap;
 private final StrLookup defaultLookup;
 public void Interpolator(StrLookup);
 public void Interpolator(StrLookup, java.util.List);
 public void Interpolator();
 public void Interpolator(java.util.Map);
 public java.util.Map getStrLookupMap();
 private void handleError(String, Throwable);
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/RuntimeStrSubstitutor.class

package org.apache.logging.log4j.core.lookup;
public final synchronized class RuntimeStrSubstitutor extends StrSubstitutor {
 public void RuntimeStrSubstitutor();
 public void RuntimeStrSubstitutor(java.util.Map);
 public void RuntimeStrSubstitutor(java.util.Properties);
 public void RuntimeStrSubstitutor(StrLookup);
 public void RuntimeStrSubstitutor(StrSubstitutor);
 boolean isRecursiveEvaluationAllowed();
 void setRecursiveEvaluationAllowed(boolean);
 public String toString();
}

org/apache/logging/log4j/core/lookup/ContextMapLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class ContextMapLookup implements StrLookup {
 private final org.apache.logging.log4j.core.ContextDataInjector injector;
 public void ContextMapLookup();
 public String lookup(String);
 private org.apache.logging.log4j.util.ReadOnlyStringMap currentContextData();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
}

org/apache/logging/log4j/core/message/ExtendedThreadInfoFactory.class

package org.apache.logging.log4j.core.message;
public synchronized class ExtendedThreadInfoFactory implements org.apache.logging.log4j.message.ThreadDumpMessage$ThreadInfoFactory {
 public void ExtendedThreadInfoFactory();
 public java.util.Map createThreadInfo();
}

org/apache/logging/log4j/core/LifeCycle2.class

package org.apache.logging.log4j.core;
public abstract interface LifeCycle2 extends LifeCycle {
 public abstract boolean stop(long, java.util.concurrent.TimeUnit);
}

org/apache/logging/log4j/core/filter/AbstractFilterable.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilterable extends org.apache.logging.log4j.core.AbstractLifeCycle implements Filterable {
 private volatile org.apache.logging.log4j.core.Filter filter;
 private final org.apache.logging.log4j.core.config.Property[] propertyArray;
 protected void AbstractFilterable();
 protected void AbstractFilterable(org.apache.logging.log4j.core.Filter);
 protected void AbstractFilterable(org.apache.logging.log4j.core.Filter, org.apache.logging.log4j.core.config.Property[]);
 public synchronized void addFilter(org.apache.logging.log4j.core.Filter);
 public org.apache.logging.log4j.core.Filter getFilter();
 public boolean hasFilter();
 public boolean isFiltered(org.apache.logging.log4j.core.LogEvent);
 public synchronized void removeFilter(org.apache.logging.log4j.core.Filter);
 public void start();
 public boolean stop(long, java.util.concurrent.TimeUnit);
 protected boolean stop(long, java.util.concurrent.TimeUnit, boolean);
 public org.apache.logging.log4j.core.config.Property[] getPropertyArray();
}

org/apache/logging/log4j/core/filter/ScriptFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class ScriptFilter extends AbstractFilter {
 private static org.apache.logging.log4j.Logger logger;
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptFilter(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 public String toString();
 public static ScriptFilter createFilter(org.apache.logging.log4j.core.script.AbstractScript, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.config.Configuration);
 static void <clinit>();
}

org/apache/logging/log4j/core/filter/LevelMatchFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class LevelMatchFilter extends AbstractFilter {
 public static final String ATTR_MATCH = match;
 private final org.apache.logging.log4j.Level level;
 private void LevelMatchFilter(org.apache.logging.log4j.Level, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String toString();
 public static LevelMatchFilter$Builder newBuilder();
}

org/apache/logging/log4j/core/pattern/LineSeparatorPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class LineSeparatorPatternConverter extends LogEventPatternConverter {
 private static final LineSeparatorPatternConverter INSTANCE;
 private void LineSeparatorPatternConverter();
 public static LineSeparatorPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public void format(Object, StringBuilder);
 public boolean isVariable();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/EndOfBatchPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EndOfBatchPatternConverter extends LogEventPatternConverter {
 private static final EndOfBatchPatternConverter INSTANCE;
 private void EndOfBatchPatternConverter();
 public static EndOfBatchPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MapPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MapPatternConverter extends LogEventPatternConverter {
 private static final String JAVA_UNQUOTED;
 private final String key;
 private final String[] format;
 private transient void MapPatternConverter(String[], String[]);
 public static MapPatternConverter newInstance(String[]);
 public static MapPatternConverter newInstance(String[], org.apache.logging.log4j.message.MapMessage$MapFormat);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/MessagePatternConverter$SimpleMessagePatternConverter.class

package org.apache.logging.log4j.core.pattern;
final synchronized class MessagePatternConverter$SimpleMessagePatternConverter extends MessagePatternConverter {
 private static final MessagePatternConverter INSTANCE;
 private void MessagePatternConverter$SimpleMessagePatternConverter();
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/ExtendedThrowablePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ExtendedThrowablePatternConverter extends ThrowablePatternConverter {
 private void ExtendedThrowablePatternConverter(org.apache.logging.log4j.core.config.Configuration, String[]);
 public static ExtendedThrowablePatternConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$1.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$1 {
 void EncodingPatternConverter$EscapeFormat$1(String, int);
 void escape(StringBuilder, int);
 private String escapeChar(char);
}

org/apache/logging/log4j/core/pattern/NotANumber.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NotANumber {
 public static final NotANumber NAN;
 public static final String VALUE = �;
 private void NotANumber();
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NameAbbreviator$PatternAbbreviator.class

package org.apache.logging.log4j.core.pattern;
final synchronized class NameAbbreviator$PatternAbbreviator extends NameAbbreviator {
 private final NameAbbreviator$PatternAbbreviatorFragment[] fragments;
 void NameAbbreviator$PatternAbbreviator(java.util.List);
 public void abbreviate(String, StringBuilder);
 NameAbbreviator$PatternAbbreviatorFragment fragment(int);
}

org/apache/logging/log4j/core/pattern/PlainTextRenderer.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class PlainTextRenderer implements TextRenderer {
 private static final PlainTextRenderer INSTANCE;
 public void PlainTextRenderer();
 public static PlainTextRenderer getInstance();
 public void render(String, StringBuilder, String);
 public void render(StringBuilder, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/EqualsIgnoreCaseReplacementConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class EqualsIgnoreCaseReplacementConverter extends EqualsBaseReplacementConverter {
 public static EqualsIgnoreCaseReplacementConverter newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
 private void EqualsIgnoreCaseReplacementConverter(java.util.List, String, String, PatternParser);
 protected boolean equals(String, StringBuilder, int, int);
}

org/apache/logging/log4j/core/jackson/Log4jYamlObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jYamlObjectMapper extends com.fasterxml.jackson.dataformat.yaml.YAMLMapper {
 private static final long serialVersionUID = 1;
 public void Log4jYamlObjectMapper();
 public void Log4jYamlObjectMapper(boolean, boolean, boolean);
}

META-INF/LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 1999-2005 The Apache Software Foundation

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

org/apache/logging/log4j/core/appender/rewrite/MapRewritePolicy$1.class

package org.apache.logging.log4j.core.appender.rewrite;
synchronized class MapRewritePolicy$1 {
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RolloverFrequency.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized enum RolloverFrequency {
 public static final RolloverFrequency ANNUALLY;
 public static final RolloverFrequency MONTHLY;
 public static final RolloverFrequency WEEKLY;
 public static final RolloverFrequency DAILY;
 public static final RolloverFrequency HOURLY;
 public static final RolloverFrequency EVERY_MINUTE;
 public static final RolloverFrequency EVERY_SECOND;
 public static final RolloverFrequency EVERY_MILLISECOND;
 public static RolloverFrequency[] values();
 public static RolloverFrequency valueOf(String);
 private void RolloverFrequency(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory.class

package org.apache.logging.log4j.core.appender.rolling;
synchronized class RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory implements org.apache.logging.log4j.core.appender.ManagerFactory {
 private void RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory();
 public RollingRandomAccessFileManager createManager(String, RollingRandomAccessFileManager$FactoryData);
}

org/apache/logging/log4j/core/appender/rolling/RolloverDescriptionImpl.class

package org.apache.logging.log4j.core.appender.rolling;
public final synchronized class RolloverDescriptionImpl implements RolloverDescription {
 private final String activeFileName;
 private final boolean append;
 private final action.Action synchronous;
 private final action.Action asynchronous;
 public void RolloverDescriptionImpl(String, boolean, action.Action, action.Action);
 public String getActiveFileName();
 public boolean getAppend();
 public action.Action getSynchronous();
 public action.Action getAsynchronous();
}

org/apache/logging/log4j/core/appender/rolling/RollingRandomAccessFileManager.class

package org.apache.logging.log4j.core.appender.rolling;
public synchronized class RollingRandomAccessFileManager extends RollingFileManager {
 public static final int DEFAULT_BUFFER_SIZE = 262144;
 private static final RollingRandomAccessFileManager$RollingRandomAccessFileManagerFactory FACTORY;
 private java.io.RandomAccessFile randomAccessFile;
 public void RollingRandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, String, java.io.OutputStream, boolean, boolean, int, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, boolean);
 public void RollingRandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, String, java.io.OutputStream, boolean, boolean, int, long, long, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, boolean);
 private void writeHeader();
 public static RollingRandomAccessFileManager getRollingRandomAccessFileManager(String, String, boolean, boolean, int, TriggeringPolicy, RolloverStrategy, String, org.apache.logging.log4j.core.Layout, String, String, String, org.apache.logging.log4j.core.config.Configuration);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected synchronized void write(byte[], int, int, boolean);
 protected synchronized void writeToDestination(byte[], int, int);
 protected void createFileAfterRollover() throws java.io.IOException;
 private void createFileAfterRollover(String) throws java.io.IOException;
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public int getBufferSize();
 public void updateData(Object);
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/rolling/action/PathWithAttributes.class

package org.apache.logging.log4j.core.appender.rolling.action;
public synchronized class PathWithAttributes {
 private final java.nio.file.Path path;
 private final java.nio.file.attribute.BasicFileAttributes attributes;
 public void PathWithAttributes(java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public String toString();
 public java.nio.file.Path getPath();
 public java.nio.file.attribute.BasicFileAttributes getAttributes();
}

org/apache/logging/log4j/core/appender/rolling/action/GzCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class GzCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 private final int compressionLevel;
 public void GzCompressAction(java.io.File, java.io.File, boolean, int);
 public void GzCompressAction(java.io.File, java.io.File, boolean);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean) throws java.io.IOException;
 public static boolean execute(java.io.File, java.io.File, boolean, int) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
}

org/apache/logging/log4j/core/appender/rolling/action/IfAll.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class IfAll implements PathCondition {
 private final PathCondition[] components;
 private transient void IfAll(PathCondition[]);
 public PathCondition[] getDeleteFilters();
 public boolean accept(java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public static boolean accept(PathCondition[], java.nio.file.Path, java.nio.file.Path, java.nio.file.attribute.BasicFileAttributes);
 public void beforeFileTreeWalk();
 public static void beforeFileTreeWalk(PathCondition[]);
 public static transient IfAll createAndCondition(PathCondition[]);
 public String toString();
}

org/apache/logging/log4j/core/appender/rolling/action/CommonsCompressAction.class

package org.apache.logging.log4j.core.appender.rolling.action;
public final synchronized class CommonsCompressAction extends AbstractAction {
 private static final int BUF_SIZE = 8192;
 private final String name;
 private final java.io.File source;
 private final java.io.File destination;
 private final boolean deleteSource;
 public void CommonsCompressAction(String, java.io.File, java.io.File, boolean);
 public boolean execute() throws java.io.IOException;
 public static boolean execute(String, java.io.File, java.io.File, boolean) throws java.io.IOException;
 protected void reportException(Exception);
 public String toString();
 public String getName();
 public java.io.File getSource();
 public java.io.File getDestination();
 public boolean isDeleteSource();
}

org/apache/logging/log4j/core/appender/rolling/FileExtension$6.class

package org.apache.logging.log4j.core.appender.rolling;
final synchronized enum FileExtension$6 {
 void FileExtension$6(String, int, String);
 action.Action createCompressAction(String, String, boolean, int);
}

org/apache/logging/log4j/core/appender/TlsSyslogFrame.class

package org.apache.logging.log4j.core.appender;
public synchronized class TlsSyslogFrame {
 private final String message;
 private final int byteLength;
 public void TlsSyslogFrame(String);
 public String getMessage();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender$1.class

package org.apache.logging.log4j.core.appender;
synchronized class MemoryMappedFileAppender$1 {
}

org/apache/logging/log4j/core/appender/MemoryMappedFileAppender$Builder.class

package org.apache.logging.log4j.core.appender;
public synchronized class MemoryMappedFileAppender$Builder extends AbstractOutputStreamAppender$Builder implements org.apache.logging.log4j.core.util.Builder {
 private String fileName;
 private boolean append;
 private int regionLength;
 private boolean advertise;
 private String advertiseURI;
 public void MemoryMappedFileAppender$Builder();
 public MemoryMappedFileAppender build();
 public MemoryMappedFileAppender$Builder setFileName(String);
 public MemoryMappedFileAppender$Builder setAppend(boolean);
 public MemoryMappedFileAppender$Builder setRegionLength(int);
 public MemoryMappedFileAppender$Builder setAdvertise(boolean);
 public MemoryMappedFileAppender$Builder setAdvertiseURI(String);
}

org/apache/logging/log4j/core/appender/RandomAccessFileManager.class

package org.apache.logging.log4j.core.appender;
public synchronized class RandomAccessFileManager extends OutputStreamManager {
 static final int DEFAULT_BUFFER_SIZE = 262144;
 private static final RandomAccessFileManager$RandomAccessFileManagerFactory FACTORY;
 private final String advertiseURI;
 private final java.io.RandomAccessFile randomAccessFile;
 protected void RandomAccessFileManager(org.apache.logging.log4j.core.LoggerContext, java.io.RandomAccessFile, String, java.io.OutputStream, int, String, org.apache.logging.log4j.core.Layout, boolean);
 public static RandomAccessFileManager getFileManager(String, boolean, boolean, int, String, org.apache.logging.log4j.core.Layout, org.apache.logging.log4j.core.config.Configuration);
 public Boolean isEndOfBatch();
 public void setEndOfBatch(boolean);
 protected void writeToDestination(byte[], int, int);
 public synchronized void flush();
 public synchronized boolean closeOutputStream();
 public String getFileName();
 public int getBufferSize();
 public java.util.Map getContentFormat();
 static void <clinit>();
}

org/apache/logging/log4j/core/appender/db/jdbc/JdbcDatabaseManager$ResultSetColumnMetaData.class

package org.apache.logging.log4j.core.appender.db.jdbc;
final synchronized class JdbcDatabaseManager$ResultSetColumnMetaData {
 private final String schemaName;
 private final String catalogName;
 private final String tableName;
 private final String name;
 private final String nameKey;
 private final String label;
 private final int displaySize;
 private final int type;
 private final String typeName;
 private final String className;
 private final int precision;
 private final int scale;
 private final boolean isStringType;
 public void JdbcDatabaseManager$ResultSetColumnMetaData(java.sql.ResultSetMetaData, int) throws java.sql.SQLException;
 private void JdbcDatabaseManager$ResultSetColumnMetaData(String, String, String, String, String, int, int, String, String, int, int);
 public String getCatalogName();
 public String getClassName();
 public int getDisplaySize();
 public String getLabel();
 public String getName();
 public String getNameKey();
 public int getPrecision();
 public int getScale();
 public String getSchemaName();
 public String getTableName();
 public int getType();
 public String getTypeName();
 public boolean isStringType();
 public String toString();
 public String truncate(String);
}

org/apache/logging/log4j/core/appender/db/jdbc/AbstractConnectionSource.class

package org.apache.logging.log4j.core.appender.db.jdbc;
public abstract synchronized class AbstractConnectionSource extends org.apache.logging.log4j.core.AbstractLifeCycle implements ConnectionSource {
 public void AbstractConnectionSource();
}

org/apache/logging/log4j/core/appender/ConsoleAppender$Target$1.class

package org.apache.logging.log4j.core.appender;
final synchronized enum ConsoleAppender$Target$1 {
 void ConsoleAppender$Target$1(String, int);
 public java.nio.charset.Charset getDefaultCharset();
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector$ForGarbageFreeThreadContextMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector$ForGarbageFreeThreadContextMap implements org.apache.logging.log4j.core.ContextDataInjector {
 private final java.util.List providers;
 public void ThreadContextDataInjector$ForGarbageFreeThreadContextMap();
 public org.apache.logging.log4j.util.StringMap injectContextData(java.util.List, org.apache.logging.log4j.util.StringMap);
 public org.apache.logging.log4j.util.ReadOnlyStringMap rawContextData();
}

org/apache/logging/log4j/core/impl/JdkMapAdapterStringMap.class

package org.apache.logging.log4j.core.impl;
public synchronized class JdkMapAdapterStringMap implements org.apache.logging.log4j.util.StringMap {
 private static final long serialVersionUID = -7348247784983193612;
 private static final String FROZEN = Frozen collection cannot be modified;
 private static final java.util.Comparator NULL_FIRST_COMPARATOR;
 private final java.util.Map map;
 private boolean immutable;
 private transient String[] sortedKeys;
 private static org.apache.logging.log4j.util.TriConsumer PUT_ALL;
 public void JdkMapAdapterStringMap();
 public void JdkMapAdapterStringMap(java.util.Map);
 public java.util.Map toMap();
 private void assertNotFrozen();
 public boolean containsKey(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 private String[] getSortedKeys();
 public Object getValue(String);
 public boolean isEmpty();
 public int size();
 public void clear();
 public void freeze();
 public boolean isFrozen();
 public void putAll(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public void putValue(String, Object);
 public void remove(String);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/core/impl/LocationAwareLogEventFactory.class

package org.apache.logging.log4j.core.impl;
public abstract interface LocationAwareLogEventFactory {
 public abstract org.apache.logging.log4j.core.LogEvent createEvent(String, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, java.util.List, Throwable);
}

org/apache/logging/log4j/core/impl/ThreadContextDataInjector.class

package org.apache.logging.log4j.core.impl;
public synchronized class ThreadContextDataInjector {
 private static final org.apache.logging.log4j.Logger LOGGER;
 public static java.util.Collection contextDataProviders;
 private static volatile java.util.List serviceProviders;
 private static final java.util.concurrent.locks.Lock providerLock;
 public void ThreadContextDataInjector();
 public static void initServiceProviders();
 private static java.util.List getServiceProviders();
 public static void copyProperties(java.util.List, org.apache.logging.log4j.util.StringMap);
 private static java.util.List getProviders();
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$ExecutionException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$ExecutionException extends CommandLine$PicocliException {
 private static final long serialVersionUID = 7764539594267007998;
 private final CommandLine commandLine;
 public void CommandLine$ExecutionException(CommandLine, String);
 public void CommandLine$ExecutionException(CommandLine, String, Exception);
 public CommandLine getCommandLine();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$IStyle.class

package org.apache.logging.log4j.core.tools.picocli;
public abstract interface CommandLine$Help$Ansi$IStyle {
 public static final String CSI = �[;
 public abstract String on();
 public abstract String off();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$DuplicateOptionAnnotationsException.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$DuplicateOptionAnnotationsException extends CommandLine$InitializationException {
 private static final long serialVersionUID = -3355128012575075641;
 public void CommandLine$DuplicateOptionAnnotationsException(String);
 private static CommandLine$DuplicateOptionAnnotationsException create(String, reflect.Field, reflect.Field);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$DefaultExceptionHandler.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$DefaultExceptionHandler implements CommandLine$IExceptionHandler {
 public void CommandLine$DefaultExceptionHandler();
 public transient java.util.List handleException(CommandLine$ParameterException, java.io.PrintStream, CommandLine$Help$Ansi, String[]);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$PatternConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$PatternConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$PatternConverter();
 public java.util.regex.Pattern convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$BuiltIn$StringConverter.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$BuiltIn$StringConverter implements CommandLine$ITypeConverter {
 void CommandLine$BuiltIn$StringConverter();
 public String convert(String);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$Style.class

package org.apache.logging.log4j.core.tools.picocli;
public final synchronized enum CommandLine$Help$Ansi$Style {
 public static final CommandLine$Help$Ansi$Style reset;
 public static final CommandLine$Help$Ansi$Style bold;
 public static final CommandLine$Help$Ansi$Style faint;
 public static final CommandLine$Help$Ansi$Style italic;
 public static final CommandLine$Help$Ansi$Style underline;
 public static final CommandLine$Help$Ansi$Style blink;
 public static final CommandLine$Help$Ansi$Style reverse;
 public static final CommandLine$Help$Ansi$Style fg_black;
 public static final CommandLine$Help$Ansi$Style fg_red;
 public static final CommandLine$Help$Ansi$Style fg_green;
 public static final CommandLine$Help$Ansi$Style fg_yellow;
 public static final CommandLine$Help$Ansi$Style fg_blue;
 public static final CommandLine$Help$Ansi$Style fg_magenta;
 public static final CommandLine$Help$Ansi$Style fg_cyan;
 public static final CommandLine$Help$Ansi$Style fg_white;
 public static final CommandLine$Help$Ansi$Style bg_black;
 public static final CommandLine$Help$Ansi$Style bg_red;
 public static final CommandLine$Help$Ansi$Style bg_green;
 public static final CommandLine$Help$Ansi$Style bg_yellow;
 public static final CommandLine$Help$Ansi$Style bg_blue;
 public static final CommandLine$Help$Ansi$Style bg_magenta;
 public static final CommandLine$Help$Ansi$Style bg_cyan;
 public static final CommandLine$Help$Ansi$Style bg_white;
 private final int startCode;
 private final int endCode;
 public static CommandLine$Help$Ansi$Style[] values();
 public static CommandLine$Help$Ansi$Style valueOf(String);
 private void CommandLine$Help$Ansi$Style(String, int, int, int);
 public String on();
 public String off();
 public static transient String on(CommandLine$Help$Ansi$IStyle[]);
 public static transient String off(CommandLine$Help$Ansi$IStyle[]);
 public static CommandLine$Help$Ansi$IStyle fg(String);
 public static CommandLine$Help$Ansi$IStyle bg(String);
 public static CommandLine$Help$Ansi$IStyle[] parse(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Ansi$StyledSection.class

package org.apache.logging.log4j.core.tools.picocli;
synchronized class CommandLine$Help$Ansi$StyledSection {
 int startIndex;
 int length;
 String startStyles;
 String endStyles;
 void CommandLine$Help$Ansi$StyledSection(int, int, String, String);
 CommandLine$Help$Ansi$StyledSection withStartIndex(int);
}

org/apache/logging/log4j/core/tools/picocli/CommandLine$Help$Column.class

package org.apache.logging.log4j.core.tools.picocli;
public synchronized class CommandLine$Help$Column {
 public final int width;
 public final int indent;
 public final CommandLine$Help$Column$Overflow overflow;
 public void CommandLine$Help$Column(int, int, CommandLine$Help$Column$Overflow);
}

org/apache/logging/log4j/core/tools/Generate$1.class

package org.apache.logging.log4j.core.tools;
synchronized class Generate$1 {
}

org/apache/logging/log4j/core/net/SslSocketManager.class

package org.apache.logging.log4j.core.net;
public synchronized class SslSocketManager extends TcpSocketManager {
 public static final int DEFAULT_PORT = 6514;
 private static final SslSocketManager$SslSocketManagerFactory FACTORY;
 private final ssl.SslConfiguration sslConfig;
 public void SslSocketManager(String, java.io.OutputStream, java.net.Socket, ssl.SslConfiguration, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public void SslSocketManager(String, java.io.OutputStream, java.net.Socket, ssl.SslConfiguration, java.net.InetAddress, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 public static SslSocketManager getSocketManager(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int);
 public static SslSocketManager getSocketManager(ssl.SslConfiguration, String, int, int, int, boolean, org.apache.logging.log4j.core.Layout, int, SocketOptions);
 protected java.net.Socket createSocket(java.net.InetSocketAddress) throws java.io.IOException;
 private static javax.net.ssl.SSLSocketFactory createSslSocketFactory(ssl.SslConfiguration);
 static java.net.Socket createSocket(java.net.InetSocketAddress, int, ssl.SslConfiguration, SocketOptions) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ReflectionUtil.class

package org.apache.logging.log4j.core.util;
public final synchronized class ReflectionUtil {
 private void ReflectionUtil();
 public static boolean isAccessible(reflect.AccessibleObject);
 public static void makeAccessible(reflect.AccessibleObject);
 public static void makeAccessible(reflect.Field);
 public static Object getFieldValue(reflect.Field, Object);
 public static Object getStaticFieldValue(reflect.Field);
 public static void setFieldValue(reflect.Field, Object, Object);
 public static void setStaticFieldValue(reflect.Field, Object);
 public static reflect.Constructor getDefaultConstructor(Class);
 public static Object instantiate(Class);
}

org/apache/logging/log4j/core/util/Source.class

package org.apache.logging.log4j.core.util;
public synchronized class Source {
 private final java.io.File file;
 private final java.net.URI uri;
 private final String location;
 public void Source(org.apache.logging.log4j.core.config.ConfigurationSource);
 public void Source(java.io.File);
 public void Source(java.net.URI, long);
 public java.io.File getFile();
 public java.net.URI getURI();
 public String getLocation();
 public String toString();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/util/CronExpression$1.class

package org.apache.logging.log4j.core.util;
synchronized class CronExpression$1 {
}

org/apache/logging/log4j/core/util/KeyValuePair$Builder.class

package org.apache.logging.log4j.core.util;
public synchronized class KeyValuePair$Builder implements Builder {
 private String key;
 private String value;
 public void KeyValuePair$Builder();
 public KeyValuePair$Builder setKey(String);
 public KeyValuePair$Builder setValue(String);
 public KeyValuePair build();
}

org/apache/logging/log4j/core/util/JsonUtils.class

package org.apache.logging.log4j.core.util;
public final synchronized class JsonUtils {
 private static final char[] HC;
 private static final int[] ESC_CODES;
 private static final ThreadLocal _qbufLocal;
 public void JsonUtils();
 private static char[] getQBuf();
 public static void quoteAsString(CharSequence, StringBuilder);
 private static int _appendNumeric(int, char[]);
 private static int _appendNamed(int, char[]);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/SystemClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class SystemClock implements Clock {
 public void SystemClock();
 public long currentTimeMillis();
}

org/apache/logging/log4j/core/util/datetime/FastDatePrinter$PaddedNumberField.class

package org.apache.logging.log4j.core.util.datetime;
synchronized class FastDatePrinter$PaddedNumberField implements FastDatePrinter$NumberRule {
 private final int mField;
 private final int mSize;
 void FastDatePrinter$PaddedNumberField(int, int);
 public int estimateLength();
 public void appendTo(Appendable, java.util.Calendar) throws java.io.IOException;
 public final void appendTo(Appendable, int) throws java.io.IOException;
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$4.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$4 extends FastDateParser$NumberStrategy {
 void FastDateParser$4(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/datetime/FastDateParser$3.class

package org.apache.logging.log4j.core.util.datetime;
final synchronized class FastDateParser$3 extends FastDateParser$NumberStrategy {
 void FastDateParser$3(int);
 int modify(FastDateParser, int);
}

org/apache/logging/log4j/core/util/Patterns.class

package org.apache.logging.log4j.core.util;
public final synchronized class Patterns {
 public static final String COMMA_SEPARATOR;
 public static final String WHITESPACE = \s*;
 private void Patterns();
 public static String toWhitespaceSeparator(String);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/ClockFactory.class

package org.apache.logging.log4j.core.util;
public final synchronized class ClockFactory {
 public static final String PROPERTY_NAME = log4j.Clock;
 private static final org.apache.logging.log4j.status.StatusLogger LOGGER;
 private void ClockFactory();
 public static Clock getClock();
 private static java.util.Map aliases();
 private static Clock createClock();
 private static Clock logSupportedPrecision(Clock);
 static void <clinit>();
}

org/apache/logging/log4j/core/util/WatchManager$ConfigurationMonitor.class

package org.apache.logging.log4j.core.util;
final synchronized class WatchManager$ConfigurationMonitor {
 private final Watcher watcher;
 private volatile long lastModifiedMillis;
 public void WatchManager$ConfigurationMonitor(WatchManager, long, Watcher);
 public Watcher getWatcher();
 private void setLastModifiedMillis(long);
 public String toString();
}

org/apache/logging/log4j/core/util/CachedClock.class

package org.apache.logging.log4j.core.util;
public final synchronized class CachedClock implements Clock {
 private static final int UPDATE_THRESHOLD = 1000;
 private static volatile CachedClock instance;
 private static final Object INSTANCE_LOCK;
 private volatile long millis;
 private short count;
 private void CachedClock();
 public static CachedClock instance();
 public long currentTimeMillis();
 static void <clinit>();
}

org/apache/logging/log4j/core/util/CronExpression$ValueSet.class

package org.apache.logging.log4j.core.util;
synchronized class CronExpression$ValueSet {
 public int value;
 public int pos;
 private void CronExpression$ValueSet(CronExpression);
}

org/apache/logging/log4j/core/config/AwaitCompletionReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public synchronized class AwaitCompletionReliabilityStrategy implements ReliabilityStrategy, LocationAwareReliabilityStrategy {
 private static final int MAX_RETRIES = 3;
 private final java.util.concurrent.atomic.AtomicInteger counter;
 private final java.util.concurrent.atomic.AtomicBoolean shutdown;
 private final java.util.concurrent.locks.Lock shutdownLock;
 private final java.util.concurrent.locks.Condition noLogEvents;
 private final LoggerConfig loggerConfig;
 public void AwaitCompletionReliabilityStrategy(LoggerConfig);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 private boolean beforeLogEvent();
 public void afterLogEvent();
 private void signalCompletionIfShutdown();
 public void beforeStopAppenders();
 private void waitForCompletion();
 public void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/LocationAwareReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public abstract interface LocationAwareReliabilityStrategy {
 public abstract void log(org.apache.logging.log4j.util.Supplier, String, String, StackTraceElement, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/core/config/arbiters/SystemPropertyArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SystemPropertyArbiter implements Arbiter {
 private final String propertyName;
 private final String propertyValue;
 private void SystemPropertyArbiter(String, String);
 public boolean isCondition();
 public static SystemPropertyArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/SelectArbiter$Builder.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class SelectArbiter$Builder implements org.apache.logging.log4j.core.util.Builder {
 public void SelectArbiter$Builder();
 public SelectArbiter$Builder asBuilder();
 public SelectArbiter build();
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class ScriptArbiter$1 {
}

org/apache/logging/log4j/core/config/arbiters/ScriptArbiter.class

package org.apache.logging.log4j.core.config.arbiters;
public synchronized class ScriptArbiter implements Arbiter {
 private final org.apache.logging.log4j.core.script.AbstractScript script;
 private final org.apache.logging.log4j.core.config.Configuration configuration;
 private void ScriptArbiter(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.script.AbstractScript);
 public boolean isCondition();
 public static ScriptArbiter$Builder newBuilder();
}

org/apache/logging/log4j/core/config/arbiters/ClassArbiter$1.class

package org.apache.logging.log4j.core.config.arbiters;
synchronized class ClassArbiter$1 {
}

org/apache/logging/log4j/core/config/plugins/visitors/PluginValueVisitor.class

package org.apache.logging.log4j.core.config.plugins.visitors;
public synchronized class PluginValueVisitor extends AbstractPluginVisitor {
 public void PluginValueVisitor();
 public Object visit(org.apache.logging.log4j.core.config.Configuration, org.apache.logging.log4j.core.config.Node, org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/config/plugins/processor/PluginProcessor.class

package org.apache.logging.log4j.core.config.plugins.processor;
public synchronized class PluginProcessor extends javax.annotation.processing.AbstractProcessor {
 public static final String PLUGIN_CACHE_FILE = META-INF/org/apache/logging/log4j/core/config/plugins/Log4j2Plugins.dat;
 private final PluginCache pluginCache;
 public void PluginProcessor();
 public javax.lang.model.SourceVersion getSupportedSourceVersion();
 public boolean process(java.util.Set, javax.annotation.processing.RoundEnvironment);
 private void error(CharSequence);
 private void collectPlugins(Iterable);
 private transient void writeCacheFile(javax.lang.model.element.Element[]) throws java.io.IOException;
}

org/apache/logging/log4j/core/config/plugins/PluginAliases.class

package org.apache.logging.log4j.core.config.plugins;
public abstract interface PluginAliases extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/core/config/ReliabilityStrategy.class

package org.apache.logging.log4j.core.config;
public abstract interface ReliabilityStrategy {
 public abstract void log(org.apache.logging.log4j.util.Supplier, String, String, org.apache.logging.log4j.Marker, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void log(org.apache.logging.log4j.util.Supplier, org.apache.logging.log4j.core.LogEvent);
 public abstract LoggerConfig getActiveLoggerConfig(org.apache.logging.log4j.util.Supplier);
 public abstract void afterLogEvent();
 public abstract void beforeStopAppenders();
 public abstract void beforeStopConfiguration(Configuration);
}

org/apache/logging/log4j/core/config/DefaultAdvertiser.class

package org.apache.logging.log4j.core.config;
public synchronized class DefaultAdvertiser implements org.apache.logging.log4j.core.net.Advertiser {
 public void DefaultAdvertiser();
 public Object advertise(java.util.Map);
 public void unadvertise(Object);
}

org/apache/logging/log4j/core/config/json/JsonConfiguration.class

package org.apache.logging.log4j.core.config.json;
public synchronized class JsonConfiguration extends org.apache.logging.log4j.core.config.AbstractConfiguration implements org.apache.logging.log4j.core.config.Reconfigurable {
 private static final String[] VERBOSE_CLASSES;
 private final java.util.List status;
 private com.fasterxml.jackson.databind.JsonNode root;
 public void JsonConfiguration(org.apache.logging.log4j.core.LoggerContext, org.apache.logging.log4j.core.config.ConfigurationSource);
 protected com.fasterxml.jackson.databind.ObjectMapper getObjectMapper();
 public void setup();
 public org.apache.logging.log4j.core.config.Configuration reconfigure();
 private org.apache.logging.log4j.core.config.Node constructNode(String, org.apache.logging.log4j.core.config.Node, com.fasterxml.jackson.databind.JsonNode);
 private String getType(com.fasterxml.jackson.databind.JsonNode, String);
 private void processAttributes(org.apache.logging.log4j.core.config.Node, com.fasterxml.jackson.databind.JsonNode);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/core/config/builder/impl/DefaultCustomLevelComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.impl;
synchronized class DefaultCustomLevelComponentBuilder extends DefaultComponentAndConfigurationBuilder implements org.apache.logging.log4j.core.config.builder.api.CustomLevelComponentBuilder {
 public void DefaultCustomLevelComponentBuilder(DefaultConfigurationBuilder, String, int);
}

org/apache/logging/log4j/core/config/builder/api/RootLoggerComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface RootLoggerComponentBuilder extends LoggableComponentBuilder {
}

org/apache/logging/log4j/core/config/builder/api/AppenderComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface AppenderComponentBuilder extends FilterableComponentBuilder {
 public abstract AppenderComponentBuilder add(LayoutComponentBuilder);
 public abstract String getName();
}

org/apache/logging/log4j/core/config/builder/api/ScriptComponentBuilder.class

package org.apache.logging.log4j.core.config.builder.api;
public abstract interface ScriptComponentBuilder extends ComponentBuilder {
}

org/apache/logging/log4j/core/layout/StringBuilderEncoder.class

package org.apache.logging.log4j.core.layout;
public synchronized class StringBuilderEncoder implements Encoder {
 private static final int DEFAULT_BYTE_BUFFER_SIZE = 8192;
 private final ThreadLocal threadLocal;
 private final java.nio.charset.Charset charset;
 private final int charBufferSize;
 private final int byteBufferSize;
 public void StringBuilderEncoder(java.nio.charset.Charset);
 public void StringBuilderEncoder(java.nio.charset.Charset, int, int);
 public void encode(StringBuilder, ByteBufferDestination);
 private Object[] getThreadLocalState();
 private void logEncodeTextException(Exception, StringBuilder, ByteBufferDestination);
}

org/apache/logging/log4j/core/layout/MarkerPatternSelector$1.class

package org.apache.logging.log4j.core.layout;
synchronized class MarkerPatternSelector$1 {
}

org/apache/logging/log4j/core/layout/GelfLayout$FieldWriter.class

package org.apache.logging.log4j.core.layout;
synchronized class GelfLayout$FieldWriter implements org.apache.logging.log4j.util.TriConsumer {
 private final internal.ListChecker checker;
 private final String prefix;
 void GelfLayout$FieldWriter(GelfLayout, internal.ListChecker, String);
 public void accept(String, Object, StringBuilder);
 public internal.ListChecker getChecker();
}

org/apache/logging/log4j/core/layout/PatternLayout$PatternSerializer.class

package org.apache.logging.log4j.core.layout;
abstract interface PatternLayout$PatternSerializer extends AbstractStringLayout$Serializer, AbstractStringLayout$Serializer2, org.apache.logging.log4j.core.impl.LocationAware {
}

org/apache/logging/log4j/core/layout/Rfc5424Layout$FieldFormatter.class

package org.apache.logging.log4j.core.layout;
synchronized class Rfc5424Layout$FieldFormatter {
 private final java.util.Map delegateMap;
 private final boolean discardIfEmpty;
 public void Rfc5424Layout$FieldFormatter(Rfc5424Layout, java.util.Map, boolean);
 public Rfc5424Layout$StructuredDataElement format(org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/LoggerContextAccessor.class

package org.apache.logging.log4j.core;
public abstract interface LoggerContextAccessor {
 public abstract LoggerContext getLoggerContext();
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory.class

package org.apache.logging.log4j.core.async;
public synchronized class JCToolsBlockingQueueFactory implements BlockingQueueFactory {
 private final JCToolsBlockingQueueFactory$WaitStrategy waitStrategy;
 private void JCToolsBlockingQueueFactory(JCToolsBlockingQueueFactory$WaitStrategy);
 public java.util.concurrent.BlockingQueue create(int);
 public static JCToolsBlockingQueueFactory createFactory(JCToolsBlockingQueueFactory$WaitStrategy);
}

org/apache/logging/log4j/core/async/JCToolsBlockingQueueFactory$MpscBlockingQueue.class

package org.apache.logging.log4j.core.async;
final synchronized class JCToolsBlockingQueueFactory$MpscBlockingQueue extends org.jctools.queues.MpscArrayQueue implements java.util.concurrent.BlockingQueue {
 private final JCToolsBlockingQueueFactory$WaitStrategy waitStrategy;
 void JCToolsBlockingQueueFactory$MpscBlockingQueue(int, JCToolsBlockingQueueFactory$WaitStrategy);
 public int drainTo(java.util.Collection);
 public int drainTo(java.util.Collection, int);
 public boolean offer(Object, long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public Object poll(long, java.util.concurrent.TimeUnit) throws InterruptedException;
 public void put(Object) throws InterruptedException;
 public boolean offer(Object);
 public int remainingCapacity();
 public Object take() throws InterruptedException;
}

org/apache/logging/log4j/core/async/EventRoute$3.class

package org.apache.logging.log4j.core.async;
final synchronized enum EventRoute$3 {
 void EventRoute$3(String, int);
 public void logMessage(AsyncLogger, String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logMessage(AsyncLoggerConfig, org.apache.logging.log4j.core.LogEvent);
 public void logMessage(org.apache.logging.log4j.core.appender.AsyncAppender, org.apache.logging.log4j.core.LogEvent);
}

org/apache/logging/log4j/core/Logger.class

package org.apache.logging.log4j.core;
public synchronized class Logger extends org.apache.logging.log4j.spi.AbstractLogger implements org.apache.logging.log4j.util.Supplier {
 private static final long serialVersionUID = 1;
 protected volatile Logger$PrivateConfig privateConfig;
 private final LoggerContext context;
 protected void Logger(LoggerContext, String, org.apache.logging.log4j.message.MessageFactory);
 protected Object writeReplace() throws java.io.ObjectStreamException;
 public Logger getParent();
 public LoggerContext getContext();
 public synchronized void setLevel(org.apache.logging.log4j.Level);
 public config.LoggerConfig get();
 protected boolean requiresLocation();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 protected void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void addAppender(Appender);
 public void removeAppender(Appender);
 public java.util.Map getAppenders();
 public java.util.Iterator getFilters();
 public org.apache.logging.log4j.Level getLevel();
 public int filterCount();
 public void addFilter(Filter);
 public boolean isAdditive();
 public void setAdditive(boolean);
 protected void updateConfiguration(config.Configuration);
 public String toString();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/core/lookup/ResourceBundleLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class ResourceBundleLookup extends AbstractLookup {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final org.apache.logging.log4j.Marker LOOKUP;
 public void ResourceBundleLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/StrMatcher.class

package org.apache.logging.log4j.core.lookup;
public abstract synchronized class StrMatcher {
 private static final StrMatcher COMMA_MATCHER;
 private static final StrMatcher TAB_MATCHER;
 private static final StrMatcher SPACE_MATCHER;
 private static final StrMatcher SPLIT_MATCHER;
 private static final StrMatcher TRIM_MATCHER;
 private static final StrMatcher SINGLE_QUOTE_MATCHER;
 private static final StrMatcher DOUBLE_QUOTE_MATCHER;
 private static final StrMatcher QUOTE_MATCHER;
 private static final StrMatcher NONE_MATCHER;
 protected void StrMatcher();
 public static StrMatcher commaMatcher();
 public static StrMatcher tabMatcher();
 public static StrMatcher spaceMatcher();
 public static StrMatcher splitMatcher();
 public static StrMatcher trimMatcher();
 public static StrMatcher singleQuoteMatcher();
 public static StrMatcher doubleQuoteMatcher();
 public static StrMatcher quoteMatcher();
 public static StrMatcher noneMatcher();
 public static StrMatcher charMatcher(char);
 public static StrMatcher charSetMatcher(char[]);
 public static StrMatcher charSetMatcher(String);
 public static StrMatcher stringMatcher(String);
 public abstract int isMatch(char[], int, int, int);
 public int isMatch(char[], int);
 static void <clinit>();
}

org/apache/logging/log4j/core/lookup/MarkerLookup.class

package org.apache.logging.log4j.core.lookup;
public synchronized class MarkerLookup extends AbstractLookup {
 static final String MARKER = marker;
 public void MarkerLookup();
 public String lookup(org.apache.logging.log4j.core.LogEvent, String);
 public String lookup(String);
}

org/apache/logging/log4j/core/script/ScriptManager$MainScriptRunner.class

package org.apache.logging.log4j.core.script;
synchronized class ScriptManager$MainScriptRunner extends ScriptManager$AbstractScriptRunner {
 private final AbstractScript script;
 private final javax.script.CompiledScript compiledScript;
 private final javax.script.ScriptEngine scriptEngine;
 public void ScriptManager$MainScriptRunner(ScriptManager, javax.script.ScriptEngine, AbstractScript);
 public javax.script.ScriptEngine getScriptEngine();
 public Object execute(javax.script.Bindings);
 public AbstractScript getScript();
}

org/apache/logging/log4j/core/time/Instant.class

package org.apache.logging.log4j.core.time;
public abstract interface Instant extends org.apache.logging.log4j.util.StringBuilderFormattable {
 public abstract long getEpochSecond();
 public abstract int getNanoOfSecond();
 public abstract long getEpochMillisecond();
 public abstract int getNanoOfMillisecond();
}

org/apache/logging/log4j/core/filter/RegexFilter.class

package org.apache.logging.log4j.core.filter;
public final synchronized class RegexFilter extends AbstractFilter {
 private static final int DEFAULT_PATTERN_FLAGS = 0;
 private final java.util.regex.Pattern pattern;
 private final boolean useRawMessage;
 private void RegexFilter(boolean, java.util.regex.Pattern, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result);
 public transient org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.Logger, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public org.apache.logging.log4j.core.Filter$Result filter(org.apache.logging.log4j.core.LogEvent);
 private org.apache.logging.log4j.core.Filter$Result filter(String);
 public String toString();
 public static RegexFilter createFilter(String, String[], Boolean, org.apache.logging.log4j.core.Filter$Result, org.apache.logging.log4j.core.Filter$Result) throws IllegalArgumentException, IllegalAccessException;
 private static int toPatternFlags(String[]) throws IllegalArgumentException, IllegalAccessException;
}

org/apache/logging/log4j/core/filter/DenyAllFilter$1.class

package org.apache.logging.log4j.core.filter;
synchronized class DenyAllFilter$1 {
}

org/apache/logging/log4j/core/filter/StringMatchFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class StringMatchFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private String text;
 public void StringMatchFilter$Builder();
 public StringMatchFilter$Builder setMatchString(String);
 public StringMatchFilter build();
}

org/apache/logging/log4j/core/filter/AbstractFilter$AbstractFilterBuilder.class

package org.apache.logging.log4j.core.filter;
public abstract synchronized class AbstractFilter$AbstractFilterBuilder {
 public static final String ATTR_ON_MISMATCH = onMismatch;
 public static final String ATTR_ON_MATCH = onMatch;
 private org.apache.logging.log4j.core.Filter$Result onMatch;
 private org.apache.logging.log4j.core.Filter$Result onMismatch;
 public void AbstractFilter$AbstractFilterBuilder();
 public org.apache.logging.log4j.core.Filter$Result getOnMatch();
 public org.apache.logging.log4j.core.Filter$Result getOnMismatch();
 public AbstractFilter$AbstractFilterBuilder setOnMatch(org.apache.logging.log4j.core.Filter$Result);
 public AbstractFilter$AbstractFilterBuilder setOnMismatch(org.apache.logging.log4j.core.Filter$Result);
 public AbstractFilter$AbstractFilterBuilder asBuilder();
}

org/apache/logging/log4j/core/filter/LevelMatchFilter$Builder.class

package org.apache.logging.log4j.core.filter;
public synchronized class LevelMatchFilter$Builder extends AbstractFilter$AbstractFilterBuilder implements org.apache.logging.log4j.core.util.Builder {
 private org.apache.logging.log4j.Level level;
 public void LevelMatchFilter$Builder();
 public LevelMatchFilter$Builder setLevel(org.apache.logging.log4j.Level);
 public LevelMatchFilter build();
}

org/apache/logging/log4j/core/pattern/MarkerPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MarkerPatternConverter extends LogEventPatternConverter {
 private void MarkerPatternConverter(String[]);
 public static MarkerPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/FullLocationPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class FullLocationPatternConverter extends LogEventPatternConverter implements org.apache.logging.log4j.core.impl.LocationAware {
 private static final FullLocationPatternConverter INSTANCE;
 private void FullLocationPatternConverter();
 public static FullLocationPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 public boolean requiresLocation();
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/NdcPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class NdcPatternConverter extends LogEventPatternConverter {
 private static final NdcPatternConverter INSTANCE;
 private void NdcPatternConverter();
 public static NdcPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/AbstractStyleNameConverter$White.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class AbstractStyleNameConverter$White extends AbstractStyleNameConverter {
 protected static final String NAME = white;
 public void AbstractStyleNameConverter$White(java.util.List, String);
 public static AbstractStyleNameConverter$White newInstance(org.apache.logging.log4j.core.config.Configuration, String[]);
}

org/apache/logging/log4j/core/pattern/PatternConverter.class

package org.apache.logging.log4j.core.pattern;
public abstract interface PatternConverter {
 public static final String CATEGORY = Converter;
 public abstract void format(Object, StringBuilder);
 public abstract String getName();
 public abstract String getStyleClass(Object);
}

org/apache/logging/log4j/core/pattern/PatternParser.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class PatternParser {
 static final String DISABLE_ANSI = disableAnsi;
 static final String NO_CONSOLE_NO_ANSI = noConsoleNoAnsi;
 private static final char ESCAPE_CHAR = 37;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int BUF_SIZE = 32;
 private static final int DECIMAL = 10;
 private final org.apache.logging.log4j.core.config.Configuration config;
 private final java.util.Map converterRules;
 public void PatternParser(String);
 public void PatternParser(org.apache.logging.log4j.core.config.Configuration, String, Class);
 public void PatternParser(org.apache.logging.log4j.core.config.Configuration, String, Class, Class);
 public java.util.List parse(String);
 public java.util.List parse(String, boolean, boolean);
 public java.util.List parse(String, boolean, boolean, boolean);
 private static int extractConverter(char, String, int, StringBuilder, StringBuilder);
 private static int extractOptions(String, int, java.util.List);
 public void parse(String, java.util.List, java.util.List, boolean, boolean);
 public void parse(String, java.util.List, java.util.List, boolean, boolean, boolean);
 private PatternConverter createConverter(String, StringBuilder, java.util.Map, java.util.List, boolean, boolean);
 private static boolean areValidNewInstanceParameters(Class[]);
 private int finalizeConverter(char, String, int, StringBuilder, FormattingInfo, java.util.Map, java.util.List, java.util.List, boolean, boolean, boolean);
 private LogEventPatternConverter literalPattern(String, boolean);
 static void <clinit>();
}

org/apache/logging/log4j/core/pattern/UuidPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class UuidPatternConverter extends LogEventPatternConverter {
 private final boolean isRandom;
 private void UuidPatternConverter(boolean);
 public static UuidPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/ProcessIdPatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class ProcessIdPatternConverter extends LogEventPatternConverter {
 private static final String DEFAULT_DEFAULT_VALUE = ???;
 private final String pid;
 private transient void ProcessIdPatternConverter(String[]);
 public String getProcessId();
 public static void main(String[]);
 public static ProcessIdPatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/pattern/EncodingPatternConverter$EscapeFormat$2.class

package org.apache.logging.log4j.core.pattern;
final synchronized enum EncodingPatternConverter$EscapeFormat$2 {
 void EncodingPatternConverter$EscapeFormat$2(String, int);
 void escape(StringBuilder, int);
}

org/apache/logging/log4j/core/pattern/DatePatternConverter$CachedTime.class

package org.apache.logging.log4j.core.pattern;
final synchronized class DatePatternConverter$CachedTime {
 public long epochSecond;
 public int nanoOfSecond;
 public String formatted;
 public void DatePatternConverter$CachedTime(DatePatternConverter, org.apache.logging.log4j.core.time.Instant);
}

org/apache/logging/log4j/core/pattern/MarkerSimpleNamePatternConverter.class

package org.apache.logging.log4j.core.pattern;
public final synchronized class MarkerSimpleNamePatternConverter extends LogEventPatternConverter {
 private void MarkerSimpleNamePatternConverter(String[]);
 public static MarkerSimpleNamePatternConverter newInstance(String[]);
 public void format(org.apache.logging.log4j.core.LogEvent, StringBuilder);
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListSerializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataAsEntryListSerializer extends com.fasterxml.jackson.databind.ser.std.StdSerializer {
 private static final long serialVersionUID = 1;
 protected void ContextDataAsEntryListSerializer();
 public void serialize(org.apache.logging.log4j.util.ReadOnlyStringMap, com.fasterxml.jackson.core.JsonGenerator, com.fasterxml.jackson.databind.SerializerProvider) throws java.io.IOException, com.fasterxml.jackson.core.JsonGenerationException;
}

org/apache/logging/log4j/core/jackson/JsonConstants.class

package org.apache.logging.log4j.core.jackson;
public final synchronized class JsonConstants {
 public static final String ELT_CAUSE = cause;
 public static final String ELT_CONTEXT_MAP = contextMap;
 public static final String ELT_CONTEXT_STACK = contextStack;
 public static final String ELT_MARKER = marker;
 public static final String ELT_PARENTS = parents;
 public static final String ELT_SOURCE = source;
 public static final String ELT_SUPPRESSED = suppressed;
 public static final String ELT_THROWN = thrown;
 public static final String ELT_MESSAGE = message;
 public static final String ELT_EXTENDED_STACK_TRACE = extendedStackTrace;
 public static final String ELT_NANO_TIME = nanoTime;
 public static final String ELT_INSTANT = instant;
 public static final String ELT_TIME_MILLIS = timeMillis;
 public void JsonConstants();
}

org/apache/logging/log4j/core/jackson/ContextDataAsEntryListDeserializer.class

package org.apache.logging.log4j.core.jackson;
public synchronized class ContextDataAsEntryListDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void ContextDataAsEntryListDeserializer();
 public org.apache.logging.log4j.util.StringMap deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

org/apache/logging/log4j/core/jackson/Log4jJsonObjectMapper.class

package org.apache.logging.log4j.core.jackson;
public synchronized class Log4jJsonObjectMapper extends com.fasterxml.jackson.databind.ObjectMapper {
 private static final long serialVersionUID = 1;
 public void Log4jJsonObjectMapper();
 public void Log4jJsonObjectMapper(boolean, boolean, boolean, boolean);
}

org/apache/logging/log4j/core/jackson/MapEntry.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MapEntry {
 private String key;
 private String value;
 public void MapEntry(String, String);
 public boolean equals(Object);
 public String getKey();
 public String getValue();
 public int hashCode();
 public void setKey(String);
 public void setValue(String);
 public String toString();
}

org/apache/logging/log4j/core/jackson/MutableThreadContextStackDeserializer.class

package org.apache.logging.log4j.core.jackson;
final synchronized class MutableThreadContextStackDeserializer extends com.fasterxml.jackson.databind.deser.std.StdDeserializer {
 private static final long serialVersionUID = 1;
 void MutableThreadContextStackDeserializer();
 public org.apache.logging.log4j.spi.MutableThreadContextStack deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) throws java.io.IOException, com.fasterxml.jackson.core.JsonProcessingException;
}

log4j-api-2.17.1.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Bundle-License: https://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-SymbolicName: org.apache.logging.log4j.api

Log4jSigningUserName: mattsicker@apache.org

Built-By: matt

Bnd-LastModified: 1640647808261

Implementation-Vendor-Id: org.apache.logging.log4j

Specification-Title: Apache Log4j API

Log4jReleaseManager: Matt Sicker

Bundle-DocURL: https://www.apache.org/

Import-Package: org.apache.logging.log4j,org.apache.logging.log4j.inte

 rnal,org.apache.logging.log4j.message,org.apache.logging.log4j.simple

 ,org.apache.logging.log4j.spi,org.apache.logging.log4j.status,org.apa

 che.logging.log4j.util,org.osgi.framework;version="[1.6,2)",org.osgi.

 framework.wiring;version="[1.0,2)",sun.reflect;resolution:=optional

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

Export-Package: org.apache.logging.log4j;uses:="org.apache.logging.log

 4j.message,org.apache.logging.log4j.spi,org.apache.logging.log4j.util

 ";version="2.17.1",org.apache.logging.log4j.internal;uses:="org.apach

 e.logging.log4j,org.apache.logging.log4j.message,org.apache.logging.l

 og4j.util";version="2.17.1",org.apache.logging.log4j.message;uses:="o

 rg.apache.logging.log4j.util";version="2.17.1",org.apache.logging.log

 4j.simple;uses:="org.apache.logging.log4j,org.apache.logging.log4j.me

 ssage,org.apache.logging.log4j.spi,org.apache.logging.log4j.util";ver

 sion="2.17.1",org.apache.logging.log4j.spi;uses:="org.apache.logging.

 log4j,org.apache.logging.log4j.internal,org.apache.logging.log4j.mess

 age,org.apache.logging.log4j.util";version="2.17.1",org.apache.loggin

 g.log4j.status;uses:="org.apache.logging.log4j,org.apache.logging.log

 4j.message,org.apache.logging.log4j.spi";version="2.17.1",org.apache.

 logging.log4j.util;uses:="org.apache.logging.log4j.message,org.apache

 .logging.log4j.spi,org.osgi.framework";version="2.17.1"

Bundle-Name: Apache Log4j API

Log4jReleaseVersionJava6: 2.3.1

Multi-Release: true

Bundle-Activator: org.apache.logging.log4j.util.Activator

Log4jReleaseVersionJava7: 2.12.3

Log4jReleaseVersion: 2.17.1

Implementation-Title: Apache Log4j API

Bundle-Description: The Apache Log4j API

Implementation-Version: 2.17.1

Specification-Vendor: The Apache Software Foundation

Bundle-ManifestVersion: 2

Bundle-Vendor: The Apache Software Foundation

Tool: Bnd-3.5.0.201709291849

Implementation-Vendor: The Apache Software Foundation

Bundle-Version: 2.17.1

X-Compile-Target-JDK: 1.8

X-Compile-Source-JDK: 1.8

Created-By: Apache Maven Bundle Plugin

Build-Jdk: 1.8.0_312

Specification-Version: 2.17.1

Implementation-URL: https://logging.apache.org/log4j/2.x/log4j-api/

Log4jReleaseKey: D7C92B70FA1C814D

Log4j-charsets.properties

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.

Mapping based on https://msdn.microsoft.com/en-us/en-en/library/windows/desktop/dd317756(v=vs.85).aspx
Reference for supported Java encodings: https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
cp65001 = UTF-8
cp20127 = US-ASCII
cp54936 = gb18030
cp28592 = iso-8859-2
cp28593 = iso-8859-3
cp28594 = iso-8859-4
cp28595 = iso-8859-5
cp28596 = iso-8859-6
cp28597 = iso-8859-7
cp28598 = iso-8859-8
cp28599 = iso-8859-9
cp28603 = iso-8859-13
cp28605 = iso-8859-15
cp51949 = euc-kr
cp20866 = koi8-r
cp21866 = koi8-u
cp10000 = x-MacRoman
cp10006 = x-MacGreek
cp10007 = x-MacCyrillic
cp10029 = x-MacCentralEurope
cp10081 = x-MacTurkish
cp57002 = x-ISCII91
cp57003 = x-ISCII91
cp57011 = x-ISCII91
cp57010 = x-ISCII91
cp57007 = x-ISCII91
cp57004 = x-ISCII91
cp57005 = x-ISCII91
cp57008 = x-ISCII91
cp57009 = x-ISCII91
cp708 = ISO-8859-6

org/apache/logging/log4j/util/PropertiesUtil$TimeUnit.class

package org.apache.logging.log4j.util;
final synchronized enum PropertiesUtil$TimeUnit {
 public static final PropertiesUtil$TimeUnit NANOS;
 public static final PropertiesUtil$TimeUnit MICROS;
 public static final PropertiesUtil$TimeUnit MILLIS;
 public static final PropertiesUtil$TimeUnit SECONDS;
 public static final PropertiesUtil$TimeUnit MINUTES;
 public static final PropertiesUtil$TimeUnit HOURS;
 public static final PropertiesUtil$TimeUnit DAYS;
 private final String[] descriptions;
 private final java.time.temporal.ChronoUnit timeUnit;
 public static PropertiesUtil$TimeUnit[] values();
 public static PropertiesUtil$TimeUnit valueOf(String);
 private void PropertiesUtil$TimeUnit(String, int, String, java.time.temporal.ChronoUnit);
 java.time.temporal.ChronoUnit getTimeUnit();
 static java.time.Duration getDuration(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/SortedArrayStringMap.class

package org.apache.logging.log4j.util;
public synchronized class SortedArrayStringMap implements IndexedStringMap {
 private static final int DEFAULT_INITIAL_CAPACITY = 4;
 private static final long serialVersionUID = -5748905872274478116;
 private static final int HASHVAL = 31;
 private static final TriConsumer PUT_ALL;
 private static final String[] EMPTY;
 private static final String FROZEN = Frozen collection cannot be modified;
 private transient String[] keys;
 private transient Object[] values;
 private transient int size;
 private static final reflect.Method setObjectInputFilter;
 private static final reflect.Method getObjectInputFilter;
 private static final reflect.Method newObjectInputFilter;
 private int threshold;
 private boolean immutable;
 private transient boolean iterating;
 public void SortedArrayStringMap();
 public void SortedArrayStringMap(int);
 public void SortedArrayStringMap(ReadOnlyStringMap);
 public void SortedArrayStringMap(java.util.Map);
 private void assertNotFrozen();
 private void assertNoConcurrentModification();
 public void clear();
 public boolean containsKey(String);
 public java.util.Map toMap();
 public void freeze();
 public boolean isFrozen();
 public Object getValue(String);
 public boolean isEmpty();
 public int indexOfKey(String);
 private int nullKeyIndex();
 public void putValue(String, Object);
 private void insertAt(int, String, Object);
 public void putAll(ReadOnlyStringMap);
 private void initFrom0(SortedArrayStringMap);
 private void merge(SortedArrayStringMap);
 private void ensureCapacity();
 private void resize(int);
 private void inflateTable(int);
 public void remove(String);
 public String getKeyAt(int);
 public Object getValueAt(int);
 public int size();
 public void forEach(BiConsumer);
 public void forEach(TriConsumer, Object);
 public boolean equals(Object);
 public int hashCode();
 private static int hashCode(Object[], int);
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private static byte[] marshall(Object) throws java.io.IOException;
 private static Object unmarshall(byte[], java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private static int ceilingNextPowerOfTwo(int);
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 private void handleSerializationException(Throwable, int, String);
 static void <clinit>();
}

org/apache/logging/log4j/util/Unbox$1.class

package org.apache.logging.log4j.util;
synchronized class Unbox$1 {
}

org/apache/logging/log4j/LogBuilder$1.class

package org.apache.logging.log4j;
final synchronized class LogBuilder$1 implements LogBuilder {
 void LogBuilder$1();
}

org/apache/logging/log4j/internal/LogManagerStatus.class

package org.apache.logging.log4j.internal;
public synchronized class LogManagerStatus {
 private static boolean initialized;
 public void LogManagerStatus();
 public static void setInitialized(boolean);
 public static boolean isInitialized();
 static void <clinit>();
}

org/apache/logging/log4j/message/StructuredDataMessage.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataMessage extends MapMessage {
 private static final long serialVersionUID = 1703221292892071920;
 private static final int MAX_LENGTH = 32;
 private static final int HASHVAL = 31;
 private StructuredDataId id;
 private String message;
 private String type;
 private final int maxLength;
 public void StructuredDataMessage(String, String, String);
 public void StructuredDataMessage(String, String, String, int);
 public void StructuredDataMessage(String, String, String, java.util.Map);
 public void StructuredDataMessage(String, String, String, java.util.Map, int);
 public void StructuredDataMessage(StructuredDataId, String, String);
 public void StructuredDataMessage(StructuredDataId, String, String, int);
 public void StructuredDataMessage(StructuredDataId, String, String, java.util.Map);
 public void StructuredDataMessage(StructuredDataId, String, String, java.util.Map, int);
 private void StructuredDataMessage(StructuredDataMessage, java.util.Map);
 protected void StructuredDataMessage();
 public String[] getFormats();
 public StructuredDataId getId();
 protected void setId(String);
 protected void setId(StructuredDataId);
 public String getType();
 protected void setType(String);
 public void formatTo(StringBuilder);
 public void formatTo(String[], StringBuilder);
 public String getFormat();
 protected void setMessageFormat(String);
 public String asString();
 public String asString(String);
 public final String asString(StructuredDataMessage$Format, StructuredDataId);
 public final void asString(StructuredDataMessage$Format, StructuredDataId, StringBuilder);
 private void asXml(StructuredDataId, StringBuilder);
 public String getFormattedMessage();
 public String getFormattedMessage(String[]);
 private StructuredDataMessage$Format getFormat(String[]);
 public String toString();
 public StructuredDataMessage newInstance(java.util.Map);
 public boolean equals(Object);
 public int hashCode();
 protected void validate(String, boolean);
 protected void validate(String, byte);
 protected void validate(String, char);
 protected void validate(String, double);
 protected void validate(String, float);
 protected void validate(String, int);
 protected void validate(String, long);
 protected void validate(String, Object);
 protected void validate(String, short);
 protected void validate(String, String);
 protected void validateKey(String);
}

org/apache/logging/log4j/message/MessageFormatMessage.class

package org.apache.logging.log4j.message;
public synchronized class MessageFormatMessage implements Message {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long serialVersionUID = 1;
 private static final int HASHVAL = 31;
 private String messagePattern;
 private transient Object[] parameters;
 private String[] serializedParameters;
 private transient String formattedMessage;
 private transient Throwable throwable;
 private final java.util.Locale locale;
 public transient void MessageFormatMessage(java.util.Locale, String, Object[]);
 public transient void MessageFormatMessage(String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 protected transient String formatMessage(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException;
 public Throwable getThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterizedMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ParameterizedMessageFactory extends AbstractMessageFactory {
 public static final ParameterizedMessageFactory INSTANCE;
 private static final long serialVersionUID = -8970940216592525651;
 public void ParameterizedMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/ReusableSimpleMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableSimpleMessage implements ReusableMessage, CharSequence, ParameterVisitable, Clearable {
 private static final long serialVersionUID = -9199974506498249809;
 private CharSequence charSequence;
 public void ReusableSimpleMessage();
 public void set(String);
 public void set(CharSequence);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public void formatTo(StringBuilder);
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 public void clear();
}

org/apache/logging/log4j/message/ParameterConsumer.class

package org.apache.logging.log4j.message;
public abstract interface ParameterConsumer {
 public abstract void accept(Object, int, Object);
}

org/apache/logging/log4j/message/ExitMessage.class

package org.apache.logging.log4j.message;
public abstract interface ExitMessage extends FlowMessage {
}

org/apache/logging/log4j/message/ThreadInformation.class

package org.apache.logging.log4j.message;
public abstract interface ThreadInformation {
 public abstract void printThreadInfo(StringBuilder);
 public abstract void printStack(StringBuilder, StackTraceElement[]);
}

org/apache/logging/log4j/message/ReusableObjectMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableObjectMessage implements ReusableMessage, ParameterVisitable, Clearable {
 private static final long serialVersionUID = 6922476812535519960;
 private transient Object obj;
 public void ReusableObjectMessage();
 public void set(Object);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object getParameter();
 public Object[] getParameters();
 public String toString();
 public Throwable getThrowable();
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 public void clear();
}

org/apache/logging/log4j/message/Clearable.class

package org.apache.logging.log4j.message;
abstract interface Clearable {
 public abstract void clear();
}

org/apache/logging/log4j/message/MessageFormatMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class MessageFormatMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 3584821740584192453;
 public void MessageFormatMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/ThreadDumpMessage.class

package org.apache.logging.log4j.message;
public synchronized class ThreadDumpMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = -1103400781608841088;
 private static ThreadDumpMessage$ThreadInfoFactory FACTORY;
 private volatile java.util.Map threads;
 private final String title;
 private String formattedMessage;
 public void ThreadDumpMessage(String);
 private void ThreadDumpMessage(String, String);
 private static ThreadDumpMessage$ThreadInfoFactory getFactory();
 private static ThreadDumpMessage$ThreadInfoFactory initFactory(ClassLoader);
 public String toString();
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object[] getParameters();
 protected Object writeReplace();
 private void readObject(java.io.ObjectInputStream) throws java.io.InvalidObjectException;
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/LocalizedMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class LocalizedMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = -1996295808703146741;
 private final transient java.util.ResourceBundle resourceBundle;
 private final String baseName;
 public void LocalizedMessageFactory(java.util.ResourceBundle);
 public void LocalizedMessageFactory(String);
 public String getBaseName();
 public java.util.ResourceBundle getResourceBundle();
 public Message newMessage(String);
 public transient Message newMessage(String, Object[]);
}

org/apache/logging/log4j/status/StatusLogger.class

package org.apache.logging.log4j.status;
public final synchronized class StatusLogger extends org.apache.logging.log4j.spi.AbstractLogger {
 public static final String MAX_STATUS_ENTRIES = log4j2.status.entries;
 public static final String DEFAULT_STATUS_LISTENER_LEVEL = log4j2.StatusLogger.level;
 public static final String STATUS_DATE_FORMAT = log4j2.StatusLogger.DateFormat;
 private static final long serialVersionUID = 2;
 private static final String NOT_AVAIL = ?;
 private static final org.apache.logging.log4j.util.PropertiesUtil PROPS;
 private static final int MAX_ENTRIES;
 private static final String DEFAULT_STATUS_LEVEL;
 private static final StatusLogger STATUS_LOGGER;
 private final org.apache.logging.log4j.simple.SimpleLogger logger;
 private final java.util.Collection listeners;
 private final java.util.concurrent.locks.ReadWriteLock listenersLock;
 private final java.util.Queue messages;
 private final java.util.concurrent.locks.Lock msgLock;
 private int listenersLevel;
 private void StatusLogger(String, org.apache.logging.log4j.message.MessageFactory);
 private boolean isDebugPropertyEnabled();
 public static StatusLogger getLogger();
 public void setLevel(org.apache.logging.log4j.Level);
 public void registerListener(StatusListener);
 public void removeListener(StatusListener);
 public void updateListenerLevel(org.apache.logging.log4j.Level);
 public Iterable getListeners();
 public void reset();
 private static void closeSilently(java.io.Closeable);
 public java.util.List getStatusData();
 public void clear();
 public org.apache.logging.log4j.Level getLevel();
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement getStackTraceElement(String, StackTraceElement[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker);
 static void <clinit>();
}

org/apache/logging/log4j/spi/LocationAwareLogger.class

package org.apache.logging.log4j.spi;
public abstract interface LocationAwareLogger {
 public abstract void logMessage(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/CloseableThreadContext.class

package org.apache.logging.log4j;
public synchronized class CloseableThreadContext {
 private void CloseableThreadContext();
 public static CloseableThreadContext$Instance push(String);
 public static transient CloseableThreadContext$Instance push(String, Object[]);
 public static CloseableThreadContext$Instance put(String, String);
 public static CloseableThreadContext$Instance pushAll(java.util.List);
 public static CloseableThreadContext$Instance putAll(java.util.Map);
}

org/apache/logging/log4j/util/LoaderUtil$ThreadContextClassLoaderGetter.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$ThreadContextClassLoaderGetter implements java.security.PrivilegedAction {
 private void LoaderUtil$ThreadContextClassLoaderGetter();
 public ClassLoader run();
}

org/apache/logging/log4j/util/PerformanceSensitive.class

package org.apache.logging.log4j.util;
public abstract interface PerformanceSensitive extends annotation.Annotation {
 public abstract String[] value();
}

org/apache/logging/log4j/util/StackLocatorUtil.class

package org.apache.logging.log4j.util;
public final synchronized class StackLocatorUtil {
 private static StackLocator stackLocator;
 private static volatile boolean errorLogged;
 private void StackLocatorUtil();
 public static Class getCallerClass(int);
 public static StackTraceElement getStackTraceElement(int);
 public static Class getCallerClass(String);
 public static Class getCallerClass(String, String);
 public static Class getCallerClass(Class, java.util.function.Predicate);
 public static Class getCallerClass(Class);
 public static java.util.Stack getCurrentStackTrace();
 public static StackTraceElement calcLocation(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/LoaderUtil.class

package org.apache.logging.log4j.util;
public final synchronized class LoaderUtil {
 public static final String IGNORE_TCCL_PROPERTY = log4j.ignoreTCL;
 private static final SecurityManager SECURITY_MANAGER;
 private static Boolean ignoreTCCL;
 private static final boolean GET_CLASS_LOADER_DISABLED;
 private static final java.security.PrivilegedAction TCCL_GETTER;
 private void LoaderUtil();
 public static ClassLoader getThreadContextClassLoader();
 public static ClassLoader[] getClassLoaders();
 private static void accumulateClassLoaders(ClassLoader, java.util.Collection);
 public static boolean isClassAvailable(String);
 public static Class loadClass(String) throws ClassNotFoundException;
 public static Object newInstanceOf(Class) throws InstantiationException, IllegalAccessException, reflect.InvocationTargetException;
 public static Object newInstanceOf(String) throws ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, reflect.InvocationTargetException;
 public static Object newCheckedInstanceOf(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 public static Object newCheckedInstanceOfProperty(String, Class) throws ClassNotFoundException, NoSuchMethodException, reflect.InvocationTargetException, InstantiationException, IllegalAccessException;
 private static boolean isIgnoreTccl();
 public static java.util.Collection findResources(String);
 static java.util.Collection findUrlResources(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/MessageSupplier.class

package org.apache.logging.log4j.util;
public abstract interface MessageSupplier {
 public abstract org.apache.logging.log4j.message.Message get();
}

org/apache/logging/log4j/util/Timer$2.class

package org.apache.logging.log4j.util;
synchronized class Timer$2 {
 static void <clinit>();
}

org/apache/logging/log4j/util/LambdaUtil.class

package org.apache.logging.log4j.util;
public final synchronized class LambdaUtil {
 private void LambdaUtil();
 public static transient Object[] getAll(Supplier[]);
 public static Object get(Supplier);
 public static org.apache.logging.log4j.message.Message get(MessageSupplier);
 public static org.apache.logging.log4j.message.Message getMessage(Supplier, org.apache.logging.log4j.message.MessageFactory);
}

org/apache/logging/log4j/internal/DefaultLogBuilder.class

package org.apache.logging.log4j.internal;
public synchronized class DefaultLogBuilder implements org.apache.logging.log4j.LogBuilder {
 private static org.apache.logging.log4j.message.Message EMPTY_MESSAGE;
 private static final String FQCN;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final org.apache.logging.log4j.Logger logger;
 private org.apache.logging.log4j.Level level;
 private org.apache.logging.log4j.Marker marker;
 private Throwable throwable;
 private StackTraceElement location;
 private volatile boolean inUse;
 private long threadId;
 public void DefaultLogBuilder(org.apache.logging.log4j.Logger, org.apache.logging.log4j.Level);
 public void DefaultLogBuilder(org.apache.logging.log4j.Logger);
 public org.apache.logging.log4j.LogBuilder reset(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.LogBuilder withMarker(org.apache.logging.log4j.Marker);
 public org.apache.logging.log4j.LogBuilder withThrowable(Throwable);
 public org.apache.logging.log4j.LogBuilder withLocation();
 public org.apache.logging.log4j.LogBuilder withLocation(StackTraceElement);
 public boolean isInUse();
 public void log(org.apache.logging.log4j.message.Message);
 public void log(CharSequence);
 public void log(String);
 public transient void log(String, Object[]);
 public transient void log(String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.util.Supplier);
 public void log(Object);
 public void log(String, Object);
 public void log(String, Object, Object);
 public void log(String, Object, Object, Object);
 public void log(String, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log();
 private void logMessage(org.apache.logging.log4j.message.Message);
 private boolean isValid();
 static void <clinit>();
}

org/apache/logging/log4j/message/ReusableParameterizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class ReusableParameterizedMessage implements ReusableMessage, ParameterVisitable, Clearable {
 private static final int MIN_BUILDER_SIZE = 512;
 private static final int MAX_PARMS = 10;
 private static final long serialVersionUID = 7800075879295123856;
 private transient ThreadLocal buffer;
 private String messagePattern;
 private int argCount;
 private int usedCount;
 private final int[] indices;
 private transient Object[] varargs;
 private transient Object[] params;
 private transient Throwable throwable;
 transient boolean reserved;
 public void ReusableParameterizedMessage();
 private Object[] getTrimmedParams();
 private Object[] getParams();
 public Object[] swapParameters(Object[]);
 public short getParameterCount();
 public void forEachParameter(ParameterConsumer, Object);
 public Message memento();
 private void init(String, int, Object[]);
 private static int count(String, int[]);
 private void initThrowable(Object[], int, int);
 transient ReusableParameterizedMessage set(String, Object[]);
 ReusableParameterizedMessage set(String, Object);
 ReusableParameterizedMessage set(String, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 ReusableParameterizedMessage set(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public String getFormattedMessage();
 private StringBuilder getBuffer();
 public void formatTo(StringBuilder);
 ReusableParameterizedMessage reserve();
 public String toString();
 public void clear();
}

org/apache/logging/log4j/message/ParameterVisitable.class

package org.apache.logging.log4j.message;
public abstract interface ParameterVisitable {
 public abstract void forEachParameter(ParameterConsumer, Object);
}

org/apache/logging/log4j/message/SimpleMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class SimpleMessageFactory extends AbstractMessageFactory {
 public static final SimpleMessageFactory INSTANCE;
 private static final long serialVersionUID = 4418995198790088516;
 public void SimpleMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/FlowMessage.class

package org.apache.logging.log4j.message;
public abstract interface FlowMessage extends Message {
 public abstract String getText();
 public abstract Message getMessage();
}

org/apache/logging/log4j/message/MapMessage$MapFormat.class

package org.apache.logging.log4j.message;
public final synchronized enum MapMessage$MapFormat {
 public static final MapMessage$MapFormat XML;
 public static final MapMessage$MapFormat JSON;
 public static final MapMessage$MapFormat JAVA;
 public static final MapMessage$MapFormat JAVA_UNQUOTED;
 public static MapMessage$MapFormat[] values();
 public static MapMessage$MapFormat valueOf(String);
 private void MapMessage$MapFormat(String, int);
 public static MapMessage$MapFormat lookupIgnoreCase(String);
 public static String[] names();
 static void <clinit>();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class DefaultFlowMessageFactory implements FlowMessageFactory, java.io.Serializable {
 private static final String EXIT_DEFAULT_PREFIX = Exit;
 private static final String ENTRY_DEFAULT_PREFIX = Enter;
 private static final long serialVersionUID = 8578655591131397576;
 private final String entryText;
 private final String exitText;
 public void DefaultFlowMessageFactory();
 public void DefaultFlowMessageFactory(String, String);
 public String getEntryText();
 public String getExitText();
 public EntryMessage newEntryMessage(Message);
 private Message makeImmutable(Message);
 public ExitMessage newExitMessage(EntryMessage);
 public ExitMessage newExitMessage(Object, EntryMessage);
 public ExitMessage newExitMessage(Object, Message);
}

org/apache/logging/log4j/message/MapMessage.class

package org.apache.logging.log4j.message;
public synchronized class MapMessage implements org.apache.logging.log4j.util.MultiFormatStringBuilderFormattable {
 private static final long serialVersionUID = -5031471831131487120;
 private final org.apache.logging.log4j.util.IndexedStringMap data;
 public void MapMessage();
 public void MapMessage(int);
 public void MapMessage(java.util.Map);
 public String[] getFormats();
 public Object[] getParameters();
 public String getFormat();
 public java.util.Map getData();
 public org.apache.logging.log4j.util.IndexedReadOnlyStringMap getIndexedReadOnlyStringMap();
 public void clear();
 public boolean containsKey(String);
 public void put(String, String);
 public void putAll(java.util.Map);
 public String get(String);
 public String remove(String);
 public String asString();
 public String asString(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 private StringBuilder format(MapMessage$MapFormat, StringBuilder);
 public void asXml(StringBuilder);
 public String getFormattedMessage();
 public String getFormattedMessage(String[]);
 private MapMessage$MapFormat getFormat(String[]);
 protected void appendMap(StringBuilder);
 protected void asJson(StringBuilder);
 protected void asJavaUnquoted(StringBuilder);
 protected void asJava(StringBuilder);
 private void asJava(StringBuilder, boolean);
 public MapMessage newInstance(java.util.Map);
 public String toString();
 public void formatTo(StringBuilder);
 public void formatTo(String[], StringBuilder);
 public boolean equals(Object);
 public int hashCode();
 public Throwable getThrowable();
 protected void validate(String, boolean);
 protected void validate(String, byte);
 protected void validate(String, char);
 protected void validate(String, double);
 protected void validate(String, float);
 protected void validate(String, int);
 protected void validate(String, long);
 protected void validate(String, Object);
 protected void validate(String, short);
 protected void validate(String, String);
 protected String toKey(String);
 public MapMessage with(String, boolean);
 public MapMessage with(String, byte);
 public MapMessage with(String, char);
 public MapMessage with(String, double);
 public MapMessage with(String, float);
 public MapMessage with(String, int);
 public MapMessage with(String, long);
 public MapMessage with(String, Object);
 public MapMessage with(String, short);
 public MapMessage with(String, String);
}

org/apache/logging/log4j/message/ReusableMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ReusableMessageFactory implements MessageFactory2, java.io.Serializable {
 public static final ReusableMessageFactory INSTANCE;
 private static final long serialVersionUID = -8970940216592525651;
 private static ThreadLocal threadLocalParameterized;
 private static ThreadLocal threadLocalSimpleMessage;
 private static ThreadLocal threadLocalObjectMessage;
 public void ReusableMessageFactory();
 private static ReusableParameterizedMessage getParameterized();
 private static ReusableSimpleMessage getSimple();
 private static ReusableObjectMessage getObject();
 public static void release(Message);
 public Message newMessage(CharSequence);
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String);
 public Message newMessage(Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$AbstractFlowMessage.class

package org.apache.logging.log4j.message;
synchronized class DefaultFlowMessageFactory$AbstractFlowMessage implements FlowMessage {
 private static final long serialVersionUID = 1;
 private final Message message;
 private final String text;
 void DefaultFlowMessageFactory$AbstractFlowMessage(String, Message);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public Message getMessage();
 public String getText();
}

org/apache/logging/log4j/status/StatusData.class

package org.apache.logging.log4j.status;
public synchronized class StatusData implements java.io.Serializable {
 private static final long serialVersionUID = -4341916115118014017;
 private final long timestamp;
 private final StackTraceElement caller;
 private final org.apache.logging.log4j.Level level;
 private final org.apache.logging.log4j.message.Message msg;
 private String threadName;
 private final Throwable throwable;
 public void StatusData(StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable, String);
 public long getTimestamp();
 public StackTraceElement getStackTraceElement();
 public org.apache.logging.log4j.Level getLevel();
 public org.apache.logging.log4j.message.Message getMessage();
 public String getThreadName();
 public Throwable getThrowable();
 public String getFormattedStatus();
}

org/apache/logging/log4j/CloseableThreadContext$Instance.class

package org.apache.logging.log4j;
public synchronized class CloseableThreadContext$Instance implements AutoCloseable {
 private int pushCount;
 private final java.util.Map originalValues;
 private void CloseableThreadContext$Instance();
 public CloseableThreadContext$Instance push(String);
 public CloseableThreadContext$Instance push(String, Object[]);
 public CloseableThreadContext$Instance put(String, String);
 public CloseableThreadContext$Instance putAll(java.util.Map);
 public CloseableThreadContext$Instance pushAll(java.util.List);
 public void close();
 private void closeMap();
 private void closeStack();
}

org/apache/logging/log4j/spi/StandardLevel.class

package org.apache.logging.log4j.spi;
public final synchronized enum StandardLevel {
 public static final StandardLevel OFF;
 public static final StandardLevel FATAL;
 public static final StandardLevel ERROR;
 public static final StandardLevel WARN;
 public static final StandardLevel INFO;
 public static final StandardLevel DEBUG;
 public static final StandardLevel TRACE;
 public static final StandardLevel ALL;
 private static final java.util.EnumSet LEVELSET;
 private final int intLevel;
 public static StandardLevel[] values();
 public static StandardLevel valueOf(String);
 private void StandardLevel(String, int, int);
 public int intLevel();
 public static StandardLevel getStandardLevel(int);
 static void <clinit>();
}

org/apache/logging/log4j/spi/MutableThreadContextStack.class

package org.apache.logging.log4j.spi;
public synchronized class MutableThreadContextStack implements ThreadContextStack, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = 50505011;
 private final java.util.List list;
 private boolean frozen;
 public void MutableThreadContextStack();
 public void MutableThreadContextStack(java.util.List);
 private void MutableThreadContextStack(MutableThreadContextStack);
 private void checkInvariants();
 public String pop();
 public String peek();
 public void push(String);
 public int getDepth();
 public java.util.List asList();
 public void trim(int);
 public ThreadContextStack copy();
 public void clear();
 public int size();
 public boolean isEmpty();
 public boolean contains(Object);
 public java.util.Iterator iterator();
 public Object[] toArray();
 public Object[] toArray(Object[]);
 public boolean add(String);
 public boolean remove(Object);
 public boolean containsAll(java.util.Collection);
 public boolean addAll(java.util.Collection);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public String toString();
 public void formatTo(StringBuilder);
 public int hashCode();
 public boolean equals(Object);
 public org.apache.logging.log4j.ThreadContext$ContextStack getImmutableStackOrNull();
 public void freeze();
 public boolean isFrozen();
}

org/apache/logging/log4j/spi/Provider.class

package org.apache.logging.log4j.spi;
public synchronized class Provider {
 public static final String FACTORY_PRIORITY = FactoryPriority;
 public static final String THREAD_CONTEXT_MAP = ThreadContextMap;
 public static final String LOGGER_CONTEXT_FACTORY = LoggerContextFactory;
 private static final Integer DEFAULT_PRIORITY;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private final Integer priority;
 private final String className;
 private final Class loggerContextFactoryClass;
 private final String threadContextMap;
 private final Class threadContextMapClass;
 private final String versions;
 private final java.net.URL url;
 private final ref.WeakReference classLoader;
 public void Provider(java.util.Properties, java.net.URL, ClassLoader);
 public void Provider(Integer, String, Class);
 public void Provider(Integer, String, Class, Class);
 public String getVersions();
 public Integer getPriority();
 public String getClassName();
 public Class loadLoggerContextFactory();
 public String getThreadContextMap();
 public Class loadThreadContextMap();
 public java.net.URL getUrl();
 public String toString();
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/spi/LoggerRegistry$WeakMapFactory.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry$WeakMapFactory implements LoggerRegistry$MapFactory {
 public void LoggerRegistry$WeakMapFactory();
 public java.util.Map createInnerMap();
 public java.util.Map createOuterMap();
 public void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/ThreadContextMap2.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextMap2 extends ThreadContextMap {
 public abstract void putAll(java.util.Map);
 public abstract org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
}

org/apache/logging/log4j/spi/Terminable.class

package org.apache.logging.log4j.spi;
public abstract interface Terminable {
 public abstract void terminate();
}

org/apache/logging/log4j/spi/LoggerContext.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContext {
 public abstract Object getExternalContext();
 public Object getObject(String);
 public Object putObject(String, Object);
 public Object putObjectIfAbsent(String, Object);
 public Object removeObject(String);
 public boolean removeObject(String, Object);
 public abstract ExtendedLogger getLogger(String);
 public ExtendedLogger getLogger(Class);
 public abstract ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public ExtendedLogger getLogger(Class, org.apache.logging.log4j.message.MessageFactory);
 public abstract boolean hasLogger(String);
 public abstract boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public abstract boolean hasLogger(String, Class);
}

org/apache/logging/log4j/spi/GarbageFreeSortedArrayThreadContextMap$1.class

package org.apache.logging.log4j.spi;
synchronized class GarbageFreeSortedArrayThreadContextMap$1 extends InheritableThreadLocal {
 void GarbageFreeSortedArrayThreadContextMap$1(GarbageFreeSortedArrayThreadContextMap);
 protected org.apache.logging.log4j.util.StringMap childValue(org.apache.logging.log4j.util.StringMap);
}

org/apache/logging/log4j/spi/ThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextMap {
 public abstract void clear();
 public abstract boolean containsKey(String);
 public abstract String get(String);
 public abstract java.util.Map getCopy();
 public abstract java.util.Map getImmutableMapOrNull();
 public abstract boolean isEmpty();
 public abstract void put(String, String);
 public abstract void remove(String);
}

org/apache/logging/log4j/spi/ThreadContextMapFactory.class

package org.apache.logging.log4j.spi;
public final synchronized class ThreadContextMapFactory {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final String THREAD_CONTEXT_KEY = log4j2.threadContextMap;
 private static final String GC_FREE_THREAD_CONTEXT_KEY = log4j2.garbagefree.threadContextMap;
 private static boolean GcFreeThreadContextKey;
 private static String ThreadContextMapName;
 public static void init();
 private static void initPrivate();
 private void ThreadContextMapFactory();
 public static ThreadContextMap createThreadContextMap();
 private static ThreadContextMap createDefaultThreadContextMap();
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/Base64Util.class

package org.apache.logging.log4j.util;
public final synchronized class Base64Util {
 private static final java.util.Base64$Encoder encoder;
 private void Base64Util();
 public static String encode(String);
 static void <clinit>();
}

META-INF/NOTICE

Apache Log4j API
Copyright 1999-1969 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil.class

package org.apache.logging.log4j.util;
final synchronized class PrivateSecurityManagerStackTraceUtil {
 private static final PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager SECURITY_MANAGER;
 private void PrivateSecurityManagerStackTraceUtil();
 static boolean isEnabled();
 static java.util.Stack getCurrentStackTrace();
 static void <clinit>();
}

org/apache/logging/log4j/util/Base64Util.class

package org.apache.logging.log4j.util;
public final synchronized class Base64Util {
 private static reflect.Method encodeMethod;
 private static Object encoder;
 private void Base64Util();
 public static String encode(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/LoaderUtil$UrlResource.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$UrlResource {
 private final ClassLoader classLoader;
 private final java.net.URL url;
 void LoaderUtil$UrlResource(ClassLoader, java.net.URL);
 public ClassLoader getClassLoader();
 public java.net.URL getUrl();
 public boolean equals(Object);
 public int hashCode();
}

org/apache/logging/log4j/util/Unbox.class

package org.apache.logging.log4j.util;
public synchronized class Unbox {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final int BITS_PER_INT = 32;
 private static final int RINGBUFFER_MIN_SIZE = 32;
 private static final int RINGBUFFER_SIZE;
 private static final int MASK;
 private static ThreadLocal threadLocalState;
 private static Unbox$WebSafeState webSafeState;
 private void Unbox();
 private static int calculateRingBufferSize(String);
 private static int ceilingNextPowerOfTwo(int);
 public static StringBuilder box(float);
 public static StringBuilder box(double);
 public static StringBuilder box(short);
 public static StringBuilder box(int);
 public static StringBuilder box(char);
 public static StringBuilder box(long);
 public static StringBuilder box(byte);
 public static StringBuilder box(boolean);
 private static Unbox$State getState();
 private static StringBuilder getSB();
 static int getRingbufferSize();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertiesUtil$Environment.class

package org.apache.logging.log4j.util;
synchronized class PropertiesUtil$Environment {
 private final java.util.Set sources;
 private final java.util.Map literal;
 private final java.util.Map normalized;
 private final java.util.Map tokenized;
 private void PropertiesUtil$Environment(PropertySource);
 private synchronized void reload();
 private static boolean hasSystemProperty(String);
 private String get(String);
 private boolean containsKey(String);
}

org/apache/logging/log4j/util/StringMap.class

package org.apache.logging.log4j.util;
public abstract interface StringMap extends ReadOnlyStringMap {
 public abstract void clear();
 public abstract boolean equals(Object);
 public abstract void freeze();
 public abstract int hashCode();
 public abstract boolean isFrozen();
 public abstract void putAll(ReadOnlyStringMap);
 public abstract void putValue(String, Object);
 public abstract void remove(String);
}

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil$1.class

package org.apache.logging.log4j.util;
synchronized class PrivateSecurityManagerStackTraceUtil$1 {
}

org/apache/logging/log4j/util/Chars.class

package org.apache.logging.log4j.util;
public final synchronized class Chars {
 public static final char CR = 13;
 public static final char DQUOTE = 34;
 public static final char EQ = 61;
 public static final char LF = 10;
 public static final char NUL = 0;
 public static final char QUOTE = 39;
 public static final char SPACE = 32;
 public static final char TAB = 9;
 public static char getUpperCaseHex(int);
 public static char getLowerCaseHex(int);
 private static char getNumericalDigit(int);
 private static char getUpperCaseAlphaDigit(int);
 private static char getLowerCaseAlphaDigit(int);
 private void Chars();
}

org/apache/logging/log4j/util/EnglishEnums.class

package org.apache.logging.log4j.util;
public final synchronized class EnglishEnums {
 private void EnglishEnums();
 public static Enum valueOf(Class, String);
 public static Enum valueOf(Class, String, Enum);
}

org/apache/logging/log4j/util/StringBuilders.class

package org.apache.logging.log4j.util;
public final synchronized class StringBuilders {
 private void StringBuilders();
 public static StringBuilder appendDqValue(StringBuilder, Object);
 public static StringBuilder appendKeyDqValue(StringBuilder, java.util.Map$Entry);
 public static StringBuilder appendKeyDqValue(StringBuilder, String, Object);
 public static void appendValue(StringBuilder, Object);
 public static boolean appendSpecificTypes(StringBuilder, Object);
 public static boolean equals(CharSequence, int, int, CharSequence, int, int);
 public static boolean equalsIgnoreCase(CharSequence, int, int, CharSequence, int, int);
 public static void trimToMaxSize(StringBuilder, int);
 public static void escapeJson(StringBuilder, int);
 private static int escapeAndDecrement(StringBuilder, int, char);
 public static void escapeXml(StringBuilder, int);
}

org/apache/logging/log4j/util/Supplier.class

package org.apache.logging.log4j.util;
public abstract interface Supplier {
 public abstract Object get();
}

org/apache/logging/log4j/MarkerManager.class

package org.apache.logging.log4j;
public final synchronized class MarkerManager {
 private static final java.util.concurrent.ConcurrentMap MARKERS;
 private void MarkerManager();
 public static void clear();
 public static boolean exists(String);
 public static Marker getMarker(String);
 public static Marker getMarker(String, String);
 public static Marker getMarker(String, Marker);
 private static void requireNonNull(Object, String);
 static void <clinit>();
}

org/apache/logging/log4j/ThreadContext$1.class

package org.apache.logging.log4j;
synchronized class ThreadContext$1 {
}

org/apache/logging/log4j/spi/ExtendedLogger.class

package org.apache.logging.log4j.spi;
public abstract interface ExtendedLogger extends org.apache.logging.log4j.Logger {
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public abstract transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public abstract transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public abstract transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public abstract void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
}

org/apache/logging/log4j/ThreadContext$ContextStack.class

package org.apache.logging.log4j;
public abstract interface ThreadContext$ContextStack extends java.io.Serializable, java.util.Collection {
 public abstract String pop();
 public abstract String peek();
 public abstract void push(String);
 public abstract int getDepth();
 public abstract java.util.List asList();
 public abstract void trim(int);
 public abstract ThreadContext$ContextStack copy();
 public abstract ThreadContext$ContextStack getImmutableStackOrNull();
}

org/apache/logging/log4j/CloseableThreadContext$1.class

package org.apache.logging.log4j;
synchronized class CloseableThreadContext$1 {
}

META-INF/LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

org/apache/logging/log4j/util/Strings.class

package org.apache.logging.log4j.util;
public final synchronized class Strings {
 private static final ThreadLocal tempStr;
 public static final String EMPTY = ;
 public static final String[] EMPTY_ARRAY;
 public static final String LINE_SEPARATOR;
 public static String dquote(String);
 public static boolean isBlank(String);
 public static boolean isEmpty(CharSequence);
 public static boolean isNotBlank(String);
 public static boolean isNotEmpty(CharSequence);
 public static String join(Iterable, char);
 public static String join(java.util.Iterator, char);
 public static String left(String, int);
 public static String quote(String);
 public static String trimToNull(String);
 private void Strings();
 public static String toRootUpperCase(String);
 public static String concat(String, String);
 public static String repeat(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertiesUtil$1.class

package org.apache.logging.log4j.util;
synchronized class PropertiesUtil$1 {
}

org/apache/logging/log4j/util/IndexedStringMap.class

package org.apache.logging.log4j.util;
public abstract interface IndexedStringMap extends IndexedReadOnlyStringMap, StringMap {
}

org/apache/logging/log4j/status/StatusConsoleListener.class

package org.apache.logging.log4j.status;
public synchronized class StatusConsoleListener implements StatusListener {
 private org.apache.logging.log4j.Level level;
 private String[] filters;
 private final java.io.PrintStream stream;
 public void StatusConsoleListener(org.apache.logging.log4j.Level);
 public void StatusConsoleListener(org.apache.logging.log4j.Level, java.io.PrintStream);
 public void setLevel(org.apache.logging.log4j.Level);
 public org.apache.logging.log4j.Level getStatusLevel();
 public void log(StatusData);
 public transient void setFilters(String[]);
 private boolean filtered(StatusData);
 public void close() throws java.io.IOException;
}

org/apache/logging/log4j/spi/CleanableThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface CleanableThreadContextMap extends ThreadContextMap2 {
 public abstract void removeAll(Iterable);
}

org/apache/logging/log4j/spi/AbstractLogger$LocalLogBuilder.class

package org.apache.logging.log4j.spi;
synchronized class AbstractLogger$LocalLogBuilder extends ThreadLocal {
 private AbstractLogger logger;
 void AbstractLogger$LocalLogBuilder(AbstractLogger, AbstractLogger);
 protected org.apache.logging.log4j.internal.DefaultLogBuilder initialValue();
}

org/apache/logging/log4j/spi/CopyOnWriteSortedArrayThreadContextMap.class

package org.apache.logging.log4j.spi;
synchronized class CopyOnWriteSortedArrayThreadContextMap implements ReadOnlyThreadContextMap, ObjectThreadContextMap, CopyOnWrite {
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 protected static final int DEFAULT_INITIAL_CAPACITY = 16;
 protected static final String PROPERTY_NAME_INITIAL_CAPACITY = log4j2.ThreadContext.initial.capacity;
 private static final org.apache.logging.log4j.util.StringMap EMPTY_CONTEXT_DATA;
 private static volatile int initialCapacity;
 private static volatile boolean inheritableMap;
 private final ThreadLocal localMap;
 static void init();
 public void CopyOnWriteSortedArrayThreadContextMap();
 private ThreadLocal createThreadLocalMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap(org.apache.logging.log4j.util.ReadOnlyStringMap);
 public void put(String, String);
 public void putValue(String, Object);
 public void putAll(java.util.Map);
 public void putAllValues(java.util.Map);
 public String get(String);
 public Object getValue(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public boolean containsKey(String);
 public java.util.Map getCopy();
 public org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/LogBuilder.class

package org.apache.logging.log4j;
public abstract interface LogBuilder {
 public static final LogBuilder NOOP;
 public LogBuilder withMarker(Marker);
 public LogBuilder withThrowable(Throwable);
 public LogBuilder withLocation();
 public LogBuilder withLocation(StackTraceElement);
 public void log(CharSequence);
 public void log(String);
 public transient void log(String, Object[]);
 public transient void log(String, util.Supplier[]);
 public void log(message.Message);
 public void log(util.Supplier);
 public void log(Object);
 public void log(String, Object);
 public void log(String, Object, Object);
 public void log(String, Object, Object, Object);
 public void log(String, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log();
 static void <clinit>();
}

org/apache/logging/log4j/LogManager.class

package org.apache.logging.log4j;
public synchronized class LogManager {
 public static final String FACTORY_PROPERTY_NAME = log4j2.loggerContextFactory;
 public static final String ROOT_LOGGER_NAME = ;
 private static final Logger LOGGER;
 private static final String FQCN;
 private static volatile spi.LoggerContextFactory factory;
 protected void LogManager();
 public static boolean exists(String);
 public static spi.LoggerContext getContext();
 public static spi.LoggerContext getContext(boolean);
 public static spi.LoggerContext getContext(ClassLoader, boolean);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object);
 public static spi.LoggerContext getContext(ClassLoader, boolean, java.net.URI);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object, java.net.URI);
 public static spi.LoggerContext getContext(ClassLoader, boolean, Object, java.net.URI, String);
 protected static spi.LoggerContext getContext(String, boolean);
 protected static spi.LoggerContext getContext(String, ClassLoader, boolean);
 protected static spi.LoggerContext getContext(String, ClassLoader, boolean, java.net.URI, String);
 public static void shutdown();
 public static void shutdown(boolean);
 public static void shutdown(boolean, boolean);
 public static void shutdown(spi.LoggerContext);
 public static spi.LoggerContextFactory getFactory();
 public static void setFactory(spi.LoggerContextFactory);
 public static Logger getFormatterLogger();
 public static Logger getFormatterLogger(Class);
 public static Logger getFormatterLogger(Object);
 public static Logger getFormatterLogger(String);
 private static Class callerClass(Class);
 public static Logger getLogger();
 public static Logger getLogger(Class);
 public static Logger getLogger(Class, message.MessageFactory);
 public static Logger getLogger(message.MessageFactory);
 public static Logger getLogger(Object);
 public static Logger getLogger(Object, message.MessageFactory);
 public static Logger getLogger(String);
 public static Logger getLogger(String, message.MessageFactory);
 protected static Logger getLogger(String, String);
 public static Logger getRootLogger();
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/ProcessIdUtil.class

package org.apache.logging.log4j.util;
public synchronized class ProcessIdUtil {
 public static final String DEFAULT_PROCESSID = -;
 public void ProcessIdUtil();
 public static String getProcessId();
}

META-INF/versions/9/org/apache/logging/log4j/util/StackLocator.class

package org.apache.logging.log4j.util;
public synchronized class StackLocator {
 private static final StackWalker walker;
 private static final StackWalker stackWalker;
 private static final StackLocator INSTANCE;
 public static StackLocator getInstance();
 private void StackLocator();
 public Class getCallerClass(Class, java.util.function.Predicate);
 public Class getCallerClass(String);
 public Class getCallerClass(String, String);
 public Class getCallerClass(Class);
 public Class getCallerClass(int);
 public java.util.Stack getCurrentStackTrace();
 public StackTraceElement calcLocation(String);
 public StackTraceElement getStackTraceElement(int);
 static void <clinit>();
}

org/apache/logging/log4j/util/Constants.class

package org.apache.logging.log4j.util;
public final synchronized class Constants {
 public static final boolean IS_WEB_APP;
 public static final boolean ENABLE_THREADLOCALS;
 public static final int JAVA_MAJOR_VERSION;
 public static final int MAX_REUSABLE_MESSAGE_SIZE;
 public static final String LOG4J2_DEBUG = log4j2.debug;
 public static final Object[] EMPTY_OBJECT_ARRAY;
 public static final byte[] EMPTY_BYTE_ARRAY;
 private static int size(String, int);
 private static boolean isClassAvailable(String);
 private void Constants();
 private static int getMajorVersion();
 static int getMajorVersion(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/StringBuilderFormattable.class

package org.apache.logging.log4j.util;
public abstract interface StringBuilderFormattable {
 public abstract void formatTo(StringBuilder);
}

org/apache/logging/log4j/util/PropertiesUtil.class

package org.apache.logging.log4j.util;
public final synchronized class PropertiesUtil {
 private static final String LOG4J_PROPERTIES_FILE_NAME = log4j2.component.properties;
 private static final String LOG4J_SYSTEM_PROPERTIES_FILE_NAME = log4j2.system.properties;
 private static final String SYSTEM = system:;
 private static final PropertiesUtil LOG4J_PROPERTIES;
 private final PropertiesUtil$Environment environment;
 public void PropertiesUtil(java.util.Properties);
 public void PropertiesUtil(String);
 static java.util.Properties loadClose(java.io.InputStream, Object);
 public static PropertiesUtil getProperties();
 public boolean hasProperty(String);
 public boolean getBooleanProperty(String);
 public boolean getBooleanProperty(String, boolean);
 public boolean getBooleanProperty(String, boolean, boolean);
 public Boolean getBooleanProperty(String[], String, Supplier);
 public java.nio.charset.Charset getCharsetProperty(String);
 public java.nio.charset.Charset getCharsetProperty(String, java.nio.charset.Charset);
 public double getDoubleProperty(String, double);
 public int getIntegerProperty(String, int);
 public Integer getIntegerProperty(String[], String, Supplier);
 public long getLongProperty(String, long);
 public Long getLongProperty(String[], String, Supplier);
 public java.time.Duration getDurationProperty(String, java.time.Duration);
 public java.time.Duration getDurationProperty(String[], String, Supplier);
 public String getStringProperty(String[], String, Supplier);
 public String getStringProperty(String);
 public String getStringProperty(String, String);
 public static java.util.Properties getSystemProperties();
 public void reload();
 public static java.util.Properties extractSubset(java.util.Properties, String);
 static java.util.ResourceBundle getCharsetsResourceBundle();
 public static java.util.Map partitionOnCommonPrefixes(java.util.Properties);
 public boolean isOsWindows();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertySource$Util.class

package org.apache.logging.log4j.util;
public final synchronized class PropertySource$Util {
 private static final String PREFIXES = (?i:^log4j2?[-._/]?|^org\.apache\.logging\.log4j\.)?;
 private static final java.util.regex.Pattern PROPERTY_TOKENIZER;
 private static final java.util.Map CACHE;
 public static java.util.List tokenize(CharSequence);
 public static CharSequence joinAsCamelCase(Iterable);
 private void PropertySource$Util();
 static void <clinit>();
}

org/apache/logging/log4j/util/Unbox$WebSafeState.class

package org.apache.logging.log4j.util;
synchronized class Unbox$WebSafeState {
 private final ThreadLocal ringBuffer;
 private final ThreadLocal current;
 private void Unbox$WebSafeState();
 public StringBuilder getStringBuilder();
 public boolean isBoxedPrimitive(StringBuilder);
}

org/apache/logging/log4j/message/MultiformatMessage.class

package org.apache.logging.log4j.message;
public abstract interface MultiformatMessage extends Message {
 public abstract String getFormattedMessage(String[]);
 public abstract String[] getFormats();
}

org/apache/logging/log4j/message/ThreadDumpMessage$BasicThreadInfoFactory.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$BasicThreadInfoFactory implements ThreadDumpMessage$ThreadInfoFactory {
 private void ThreadDumpMessage$BasicThreadInfoFactory();
 public java.util.Map createThreadInfo();
}

org/apache/logging/log4j/message/MapMessage$1.class

package org.apache.logging.log4j.message;
synchronized class MapMessage$1 {
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class ParameterizedMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final int DEFAULT_STRING_BUILDER_SIZE = 255;
 public static final String RECURSION_PREFIX = [...;
 public static final String RECURSION_SUFFIX = ...];
 public static final String ERROR_PREFIX = [!!!;
 public static final String ERROR_SEPARATOR = =>;
 public static final String ERROR_MSG_SEPARATOR = :;
 public static final String ERROR_SUFFIX = !!!];
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private static ThreadLocal threadLocalStringBuilder;
 private String messagePattern;
 private transient Object[] argArray;
 private String formattedMessage;
 private transient Throwable throwable;
 private int[] indices;
 private int usedCount;
 public void ParameterizedMessage(String, String[], Throwable);
 public void ParameterizedMessage(String, Object[], Throwable);
 public transient void ParameterizedMessage(String, Object[]);
 public void ParameterizedMessage(String, Object);
 public void ParameterizedMessage(String, Object, Object);
 private void init(String);
 private void initThrowable(Object[], int);
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 public String getFormattedMessage();
 private static StringBuilder getThreadLocalStringBuilder();
 public void formatTo(StringBuilder);
 public static String format(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public static int countArgumentPlaceholders(String);
 public static String deepToString(Object);
 public static String identityToString(Object);
 public String toString();
 static void <clinit>();
}

org/apache/logging/log4j/status/StatusLogger$BoundedQueue.class

package org.apache.logging.log4j.status;
synchronized class StatusLogger$BoundedQueue extends java.util.concurrent.ConcurrentLinkedQueue {
 private static final long serialVersionUID = -3945953719763255337;
 private final int size;
 void StatusLogger$BoundedQueue(StatusLogger, int);
 public boolean add(Object);
}

org/apache/logging/log4j/simple/SimpleLoggerContextFactory.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLoggerContextFactory implements org.apache.logging.log4j.spi.LoggerContextFactory {
 private static org.apache.logging.log4j.spi.LoggerContext context;
 public void SimpleLoggerContextFactory();
 public org.apache.logging.log4j.spi.LoggerContext getContext(String, ClassLoader, Object, boolean);
 public org.apache.logging.log4j.spi.LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public void removeContext(org.apache.logging.log4j.spi.LoggerContext);
 public boolean isClassLoaderDependent();
 static void <clinit>();
}

org/apache/logging/log4j/spi/ThreadContextStack.class

package org.apache.logging.log4j.spi;
public abstract interface ThreadContextStack extends org.apache.logging.log4j.ThreadContext$ContextStack {
}

org/apache/logging/log4j/spi/LoggerRegistry$MapFactory.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerRegistry$MapFactory {
 public abstract java.util.Map createInnerMap();
 public abstract java.util.Map createOuterMap();
 public abstract void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/LoggerAdapter.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerAdapter extends java.io.Closeable {
 public abstract Object getLogger(String);
}

org/apache/logging/log4j/Marker.class

package org.apache.logging.log4j;
public abstract interface Marker extends java.io.Serializable {
 public abstract transient Marker addParents(Marker[]);
 public abstract boolean equals(Object);
 public abstract String getName();
 public abstract Marker[] getParents();
 public abstract int hashCode();
 public abstract boolean hasParents();
 public abstract boolean isInstanceOf(Marker);
 public abstract boolean isInstanceOf(String);
 public abstract boolean remove(Marker);
 public abstract transient Marker setParents(Marker[]);
}

org/apache/logging/log4j/Level.class

package org.apache.logging.log4j;
public final synchronized class Level implements Comparable, java.io.Serializable {
 public static final Level OFF;
 public static final Level FATAL;
 public static final Level ERROR;
 public static final Level WARN;
 public static final Level INFO;
 public static final Level DEBUG;
 public static final Level TRACE;
 public static final Level ALL;
 public static final String CATEGORY = Level;
 private static final java.util.concurrent.ConcurrentMap LEVELS;
 private static final long serialVersionUID = 1581082;
 private final String name;
 private final int intLevel;
 private final spi.StandardLevel standardLevel;
 private void Level(String, int);
 public int intLevel();
 public spi.StandardLevel getStandardLevel();
 public boolean isInRange(Level, Level);
 public boolean isLessSpecificThan(Level);
 public boolean isMoreSpecificThan(Level);
 public Level clone() throws CloneNotSupportedException;
 public int compareTo(Level);
 public boolean equals(Object);
 public Class getDeclaringClass();
 public int hashCode();
 public String name();
 public String toString();
 public static Level forName(String, int);
 public static Level getLevel(String);
 public static Level toLevel(String);
 public static Level toLevel(String, Level);
 private static String toUpperCase(String);
 public static Level[] values();
 public static Level valueOf(String);
 public static Enum valueOf(Class, String);
 protected Object readResolve();
 static void <clinit>();
}

META-INF/versions/9/module-info.class

class module-info {
}

META-INF/maven/org.apache.logging.log4j/log4j-api/pom.xml

 4.0.0

 org.apache.logging.log4j
 log4j
 2.17.1
 ../

 log4j-api
 jar
 Apache Log4j API
 The Apache Log4j API

 ${basedir}/..
 API Documentation
 /api
 true

 org.apache.felix
 org.apache.felix.framework
 test

 org.osgi
 org.osgi.core
 provided

 org.junit.vintage
 junit-vintage-engine

 org.junit.jupiter
 junit-jupiter-migrationsupport

 org.junit.jupiter
 junit-jupiter-params

 org.junit.jupiter
 junit-jupiter-engine

 org.assertj
 assertj-core

 org.eclipse.tycho
 org.eclipse.osgi
 test

 org.apache.maven
 maven-core
 test

 org.apache.commons
 commons-lang3
 test

 com.fasterxml.jackson.core
 jackson-core
 test

 com.fasterxml.jackson.core
 jackson-databind
 test

 org.apache.maven.plugins
 maven-dependency-plugin
 3.0.2

 unpack-classes
 prepare-package

 unpack

 org.apache.logging.log4j
 log4j-api-java9
 ${project.version}
 zip
 false

 **/*.class
 **/*.java
 ${project.build.directory}
 false
 true

 org.codehaus.mojo
 build-helper-maven-plugin
 1.7

 add-source
 generate-sources

 add-source

 ${project.build.directory}/log4j-api-java9

 org.apache.maven.plugins
 maven-compiler-plugin

 default-compile

 1.8
 1.8

 org.apache.maven.plugins
 maven-surefire-plugin

 junit.jupiter.execution.parallel.enabled = true
 junit.jupiter.execution.parallel.mode.default = concurrent

 true
 true
 performance,smoke

 org.apache.maven.plugins
 maven-jar-plugin

 default-jar

 jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}
 true

 default

 test-jar

 ${manifestfile}

 ${project.name}
 ${project.version}
 ${project.organization.name}
 ${project.name}
 ${project.version}
 ${project.organization.name}
 org.apache
 ${maven.compiler.source}
 ${maven.compiler.target}

 org.apache.maven.plugins
 maven-remote-resources-plugin

 process

 false

 org.apache.felix
 maven-bundle-plugin

 org.apache.logging.log4j.*

 sun.reflect;resolution:=optional,
 *

 org.apache.logging.log4j.util.Activator
 "Classes found in the wrong directory";is:=warning

 org.apache.maven.plugins
 maven-deploy-plugin
 ${deploy.plugin.version}

 org.apache.maven.plugins
 maven-changes-plugin
 ${changes.plugin.version}

 changes-report

 %URL%/show_bug.cgi?id=%ISSUE%
 true

 org.apache.maven.plugins
 maven-checkstyle-plugin
 ${checkstyle.plugin.version}

 ${log4jParentDir}/checkstyle.xml
 ${log4jParentDir}/checkstyle-suppressions.xml
 false
 basedir=${basedir}
 licensedir=${log4jParentDir}/checkstyle-header.txt

 org.apache.maven.plugins
 maven-javadoc-plugin
 ${javadoc.plugin.version}

 <p align="center">Copyright © {inceptionYear}-{currentYear} {organizationName}. All Rights Reserved.

 Apache Logging, Apache Log4j, Log4j, Apache, the Apache feather logo, the Apache Logging project logo,
 and the Apache Log4j logo are trademarks of The Apache Software Foundation.</p>

 none
 false
 true

 http://www.osgi.org/javadoc/r4v43/core/

 non-aggregate

 javadoc

 com.github.spotbugs
 spotbugs-maven-plugin

 org.apache.maven.plugins
 maven-jxr-plugin
 ${jxr.plugin.version}

 non-aggregate

 jxr

 aggregate

 aggregate

 org.apache.maven.plugins
 maven-pmd-plugin
 ${pmd.plugin.version}

 ${maven.compiler.target}

org/apache/logging/log4j/util/PropertiesPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class PropertiesPropertySource implements PropertySource {
 private static final String PREFIX = log4j2.;
 private final java.util.Properties properties;
 public void PropertiesPropertySource(java.util.Properties);
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/LoaderUtil$1.class

package org.apache.logging.log4j.util;
synchronized class LoaderUtil$1 {
}

org/apache/logging/log4j/util/PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager.class

package org.apache.logging.log4j.util;
final synchronized class PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager extends SecurityManager {
 private void PrivateSecurityManagerStackTraceUtil$PrivateSecurityManager();
 protected Class[] getClassContext();
}

org/apache/logging/log4j/util/Timer.class

package org.apache.logging.log4j.util;
public synchronized class Timer implements java.io.Serializable, StringBuilderFormattable {
 private static final long serialVersionUID = 9175191792439630013;
 private final String name;
 private Timer$Status status;
 private long elapsedTime;
 private final int iterations;
 private static long NANO_PER_SECOND;
 private static long NANO_PER_MINUTE;
 private static long NANO_PER_HOUR;
 private ThreadLocal startTime;
 public void Timer(String);
 public void Timer(String, int);
 public synchronized void start();
 public synchronized void startOrResume();
 public synchronized String stop();
 public synchronized void pause();
 public synchronized void resume();
 public String getName();
 public long getElapsedTime();
 public long getElapsedNanoTime();
 public Timer$Status getStatus();
 public String toString();
 public void formatTo(StringBuilder);
 public boolean equals(Object);
 public int hashCode();
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertySource.class

package org.apache.logging.log4j.util;
public abstract interface PropertySource {
 public abstract int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
 public String getProperty(String);
 public boolean containsProperty(String);
}

org/apache/logging/log4j/message/FormattedMessageFactory.class

package org.apache.logging.log4j.message;
public synchronized class FormattedMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 1;
 public void FormattedMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/LocalizedMessage.class

package org.apache.logging.log4j.message;
public synchronized class LocalizedMessage implements Message, LoggerNameAwareMessage {
 private static final long serialVersionUID = 3893703791567290742;
 private String baseName;
 private transient java.util.ResourceBundle resourceBundle;
 private final java.util.Locale locale;
 private transient org.apache.logging.log4j.status.StatusLogger logger;
 private String loggerName;
 private String key;
 private String[] stringArgs;
 private transient Object[] argArray;
 private String formattedMessage;
 private transient Throwable throwable;
 public void LocalizedMessage(String, Object[]);
 public void LocalizedMessage(String, String, Object[]);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object[]);
 public void LocalizedMessage(String, java.util.Locale, String, Object[]);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object[]);
 public void LocalizedMessage(java.util.Locale, String, Object[]);
 public void LocalizedMessage(String, Object);
 public void LocalizedMessage(String, String, Object);
 public void LocalizedMessage(java.util.ResourceBundle, String);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object);
 public void LocalizedMessage(String, java.util.Locale, String, Object);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object);
 public void LocalizedMessage(java.util.Locale, String, Object);
 public void LocalizedMessage(String, Object, Object);
 public void LocalizedMessage(String, String, Object, Object);
 public void LocalizedMessage(java.util.ResourceBundle, String, Object, Object);
 public void LocalizedMessage(String, java.util.Locale, String, Object, Object);
 public void LocalizedMessage(java.util.ResourceBundle, java.util.Locale, String, Object, Object);
 public void LocalizedMessage(java.util.Locale, String, Object, Object);
 public void setLoggerName(String);
 public String getLoggerName();
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
 protected java.util.ResourceBundle getResourceBundle(String, java.util.Locale, boolean);
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
}

org/apache/logging/log4j/util/PropertySource$Comparator.class

package org.apache.logging.log4j.util;
public synchronized class PropertySource$Comparator implements java.util.Comparator, java.io.Serializable {
 private static final long serialVersionUID = 1;
 public void PropertySource$Comparator();
 public int compare(PropertySource, PropertySource);
}

org/apache/logging/log4j/util/FilteredObjectInputStream.class

package org.apache.logging.log4j.util;
public synchronized class FilteredObjectInputStream extends java.io.ObjectInputStream {
 private static final java.util.Set REQUIRED_JAVA_CLASSES;
 private static final java.util.Set REQUIRED_JAVA_PACKAGES;
 private final java.util.Collection allowedExtraClasses;
 public void FilteredObjectInputStream() throws java.io.IOException, SecurityException;
 public void FilteredObjectInputStream(java.io.InputStream) throws java.io.IOException;
 public void FilteredObjectInputStream(java.util.Collection) throws java.io.IOException, SecurityException;
 public void FilteredObjectInputStream(java.io.InputStream, java.util.Collection) throws java.io.IOException;
 public java.util.Collection getAllowedClasses();
 protected Class resolveClass(java.io.ObjectStreamClass) throws java.io.IOException, ClassNotFoundException;
 private static boolean isAllowedByDefault(String);
 private static boolean isRequiredPackage(String);
 static void <clinit>();
}

org/apache/logging/log4j/util/Timer$1.class

package org.apache.logging.log4j.util;
synchronized class Timer$1 extends ThreadLocal {
 void Timer$1(Timer);
 protected Long initialValue();
}

org/apache/logging/log4j/util/ProviderUtil.class

package org.apache.logging.log4j.util;
public final synchronized class ProviderUtil {
 protected static final String PROVIDER_RESOURCE = META-INF/log4j-provider.properties;
 protected static final java.util.Collection PROVIDERS;
 protected static final java.util.concurrent.locks.Lock STARTUP_LOCK;
 private static final String API_VERSION = Log4jAPIVersion;
 private static final String[] COMPATIBLE_API_VERSIONS;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static volatile ProviderUtil instance;
 private void ProviderUtil();
 protected static void addProvider(org.apache.logging.log4j.spi.Provider);
 protected static void loadProvider(java.net.URL, ClassLoader);
 protected static void loadProviders(ClassLoader);
 protected static void loadProviders(java.util.Enumeration, ClassLoader);
 public static Iterable getProviders();
 public static boolean hasProviders();
 protected static void lazyInit();
 public static ClassLoader findClassLoader();
 private static boolean validVersion(String);
 static void <clinit>();
}

org/apache/logging/log4j/message/MapMessageJsonFormatter.class

package org.apache.logging.log4j.message;
final synchronized enum MapMessageJsonFormatter {
 public static final int MAX_DEPTH;
 private static final char DQUOTE = 34;
 private static final char RBRACE = 93;
 private static final char LBRACE = 91;
 private static final char COMMA = 44;
 private static final char RCURLY = 125;
 private static final char LCURLY = 123;
 private static final char COLON = 58;
 public static MapMessageJsonFormatter[] values();
 public static MapMessageJsonFormatter valueOf(String);
 private void MapMessageJsonFormatter(String, int);
 private static int readMaxDepth();
 static void format(StringBuilder, Object);
 private static void format(StringBuilder, Object, int);
 private static void formatIndexedStringMap(StringBuilder, org.apache.logging.log4j.util.IndexedStringMap, int);
 private static void formatMap(StringBuilder, java.util.Map, int);
 private static void formatList(StringBuilder, java.util.List, int);
 private static void formatCollection(StringBuilder, java.util.Collection, int);
 private static void formatNumber(StringBuilder, Number);
 private static void formatBoolean(StringBuilder, boolean);
 private static void formatFormattable(StringBuilder, org.apache.logging.log4j.util.StringBuilderFormattable);
 private static void formatCharArray(StringBuilder, char[]);
 private static void formatBooleanArray(StringBuilder, boolean[]);
 private static void formatByteArray(StringBuilder, byte[]);
 private static void formatShortArray(StringBuilder, short[]);
 private static void formatIntArray(StringBuilder, int[]);
 private static void formatLongArray(StringBuilder, long[]);
 private static void formatFloatArray(StringBuilder, float[]);
 private static void formatDoubleArray(StringBuilder, double[]);
 private static void formatObjectArray(StringBuilder, Object[], int);
 private static void formatString(StringBuilder, Object);
 static void <clinit>();
}

org/apache/logging/log4j/status/StatusListener.class

package org.apache.logging.log4j.status;
public abstract interface StatusListener extends java.io.Closeable, java.util.EventListener {
 public abstract void log(StatusData);
 public abstract org.apache.logging.log4j.Level getStatusLevel();
}

org/apache/logging/log4j/simple/SimpleLoggerContext.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLoggerContext implements org.apache.logging.log4j.spi.LoggerContext {
 private static final String SYSTEM_OUT = system.out;
 private static final String SYSTEM_ERR = system.err;
 protected static final String DEFAULT_DATE_TIME_FORMAT = yyyy/MM/dd HH:mm:ss:SSS zzz;
 protected static final String SYSTEM_PREFIX = org.apache.logging.log4j.simplelog.;
 private final org.apache.logging.log4j.util.PropertiesUtil props;
 private final boolean showLogName;
 private final boolean showShortName;
 private final boolean showDateTime;
 private final boolean showContextMap;
 private final String dateTimeFormat;
 private final org.apache.logging.log4j.Level defaultLevel;
 private final java.io.PrintStream stream;
 private final org.apache.logging.log4j.spi.LoggerRegistry loggerRegistry;
 public void SimpleLoggerContext();
 public org.apache.logging.log4j.spi.ExtendedLogger getLogger(String);
 public org.apache.logging.log4j.spi.ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public Object getExternalContext();
}

org/apache/logging/log4j/spi/CopyOnWrite.class

package org.apache.logging.log4j.spi;
public abstract interface CopyOnWrite {
}

org/apache/logging/log4j/spi/ExtendedLoggerWrapper.class

package org.apache.logging.log4j.spi;
public synchronized class ExtendedLoggerWrapper extends AbstractLogger {
 private static final long serialVersionUID = 1;
 protected final ExtendedLogger logger;
 public void ExtendedLoggerWrapper(ExtendedLogger, String, org.apache.logging.log4j.message.MessageFactory);
 public org.apache.logging.log4j.Level getLevel();
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
}

org/apache/logging/log4j/spi/NoOpThreadContextMap.class

package org.apache.logging.log4j.spi;
public synchronized class NoOpThreadContextMap implements ThreadContextMap {
 public void NoOpThreadContextMap();
 public void clear();
 public boolean containsKey(String);
 public String get(String);
 public java.util.Map getCopy();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public void put(String, String);
 public void remove(String);
}

org/apache/logging/log4j/spi/DefaultThreadContextMap$1.class

package org.apache.logging.log4j.spi;
final synchronized class DefaultThreadContextMap$1 extends InheritableThreadLocal {
 void DefaultThreadContextMap$1(boolean);
 protected java.util.Map childValue(java.util.Map);
}

org/apache/logging/log4j/spi/GarbageFreeSortedArrayThreadContextMap.class

package org.apache.logging.log4j.spi;
synchronized class GarbageFreeSortedArrayThreadContextMap implements ReadOnlyThreadContextMap, ObjectThreadContextMap {
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 protected static final int DEFAULT_INITIAL_CAPACITY = 16;
 protected static final String PROPERTY_NAME_INITIAL_CAPACITY = log4j2.ThreadContext.initial.capacity;
 protected final ThreadLocal localMap;
 private static volatile int initialCapacity;
 private static volatile boolean inheritableMap;
 static void init();
 public void GarbageFreeSortedArrayThreadContextMap();
 private ThreadLocal createThreadLocalMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap();
 protected org.apache.logging.log4j.util.StringMap createStringMap(org.apache.logging.log4j.util.ReadOnlyStringMap);
 private org.apache.logging.log4j.util.StringMap getThreadLocalMap();
 public void put(String, String);
 public void putValue(String, Object);
 public void putAll(java.util.Map);
 public void putAllValues(java.util.Map);
 public String get(String);
 public Object getValue(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public boolean containsKey(String);
 public java.util.Map getCopy();
 public org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/spi/ObjectThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ObjectThreadContextMap extends CleanableThreadContextMap {
 public abstract Object getValue(String);
 public abstract void putValue(String, Object);
 public abstract void putAllValues(java.util.Map);
}

org/apache/logging/log4j/spi/AbstractLogger.class

package org.apache.logging.log4j.spi;
public abstract synchronized class AbstractLogger implements ExtendedLogger, LocationAwareLogger, java.io.Serializable {
 public static final org.apache.logging.log4j.Marker FLOW_MARKER;
 public static final org.apache.logging.log4j.Marker ENTRY_MARKER;
 public static final org.apache.logging.log4j.Marker EXIT_MARKER;
 public static final org.apache.logging.log4j.Marker EXCEPTION_MARKER;
 public static final org.apache.logging.log4j.Marker THROWING_MARKER;
 public static final org.apache.logging.log4j.Marker CATCHING_MARKER;
 public static final Class DEFAULT_MESSAGE_FACTORY_CLASS;
 public static final Class DEFAULT_FLOW_MESSAGE_FACTORY_CLASS;
 private static final long serialVersionUID = 2;
 private static final String FQCN;
 private static final String THROWING = Throwing;
 private static final String CATCHING = Catching;
 protected final String name;
 private final org.apache.logging.log4j.message.MessageFactory2 messageFactory;
 private final org.apache.logging.log4j.message.FlowMessageFactory flowMessageFactory;
 private static final ThreadLocal recursionDepthHolder;
 protected final transient ThreadLocal logBuilder;
 public void AbstractLogger();
 public void AbstractLogger(String);
 public void AbstractLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public static void checkMessageFactory(ExtendedLogger, org.apache.logging.log4j.message.MessageFactory);
 public void catching(org.apache.logging.log4j.Level, Throwable);
 protected void catching(String, org.apache.logging.log4j.Level, Throwable);
 public void catching(Throwable);
 protected org.apache.logging.log4j.message.Message catchingMsg(Throwable);
 private static Class createClassForProperty(String, Class, Class);
 private static Class createFlowClassForProperty(String, Class);
 private static org.apache.logging.log4j.message.MessageFactory2 createDefaultMessageFactory();
 private static org.apache.logging.log4j.message.MessageFactory2 narrow(org.apache.logging.log4j.message.MessageFactory);
 private static org.apache.logging.log4j.message.FlowMessageFactory createDefaultFlowMessageFactory();
 public void debug(org.apache.logging.log4j.Marker, CharSequence);
 public void debug(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void debug(org.apache.logging.log4j.Marker, Object);
 public void debug(org.apache.logging.log4j.Marker, Object, Throwable);
 public void debug(org.apache.logging.log4j.Marker, String);
 public transient void debug(org.apache.logging.log4j.Marker, String, Object[]);
 public void debug(org.apache.logging.log4j.Marker, String, Throwable);
 public void debug(org.apache.logging.log4j.message.Message);
 public void debug(org.apache.logging.log4j.message.Message, Throwable);
 public void debug(CharSequence);
 public void debug(CharSequence, Throwable);
 public void debug(Object);
 public void debug(Object, Throwable);
 public void debug(String);
 public transient void debug(String, Object[]);
 public void debug(String, Throwable);
 public void debug(org.apache.logging.log4j.util.Supplier);
 public void debug(org.apache.logging.log4j.util.Supplier, Throwable);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void debug(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void debug(String, org.apache.logging.log4j.util.Supplier[]);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void debug(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void debug(org.apache.logging.log4j.util.MessageSupplier);
 public void debug(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void debug(org.apache.logging.log4j.Marker, String, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object);
 public void debug(String, Object, Object);
 public void debug(String, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, org.apache.logging.log4j.util.Supplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, org.apache.logging.log4j.util.MessageSupplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage enter(String, String, Object[]);
 protected org.apache.logging.log4j.message.EntryMessage enter(String, org.apache.logging.log4j.util.MessageSupplier);
 protected org.apache.logging.log4j.message.EntryMessage enter(String, org.apache.logging.log4j.message.Message);
 public void entry();
 public transient void entry(Object[]);
 protected transient void entry(String, Object[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, Object[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, org.apache.logging.log4j.util.MessageSupplier[]);
 protected transient org.apache.logging.log4j.message.EntryMessage entryMsg(String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void error(org.apache.logging.log4j.Marker, CharSequence);
 public void error(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void error(org.apache.logging.log4j.Marker, Object);
 public void error(org.apache.logging.log4j.Marker, Object, Throwable);
 public void error(org.apache.logging.log4j.Marker, String);
 public transient void error(org.apache.logging.log4j.Marker, String, Object[]);
 public void error(org.apache.logging.log4j.Marker, String, Throwable);
 public void error(org.apache.logging.log4j.message.Message);
 public void error(org.apache.logging.log4j.message.Message, Throwable);
 public void error(CharSequence);
 public void error(CharSequence, Throwable);
 public void error(Object);
 public void error(Object, Throwable);
 public void error(String);
 public transient void error(String, Object[]);
 public void error(String, Throwable);
 public void error(org.apache.logging.log4j.util.Supplier);
 public void error(org.apache.logging.log4j.util.Supplier, Throwable);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void error(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void error(String, org.apache.logging.log4j.util.Supplier[]);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void error(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void error(org.apache.logging.log4j.util.MessageSupplier);
 public void error(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void error(org.apache.logging.log4j.Marker, String, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object);
 public void error(String, Object, Object);
 public void error(String, Object, Object, Object);
 public void error(String, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void exit();
 public Object exit(Object);
 protected Object exit(String, Object);
 protected Object exit(String, String, Object);
 protected org.apache.logging.log4j.message.Message exitMsg(String, Object);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, CharSequence);
 public void fatal(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, Object);
 public void fatal(org.apache.logging.log4j.Marker, Object, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, String);
 public transient void fatal(org.apache.logging.log4j.Marker, String, Object[]);
 public void fatal(org.apache.logging.log4j.Marker, String, Throwable);
 public void fatal(org.apache.logging.log4j.message.Message);
 public void fatal(org.apache.logging.log4j.message.Message, Throwable);
 public void fatal(CharSequence);
 public void fatal(CharSequence, Throwable);
 public void fatal(Object);
 public void fatal(Object, Throwable);
 public void fatal(String);
 public transient void fatal(String, Object[]);
 public void fatal(String, Throwable);
 public void fatal(org.apache.logging.log4j.util.Supplier);
 public void fatal(org.apache.logging.log4j.util.Supplier, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void fatal(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void fatal(String, org.apache.logging.log4j.util.Supplier[]);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void fatal(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void fatal(org.apache.logging.log4j.util.MessageSupplier);
 public void fatal(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void fatal(org.apache.logging.log4j.Marker, String, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object);
 public void fatal(String, Object, Object);
 public void fatal(String, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.MessageFactory getMessageFactory();
 public String getName();
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void info(org.apache.logging.log4j.Marker, CharSequence);
 public void info(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void info(org.apache.logging.log4j.Marker, Object);
 public void info(org.apache.logging.log4j.Marker, Object, Throwable);
 public void info(org.apache.logging.log4j.Marker, String);
 public transient void info(org.apache.logging.log4j.Marker, String, Object[]);
 public void info(org.apache.logging.log4j.Marker, String, Throwable);
 public void info(org.apache.logging.log4j.message.Message);
 public void info(org.apache.logging.log4j.message.Message, Throwable);
 public void info(CharSequence);
 public void info(CharSequence, Throwable);
 public void info(Object);
 public void info(Object, Throwable);
 public void info(String);
 public transient void info(String, Object[]);
 public void info(String, Throwable);
 public void info(org.apache.logging.log4j.util.Supplier);
 public void info(org.apache.logging.log4j.util.Supplier, Throwable);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void info(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void info(String, org.apache.logging.log4j.util.Supplier[]);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void info(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void info(org.apache.logging.log4j.util.MessageSupplier);
 public void info(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void info(org.apache.logging.log4j.Marker, String, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object);
 public void info(String, Object, Object);
 public void info(String, Object, Object, Object);
 public void info(String, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isDebugEnabled();
 public boolean isDebugEnabled(org.apache.logging.log4j.Marker);
 public boolean isEnabled(org.apache.logging.log4j.Level);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker);
 public boolean isErrorEnabled();
 public boolean isErrorEnabled(org.apache.logging.log4j.Marker);
 public boolean isFatalEnabled();
 public boolean isFatalEnabled(org.apache.logging.log4j.Marker);
 public boolean isInfoEnabled();
 public boolean isInfoEnabled(org.apache.logging.log4j.Marker);
 public boolean isTraceEnabled();
 public boolean isTraceEnabled(org.apache.logging.log4j.Marker);
 public boolean isWarnEnabled();
 public boolean isWarnEnabled(org.apache.logging.log4j.Marker);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.message.Message, Throwable);
 public void log(org.apache.logging.log4j.Level, CharSequence);
 public void log(org.apache.logging.log4j.Level, CharSequence, Throwable);
 public void log(org.apache.logging.log4j.Level, Object);
 public void log(org.apache.logging.log4j.Level, Object, Throwable);
 public void log(org.apache.logging.log4j.Level, String);
 public transient void log(org.apache.logging.log4j.Level, String, Object[]);
 public void log(org.apache.logging.log4j.Level, String, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.Supplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.Supplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void log(org.apache.logging.log4j.Level, String, org.apache.logging.log4j.util.Supplier[]);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.MessageSupplier);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void log(org.apache.logging.log4j.Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public transient void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logIfEnabled(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 protected transient void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected transient void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void logMessage(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 protected void log(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, StackTraceElement, org.apache.logging.log4j.message.Message, Throwable);
 public transient void printf(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public transient void printf(org.apache.logging.log4j.Level, String, Object[]);
 private void logMessageSafely(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private void logMessageTrackRecursion(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private static int[] getRecursionDepthHolder();
 private static void incrementRecursionDepth();
 private static void decrementRecursionDepth();
 public static int getRecursionDepth();
 private void tryLogMessage(String, StackTraceElement, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 private StackTraceElement getLocation(String);
 private void handleLogMessageException(Throwable, String, org.apache.logging.log4j.message.Message);
 public Throwable throwing(Throwable);
 public Throwable throwing(org.apache.logging.log4j.Level, Throwable);
 protected Throwable throwing(String, org.apache.logging.log4j.Level, Throwable);
 protected org.apache.logging.log4j.message.Message throwingMsg(Throwable);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void trace(org.apache.logging.log4j.Marker, CharSequence);
 public void trace(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void trace(org.apache.logging.log4j.Marker, Object);
 public void trace(org.apache.logging.log4j.Marker, Object, Throwable);
 public void trace(org.apache.logging.log4j.Marker, String);
 public transient void trace(org.apache.logging.log4j.Marker, String, Object[]);
 public void trace(org.apache.logging.log4j.Marker, String, Throwable);
 public void trace(org.apache.logging.log4j.message.Message);
 public void trace(org.apache.logging.log4j.message.Message, Throwable);
 public void trace(CharSequence);
 public void trace(CharSequence, Throwable);
 public void trace(Object);
 public void trace(Object, Throwable);
 public void trace(String);
 public transient void trace(String, Object[]);
 public void trace(String, Throwable);
 public void trace(org.apache.logging.log4j.util.Supplier);
 public void trace(org.apache.logging.log4j.util.Supplier, Throwable);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void trace(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void trace(String, org.apache.logging.log4j.util.Supplier[]);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void trace(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void trace(org.apache.logging.log4j.util.MessageSupplier);
 public void trace(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void trace(org.apache.logging.log4j.Marker, String, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object);
 public void trace(String, Object, Object);
 public void trace(String, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.EntryMessage traceEntry();
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(String, Object[]);
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(org.apache.logging.log4j.util.Supplier[]);
 public transient org.apache.logging.log4j.message.EntryMessage traceEntry(String, org.apache.logging.log4j.util.Supplier[]);
 public org.apache.logging.log4j.message.EntryMessage traceEntry(org.apache.logging.log4j.message.Message);
 public void traceExit();
 public Object traceExit(Object);
 public Object traceExit(String, Object);
 public void traceExit(org.apache.logging.log4j.message.EntryMessage);
 public Object traceExit(org.apache.logging.log4j.message.EntryMessage, Object);
 public Object traceExit(org.apache.logging.log4j.message.Message, Object);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void warn(org.apache.logging.log4j.Marker, CharSequence);
 public void warn(org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public void warn(org.apache.logging.log4j.Marker, Object);
 public void warn(org.apache.logging.log4j.Marker, Object, Throwable);
 public void warn(org.apache.logging.log4j.Marker, String);
 public transient void warn(org.apache.logging.log4j.Marker, String, Object[]);
 public void warn(org.apache.logging.log4j.Marker, String, Throwable);
 public void warn(org.apache.logging.log4j.message.Message);
 public void warn(org.apache.logging.log4j.message.Message, Throwable);
 public void warn(CharSequence);
 public void warn(CharSequence, Throwable);
 public void warn(Object);
 public void warn(Object, Throwable);
 public void warn(String);
 public transient void warn(String, Object[]);
 public void warn(String, Throwable);
 public void warn(org.apache.logging.log4j.util.Supplier);
 public void warn(org.apache.logging.log4j.util.Supplier, Throwable);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier);
 public transient void warn(org.apache.logging.log4j.Marker, String, org.apache.logging.log4j.util.Supplier[]);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.Supplier, Throwable);
 public transient void warn(String, org.apache.logging.log4j.util.Supplier[]);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier);
 public void warn(org.apache.logging.log4j.Marker, org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void warn(org.apache.logging.log4j.util.MessageSupplier);
 public void warn(org.apache.logging.log4j.util.MessageSupplier, Throwable);
 public void warn(org.apache.logging.log4j.Marker, String, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object);
 public void warn(String, Object, Object);
 public void warn(String, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 protected boolean requiresLocation();
 public org.apache.logging.log4j.LogBuilder atTrace();
 public org.apache.logging.log4j.LogBuilder atDebug();
 public org.apache.logging.log4j.LogBuilder atInfo();
 public org.apache.logging.log4j.LogBuilder atWarn();
 public org.apache.logging.log4j.LogBuilder atError();
 public org.apache.logging.log4j.LogBuilder atFatal();
 public org.apache.logging.log4j.LogBuilder always();
 public org.apache.logging.log4j.LogBuilder atLevel(org.apache.logging.log4j.Level);
 private org.apache.logging.log4j.internal.DefaultLogBuilder getLogBuilder(org.apache.logging.log4j.Level);
 private void readObject(java.io.ObjectInputStream) throws ClassNotFoundException, java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/util/MultiFormatStringBuilderFormattable.class

package org.apache.logging.log4j.util;
public abstract interface MultiFormatStringBuilderFormattable extends org.apache.logging.log4j.message.MultiformatMessage, StringBuilderFormattable {
 public abstract void formatTo(String[], StringBuilder);
}

org/apache/logging/log4j/util/Timer$Status.class

package org.apache.logging.log4j.util;
public final synchronized enum Timer$Status {
 public static final Timer$Status Started;
 public static final Timer$Status Stopped;
 public static final Timer$Status Paused;
 public static Timer$Status[] values();
 public static Timer$Status valueOf(String);
 private void Timer$Status(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/util/PropertyFilePropertySource.class

package org.apache.logging.log4j.util;
public synchronized class PropertyFilePropertySource extends PropertiesPropertySource {
 public void PropertyFilePropertySource(String);
 private static java.util.Properties loadPropertiesFile(String);
 public int getPriority();
}

org/apache/logging/log4j/util/ProcessIdUtil.class

package org.apache.logging.log4j.util;
public synchronized class ProcessIdUtil {
 public static final String DEFAULT_PROCESSID = -;
 public void ProcessIdUtil();
 public static String getProcessId();
}

org/apache/logging/log4j/ThreadContext$EmptyThreadContextStack.class

package org.apache.logging.log4j;
synchronized class ThreadContext$EmptyThreadContextStack extends java.util.AbstractCollection implements spi.ThreadContextStack {
 private static final long serialVersionUID = 1;
 private static final java.util.Iterator EMPTY_ITERATOR;
 private void ThreadContext$EmptyThreadContextStack();
 public String pop();
 public String peek();
 public void push(String);
 public int getDepth();
 public java.util.List asList();
 public void trim(int);
 public boolean equals(Object);
 public int hashCode();
 public ThreadContext$ContextStack copy();
 public Object[] toArray(Object[]);
 public boolean add(String);
 public boolean containsAll(java.util.Collection);
 public boolean addAll(java.util.Collection);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public java.util.Iterator iterator();
 public int size();
 public ThreadContext$ContextStack getImmutableStackOrNull();
 static void <clinit>();
}

org/apache/logging/log4j/message/ParameterFormatter.class

package org.apache.logging.log4j.message;
final synchronized class ParameterFormatter {
 static final String RECURSION_PREFIX = [...;
 static final String RECURSION_SUFFIX = ...];
 static final String ERROR_PREFIX = [!!!;
 static final String ERROR_SEPARATOR = =>;
 static final String ERROR_MSG_SEPARATOR = :;
 static final String ERROR_SUFFIX = !!!];
 private static final char DELIM_START = 123;
 private static final char DELIM_STOP = 125;
 private static final char ESCAPE_CHAR = 92;
 private static final ThreadLocal SIMPLE_DATE_FORMAT_REF;
 private void ParameterFormatter();
 static int countArgumentPlaceholders(String);
 static int countArgumentPlaceholders2(String, int[]);
 static int countArgumentPlaceholders3(char[], int, int[]);
 static String format(String, Object[]);
 static void formatMessage2(StringBuilder, String, Object[], int, int[]);
 static void formatMessage3(StringBuilder, char[], int, Object[], int, int[]);
 static void formatMessage(StringBuilder, String, Object[], int);
 private static boolean isDelimPair(char, String, int);
 private static void handleRemainingCharIfAny(String, int, StringBuilder, int, int);
 private static void handleLastChar(StringBuilder, int, char);
 private static void handleLiteralChar(StringBuilder, int, char);
 private static void writeDelimPair(StringBuilder);
 private static boolean isOdd(int);
 private static void writeEscapedEscapeChars(int, StringBuilder);
 private static void writeUnescapedEscapeChars(int, StringBuilder);
 private static void writeArgOrDelimPair(Object[], int, int, StringBuilder);
 static String deepToString(Object);
 static void recursiveDeepToString(Object, StringBuilder);
 private static void recursiveDeepToString(Object, StringBuilder, java.util.Set);
 private static boolean appendSpecialTypes(Object, StringBuilder);
 private static boolean appendDate(Object, StringBuilder);
 private static boolean isMaybeRecursive(Object);
 private static void appendPotentiallyRecursiveValue(Object, StringBuilder, java.util.Set);
 private static void appendArray(Object, StringBuilder, java.util.Set, Class);
 private static void appendMap(Object, StringBuilder, java.util.Set);
 private static void appendCollection(Object, StringBuilder, java.util.Set);
 private static java.util.Set getOrCreateDejaVu(java.util.Set);
 private static java.util.Set createDejaVu();
 private static java.util.Set cloneDejaVu(java.util.Set);
 private static void tryObjectToString(Object, StringBuilder);
 private static void handleErrorInObjectToString(Object, StringBuilder, Throwable);
 static String identityToString(Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/ObjectMessage.class

package org.apache.logging.log4j.message;
public synchronized class ObjectMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = -5903272448334166185;
 private transient Object obj;
 private transient String objectString;
 public void ObjectMessage(Object);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object getParameter();
 public Object[] getParameters();
 public boolean equals(Object);
 private boolean equalObjectsOrStrings(Object, Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$SimpleEntryMessage.class

package org.apache.logging.log4j.message;
final synchronized class DefaultFlowMessageFactory$SimpleEntryMessage extends DefaultFlowMessageFactory$AbstractFlowMessage implements EntryMessage {
 private static final long serialVersionUID = 1;
 void DefaultFlowMessageFactory$SimpleEntryMessage(String, Message);
}

org/apache/logging/log4j/message/FormattedMessage.class

package org.apache.logging.log4j.message;
public synchronized class FormattedMessage implements Message {
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private static final String FORMAT_SPECIFIER = %(\d+\$)?([-#+ 0,(\<]*)?(\d+)?(\.\d+)?([tT])?([a-zA-Z%]);
 private static final java.util.regex.Pattern MSG_PATTERN;
 private String messagePattern;
 private transient Object[] argArray;
 private String[] stringArgs;
 private transient String formattedMessage;
 private final Throwable throwable;
 private Message message;
 private final java.util.Locale locale;
 public void FormattedMessage(java.util.Locale, String, Object);
 public void FormattedMessage(java.util.Locale, String, Object, Object);
 public transient void FormattedMessage(java.util.Locale, String, Object[]);
 public void FormattedMessage(java.util.Locale, String, Object[], Throwable);
 public void FormattedMessage(String, Object);
 public void FormattedMessage(String, Object, Object);
 public transient void FormattedMessage(String, Object[]);
 public void FormattedMessage(String, Object[], Throwable);
 public boolean equals(Object);
 public String getFormat();
 public String getFormattedMessage();
 protected Message getMessage(String, Object[], Throwable);
 public Object[] getParameters();
 public Throwable getThrowable();
 public int hashCode();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 static void <clinit>();
}

org/apache/logging/log4j/simple/SimpleLogger.class

package org.apache.logging.log4j.simple;
public synchronized class SimpleLogger extends org.apache.logging.log4j.spi.AbstractLogger {
 private static final long serialVersionUID = 1;
 private static final char SPACE = 32;
 private final java.text.DateFormat dateFormatter;
 private org.apache.logging.log4j.Level level;
 private final boolean showDateTime;
 private final boolean showContextMap;
 private java.io.PrintStream stream;
 private final String logName;
 public void SimpleLogger(String, org.apache.logging.log4j.Level, boolean, boolean, boolean, boolean, String, org.apache.logging.log4j.message.MessageFactory, org.apache.logging.log4j.util.PropertiesUtil, java.io.PrintStream);
 public org.apache.logging.log4j.Level getLevel();
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, CharSequence, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, Object, Throwable);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String);
 public transient boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object[]);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public boolean isEnabled(org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, String, Throwable);
 public void logMessage(String, org.apache.logging.log4j.Level, org.apache.logging.log4j.Marker, org.apache.logging.log4j.message.Message, Throwable);
 public void setLevel(org.apache.logging.log4j.Level);
 public void setStream(java.io.PrintStream);
}

org/apache/logging/log4j/ThreadContext$EmptyIterator.class

package org.apache.logging.log4j;
synchronized class ThreadContext$EmptyIterator implements java.util.Iterator {
 private void ThreadContext$EmptyIterator();
 public boolean hasNext();
 public Object next();
 public void remove();
}

org/apache/logging/log4j/MarkerManager$Log4jMarker.class

package org.apache.logging.log4j;
public synchronized class MarkerManager$Log4jMarker implements Marker, util.StringBuilderFormattable {
 private static final long serialVersionUID = 100;
 private final String name;
 private volatile Marker[] parents;
 private void MarkerManager$Log4jMarker();
 public void MarkerManager$Log4jMarker(String);
 public synchronized transient Marker addParents(Marker[]);
 public synchronized boolean remove(Marker);
 public transient Marker setParents(Marker[]);
 public String getName();
 public Marker[] getParents();
 public boolean hasParents();
 public boolean isInstanceOf(Marker);
 public boolean isInstanceOf(String);
 private static boolean checkParent(Marker, Marker);
 private static transient boolean contains(Marker, Marker[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public void formatTo(StringBuilder);
 private static transient void addParentInfo(StringBuilder, Marker[]);
}

org/apache/logging/log4j/LoggingException.class

package org.apache.logging.log4j;
public synchronized class LoggingException extends RuntimeException {
 private static final long serialVersionUID = 6366395965071580537;
 public void LoggingException(String);
 public void LoggingException(String, Throwable);
 public void LoggingException(Throwable);
}

org/apache/logging/log4j/ThreadContext.class

package org.apache.logging.log4j;
public final synchronized class ThreadContext {
 public static final java.util.Map EMPTY_MAP;
 public static final spi.ThreadContextStack EMPTY_STACK;
 private static final String DISABLE_MAP = disableThreadContextMap;
 private static final String DISABLE_STACK = disableThreadContextStack;
 private static final String DISABLE_ALL = disableThreadContext;
 private static boolean useStack;
 private static spi.ThreadContextMap contextMap;
 private static spi.ThreadContextStack contextStack;
 private static spi.ReadOnlyThreadContextMap readOnlyContextMap;
 private void ThreadContext();
 static void init();
 public static void put(String, String);
 public static void putIfNull(String, String);
 public static void putAll(java.util.Map);
 public static String get(String);
 public static void remove(String);
 public static void removeAll(Iterable);
 public static void clearMap();
 public static void clearAll();
 public static boolean containsKey(String);
 public static java.util.Map getContext();
 public static java.util.Map getImmutableContext();
 public static spi.ReadOnlyThreadContextMap getThreadContextMap();
 public static boolean isEmpty();
 public static void clearStack();
 public static ThreadContext$ContextStack cloneStack();
 public static ThreadContext$ContextStack getImmutableStack();
 public static void setStack(java.util.Collection);
 public static int getDepth();
 public static String pop();
 public static String peek();
 public static void push(String);
 public static transient void push(String, Object[]);
 public static void removeStack();
 public static void trim(int);
 static void <clinit>();
}

META-INF/versions/9/org/apache/logging/log4j/util/internal/DefaultObjectInputFilter.class

package org.apache.logging.log4j.util.internal;
public synchronized class DefaultObjectInputFilter implements java.io.ObjectInputFilter {
 private static final java.util.List REQUIRED_JAVA_CLASSES;
 private static final java.util.List REQUIRED_JAVA_PACKAGES;
 private final java.io.ObjectInputFilter delegate;
 public void DefaultObjectInputFilter();
 public void DefaultObjectInputFilter(java.io.ObjectInputFilter);
 public static DefaultObjectInputFilter newInstance(java.io.ObjectInputFilter);
 public java.io.ObjectInputFilter$Status checkInput(java.io.ObjectInputFilter$FilterInfo);
 private static boolean isAllowedByDefault(String);
 private static boolean isRequiredPackage(String);
 static void <clinit>();
}

META-INF/DEPENDENCIES

// --
// Transitive dependencies of this project determined from the
// maven pom organized by organization.
// --

Apache Log4j API

META-INF/services/org.apache.logging.log4j.util.PropertySource

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache license, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the license for the specific language governing permissions and
limitations under the license.
org.apache.logging.log4j.util.EnvironmentPropertySource
org.apache.logging.log4j.util.SystemPropertiesPropertySource

META-INF/maven/org.apache.logging.log4j/log4j-api/pom.properties

#Created by Apache Maven 3.8.4
version=2.17.1
groupId=org.apache.logging.log4j
artifactId=log4j-api

org/apache/logging/log4j/util/Unbox$State.class

package org.apache.logging.log4j.util;
synchronized class Unbox$State {
 private final StringBuilder[] ringBuffer;
 private int current;
 void Unbox$State();
 public StringBuilder getStringBuilder();
 public boolean isBoxedPrimitive(StringBuilder);
}

org/apache/logging/log4j/util/IndexedReadOnlyStringMap.class

package org.apache.logging.log4j.util;
public abstract interface IndexedReadOnlyStringMap extends ReadOnlyStringMap {
 public abstract String getKeyAt(int);
 public abstract Object getValueAt(int);
 public abstract int indexOfKey(String);
}

org/apache/logging/log4j/util/LowLevelLogUtil.class

package org.apache.logging.log4j.util;
final synchronized class LowLevelLogUtil {
 private static java.io.PrintWriter writer;
 public static void log(String);
 public static void logException(Throwable);
 public static void logException(String, Throwable);
 public static void setOutputStream(java.io.OutputStream);
 public static void setWriter(java.io.Writer);
 private void LowLevelLogUtil();
 static void <clinit>();
}

org/apache/logging/log4j/util/SystemPropertiesPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class SystemPropertiesPropertySource implements PropertySource {
 private static final int DEFAULT_PRIORITY = 100;
 private static final String PREFIX = log4j2.;
 public void SystemPropertiesPropertySource();
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/BiConsumer.class

package org.apache.logging.log4j.util;
public abstract interface BiConsumer {
 public abstract void accept(Object, Object);
}

org/apache/logging/log4j/util/StackLocator.class

package org.apache.logging.log4j.util;
public final synchronized class StackLocator {
 static final int JDK_7u25_OFFSET;
 private static final reflect.Method GET_CALLER_CLASS;
 private static final StackLocator INSTANCE;
 public static StackLocator getInstance();
 private void StackLocator();
 public Class getCallerClass(Class, java.util.function.Predicate);
 public Class getCallerClass(int);
 public Class getCallerClass(String, String);
 public Class getCallerClass(Class);
 public java.util.Stack getCurrentStackTrace();
 public StackTraceElement calcLocation(String);
 public StackTraceElement getStackTraceElement(int);
 private boolean isValid(StackTraceElement);
 static void <clinit>();
}

org/apache/logging/log4j/message/BasicThreadInformation.class

package org.apache.logging.log4j.message;
synchronized class BasicThreadInformation implements ThreadInformation {
 private static final int HASH_SHIFT = 32;
 private static final int HASH_MULTIPLIER = 31;
 private final long id;
 private final String name;
 private final String longName;
 private final Thread$State state;
 private final int priority;
 private final boolean isAlive;
 private final boolean isDaemon;
 private final String threadGroupName;
 void BasicThreadInformation(Thread);
 public boolean equals(Object);
 public int hashCode();
 public void printThreadInfo(StringBuilder);
 public void printStack(StringBuilder, StackTraceElement[]);
}

org/apache/logging/log4j/message/StringMapMessage.class

package org.apache.logging.log4j.message;
public synchronized class StringMapMessage extends MapMessage {
 private static final long serialVersionUID = 1;
 public void StringMapMessage();
 public void StringMapMessage(int);
 public void StringMapMessage(java.util.Map);
 public StringMapMessage newInstance(java.util.Map);
}

org/apache/logging/log4j/message/ThreadDumpMessage$ThreadDumpMessageProxy.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$ThreadDumpMessageProxy implements java.io.Serializable {
 private static final long serialVersionUID = -3476620450287648269;
 private final String formattedMsg;
 private final String title;
 void ThreadDumpMessage$ThreadDumpMessageProxy(ThreadDumpMessage);
 protected Object readResolve();
}

org/apache/logging/log4j/message/SimpleMessage.class

package org.apache.logging.log4j.message;
public synchronized class SimpleMessage implements Message, org.apache.logging.log4j.util.StringBuilderFormattable, CharSequence {
 private static final long serialVersionUID = -8398002534962715992;
 private String message;
 private transient CharSequence charSequence;
 public void SimpleMessage();
 public void SimpleMessage(String);
 public void SimpleMessage(CharSequence);
 public String getFormattedMessage();
 public void formatTo(StringBuilder);
 public String getFormat();
 public Object[] getParameters();
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 public Throwable getThrowable();
 public int length();
 public char charAt(int);
 public CharSequence subSequence(int, int);
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
}

org/apache/logging/log4j/message/StructuredDataCollectionMessage.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataCollectionMessage implements org.apache.logging.log4j.util.StringBuilderFormattable, MessageCollectionMessage {
 private static final long serialVersionUID = 5725337076388822924;
 private final java.util.List structuredDataMessageList;
 public void StructuredDataCollectionMessage(java.util.List);
 public java.util.Iterator iterator();
 public String getFormattedMessage();
 public String getFormat();
 public void formatTo(StringBuilder);
 public Object[] getParameters();
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/LoggerNameAwareMessage.class

package org.apache.logging.log4j.message;
public abstract interface LoggerNameAwareMessage {
 public abstract void setLoggerName(String);
 public abstract String getLoggerName();
}

org/apache/logging/log4j/message/MessageCollectionMessage.class

package org.apache.logging.log4j.message;
public abstract interface MessageCollectionMessage extends Message, Iterable {
}

org/apache/logging/log4j/message/MessageFactory2.class

package org.apache.logging.log4j.message;
public abstract interface MessageFactory2 extends MessageFactory {
 public abstract Message newMessage(CharSequence);
 public abstract Message newMessage(String, Object);
 public abstract Message newMessage(String, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/StructuredDataMessage$Format.class

package org.apache.logging.log4j.message;
public final synchronized enum StructuredDataMessage$Format {
 public static final StructuredDataMessage$Format XML;
 public static final StructuredDataMessage$Format FULL;
 public static StructuredDataMessage$Format[] values();
 public static StructuredDataMessage$Format valueOf(String);
 private void StructuredDataMessage$Format(String, int);
 static void <clinit>();
}

org/apache/logging/log4j/message/ThreadDumpMessage$ThreadInfoFactory.class

package org.apache.logging.log4j.message;
public abstract interface ThreadDumpMessage$ThreadInfoFactory {
 public abstract java.util.Map createThreadInfo();
}

org/apache/logging/log4j/spi/DefaultThreadContextStack.class

package org.apache.logging.log4j.spi;
public synchronized class DefaultThreadContextStack implements ThreadContextStack, org.apache.logging.log4j.util.StringBuilderFormattable {
 private static final long serialVersionUID = 5050501;
 private static final ThreadLocal STACK;
 private final boolean useStack;
 public void DefaultThreadContextStack(boolean);
 private MutableThreadContextStack getNonNullStackCopy();
 public boolean add(String);
 public boolean addAll(java.util.Collection);
 public java.util.List asList();
 public void clear();
 public boolean contains(Object);
 public boolean containsAll(java.util.Collection);
 public ThreadContextStack copy();
 public boolean equals(Object);
 public int getDepth();
 public int hashCode();
 public boolean isEmpty();
 public java.util.Iterator iterator();
 public String peek();
 public String pop();
 public void push(String);
 public boolean remove(Object);
 public boolean removeAll(java.util.Collection);
 public boolean retainAll(java.util.Collection);
 public int size();
 public Object[] toArray();
 public Object[] toArray(Object[]);
 public String toString();
 public void formatTo(StringBuilder);
 public void trim(int);
 public org.apache.logging.log4j.ThreadContext$ContextStack getImmutableStackOrNull();
 static void <clinit>();
}

org/apache/logging/log4j/spi/DefaultThreadContextMap.class

package org.apache.logging.log4j.spi;
public synchronized class DefaultThreadContextMap implements ThreadContextMap, org.apache.logging.log4j.util.ReadOnlyStringMap {
 private static final long serialVersionUID = 8218007901108944053;
 public static final String INHERITABLE_MAP = isThreadContextMapInheritable;
 private final boolean useMap;
 private final ThreadLocal localMap;
 private static boolean inheritableMap;
 static ThreadLocal createThreadLocalMap(boolean);
 static void init();
 public void DefaultThreadContextMap();
 public void DefaultThreadContextMap(boolean);
 public void put(String, String);
 public void putAll(java.util.Map);
 public String get(String);
 public void remove(String);
 public void removeAll(Iterable);
 public void clear();
 public java.util.Map toMap();
 public boolean containsKey(String);
 public void forEach(org.apache.logging.log4j.util.BiConsumer);
 public void forEach(org.apache.logging.log4j.util.TriConsumer, Object);
 public Object getValue(String);
 public java.util.Map getCopy();
 public java.util.Map getImmutableMapOrNull();
 public boolean isEmpty();
 public int size();
 public String toString();
 public int hashCode();
 public boolean equals(Object);
 static void <clinit>();
}

org/apache/logging/log4j/spi/AbstractLoggerAdapter.class

package org.apache.logging.log4j.spi;
public abstract synchronized class AbstractLoggerAdapter implements LoggerAdapter, LoggerContextShutdownAware {
 protected final java.util.Map registry;
 private final java.util.concurrent.locks.ReadWriteLock lock;
 public void AbstractLoggerAdapter();
 public Object getLogger(String);
 public void contextShutdown(LoggerContext);
 public java.util.concurrent.ConcurrentMap getLoggersInContext(LoggerContext);
 public java.util.Set getLoggerContexts();
 protected abstract Object newLogger(String, LoggerContext);
 protected abstract LoggerContext getContext();
 protected LoggerContext getContext(Class);
 public void close();
}

org/apache/logging/log4j/spi/LoggerContextFactory.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextFactory {
 public void shutdown(String, ClassLoader, boolean, boolean);
 public boolean hasContext(String, ClassLoader, boolean);
 public abstract LoggerContext getContext(String, ClassLoader, Object, boolean);
 public abstract LoggerContext getContext(String, ClassLoader, Object, boolean, java.net.URI, String);
 public abstract void removeContext(LoggerContext);
 public boolean isClassLoaderDependent();
}

org/apache/logging/log4j/spi/LoggerContextKey.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerContextKey {
 public void LoggerContextKey();
 public static String create(String);
 public static String create(String, org.apache.logging.log4j.message.MessageFactory);
 public static String create(String, Class);
}

org/apache/logging/log4j/spi/LoggerRegistry.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry {
 private static final String DEFAULT_FACTORY_KEY;
 private final LoggerRegistry$MapFactory factory;
 private final java.util.Map map;
 public void LoggerRegistry();
 public void LoggerRegistry(LoggerRegistry$MapFactory);
 private static String factoryClassKey(Class);
 private static String factoryKey(org.apache.logging.log4j.message.MessageFactory);
 public ExtendedLogger getLogger(String);
 public ExtendedLogger getLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public java.util.Collection getLoggers();
 public java.util.Collection getLoggers(java.util.Collection);
 private java.util.Map getOrCreateInnerMap(String);
 public boolean hasLogger(String);
 public boolean hasLogger(String, org.apache.logging.log4j.message.MessageFactory);
 public boolean hasLogger(String, Class);
 public void putIfAbsent(String, org.apache.logging.log4j.message.MessageFactory, ExtendedLogger);
 static void <clinit>();
}

org/apache/logging/log4j/spi/CopyOnWriteSortedArrayThreadContextMap$1.class

package org.apache.logging.log4j.spi;
synchronized class CopyOnWriteSortedArrayThreadContextMap$1 extends InheritableThreadLocal {
 void CopyOnWriteSortedArrayThreadContextMap$1(CopyOnWriteSortedArrayThreadContextMap);
 protected org.apache.logging.log4j.util.StringMap childValue(org.apache.logging.log4j.util.StringMap);
}

org/apache/logging/log4j/spi/MessageFactory2Adapter.class

package org.apache.logging.log4j.spi;
public synchronized class MessageFactory2Adapter implements org.apache.logging.log4j.message.MessageFactory2 {
 private final org.apache.logging.log4j.message.MessageFactory wrapped;
 public void MessageFactory2Adapter(org.apache.logging.log4j.message.MessageFactory);
 public org.apache.logging.log4j.message.MessageFactory getOriginal();
 public org.apache.logging.log4j.message.Message newMessage(CharSequence);
 public org.apache.logging.log4j.message.Message newMessage(String, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public org.apache.logging.log4j.message.Message newMessage(Object);
 public org.apache.logging.log4j.message.Message newMessage(String);
 public transient org.apache.logging.log4j.message.Message newMessage(String, Object[]);
}

org/apache/logging/log4j/spi/LoggerContextShutdownEnabled.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextShutdownEnabled {
 public abstract void addShutdownListener(LoggerContextShutdownAware);
 public abstract java.util.List getListeners();
}

org/apache/logging/log4j/util/ReadOnlyStringMap.class

package org.apache.logging.log4j.util;
public abstract interface ReadOnlyStringMap extends java.io.Serializable {
 public abstract java.util.Map toMap();
 public abstract boolean containsKey(String);
 public abstract void forEach(BiConsumer);
 public abstract void forEach(TriConsumer, Object);
 public abstract Object getValue(String);
 public abstract boolean isEmpty();
 public abstract int size();
}

org/apache/logging/log4j/util/TriConsumer.class

package org.apache.logging.log4j.util;
public abstract interface TriConsumer {
 public abstract void accept(Object, Object, Object);
}

org/apache/logging/log4j/util/EnvironmentPropertySource.class

package org.apache.logging.log4j.util;
public synchronized class EnvironmentPropertySource implements PropertySource {
 private static final String PREFIX = LOG4J_;
 private static final int DEFAULT_PRIORITY = -100;
 public void EnvironmentPropertySource();
 public int getPriority();
 public void forEach(BiConsumer);
 public CharSequence getNormalForm(Iterable);
}

org/apache/logging/log4j/util/Activator.class

package org.apache.logging.log4j.util;
public synchronized class Activator implements org.osgi.framework.BundleActivator, org.osgi.framework.SynchronousBundleListener {
 private static final SecurityManager SECURITY_MANAGER;
 private static final org.apache.logging.log4j.Logger LOGGER;
 private boolean lockingProviderUtil;
 public void Activator();
 private static void checkPermission(java.security.Permission);
 private void loadProvider(org.osgi.framework.Bundle);
 private String toStateString(int);
 private void loadProvider(org.osgi.framework.BundleContext, org.osgi.framework.wiring.BundleWiring);
 public void start(org.osgi.framework.BundleContext) throws Exception;
 private void unlockIfReady();
 public void stop(org.osgi.framework.BundleContext) throws Exception;
 public void bundleChanged(org.osgi.framework.BundleEvent);
 static void <clinit>();
}

org/apache/logging/log4j/EventLogger.class

package org.apache.logging.log4j;
public final synchronized class EventLogger {
 public static final Marker EVENT_MARKER;
 private static final String NAME = EventLogger;
 private static final String FQCN;
 private static final spi.ExtendedLogger LOGGER;
 private void EventLogger();
 public static void logEvent(message.StructuredDataMessage);
 public static void logEvent(message.StructuredDataMessage, Level);
 static void <clinit>();
}

org/apache/logging/log4j/Logger.class

package org.apache.logging.log4j;
public abstract interface Logger {
 public abstract void catching(Level, Throwable);
 public abstract void catching(Throwable);
 public abstract void debug(Marker, message.Message);
 public abstract void debug(Marker, message.Message, Throwable);
 public abstract void debug(Marker, util.MessageSupplier);
 public abstract void debug(Marker, util.MessageSupplier, Throwable);
 public abstract void debug(Marker, CharSequence);
 public abstract void debug(Marker, CharSequence, Throwable);
 public abstract void debug(Marker, Object);
 public abstract void debug(Marker, Object, Throwable);
 public abstract void debug(Marker, String);
 public abstract transient void debug(Marker, String, Object[]);
 public abstract transient void debug(Marker, String, util.Supplier[]);
 public abstract void debug(Marker, String, Throwable);
 public abstract void debug(Marker, util.Supplier);
 public abstract void debug(Marker, util.Supplier, Throwable);
 public abstract void debug(message.Message);
 public abstract void debug(message.Message, Throwable);
 public abstract void debug(util.MessageSupplier);
 public abstract void debug(util.MessageSupplier, Throwable);
 public abstract void debug(CharSequence);
 public abstract void debug(CharSequence, Throwable);
 public abstract void debug(Object);
 public abstract void debug(Object, Throwable);
 public abstract void debug(String);
 public abstract transient void debug(String, Object[]);
 public abstract transient void debug(String, util.Supplier[]);
 public abstract void debug(String, Throwable);
 public abstract void debug(util.Supplier);
 public abstract void debug(util.Supplier, Throwable);
 public abstract void debug(Marker, String, Object);
 public abstract void debug(Marker, String, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object);
 public abstract void debug(String, Object, Object);
 public abstract void debug(String, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void debug(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void entry();
 public abstract transient void entry(Object[]);
 public abstract void error(Marker, message.Message);
 public abstract void error(Marker, message.Message, Throwable);
 public abstract void error(Marker, util.MessageSupplier);
 public abstract void error(Marker, util.MessageSupplier, Throwable);
 public abstract void error(Marker, CharSequence);
 public abstract void error(Marker, CharSequence, Throwable);
 public abstract void error(Marker, Object);
 public abstract void error(Marker, Object, Throwable);
 public abstract void error(Marker, String);
 public abstract transient void error(Marker, String, Object[]);
 public abstract transient void error(Marker, String, util.Supplier[]);
 public abstract void error(Marker, String, Throwable);
 public abstract void error(Marker, util.Supplier);
 public abstract void error(Marker, util.Supplier, Throwable);
 public abstract void error(message.Message);
 public abstract void error(message.Message, Throwable);
 public abstract void error(util.MessageSupplier);
 public abstract void error(util.MessageSupplier, Throwable);
 public abstract void error(CharSequence);
 public abstract void error(CharSequence, Throwable);
 public abstract void error(Object);
 public abstract void error(Object, Throwable);
 public abstract void error(String);
 public abstract transient void error(String, Object[]);
 public abstract transient void error(String, util.Supplier[]);
 public abstract void error(String, Throwable);
 public abstract void error(util.Supplier);
 public abstract void error(util.Supplier, Throwable);
 public abstract void error(Marker, String, Object);
 public abstract void error(Marker, String, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object);
 public abstract void error(String, Object, Object);
 public abstract void error(String, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void error(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void exit();
 public abstract Object exit(Object);
 public abstract void fatal(Marker, message.Message);
 public abstract void fatal(Marker, message.Message, Throwable);
 public abstract void fatal(Marker, util.MessageSupplier);
 public abstract void fatal(Marker, util.MessageSupplier, Throwable);
 public abstract void fatal(Marker, CharSequence);
 public abstract void fatal(Marker, CharSequence, Throwable);
 public abstract void fatal(Marker, Object);
 public abstract void fatal(Marker, Object, Throwable);
 public abstract void fatal(Marker, String);
 public abstract transient void fatal(Marker, String, Object[]);
 public abstract transient void fatal(Marker, String, util.Supplier[]);
 public abstract void fatal(Marker, String, Throwable);
 public abstract void fatal(Marker, util.Supplier);
 public abstract void fatal(Marker, util.Supplier, Throwable);
 public abstract void fatal(message.Message);
 public abstract void fatal(message.Message, Throwable);
 public abstract void fatal(util.MessageSupplier);
 public abstract void fatal(util.MessageSupplier, Throwable);
 public abstract void fatal(CharSequence);
 public abstract void fatal(CharSequence, Throwable);
 public abstract void fatal(Object);
 public abstract void fatal(Object, Throwable);
 public abstract void fatal(String);
 public abstract transient void fatal(String, Object[]);
 public abstract transient void fatal(String, util.Supplier[]);
 public abstract void fatal(String, Throwable);
 public abstract void fatal(util.Supplier);
 public abstract void fatal(util.Supplier, Throwable);
 public abstract void fatal(Marker, String, Object);
 public abstract void fatal(Marker, String, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object);
 public abstract void fatal(String, Object, Object);
 public abstract void fatal(String, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void fatal(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract Level getLevel();
 public abstract message.MessageFactory getMessageFactory();
 public abstract String getName();
 public abstract void info(Marker, message.Message);
 public abstract void info(Marker, message.Message, Throwable);
 public abstract void info(Marker, util.MessageSupplier);
 public abstract void info(Marker, util.MessageSupplier, Throwable);
 public abstract void info(Marker, CharSequence);
 public abstract void info(Marker, CharSequence, Throwable);
 public abstract void info(Marker, Object);
 public abstract void info(Marker, Object, Throwable);
 public abstract void info(Marker, String);
 public abstract transient void info(Marker, String, Object[]);
 public abstract transient void info(Marker, String, util.Supplier[]);
 public abstract void info(Marker, String, Throwable);
 public abstract void info(Marker, util.Supplier);
 public abstract void info(Marker, util.Supplier, Throwable);
 public abstract void info(message.Message);
 public abstract void info(message.Message, Throwable);
 public abstract void info(util.MessageSupplier);
 public abstract void info(util.MessageSupplier, Throwable);
 public abstract void info(CharSequence);
 public abstract void info(CharSequence, Throwable);
 public abstract void info(Object);
 public abstract void info(Object, Throwable);
 public abstract void info(String);
 public abstract transient void info(String, Object[]);
 public abstract transient void info(String, util.Supplier[]);
 public abstract void info(String, Throwable);
 public abstract void info(util.Supplier);
 public abstract void info(util.Supplier, Throwable);
 public abstract void info(Marker, String, Object);
 public abstract void info(Marker, String, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object);
 public abstract void info(String, Object, Object);
 public abstract void info(String, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void info(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract boolean isDebugEnabled();
 public abstract boolean isDebugEnabled(Marker);
 public abstract boolean isEnabled(Level);
 public abstract boolean isEnabled(Level, Marker);
 public abstract boolean isErrorEnabled();
 public abstract boolean isErrorEnabled(Marker);
 public abstract boolean isFatalEnabled();
 public abstract boolean isFatalEnabled(Marker);
 public abstract boolean isInfoEnabled();
 public abstract boolean isInfoEnabled(Marker);
 public abstract boolean isTraceEnabled();
 public abstract boolean isTraceEnabled(Marker);
 public abstract boolean isWarnEnabled();
 public abstract boolean isWarnEnabled(Marker);
 public abstract void log(Level, Marker, message.Message);
 public abstract void log(Level, Marker, message.Message, Throwable);
 public abstract void log(Level, Marker, util.MessageSupplier);
 public abstract void log(Level, Marker, util.MessageSupplier, Throwable);
 public abstract void log(Level, Marker, CharSequence);
 public abstract void log(Level, Marker, CharSequence, Throwable);
 public abstract void log(Level, Marker, Object);
 public abstract void log(Level, Marker, Object, Throwable);
 public abstract void log(Level, Marker, String);
 public abstract transient void log(Level, Marker, String, Object[]);
 public abstract transient void log(Level, Marker, String, util.Supplier[]);
 public abstract void log(Level, Marker, String, Throwable);
 public abstract void log(Level, Marker, util.Supplier);
 public abstract void log(Level, Marker, util.Supplier, Throwable);
 public abstract void log(Level, message.Message);
 public abstract void log(Level, message.Message, Throwable);
 public abstract void log(Level, util.MessageSupplier);
 public abstract void log(Level, util.MessageSupplier, Throwable);
 public abstract void log(Level, CharSequence);
 public abstract void log(Level, CharSequence, Throwable);
 public abstract void log(Level, Object);
 public abstract void log(Level, Object, Throwable);
 public abstract void log(Level, String);
 public abstract transient void log(Level, String, Object[]);
 public abstract transient void log(Level, String, util.Supplier[]);
 public abstract void log(Level, String, Throwable);
 public abstract void log(Level, util.Supplier);
 public abstract void log(Level, util.Supplier, Throwable);
 public abstract void log(Level, Marker, String, Object);
 public abstract void log(Level, Marker, String, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object);
 public abstract void log(Level, String, Object, Object);
 public abstract void log(Level, String, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void log(Level, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract transient void printf(Level, Marker, String, Object[]);
 public abstract transient void printf(Level, String, Object[]);
 public abstract Throwable throwing(Level, Throwable);
 public abstract Throwable throwing(Throwable);
 public abstract void trace(Marker, message.Message);
 public abstract void trace(Marker, message.Message, Throwable);
 public abstract void trace(Marker, util.MessageSupplier);
 public abstract void trace(Marker, util.MessageSupplier, Throwable);
 public abstract void trace(Marker, CharSequence);
 public abstract void trace(Marker, CharSequence, Throwable);
 public abstract void trace(Marker, Object);
 public abstract void trace(Marker, Object, Throwable);
 public abstract void trace(Marker, String);
 public abstract transient void trace(Marker, String, Object[]);
 public abstract transient void trace(Marker, String, util.Supplier[]);
 public abstract void trace(Marker, String, Throwable);
 public abstract void trace(Marker, util.Supplier);
 public abstract void trace(Marker, util.Supplier, Throwable);
 public abstract void trace(message.Message);
 public abstract void trace(message.Message, Throwable);
 public abstract void trace(util.MessageSupplier);
 public abstract void trace(util.MessageSupplier, Throwable);
 public abstract void trace(CharSequence);
 public abstract void trace(CharSequence, Throwable);
 public abstract void trace(Object);
 public abstract void trace(Object, Throwable);
 public abstract void trace(String);
 public abstract transient void trace(String, Object[]);
 public abstract transient void trace(String, util.Supplier[]);
 public abstract void trace(String, Throwable);
 public abstract void trace(util.Supplier);
 public abstract void trace(util.Supplier, Throwable);
 public abstract void trace(Marker, String, Object);
 public abstract void trace(Marker, String, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object);
 public abstract void trace(String, Object, Object);
 public abstract void trace(String, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void trace(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract message.EntryMessage traceEntry();
 public abstract transient message.EntryMessage traceEntry(String, Object[]);
 public abstract transient message.EntryMessage traceEntry(util.Supplier[]);
 public abstract transient message.EntryMessage traceEntry(String, util.Supplier[]);
 public abstract message.EntryMessage traceEntry(message.Message);
 public abstract void traceExit();
 public abstract Object traceExit(Object);
 public abstract Object traceExit(String, Object);
 public abstract void traceExit(message.EntryMessage);
 public abstract Object traceExit(message.EntryMessage, Object);
 public abstract Object traceExit(message.Message, Object);
 public abstract void warn(Marker, message.Message);
 public abstract void warn(Marker, message.Message, Throwable);
 public abstract void warn(Marker, util.MessageSupplier);
 public abstract void warn(Marker, util.MessageSupplier, Throwable);
 public abstract void warn(Marker, CharSequence);
 public abstract void warn(Marker, CharSequence, Throwable);
 public abstract void warn(Marker, Object);
 public abstract void warn(Marker, Object, Throwable);
 public abstract void warn(Marker, String);
 public abstract transient void warn(Marker, String, Object[]);
 public abstract transient void warn(Marker, String, util.Supplier[]);
 public abstract void warn(Marker, String, Throwable);
 public abstract void warn(Marker, util.Supplier);
 public abstract void warn(Marker, util.Supplier, Throwable);
 public abstract void warn(message.Message);
 public abstract void warn(message.Message, Throwable);
 public abstract void warn(util.MessageSupplier);
 public abstract void warn(util.MessageSupplier, Throwable);
 public abstract void warn(CharSequence);
 public abstract void warn(CharSequence, Throwable);
 public abstract void warn(Object);
 public abstract void warn(Object, Throwable);
 public abstract void warn(String);
 public abstract transient void warn(String, Object[]);
 public abstract transient void warn(String, util.Supplier[]);
 public abstract void warn(String, Throwable);
 public abstract void warn(util.Supplier);
 public abstract void warn(util.Supplier, Throwable);
 public abstract void warn(Marker, String, Object);
 public abstract void warn(Marker, String, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(Marker, String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object);
 public abstract void warn(String, Object, Object);
 public abstract void warn(String, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public abstract void warn(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public void logMessage(Level, Marker, String, StackTraceElement, message.Message, Throwable);
 public LogBuilder atTrace();
 public LogBuilder atDebug();
 public LogBuilder atInfo();
 public LogBuilder atWarn();
 public LogBuilder atError();
 public LogBuilder atFatal();
 public LogBuilder always();
 public LogBuilder atLevel(Level);
}

org/apache/logging/log4j/message/TimestampMessage.class

package org.apache.logging.log4j.message;
public abstract interface TimestampMessage {
 public abstract long getTimestamp();
}

org/apache/logging/log4j/message/ThreadDumpMessage$1.class

package org.apache.logging.log4j.message;
synchronized class ThreadDumpMessage$1 {
}

org/apache/logging/log4j/message/AsynchronouslyFormattable.class

package org.apache.logging.log4j.message;
public abstract interface AsynchronouslyFormattable extends annotation.Annotation {
}

org/apache/logging/log4j/message/EntryMessage.class

package org.apache.logging.log4j.message;
public abstract interface EntryMessage extends FlowMessage {
}

org/apache/logging/log4j/message/ReusableMessage.class

package org.apache.logging.log4j.message;
public abstract interface ReusableMessage extends Message, org.apache.logging.log4j.util.StringBuilderFormattable {
 public abstract Object[] swapParameters(Object[]);
 public abstract short getParameterCount();
 public abstract Message memento();
}

org/apache/logging/log4j/message/StructuredDataId.class

package org.apache.logging.log4j.message;
public synchronized class StructuredDataId implements java.io.Serializable, org.apache.logging.log4j.util.StringBuilderFormattable {
 public static final StructuredDataId TIME_QUALITY;
 public static final StructuredDataId ORIGIN;
 public static final StructuredDataId META;
 public static final int RESERVED = -1;
 private static final long serialVersionUID = 9031746276396249990;
 private static final int MAX_LENGTH = 32;
 private static final String AT_SIGN = @;
 private final String name;
 private final int enterpriseNumber;
 private final String[] required;
 private final String[] optional;
 public void StructuredDataId(String);
 public void StructuredDataId(String, int);
 public void StructuredDataId(String, String[], String[]);
 public void StructuredDataId(String, String[], String[], int);
 public void StructuredDataId(String, int, String[], String[]);
 public void StructuredDataId(String, int, String[], String[], int);
 public StructuredDataId makeId(StructuredDataId);
 public StructuredDataId makeId(String, int);
 public String[] getRequired();
 public String[] getOptional();
 public String getName();
 public int getEnterpriseNumber();
 public boolean isReserved();
 public String toString();
 public void formatTo(StringBuilder);
 static void <clinit>();
}

org/apache/logging/log4j/message/FlowMessageFactory.class

package org.apache.logging.log4j.message;
public abstract interface FlowMessageFactory {
 public abstract EntryMessage newEntryMessage(Message);
 public abstract ExitMessage newExitMessage(Object, Message);
 public abstract ExitMessage newExitMessage(EntryMessage);
 public abstract ExitMessage newExitMessage(Object, EntryMessage);
}

org/apache/logging/log4j/message/ObjectArrayMessage.class

package org.apache.logging.log4j.message;
public final synchronized class ObjectArrayMessage implements Message {
 private static final long serialVersionUID = -5903272448334166185;
 private transient Object[] array;
 private transient String arrayString;
 public transient void ObjectArrayMessage(Object[]);
 private boolean equalObjectsOrStrings(Object[], Object[]);
 public boolean equals(Object);
 public String getFormat();
 public String getFormattedMessage();
 public Object[] getParameters();
 public Throwable getThrowable();
 public int hashCode();
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
}

org/apache/logging/log4j/message/StringFormatterMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class StringFormatterMessageFactory extends AbstractMessageFactory {
 public static final StringFormatterMessageFactory INSTANCE;
 private static final long serialVersionUID = -1626332412176965642;
 public void StringFormatterMessageFactory();
 public transient Message newMessage(String, Object[]);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 static void <clinit>();
}

org/apache/logging/log4j/message/Message.class

package org.apache.logging.log4j.message;
public abstract interface Message extends java.io.Serializable {
 public abstract String getFormattedMessage();
 public abstract String getFormat();
 public abstract Object[] getParameters();
 public abstract Throwable getThrowable();
}

org/apache/logging/log4j/message/StringFormattedMessage.class

package org.apache.logging.log4j.message;
public synchronized class StringFormattedMessage implements Message {
 private static final org.apache.logging.log4j.Logger LOGGER;
 private static final long serialVersionUID = -665975803997290697;
 private static final int HASHVAL = 31;
 private String messagePattern;
 private transient Object[] argArray;
 private String[] stringArgs;
 private transient String formattedMessage;
 private transient Throwable throwable;
 private final java.util.Locale locale;
 public transient void StringFormattedMessage(java.util.Locale, String, Object[]);
 public transient void StringFormattedMessage(String, Object[]);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 protected transient String formatMessage(String, Object[]);
 public boolean equals(Object);
 public int hashCode();
 public String toString();
 private void writeObject(java.io.ObjectOutputStream) throws java.io.IOException;
 private void readObject(java.io.ObjectInputStream) throws java.io.IOException, ClassNotFoundException;
 public Throwable getThrowable();
 static void <clinit>();
}

org/apache/logging/log4j/message/MessageFactory.class

package org.apache.logging.log4j.message;
public abstract interface MessageFactory {
 public abstract Message newMessage(Object);
 public abstract Message newMessage(String);
 public abstract transient Message newMessage(String, Object[]);
}

org/apache/logging/log4j/message/ParameterizedNoReferenceMessageFactory$StatusMessage.class

package org.apache.logging.log4j.message;
synchronized class ParameterizedNoReferenceMessageFactory$StatusMessage implements Message {
 private static final long serialVersionUID = 4199272162767841280;
 private final String formattedMessage;
 private final Throwable throwable;
 public void ParameterizedNoReferenceMessageFactory$StatusMessage(String, Throwable);
 public String getFormattedMessage();
 public String getFormat();
 public Object[] getParameters();
 public Throwable getThrowable();
}

org/apache/logging/log4j/message/DefaultFlowMessageFactory$SimpleExitMessage.class

package org.apache.logging.log4j.message;
final synchronized class DefaultFlowMessageFactory$SimpleExitMessage extends DefaultFlowMessageFactory$AbstractFlowMessage implements ExitMessage {
 private static final long serialVersionUID = 1;
 private final Object result;
 private final boolean isVoid;
 void DefaultFlowMessageFactory$SimpleExitMessage(String, EntryMessage);
 void DefaultFlowMessageFactory$SimpleExitMessage(String, Object, EntryMessage);
 void DefaultFlowMessageFactory$SimpleExitMessage(String, Object, Message);
 public String getFormattedMessage();
}

org/apache/logging/log4j/message/AbstractMessageFactory.class

package org.apache.logging.log4j.message;
public abstract synchronized class AbstractMessageFactory implements MessageFactory2, java.io.Serializable {
 private static final long serialVersionUID = -1307891137684031187;
 public void AbstractMessageFactory();
 public Message newMessage(CharSequence);
 public Message newMessage(Object);
 public Message newMessage(String);
 public Message newMessage(String, Object);
 public Message newMessage(String, Object, Object);
 public Message newMessage(String, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object);
 public Message newMessage(String, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object);
}

org/apache/logging/log4j/message/ParameterizedNoReferenceMessageFactory.class

package org.apache.logging.log4j.message;
public final synchronized class ParameterizedNoReferenceMessageFactory extends AbstractMessageFactory {
 private static final long serialVersionUID = 5027639245636870500;
 public static final ParameterizedNoReferenceMessageFactory INSTANCE;
 public void ParameterizedNoReferenceMessageFactory();
 public transient Message newMessage(String, Object[]);
 static void <clinit>();
}

org/apache/logging/log4j/spi/LoggerContextShutdownAware.class

package org.apache.logging.log4j.spi;
public abstract interface LoggerContextShutdownAware {
 public abstract void contextShutdown(LoggerContext);
}

org/apache/logging/log4j/spi/LoggerRegistry$ConcurrentMapFactory.class

package org.apache.logging.log4j.spi;
public synchronized class LoggerRegistry$ConcurrentMapFactory implements LoggerRegistry$MapFactory {
 public void LoggerRegistry$ConcurrentMapFactory();
 public java.util.Map createInnerMap();
 public java.util.Map createOuterMap();
 public void putIfAbsent(java.util.Map, String, ExtendedLogger);
}

org/apache/logging/log4j/spi/ReadOnlyThreadContextMap.class

package org.apache.logging.log4j.spi;
public abstract interface ReadOnlyThreadContextMap {
 public abstract void clear();
 public abstract boolean containsKey(String);
 public abstract String get(String);
 public abstract java.util.Map getCopy();
 public abstract java.util.Map getImmutableMapOrNull();
 public abstract org.apache.logging.log4j.util.StringMap getReadOnlyContextData();
 public abstract boolean isEmpty();
}

image23.emf
log4j.zip

image24.png
e

2T e-Bridge

Weaver e-Bridge Mddeware

SRS R R RS
[Jicps soseezse

image25.png
EARESAL
PIEETE TS SR
ERESER
SRTTRE
TKEER

HJ9WeLinkEERL

BTSSR

WK A\ e-Bridge !

2 RHES

ARG ERTEIER Chromeilliias 2 360LIBRMER 13171 !

© zmemon @ ummmws (@) mmEmea

SHFRE: 20221013

HBEZRSE: Windows Server 2008 R2
RRER JDKRRA: 1.8.0_172 (64(), D:\WEAVER-E8\ebridge\jdk64\re
WebfR5338HR%: Apache Tomcat/6.0.53, D:\WEAVER-E8\ebridge'tomcatiwebapps\ROOT
BIREERRA : MysQL57.17
BREF: 32755 VB
YIENE BRRE: 2074318
FRMEF: 12011 M8
BFEEESE): 521998 MB
FRBEERTE CHREREE: 493636 MB
FIRTERIE: 28362 MB

© naaswrs

63.3%

94.6%

image26.png
iz HzHe-Bridge
e S

ZHMEIFHTTPS

ECOLOGY9£E| =i APP;

RMERGNEREL TRRE, SRR

e Win64{i1 2008 R2 & o Linux64 i

FRA: V4O E{TIRME: Win64f 2008 RZBLLE WA VA0 EfTIR: Linuxb4dl SRELE

UTASEERTFEHe-BridgeERMRFFHR(-~ COLOC I)

6 o-Bridgoll T

AT ER(ERIDK .8 R E AT 8
EEAE): 202210413

6 E-COLOGYiFHZf4

SRR 20221013

image27.png
EMAE SEVRE ERel keSO BREE EEEE B

"LRE
EFEE | SRAE | Ras

RFE-AREEER (o)

HIERENER R AE R
BES -

BEEE E) v
BERH s v

image28.png
XiFeR XA SRR

Ty | Zraarpladar EHNME, URESTT —RTBEEENER, [ARRERsatETaEng
RERMBAI M, HfthiRsS 28z,

1. BJLAEEAF A U T D
BRGFSRAZRM. BR. flash, 2. SERFRSEOHIOHIbatSF(ENxcopyin), REHERER
EE RSN, EFR T e-cologyRiFRR {ERGAITRHESIIREE B Tbata <,
SRRIEERI SRR 3. RS SEE BB RS S T B s 7,
f5IgnSymantec Backup ExeciR{4.

smmEpr DO SALSURRGIsASeNer. oy I AT

image29.png
Weaver o-cology

" @ ull

e | s | =e

ERRTXAEEEE EECRRE

epEEaE

ERERER DiWeaver_base_20150715\ecology_files (BETHESBEREAETY !)

SEEHER DiWeaver_base_20150715\ecology_files (REVEBRBEFEAETY |

TEEQER DAWeaver_base_20150715\ecology_files_bak (REVEBRBEFEAETY

EEOEEGR o (BENEEEOREGES | BASHEEE—IT (605H) | ATORNTST]

sEnE

COBHIRECOR TR , AT 60R HERERENAAETES)

a

image30.png
AR

EETE
L
EES

®|d|e © & B

(=3

image31.png
D:\Weaver2015_HT\ecology files
D:\Weaver2015_HT\ecology files
D:\Weaver2015_HT\ecology files_bak

0

LX)

image32.png
ERFHRER

XHEFRER

XHEHER

XHEHE

L]

ZERPERIREHtM ISR NE S T AME R ERANNE R

ZEFRPFRIRBIMH S LERIR RIS R B CIEAI0fficeXt, TREILAEN
B /ecology/filesystem B R;

ZEFREAREH B RPN, BRENEHERRTIZES), MRl
AETZRZERIA../ecology/filesystembakup B ;

ENRIRES KIESEH —RHZR B RTEHEHY;

EAEEETINETRGE AN i R A T R AE N R B IR AR S5 2RO AR o,

image33.png
SQLQueryLsql - YH..0150715 (sa (153))" |

b'e

| select - from Imagerild

L]

imagefienane magefietype imagefle mageieused [fiersapan B
ATOF&1ABBB0SE 1EG47EGGB4FCICEB2icense applcation/zpconpressed NULL 1 D:\Weaver_base_20150715\ecclogy._fies\2012080\1865609571 [0 [
ATOF&1ABBB0SE 1EG47EGGB4FCICEAB2icense applcation/czpconpressed NULL 1 DA\Weaver_base_20150715\ecology_fles\201209\2\1506557838 |0
ATOF&1ABBB0SE 1EG47EGGB4FCICEAB2icense applcation/czpconpressed NULL 1 DA\Weaver_base_20150715\ecology_fles\20120\P\1623336%09 |0
ATOF&1ABBB0SE 1EG47EGGBS4FCICEB2icense applcation/czpconpressed NULL 1 D:\Weaver_base_20150715\ecology_fies 201209\ o
ATOFA41ASB0SE G4 EGG354FCCE4B2_ecology7lcense appication/xzpcampressed NULL 1 DAWeaver_base_20150715\ecology_fles\201210:2\1853866753 |0
CORER0121012104600¢ image/st [T DA\Weaver_base_20150715\ecology_fles\2012108\120242655... |1
CORIER0121012104600F image/gt N DAWeaver_base_20150715\ecology fles\201210\ANI71015591... |1
CORER0T2101210248 g image/gt N2 DAWeaver_base_20150715\ecology fles\201210\Ns224864.. |1
CORER0I21012144020 g image/gt [T DAWeaver_base_20150715\ecology_fles\201210\A\164451956... |1
CORER0I21012145308 gf image/gt [T DAWeaver_base_20150715\ecology fles\201210\A145755425... |1
CORER0T21012145507gf- image/gt [T DAWeaver_base_20150715\ecology_fles\201210\E\I16505756... |1
CORER0I21012145308 gf image/gt [T DAWeaver_base_20150715\ecology_fles\201210\0\171519654... |1
CORER0T21012145507.gf- image/gt [T DAWeaver_base_20150715\ecology_fles\2012100P\I08961311... |1
u=2136847301 21422617 18im=Ddgp=0ipg mage/ppeg N DAWeaver_base_20150715\ecology_fles\ 2012100 1777113864... |1
CORER0T210121440205¢ image/st N 2 D:\Weaver_base_20150715\ecclogy fes\ 201210\ 124656397, |1

image34.png
SREEER

SRAEIEIR

BRSOt iR
v SHIEEEH
pIES v P
upit / sEeEh SHLEH
SINEEE v 02: 00-07: 00 v 01: 00-01: 30
IR HRRER R v 148 v 148

HoErp. KEMREBEE

v HRERRE—A2EN
HiT. KEIRE

v HRERRE—EEEH
BT, KEMRE

SRAERGIRER

v BFE—R

v BFER

OA�Լ����ݿⱸ���ֲ�.pdf
OAYE &1 1
1. SINERXH

BINRRREF BB —IRENED, B&iD7EE: FHD\WEAVEREN 43X,
F1EIRS

FEEiXimAYARSS 2EResin Web Server, FilimAJfRSSEResinMobile e-messagefIiRES 2
emessage

11, E—5: TRETAN

” 324
L]
N

e

e

B@ Windows Server 2012R2 &

=TS B TET]
R e e M
PR M s

2 i el | Ll S

12. =8 &F “EEIR”

MW 152845089

AR=

W

Windows
PowerShell

&

EETA

= =

EnaETE

A

1.3. E=H: &#HF “BRF"

Administrator

2= *=ATR EETR
i e =T =8 e
T3 SMEE » FESNEES » BEIA » v P
Y ; poiER i
3 TE Terminal Services
B =0 feh, iSCSI BERF
BEAEnnE [Fy ODBC M2 3
@y ODBC ZmH(64 o
N Eesn p-s Windows PowerShell (x86)
3 s L Windcws PowerShell ISE (x86) 13/8/22
_— _:-_- 'thdows PowerShell 1SE
i Windows Server Backup »
L 71 Windows RESEF »
i) c2EERS -
N m5 B TSN =7
S o S 2K
e IEEE (C) EEEEIER 2K
ca TIBEE (D) p]’ WIS Windows Bikig 201 2

A e
(&) EEr i
H BuEEn
ik FE BRI GEE S
= EnES
M 2xES
< (1]

B4TEE B 1EE 11368

1.4. WP : FILENERS, &6

» TIERE (E)

i

m

R EE (= FIRS (BB iNiHHIBRSS 2Resin Web Server, FHliHAYIRSS EResinMobile
e-messagefJfREEemessage)

TEED: ERFEFELNERS, 2SR ECMENRSEMEL, ARIEDERN
WEAVERX 42 EEHIZIVEE, £IPSHBENEASEMD—RAIE,

BEY: PSR D:/WEAVERSecologySUESHIFIUZRIAT, HENBEEER
IRSS2EResin Web Server , AL ecologyszid

3 L =18
R E R
e Doz Hm »enn

< BEEE RS

Resin Web Server =8 - = g BENsd 2 8% o)

i, Remote Access Auto Con.. TTiB... £ TMER

Remote Access Connecti.. B =] THEER

i Remote Desktop Configu... 5f2... E =] THRER

i, Remote Desktop Services ftiF.. 3 FlEES

. Remote Desktop Service.. 3ti%.. ¥ LEES

Remote Procedure Call (.. RPC.. [F&E. B& PR

i Remote Procedure Call (. & W...] REE

Remote Registry

ResinfMobile

Resultant Set of Policy Pr.. 188 3 TmEE =
, Routing and Remote Acc.. M. = =mER
« RPC Endpoint Mapper By .. EE. B AERE
Secondary Logon EX. IEE. =3 THER
Secure Socket Tunneling ... H&t.. Fam TieEs
o Security Accounts Manag.. B3).. [E&E. B3 THRR
5 Server =i, o TEER
i Shell Hardware Detection HE8. [FE. B3 TMER
« Smart Card mE. =4 FHEE
_“LSmart Card Deviee Frum... k.. _Echiw., XieEs 007

[\rm/iEn/

HE =B

-q_}_nzfsﬁpmmmrwvzas

v & [mmweaver

T e &
B TE L. beifen
m ax L dots

=5
=

s

W mEpaneE [4 ecology

2019/5/14 0:45

M=

4. e-message
. aEE L EMobile
B ns 4 DK
; L. Resin

& BR

iR

& TE

» 'E

e &

e TIERE (C)

s TEEE D)

ca TIEEE (£)

G s

2017/11/22 13:50
2019/5/13 23:36
2019/5/13 15:35
2019/5/13 17:40

1.5. AP : &FHXHE. BRXH

FilesystemBR TREFEEOAFH I BMMIHME FEFH

T
Migs
Higm

Foh

b FER (E2)

* t|) » BeEE » ZBEE) » WEAVER » ecology ») v | | BEecology’

b=
. favourite
J. FCKEditor

=1
2019/5/13 15:
2019/5/13 15:27

=25
{2 4
Wit=

| filesystem

2019/5/13 17:49

i

i fna

L. formmode

. fullsearch

A FusionChartsFree
A govern

A help

4. HistoryMsgFiles

4 homepage

W hrm
& htc
L images
4 images face
o images_frame
4 infoCallect
L. integration
4 interface
W join
& js
& jsp

18 EE B

2019/5/13 15:27
2019/5/13 15:28
2019/5/13 15:28
2019/5/13 15:28
2019/5/13 15:28
2019/5/13 15:28
2019/5/13 20116
2019/5/13 15:28
2019/5/13 15:29
2019/5/13 15:29
2019/5/13 15:29
2019/5/13 15:29
2019/5/13 15:29
2019/5/13 15:29
2018/5/13 15:29
2019/5/13 15:29
2019/5/13 18:12
2018/5/13 18:15
2019/513 15:31

T
Wi
=
Witz
Wik
Wit
Wi
Witz
i
i
=
W=
Wiz
Wik
Mg
Wit
Wids
Wiz

M=

2. FRIDEEEN 4
i%—*ﬁ: HAETAMN “

” &5
089

2@ Windows Server 2012R2 &

el i H1 0 ~ AR B0 M

2.2. FL: FIHAMIEE

AEFHIATUEIERE ©

” %40, WEHITFHSQL Server Management Studio

r SQL Server

o Management...

EFo

L

HESH 152845089

2%

360 Pt
Internet Explorer

3I60eeE P+

¢ Notepad++

L FhEmEHREE..
e

3608
L PRGN P PR

i

HRg360ee P+

Emze0ee P+

23. =% SNEEE

3602

L

S Da e S &

SQL Server 2.
we

Data Profile...
|3

Deployment...
i

Execute Packag...

WS

Microsoft SQL
Server TRELE
Reporting...
Li

SQL Server...
| i

e Io&a8 8 W

SOL Server
Management...

SQL Server
Profiler

SOL Server £2...
1

SOL Server #...
s

SOL Server #E
i

SQL Server BE...
mE

SQL Server RiE
(g
BAHEH..
WS

BAHIS R
i

ERIEETEEREENHIEEXH (W: ecology. ecologyV1) , mtAEEE “E%
—&%B” , ITASHEIEENR, SHEEEE “T8” |, BEOHBOAREMER, ZRm
— MR, SERER, BEEFMERI. BEHHEEXHEHZIUVERT.

MW 152845089

: Microsoft SQL Se anagement Studio =0
T RE) =WV =D TAMm BDw 8= B
J WA LD SHE D L B,
PR - 0 %
- Y F1
7
-\\-‘
*
* WD)
i ’ BT
B 501 Se BT PowerShalliH \ ErERS) "
B N]
BE2M ER(R)
i AP
B (F EITRTRGSEH0)
E(R) e=EEE=L
S EEE
SEmR TR
NIRRT EERR)
BARRD ada
BT '.‘;'._".‘
MYERRIC)
ERDEEOEE
e
-
L Fa P ef

SuE - D

1
AR (T):
FR L 00
wmaie):
[R 0 DT g
&AL
= #rin (8}

0 FFHIHA): [
i
Ein: [scslon-FR BIRE @i

EaS 614

RS

EEE E:

=an:

#-{1 $RECYCLE. BIN
- 360DocProtect
Hi{:i 360Downloads
%[3608 fF
#-_3 bksystem
% ChromeCoreDownloads
#- Notepad++
%[System Volume Information
=13 WEAVER
[beifen

| W data

i #-{ ecology
@{:: emessage
. @ Hobile
e

| ®-{3 Resin

% EVin RAR
=l 2TEFER
e E:

W&, XHRES &5
BREB .

e T —
D: \WEAVER\be1 £
Q ei1fen ‘)

ST (x. bak x. trn)

|20190514]

image35.emf
OA以及数据库备 份手册.pdf

image36.png
e-cology | /s BRI < Reb> : 1= NPsE

s

WprEm
| AKES 11X @ EETEE

EEAEE

SEaeE @ BUAZENE-8/\ETEE

P B - = = m@m 8 B - = EE a8 - = moE A
il O s 2 :
S 10 6 7 8 9 10 6 7 8 9 10 3 4 6 7
& pow 1314 15 16 17 1314 15 16 17 0 1 314
a2 20 21 2 23 2 0 21 2 23 7 18 19 20 21
@3 27 28 27 8 29 30 31 u 5 26 27 28
@ mEED
58]] £
‘& - = m = B - = = a5~ B - = = EE B - = = m ®5 A
4 s 12 12 3 4
o2 s 6 7 8 9 3 4 5 6 7 7 8 9 10 11
15 16 17 18 19 12 13 14 15 16 0011 12 13 14 @15 16 17 18
2 23 2 25 % 19 20 21 17 18 19 20 21 2 2 B A4 B
20 30 31 % 27 28 24 25 26 271 28 8 29 3 3
3
CILEIEE 98 108 128
B - = = m ®5 A = kot B - = EE B - = = m ®5 A
o ' oEa : '
SRR 4 5 6 7 8 o213 6 7 8 9 10 4 5 6 7 8

image37.png
e-cology | /5 BRI Q SR O S = e

AF ERE =5 2 afErEE PR

A =3 2023 1 2EE 11X @ ERIFE 8 X M EEAER 15K @
= v =mE
—ErD @ AR . = - ® B
& 8 — = = " A a8 - = m ~ 8 — = " A a — = = " A
P P] 3 4 5 6 12 03 3
e PO— 9 10 112 6 7 8 9 10 6 7 8 9 10 3 4 6 7
@& pats 16 17 18 19 1314 15 16 17 31415 16 17 001 12 13 4
EHARAE a2 2 e | 26 0 2 2 23 20 21 2 23 4 7 18 19 20 2
PR, @3 3 @ 31 27 28 27 28 29 30 3 u 25 2 2 2 B
o= N
—— v Rk AR AR
o 58 68 78 88
EHRESN a — " 8 — = = " A 8 — = = " A a8 — = " A
@l] 5 12 1 4
o
8 12 5 6 7 8 9 3 4 5 6 7 7 8 9 10 1
EEE 1516 17 18 19 12013 14 15 16 001 12 13 4 415 6 17 8
e 2 23 4 5 % 19 20 21 4 7 18 19 20 21 2 2 B A B
29 30 3 2% 27 28 20 30 24 25 2 27 28 B 29 0 3
o
R 3
A ¢
ATENAR o8 108 128
e a — = = " A a8 — = 8 — = " A a — = = " A
1 | 3 a 3 1
EgRRERE 4 5 6 7 8 aq 9 6 7 8 9 10 4 5 6 7 8

image38.png
© serromez

e
FHEEE
g
iR

s mEABE () EELES

image39.png
L ZEOEMO

<« C © 127.00.1:8090/wui/engine htmi#/attendance/holidaySetting? key=t

&3 KQHolidaySet (1).xds

x

£ ZWOEMO

x

a

TEmE:

féxcel

SRR e,
(335) S0
) FUBLED:

[3462) PR

image40.png
KQHolidaySet (1)xis (S

Q meenmEes

oo Lems =0 D;Q

B e B8 eaEEs
anmms % G | Pl ind,

§ %y

e s £ 5 sl B 5 s & e | .
@ IR Ofice EXBRT ISR, ENAREATMNA. | THER x
2 = £ -
H i 1
HHPIEX TR
| SAmmzesa | saeE [® a)

e m O - a Ty

image41.png
[j;‘; o 11 -] A A ® ams M E’.‘l f = EX
= - n V| @ s sems ¥R mmeRs WA BB W &8
Y e [Bru-B-|R-AE Eanars %0 W% e, R s L2
nE ELd 5 FAR 5 L5 5 s 5o i 2 PN
© FEER Ofice RABFTARIRR, ENAREXD LB, | B x
817 - % =
4 g%: B c D E F c H 1 i
=

ABIERE— 7T BN
[EAEE] SIRLR%, BERESASHTORRTEH BT ORE
5381 5122 (AE] SkE (53] HRRASHBNL8E, LESBOTRSNZEAR R
[EF] 5120185, BEEBESERNSH

(B8] 12085, BEHRALAR “2018-10-10” ZIREN, BUTELH, FATHYN
(2] 3120y, BRRES A0RE. BEIER. BEASEPH—

[3:88) SIRSEBESERM, AR

[HRIER] FIRY (3] 5lkis “BRIEE” B BE%E

No om0

©@NO oW N

SABHTERER

image42.png
e-cology | J5¥#3 R

GEBER
» AFEH
4 EEER
—RR T {FRE
TieEHERR
—REAES
EBRFRE
FERERES
> BENES
» SNRREREE)
EEEEIRE
EEERE
» FREE
) EEEREE
» BREE
» HEEE

RIEEE

T&#ER
HHIEE

AonF

10

il

12

315 R maEsIs Rty ’ 5|5 resieE
—
A® BN BE WK emesage &S @M iE mm AX WEm
TeREER
it REARSAE B AR 20235

] 1 2 3

=S

23

AREH: 0K

2

25

OFEETIFH: 0K

26

27

28

OHEEHREH: 0K

29

30

31

image43.png
e-cology | J5¥#3 R

«

GemEa AFE 0 B BfE e-message il 1553 ME g AR A= &= =) =

=

* ATEE TIEEHAER
+ HWER

— BT Es R ARSAE a5 Em < 203 > 25 ARER: 6% GBELH: 1% «FEAEE: 0

TeEHERE 21 2 23 24 25 26 A~ 28 29 30 31

RS 'l

EBRFRE

FERERES
> BENES
» SNRREREE)
EEEEIRE
EEERE
» FREE
) EEEREE
» BREE

» HEEE

RIEEE

aREE

T&#ER

HHIEE

AonF

image44.png
e-cology | i3 ISR s BT WS ety

rFsizE Bals = SRk b=

AF B B BfE e-message o 1423 WME g B = &= e = v

> AFEE et . . PRgE
+ wuEm 1)
S 4 & EsTEST WrER REEX DEARE. FESE Temm BREe R
TrEmR Doy AEE T Imaest mRRE R oEREE AR, TEEORSRE,
> o Ry EE RS e DrRER
o fefemn SIREHER AL GRHEE DFRER 09:00-18:00
ity PSR A 1111 AR B ARy 1800-0900
= 0 T e w BENE. e oEREE
» B P
» () RIS
5] DZ 09:00-18:00
e e H—rE [E e REE
HEmm
- . E=—liv EERER GEEHEHT DFRER 09:00-18:00
mEeeR P
- Wk Wik B 09:00-18:00
AR O RERTTENEASRAT
P TS B 09:00-18:00
e Q) s
BRI BEVME. SR 09:00-18:00
e M A R s
» EhER o mamn
AE [E s 09:00-18:00
R s () mEEEE
BEXIN EBRE BUHHEE 09:00-18:00, 18:00-09:00
Tene) () EEWE-Y
N 1" EEN(EA... BUHHEE 09:00-18:00, 18:00-09:00
A IR EEN(ER... GREHENT 09:00-18:00, 18:00-09:00
HEhEE D i) LR
. EE [E B
N — » () KRR
(o 20210722 =5

ot CSDHE

image1.png
3Z inX
eaver

